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Abstract
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1 Introduction

In the neoclassical theory of the firm, the notion of inputs is defined only after classes of

goods are specified. Inputs are substitutes if when the price of one type of input rises,

the number of units demanded of the other types cannot fall. But what are “types”

of inputs? If electricity generated at locations A and B are perfectly substitutable in

production, should we regard these as one class of input or two? The answer would seem

to depend on whether the inputs can have different prices. To investigate the distinction,

we will say that the firm has a weak-substitute valuation when the substitutes condition

is satisfied for distinct types of goods and a strong-substitute valuation when, in addition,

it is satisfied even for individual goods of the same type. The biggest surprises in our

analysis are that even in very ordinary-looking problems, the two notions of substitution

have very different implications, even for the study of linear pricing equilibria.

We illustrate the distinction with simple examples. Suppose that the price of output is

one and that the amount of output produced by a firm f(x, y) is a function of two types

of discrete inputs x ∈ {0, 1} and y ∈ {0, 1, 2}, as follows:

f y = 0 y = 1 y = 2

x = 0 0 1
√

2

x = 1 1 1
√

2

f is submodular in its two arguments and has nonincreasing marginal returns.1 The firm

chooses x and y to maximize f(x, y)− rx−wy. Since f is submodular, the inputs x and

y are substitutes.2 Substitutes means that when comparing any two price vectors p and

p′ for which the firm’s optimum is unique, if p ≥ p′ and pi = p′i, then the demand for good

i is weakly higher at prices p.

Next, consider a formulation in which the two units of input y are treated as distinct.

1It is easy to see that functionally identical inputs can fail to be substitutes for one another in the

usual sense of price theory when there are increasing marginal returns to that type of input. In order to

be clear that this is not what underlies our example, we chose f with nonincreasing marginal returns.
2Submodularity guarantees the substitutes property when the economy has two goods.
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Let y = y1 + y2 and suppose y1, y2 ∈ {0, 1}. In this formulation, the prices are also

potentially distinct, so the firm maximizes f(x, y1 + y2) − rx − w1y1 − w2y2. It is as

if we had distinguished blue and red versions of the input, where the color is devoid

of any consequences for production. It is easy to check that if the input prices are

(r, w1, w2) = (0.2, 0.3, 0.2), then the firm’s unique profit-maximizing input vector is (0,1,1),

but if (r, w1, w2) = (0.2, 0.3, 0.7), then the profit-maximizing choice is (1,0,0). This demon-

strates that an increase in the price of input y2 reduces the demand for input y1: different

units of the same type of good may fail to be substitutes.

Examples of this sort are hardly rare. For instance, an airline that is acquiring landing

slots at a hub airport may wish to have some number N of slots, for illustration N=2,

within a particular period, say from 2:00pm to 2:15pm or from 3:00pm to 3:15pm. The

two periods define weak substitutes if when slots at 2-2:15 are expensive, the airline

will substitute slots at 3-3:15. Slots within a given time period, however, need not be

substitutes. As in our example, the airline may demand both or neither and this can

happen even with diminishing returns to additional slots in the same time period. Because

clock auctions have been proposed for just this sort of application, it is important to

investigate how these auctions perform in settings where slots are weak substitutes but

not strong substitutes.

Despite the practical significance of the weak substitutes condition, it has not been ana-

lyzed in previous studies of ascending clock auctions, which have instead emphasized the

strong substitutes case. Ausubel (2006, p. 16) mentions that his clock auction design,

which applies when goods are distinct and substitutes, can also be applied when there

are multiple units of each good. As our examples show, however, that extension entails a

stronger condition than weak substitutes and even than weak substitutes plus diminishing

marginal returns to each good. Gul and Stacchetti (2000) restrict their auction design to

nonidentical goods, in effect assuming strong substitutes.

One important difference between the weak and strong substitutes arises when studying

the existence of market-clearing prices. Using models in which goods are priced indi-

vidually, Kelso and Crawford (1982) establish that when distinct goods are substitutes,

market-clearing prices always exist. Gul and Stacchetti (2000) and Milgrom (2000) dis-

play monotonic auction processes that converge to exact or approximate market-clearing

prices.3 In all of those formulations, substitutes means strong substitutes: the results do

3The Gul-Stacchetti analysis assumes that bidder values are integers and their algorithm requires that

bidders report their entire demand set at each point. When interpreted as an auction, the requirement
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not extend to the case of weak substitutes. For suppose in our example that good y is

treated as a single class and that the available supply for the two classes of goods is given

by the vector (1, 2). Suppose that firm 1 has valuation f as before, and that there is a

second firm with unit valuation g(x, y) = 1y≥1 (thus, firm 2 is only interested in getting

one unit of good y). At the efficient allocation, firm 2 uses one unit of y and firm 1 uses

one unit of x. To induce firm 1 to make this choice, the price of input y must be strictly

positive, but then firm 1 will strictly prefer not to buy any units of input y and firm 2

will strictly prefer to buy exactly one unit. Hence, there will be a strict excess supply

of y: no market clearing prices exist.

In our example, if the supply vector is anything else besides (1, 2), then not only does a

market clearing price vector exist, but more is true. First, the set of market clearing price

vectors is a sublattice. Second, a continuous tâtonnement or clock auction process be-

ginning with low prices converges monotonically upward to the minimum market clearing

price vector. A similar process beginning with high prices converges monotonically down-

ward to the maximum market clearing price vector. Similar conclusions have been derived

in the past using strong substitutes, but not for the weak substitutes of this example.

How does the clock auction perform when there are no market clearing prices? Suppose

that firm 1 has valuation f as above, firm 2 has valuation v(x, y) = .05× 1y≥1, supply is

(1, 1) and we initially set the input price vector to (0, 0). At that price there is strict excess

demand for good y but not for good x. The price of good y is gradually increased. When

py becomes greater than .05, firm 2’s demand drops to 0 units of good y. Eventually, the

price reaches a level p̄y at which firm 1 is indifferent between buying one unit of x or two

units of y, as determined by the equation 1 =
√

2−2p̄y. At that price, firm 1 is indifferent

between 1 unit of x or two units of y, while firm 2 is indifferent between 0 and 1 unit of

good x (since px = 0). Aggregate demand thus consists of the bundles (2, 1), (2, 0), (0, 1)

and (0, 2), hence contains supply (1, 1) in its convex hull. We define such a situation as

a pseudo-equilibrium.4 In this example, there is no Walrasian equilibrium and the clock

auction terminates at the minimum pseudo-equilibrium price vector.

Examples of this sort are potentially significant for the design of activity rules in auctions.

At prices (px, p1, p2) = (.4, .4, .41), firm 1 demands (x, y1, y2) = (0, 1, 1) while at prices

that demand sets be reported makes their procedure different from any auction process in current use.

In contrast, the clock auctions we analyze allow bidders to report a single demand vector for every price

vector.
4Precisely, this property is equivalent to our definition of pseudo-equilibrium. See Definition 11.
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(px, p1, p2) = (.4, .5, .41), firm 1 demands (x, y1, y2) = (1, 0, 0). Suppose these two price

vectors represent successive prices in an ascending auction and that the next price vector

is (.5, .5, .41). The firm’s demand now shifts to (0, 1, 1): its total demand rises from 1 unit

to 2 units. Hatfield and Milgrom (2005) had shown that the strong substitutes property

implies that a profit-maximizing firm satisfies the law of aggregate demand: as prices

rise, the sum of the quantities of goods demanded does not increase. Activity rules for

ascending auctions with or without clocks typically require that the demand expressed

during an auction must satisfy that law,5 and our example shows that such rules can block

straightforward bidding when goods are weak substitutes (but not when they are strong

substitutes).

These observations herald more general results, which are the subject of this paper. Sec-

tion 2 defines weak-substitute valuations, based on a multi-unit formulation of the econ-

omy, and strong-substitute valuations, based on a binary formulation. Section 3 charac-

terizes weak-substitute and strong-substitute valuations in terms of the firm’s dual profit

function, which adds transparency to some of our central results. Section 4 further stud-

ies the concepts of substitutes and how they are related. Gul and Stacchetti had shown

that strong substitutes is equivalent to a certain single-improvement property defined us-

ing nonlinear prices. We show that it is also equivalent to a similar property defined

using only linear prices that strong substitutes is equivalent to weak substitutes plus two

additional conditions, and that while the law of aggregate demand may fail with weak

substitutes, it always holds when a certain additional assumption is made, which we call

the consecutive-integer property. This property means that if bundles x and y are both

optimal at some given price and xk < yk for some good k, then there are also optimal

bundles requiring a quantity zk of good k, for zk ∈ {xk, xk + 1, . . . yk}. Section 5 treats

the implications of weak and strong substitutes for aggregate demand. We show that

the strong substitutes condition is sufficient and necessary (in a quantified sense) for the

robust existence of market-clearing prices, that the weak substitutes condition implies

that the set of pseudo-equilibrium price vectors is a non-empty sublattice, that this set

coincides with the set of equilibrium prices whenever an equilibrium exists, and that the

strong-substitutes is a sufficient and, in a similar quantified sense, necessary condition

for Vickrey payoffs to be in the core. Section 6 presents our analysis of clock auctions

when bidders have weak-substitute valuations. We first introduce a continuous model to

represent clock auctions. We show that weak substitutes is necessary and sufficient for the

monotonicity of a certain tâtonnement-like clock auction and that continuous descending

5An exception is the revealed-preference activity rule of Ausubel and Milgrom (2002).
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or ascending clock auctions always terminate at a pseudo-equilibrium. In one version of

the clock auction model, the auction terminates at the smallest pseudo-equilibrium price.

We then show how the analysis can be applied to the case in which prices follow small

bid increments bidders only need to announce one optimal bundle, rather than their en-

tire indifference set of optimal bundles. Section 7 concludes and compares our results to

the very different results of the divisible goods case obtained by Milgrom and Strulovici

(2006).

2 Definitions

Consider an economy with K goods, in which good k is available in Nk units for k ∈ K =

{1, . . . , K}. Let X = Πk∈K{0, 1, . . . , Nk} and X̃ = Πk∈K{0, 1}Nk represent the space of

possible bundles of the exchange economy in its multi-unit and binary formulations. The

obvious correspondence between these formulations is represented by the function φ : X̃
into X . Formally, xk = ϕk(x̃) =

∑Nk

j=1 x̃kj.

Definition 1 (Multi-Unit Valuation) A multi-unit valuation v is a mapping from

X into R.

Definition 2 (Binary Valuation) A binary valuation ṽ is a mapping from X̃ into R.

The binary valuation ṽ corresponds to the multi-unit valuation v, if for every x̃, ṽ(x̃) =

v(ϕ(x̃)). We denote by V the space of multi-unit valuations and Ṽ the space of correspond-

ing binary valuations. Similarly, P = RK
+ and P̃ = Πk∈KRNk

+ denote the respective price

spaces of the multi-unit and binary economies. The first formulation permits only linear

prices for each category of goods, while the second effectively allows nonlinear prices for

each class of goods, with the marginal price for each good weakly increasing. Throughout

the paper, we assume that agents have quasi-linear utilities.

Assumption 1 (Quasi-linearity) The utility of an agent with multi-unit valuation v

acquiring a bundle x at price p is u(x, p) = v(x) − px. Similarly, the utility of an agent

with binary valuation ṽ acquiring a bundle x̃ at price p̃ is ũ(x̃, p̃) = ṽ(x̃)− p̃x̃.

Given a binary valuation ṽ and a price vector p̃ ∈ P̃ , define the demand of the agent at

price p̃ by D̃(p̃) = arg maxx̃∈X̃{ṽ(x̃)− p̃x̃}.
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Similarly, we define the multi-unit demand D of an agent with valuation v as D(p) =

arg maxx∈X{v(x)− px}.

With quasi-linear preferences, there is no distinction to be made between gross and net

substitutes, so we drop the modifier and make the following definitions.

Definition 3 (Strong-Substitute Valuation) A multi-unit valuation v is a strong-

substitute valuation if its binary form ṽ satisfies the binary substitutes property: for any

prices p̃ and q̃ in P̃ such that p̃ ≤ q̃, and x ∈ D̃(p̃), there exists a bundle x̃′ ∈ D̃(q̃) such

that x̃′kj ≥ x̃kj for all (k, j) such that p̃kj = q̃kj.

Definition 4 (Weak-Substitute Valuation) A multi-unit valuation v is a weak-

substitute valuation if it satisfies the multi-unit substitutes property: for all prices p

and q such that p ≤ q and x ∈ D(p), there exists a bundle x′ ∈ D(q) such that x′k ≥ xk

for all k in K = {κ ∈ K : pκ = qκ}.

The strong substitutes condition is at least weakly more restrictive than the weak substi-

tutes condition, because the latter applies only for linear prices while the former applies

also for nonlinear prices. Moreover, the weak substitutes condition only compares units

of distinct goods, while the strong substitutes condition requires that units of the same

good be substitutes. Section 1 illustrates that the two conditions are not equivalent. In

particular, weak-substitute valuations can violate the law of aggregate demand, but strong

substitute valuations cannot.

3 Duality Results

To any multi-unit valuation v we associate the dual profit function π : P → R such that

π(p) = maxx∈X{u(x, p) = v(x) − px}. Similarly, to any binary valuation ṽ we associate

the dual profit function π̃(p̃) = maxx̃∈X̃{ũ(x̃, p̃) = ṽ(x̃)− p̃x̃}.

Definition 5 (Multi-Unit Concavity) A multi-unit valuation is concave if it can be

extended to a concave function on RK.

Theorem 1 Let v be a multi-unit valuation and π be its dual profit function. Then, for

all x ∈ X , v(x) ≤ minp∈P{π(p) + px}. Moreover, v is concave if and only if

v(x) = min
p∈P

{π(p) + px} for all x ∈ X . (1)
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Proof. The first claim follows from the definition of π. The second claim is proved by

applying the separating-hyperplane theorem. �

Ausubel’s and Milgrom’s dual characterization of strong substitute valuations extends

straightforwardly to the cases treated here.

Theorem 2 (Ausubel and Milgrom (2002)) v is a weak-substitute valuation if and

only if π is submodular, and this holds if and only if the dual profit function π̃ of the

corresponding binary form ṽ = φ(v) is submodular on the restricted domain where goods

of the same type have equal prices. In addition, v is a strong-substitute valuation if and

only if the dual profit function π̃ of its binary form ṽ = φ(v) is submodular.

Proof. The proofs of the two statements follow the proof of Theorem 10 in Ausubel and

Milgrom (2002). �

The preceding theorem relies on the idea that one can characterize weak substitutes by

focusing on the subset PL of the price space in the binary formulation P̃ in which goods of

the same type have the same price. This subset is isomorphic to the set P of linear prices

used in the multi-unit economy. The weak-substitute property then corresponds to the

requirement that the dual profit function is submodular on PL, while the strong-substitute

property requires submodularity on the whole price space. An immediate consequence of

this alternative formulation is the following:

Theorem 3 Any strong-substitute valuation is also a weak-substitute valuation.

The converse is not true. For example, suppose there is only one type of good, so that

every valuation v is a weak-substitute valuation. Let v(0) = 0, v(1) = 1 and v(2) = 3

and suppose prices are (p1, p2) = (1.4, 1.4), at which both units are demanded. Increasing

p1 to 1.7 would reduce demand to 0, thus violating the strong-substitute property. The

same example establishes that a multi-unit valuation can be submodular even when the

related binary valuation is not.

We have seen than weak-substitute valuations need not be submodular. The following

result shows that adding the requirement that v is concave does yield submodularity.

Theorem 4 Any concave weak-substitute valuation is submodular.
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Proof. From Theorem 1 v(x) = minp∈P{π(p) + px} = maxp{−π(p) − px}. From

Theorem 2, π is submodular. Therefore, v is the maximum over p of a function that is

supermodular in p and −x, which implies that v is supermodular in −x or, equivalently,

submodular in x. �

Theorem 5 Let ṽ be a strong-substitute valuation. Then ṽ(x̃) = minp̃∈P̃{π̃(p̃) + p̃x̃}.

Proof. Given x̃, define p̃ as p̃a = 0 if x̃a = 1 and p̃a = ∞ if x̃a = 0. Clearly, x̃ ∈ D̃(p̃).

The rest of the proof is identical to the proof of Theorem 1. �

Underlying Theorem 4 is the fact that concavity allows v to be expressed by formula (1).

As Theorem 5 shows, concavity is not required in the binary form to obtain that equation,

which offers a way to understand why strong substitutes implies submodularity.

4 Relations between Concepts of Substitutes

Gul and Stacchetti (1999) introduced the single-improvement property for binary valua-

tions, which requires that if some vector x is not demanded at price vector p, then there

is a vector y that is strictly preferred to x and entails increasing the demand for at most

one good and decreasing the demand for at most one other good, as follows.

Definition 6 (Binary Single-Improvement Property) A binary valuation ṽ sat-

isfies the single-improvement property if for any price vector p̃ and x̃ /∈ D̃(p̃), there exists

ỹ such that u(ỹ, p̃) > u(x̃, p̃), ‖(ỹ − x̃)+‖1 ≤ 1, and ‖(x̃− ỹ)+‖1 ≤ 1.

Gul and Stacchetti also showed that this single-improvement property is equivalent to the

strong substitutes property:

Theorem 6 (Gul and Stacchetti (1999)) A monotonic valuation is a strong-substitute

valuation if and only if it satisfies the binary single-improvement property.

We now extend these results to multi-unit economies.

Definition 7 (Multi-Unit Single-Improvement Property) A valuation v satis-

fies the multi-unit single-improvement property if for any p and x /∈ D(p), there exists x′

such that u(x′, p) > u(x, p), ‖(x′ − x)+‖1 ≤ 1, and6 ‖(x− x′)+‖1 ≤ 1.

6Here the norm is defined on RK , whereas it was defined on R
P

k Nk in the binary setting.
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The only difference in the definitions of binary and multi-unit single-improvement prop-

erties resides in the price domain where the property has to hold.

Throughout the paper, we will denote by ek the vector of RK whose kth component equals

one and whose other components equal zero.

Theorem 7 If v satisfies the multi-unit single-improvement property then it is a weak-

substitute valuation.

Proof. Suppose by contradiction that the weak-substitute property is violated: there

exist p, k, a small positive constant ε, and a bundle x such that x ∈ D(p) and for all

y ∈ D(p + εek), there exists j 6= k such that yj < xj. Set p̂ = p + εek. We have

x /∈ D(p̂) and yk < xk for all y ∈ D(p̂) (since D(p) clearly contains bundles with strictly

less than xk units of good k). Therefore x is only dominated by bundles y that have

strictly less units of at least two goods, implying that ‖(x− y)+‖1 ≥ 2, which violates the

single-improvement property. �

The converse in not true. In the first example of Section 1, the valuation is submodular

in a two-good economy, thus satisfies the weak substitutes property. However, for r = 0.2

and w = 0.3, the bundle (1, 0) is only dominated by the bundle (0, 2), which violates the

single-improvement property.

Definition 8 (Multi-Unit Submodularity) A multi-unit valuation v is submodular

if for any vectors x and x′ of X , v(x) + v(x′) ≥ v(x ∧ x′) + v(x ∨ x′).

The next theorem contains a key result for the existence of Walrasian equilibria in multi-

unit economies. The proof uses Gul and Stacchetti’s characterization theorem (Theo-

rem 6) and thus requires monotonicity of v. Throughout the rest of the paper, we assume

that v is nondecreasing.

Assumption 2 Agent valuations are nondecreasing.

Theorem 8 If v is a strong-substitute valuation, then any bundle x is optimal at some

linear price.

Proof.
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Let x be any bundle, and x̃ be a binary representation of this bundle. From Theorem 5,

we have

v(x) = ṽ(x̃) = min
p̃
{π̃(p̃) + p̃x̃}. (2)

Since v is a strong substitutes valuation, π̃ is submodular, so the objective in (2) is

submodular. By a theorem of Topkis (1998), the set M of minimizers of a submodular

function is a sublattice and, since the objective is continuous, the sublattice is closed.

Therefore, it has a largest element p̃. We claim that this element is a linear price which

supports x̃. Linearity means that for any good k such that xk ≥ 1, p̃ki = p̃kj whenever

x̃ki = x̃kj = 1.

Suppose by contradiction that p̃ki 6= p̃kj for some units i, j of some good k such that

x̃ki = x̃kj = 1. Then the price vector p̃′ equal to p̃ except for units i and j of good k,

where p̃ki and p̃kj are swapped, is also a minimizer of (2). Therefore p̃∨p̃′ > p̃ is also in M ,

which contradicts maximality of p̃. We have thus shown that p̃ is linear on the support

of x̃: for each good k there exists a price pk such that p̃ki = pk for all i such that x̃ki = 1.

Obviously, p̃kl = +∞ whenever x̃kl = 0. For any good k such that xk ∈ {1, Nk − 1}, the

firm is indifferent, at p̃, between x and some bundle yk such that yk
k < xk, otherwise it

would be possible to increase pk, which would contradict maximality of p̃. We can choose

yk so that it is optimal if we slightly increase the price of some particular unit of good k.

Since ṽ is a strong substitute valuation, we can choose y such that yk
k = xk − 1, and

yk
j ≥ xj for all j. Since p̃kl = +∞ outside of the support of x̃, we necessarily have yk

j = xj

for j 6= k. This shows that yk = x − ek. Such indifference bundles exist for all goods k

such that 1 ≤ xk ≤ Nk − 1.

We now prove that x is optimal for the linear price vector p = (pk)k∈K, where pk = +∞
when xk = 0, pk = 0 when xk = Nk, and pk is defined as above when 1 ≤ xk ≤ Nk−1. That

is, we can impose p̃kl = pk for all units, including those for which x̃kl = 0, and preserve

optimality of x. For all goods such that xk ∈ [1, Nk − 1], reset all unit prices outside the

support of x̃ from +∞ to pk. This change does not affect optimality of x among bundles z

such that z ≤ x, and it does not affect indifference between x and the bundles yk. For any

good k, consider the bundle zk = x+ ek. Since ṽ is submodular, Theorem 11 implies that

v is component-wise concave (see p. 14). Therefore, v(zk) − v(x) ≤ v(x) − v(yk) = pk,

which implies that zk is weakly dominated by x. Now for two goods k 6= j such that

xk ≥ 1 and xj < Nj, consider the bundle zkj = x − ek + ej. We claim that z is also

weakly dominated by x. To see this, we use the following Lemma, whose proof is in the
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Appendix.7

Lemma 1 If v is a strong-substitute valuation, k and j are two goods and x is a bundle

such that xk ≤ Nk−1 and xj ≤ Nj−2, then v(x+ek+ej)−v(x+ek) ≥ v(x+2ej)−v(x+ej).

Applying Lemma 1 to the bundle x− ej − ek yields v(x)− v(yj) ≥ v(zkj)− v(yk), which

implies, along with v(x) = v(yj) + pj = v(yk) + pk, that v(x) − pk ≥ v(zkj) − pj. Thus,

x weakly dominates z. This shows that x̃ has no single improvement. From Theorem 6,

ṽ satisfies the single-improvement property. Therefore, x̃ must be optimal at the linear

price p̃ such that p̃kl = pk for all l ∈ {1, . . . , Nk}. Equivalently, the bundle x is optimal

at price p = (pk), which concludes the proof. �

We can now state the properties of strong-substitute valuations in linear-pricing economies.

Theorem 9 Suppose that v is a strong-substitute valuation. Then it satisfies the follow-

ing properties:

[Concavity] v is concave.

[Weak-Substitute Property.] For any p ∈ P, k ∈ K, ε > 0, and x ∈ D(p), there exists

x′ ∈ D(p + εek) such that x′j ≥ xj for all j 6= k.

[Law of Aggregate Demand.] For any p ∈ P, k ∈ K, ε > 0, and x ∈ D(p), there exists

x′ ∈ D(p + εek) such that ‖x′‖1 ≤ ‖x‖1.

[Consecutive-Integer Property.] For any p ∈ P and k ∈ K, the set Dk(p) = {zk : z ∈
D(p)} consists of consecutive integers.

Proof. Theorem 3 implies that v satisfies the weak-substitute property, and Hatfield

and Milgrom (2005) show that v must satisfy the law of aggregate demand. Therefore, it

remains to show that v is concave and satisfies the consecutive-integer property.

We first show that v is concave. Theorem 8 implies that for any x there exists p such that

π(p) = v(x)− px, where π is the dual profit function defined in Section 3. From the first

part of Theorem 1, v(x) ≤ minp π(p) + px. Combining the two equations above yields

v(x) = minp π(p) + px for all x. Applying the second part of Theorem 1 then proves that

v is concave.8

7As can be easily checked, the proof of Lemma 1 is independent of the proof of the present theorem.
8As can be easily verified, the proof of Theorem 1 is independent of the present proof.
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Last, we show the consecutive-integer property. Suppose by contradiction that there exist

p, k, and two bundles x and y in D(p) such that xk ≥ yk +2 and z ∈ D(p) ⇒ zk /∈ (yk, xk).

Consider the binary price vector p̃ that is linear and equal to pj for all good j 6= k, and

that equals pk for the first xk units of good k and +∞ for the remaining units of good k.

Clearly, there exist binary forms x̃ and ỹ of x and y that belong to D̃(p̃), and there is

no bundle z̃ in D̃(p̃) such that zk ∈ (yk, xk). If the price of one unit of good k is slightly

increased, the demand for good k thus falls directly below zk, implying that the demand

of another unit of good k, whose price had not increased, has strictly decreased, which

violates the strong-substitute property for ṽ. �

The consecutive-integer property is not implied by concavity of v. For example, in a

(multi-unit) two-good economy, concavity is compatible with the demand set D(p) =

{(1, 0), (0, 2)}. However, this demand set violates the consecutive-integer property: the

set D2(p) = {0, 2} does not consist of consecutive integers. The consecutive-integer

property rules out valuations causing a sudden decrease in the consumption of a good

(independently of the consumption of other goods). For example, there are no prices at

which the firm is indifferent between bundles containing, say, 5 and 10 units of a good,

but strictly prefers these bundles to any bundle containing between 6 and 9 units of that

good. In that sense, there are no “holes” in the demand set with respect to any good. In

terms of demand, the property implies a progressive reaction to price movements: as the

price of a good increases, the optimal demand of that good decreases unit by unit. By

contrast, concavity is not required for the law of aggregate demand.

Theorem 10 If v is a weak-substitute valuation that satisfies the consecutive-integer

property, then it satisfies the law of aggregate demand.

Proof. See the Appendix.

The weak-substitute property and the law of aggregate demand do not imply the consecutive-

integer property. For example, in an economy with one good available in two units,

consider the non-concave valuation v(0) = 0, v(1) = 1, and v(2) = 4. v is trivially a

substitutes valuation, and satisfies the law of aggregate demand. However, at price p = 2,

the demand set is {0, 2}, which violates the consecutive-integer property. This is also an

example of a weak-substitute valuation that is not concave.

To obtain sharp results, we consider the concept of component-wise concavity, which

is weaker than concavity and entails diminishing marginal returns in each component

13



separately.

Definition 9 (Component-wise Concavity) A multi-unit valuation v is component-

wise concave if for all x and k, v(xk + 1, x−k)− v(x) ≥ v(xk + 2, x−k)− v(xk + 1, x−k).

Theorem 11 A multi-unit valuation v is submodular and component-wise concave if and

only if its binary form ṽ = φ(v) is submodular.

Proof. By a theorem of Topkis (1998), it is sufficient to consider binary bundles x and y

that differ in just two components. If the two components represent the same good, then

submodularity of the binary form is the same as component-wise concavity. If the two

components represent different goods, then submodularity of the binary form is implied

by submodularity of the multi-unit form (and conversely). �

The last three properties listed in Theorem 9 describe the demands corresponding to a

strong-substitute valuation in linear-pricing economies. Even though strong-substitute

valuations are defined by their demands in response to nonlinear prices, the identified

properties turn out to be sufficient to characterize strong substitutes. That is the essential

content of Theorem 12 below.

Before proving this theorem, we state a new “minimax” result, in which one of the choice

set is a lattice and the other choice set consists of nonlinear prices. The proof of this

result is in the Appendix.

If x is a multi-unit bundle and p̃ is a nonlinear price vector, let (p̃, x) denote the cost of

acquiring bundle x under p̃. That is,

(p̃, x) =
∑
k∈K

xk∑
i=1

p̃k(i),

where p̃k(i) is the price of the ith cheapest unit of good k.

Proposition 1 (Minimax) Suppose that v is a concave weak-substitute valuation sat-

isfying the consecutive-integer property, and let p̃ be a nonlinear price vector. Then,

max
x

min
p
{π(p) + px− (p̃, x)} = min

p
max

x
{π(p) + px− (p̃, x)}

Theorem 12 Let v be a multi-unit valuation. The following properties are equivalent.

(i) v is a strong-substitute valuation.
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(ii) v is a concave weak-substitute valuation, and satisfies the consecutive-integer prop-

erty.

Proof. We know from Theorem 9 that (i) implies (ii). We now show that (ii) implies (i).

From Theorem 2, it is enough to show that π̃ is submodular. Consider any nonlinear price

vector p̃. We have

π̃(p̃) = max
x̃
{ṽ(x̃)− p̃x̃} = max

x
{v(x)− (p̃, x)}.

Since v is concave, Theorem 1 implies that

π̃(p̃) = max
x
{min

p
{π(p) + px} − (p̃, x)} = max

x
{min

p
{π(p) + px− (p̃, x)}}.

From Proposition 1, the max and min operators can be swapped:

π̃(p̃) = min
p
{max

x
{π(p) + px− (p̃, x)}} = min

p
{π(p) + max

x
{px− (p̃, x)}}.

As can be easily verified, the inner maximum equals

∑
k∈K

Nk∑
i=1

(pk − p̃ki)+.

Therefore,

π̃(p̃) = min
p

{
π(p) +

∑
k∈K

Nk∑
i=1

(pk − p̃ki)+

}
.

Since v is a weak-substitute valuation, π is submodular by Theorem 2. Moreover, the

function (x, y) → (x − y)+ is submodular as a convex function of the difference x − y.

Therefore, π̃(p̃) is the minimum over p of an objective function that is submodular in p

and p̃, which shows that it is submodular in p̃.9 �

It turns out that, given concavity and the weak-substitute property, the law of aggregate

demand is equivalent to the consecutive integer property. Some of the main results above

are combined and extended in the following theorem.

Theorem 13 (Equivalence of Substitute Concepts) Let v be a multi-unit valu-

ation. The following statements are equivalent.

(i) v satisfies the binary single-improvement property.

9See Topkis (1968).
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(ii) v is a strong-substitute valuation.

(iii) v is a concave weak-substitute valuation and satisfies the consecutive-integer prop-

erty.

(iv) v is a concave weak-substitute valuation and satisfies the law of aggregate demand.

(v) v is concave and satisfies the multi-unit single-improvement property.

Proof. (i) ⇔ (ii) is Gul and Stacchetti’s theorem (see Theorem 6). (ii) ⇔ (iii) is a

restatement of Theorem 12. Theorem 10 shows that (iii) implies (iv). For the converse,

the weak-substitute property implies10 for all p that any edge E of D(p) has direction ei or

ei−αej for some goods i, j. In the first case, concavity implies that all integral bundles on

the edge belong to the demand. In the second case, α = 1. Otherwise, slightly modifying

the price would reduce demand to that edge, and increasing pi if α > 1 or pj if α < 1

would violate the law of aggregate demand. This, along with concavity, implies that the

consecutive-integer property holds along all edges, and thus for D(p). (i)−(iv) implies (v):

(i) clearly implies the multi-unit single-improvement property, and (iii) implies concavity.

We conclude by showing that (v) implies (iii). We already know from Theorem 7 that

if v satisfies (v), then it is a weak-substitute valuation. Therefore, there only remains to

show that v satisfies the consecutive-integer property. Suppose it doesn’t. There exists

a price vector p, a good k, and a unit number d such that Dk = {zk : z ∈ D(p)} is split

by d: the sets D−
k = Dk ∩ [0, d − 1] and D+

k = Dk ∩ [d + 1, Nk] are disjoint and cover

Dk. Now slightly increase pk. The new demand set D′ is such that D′
k ⊂ D−

k . Pick any

bundle y that is optimal under the new price within the set {x ∈ X : xk ≥ d}. Then

yk > d, because pk has only been slightly increased and any bundle with d units of good

k was strictly dominated by D+
k . At the new price, y is dominated but cannot be strictly

improved upon with reducing the amount of good k by at least two units, which violates

the single-improvement property. �

The multi-unit single-improvement property alone is not equivalent to strong substitutes.

For example, in an economy with two goods available in two units, consider the valuation

v defined by v(x) = ‖x‖1 − .1r(x), where r(x) equals 1 if x contains exactly one unit

of each good, and 0 otherwise. The valuation is not concave, and therefore cannot be a

strong-substitute valuation. However, one can easily verify that v satisfies the multi-unit

single-improvement property.

10See the proof of Proposition 1.
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We conclude this section with a property of concave, weak-substitute valuations. For any

(multi-unit) bundle x, let P(x) denote the set of price vectors such that x ∈ D(p).

Theorem 14 If v is a weak-substitute valuation, then for all x, P(x) is either the empty

set or the complete sublattice of P given by P(x) = arg min{π(p) + px}.

Proof. Fix x ∈ X . From Theorem 5, v(x) ≤ minp{π(p)+px}. Suppose that the inequality

is strict. Then v(x) − px < π(p) for all p, so P(x) is the empty set. Now suppose that

v(x) = minp{π(p) + px}. Then, for all p ∈ arg min{π(p) + px}, v(x) − px = π(p), so

x ∈ D(p). Conversely, if x ∈ D(p̄) for some price p̄, then arg min{π(p) + px} = v(x) =

π(p̄) + p̄x. Therefore, P(x) = arg min{π(p) + px}. From Theorem 2, π(p) is submodular.

Therefore P(x) is the set of minimizers of a submodular function over a sublattice P ;

hence, it is a sublattice of P . Completeness is obtained by a standard limit argument. �

In the binary formulation, all bundles can be achieved through nonlinear pricing, by

setting some unit prices to zero and others to infinity. Therefore, Theorem 14 takes a

simpler form. For any binary bundle x̃, let P̃(x̃) denote the set of price vectors such that

x̃ ∈ D̃(p̃).

Theorem 15 If ṽ is a binary valuation satisfying the strong substitutes, then P̃(x̃) is a

complete, non-empty lattice for all x̃ ∈ X̃ .

Proof. For any bundle x̃, there exists a price p̃ such that x̃ ∈ D̃(p̃). Therefore, P̃(x̃) is

nonempty. The rest of the proof is similar to the proof of Theorem 14. �

5 Aggregate Demand and Equilibrium Analysis

The first theorem of this section extends results by Gul and Stacchetti and by Milgrom

asserting necessary conditions for the existence of Walrasian equilibrium in the binary

formulation. These theorems assume that individual valuations are drawn from a set that

includes all unit-demand valuations (Gul and Stacchetti), which are defined next, or all

additive valuations (Milgrom).11 They establish that if the set of valuations includes any

that are not strong substitutes, then there is a profile of valuations to be drawn from the

set such that no competitive equilibrium exists.

11An additive valuation is a valuation with the property that the value of any set is equal to the sum

of the values of the singletons in the set.
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These results are unsatisfactory for our multi-unit context, because they allow preferences

to vary among identical items and the constructions used in those papers hinge on that

freedom. The next theorem extends the earlier results by including the restriction that

firms’ binary valuations are consistent with some multi-unit valuation, that is, that firms

treat all units of the same good symmetrically.

Definition 10 A unit-demand valuation is such that for all price p and x ∈ D(p),

‖x‖1 ≤ 1.

Let N =
∑

k Nk denote the total number of units in the economy.

Theorem 16 Consider a multi-unit endowment X and a firm having a concave, weak-

substitute valuation v1 on X that is not a strong-substitute valuation. Then there ex-

ist I firms, I ≤ N , with unit-demand valuations {vi}i∈I , such that the economy E =

(X , v1, . . . , vI+1) has no Walrasian equilibrium.

Proof. See the Appendix.

Since preferences are assumed to be quasi-linear, one can conveniently analyze equilib-

rium prices and allocations in terms of the solutions to certain optimization problems.

With that objective in mind, consider an economy consisting of n firms with valuations

{vi}1≤i≤n. The valuations vi are defined for {x ∈ NK : xk ≤ Nk ∀k ∈ K}. It is convenient

to extend the domain of vi by setting v(x) = v(x∧ (N1, . . . NK)) for all x in NK . We now

define the market-valuation v of the economy by

v(x) = max
{∑

vi(xi) :
∑

xi = x and xi ∈ NK
}

.

and the market dual profit function of the economy by π(p) = maxx∈NK{v(x)− px}. The

function π is convex, as can be checked easily.

Theorem 17 For all p ∈ P, π(p) =
∑

1≤i≤n πi(p).

Proof.

π(p) = maxx {max{
∑

i vi(xi) :
∑

i xi = x} − px}
= maxx1,...,xn

∑
i{vi(xi)− pxi}

=
∑

i πi(xi),

which concludes the proof. �
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Theorem 17 cannot be extended to nonlinear prices. To see this we observe, for example,

that the cheapest unit of a given good can only be allocated to a single firm when com-

puting the market dual profit function, whereas it is included in all individual dual profit

functions involving at least one unit of this good. It is thus easy to construct examples

where the market dual profit function is strictly lower than the sum of individual dual

profit functions, the latter allowing each firm to use the cheapest units.

Corollary 1 If all firms have weak-substitute valuations, then the market valuation v

is also a weak-substitute valuation.

Proof. If individual firms have substitute valuations, Theorem 2 implies that individual

profit functions are submodular. By Theorem 17, the market dual profit function is

therefore a sum of submodular functions, and so itself submodular. Theorem 2 then

allows us to conclude that v is a substitute valuation. �

Definition 11 A price vector p is a pseudo-equilibrium price of the economy with en-

dowment x̄ if p ∈ arg min{π(p) + px̄}.

Section 6 uses the following characterization of pseudo-equilibrium prices.

Proposition 2 p is a pseudo-equilibrium price if and only if x̄ is in the convex hull of

D(p).

Proof. By definition p minimizes the convex function f : p → π(p) + px̄. Therefore,

0 is in the subdifferential of f at p.12 That is, 0 ∈ ∂π(p) + x̄. The extreme points of

−∂π(p) are bundles that are demanded at price p. Moreover, −D(p) ⊂ ∂π(p). Therefore

−Co(D(p)) = ∂π(p). Combining these results yields x̄ ∈ Co(D(p)). �

Let P(x̄) denote the set of pseudo-equilibrium prices.

Proposition 3 If all firms have weak-substitute valuations, then P(x̄) is a complete

sublattice of P.

Proof. Individual weak-substitute valuations imply that πi is submodular for all i by

Theorem 2. Therefore, π is submodular. The proof is then identical to the proof of

Theorem 14. �
12See for example Rockafellar (1970).
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Theorem 18 The economy with endowment x̄ has a Walrasian equilibrium if and only

if v(x̄) = minp{π(p) + px̄}. Moreover, if the economy with endowment x̄ has a Walrasian

equilibrium, then the set of Walrasian equilibrium prices is exactly the set P (x̄) of pseudo-

equilibrium prices.

Proof. Theorem 1 implies that v(x̄) ≤ minp{π(x)+px̄}. Suppose that v(x̄) = π(p)+px for

some p. Let x̄i denote the bundle received by firm i for some fixed allocation maximizing

the objective in the definition of v. For all i, vi(x̄i) − px̄i ≤ πi(p). Summing these

inequalities yields v(x̄) ≤ π(p) − px̄. By assumption, the last inequality holds as an

equality, which can only occur if vi(x̄i)− px̄i = π(p) for all i, implying that (p, x̄1, ..., x̄n)

is a Walrasian equilibrium. To prove the second claim, suppose that ({x̄i}1≤i≤n, p) is a

Walrasian equilibrium. Then, vi(x̄i) = πi(p) + px̄i for all i. Summing these equalities

yields v(x̄) = π(p) + px̄, which implies that v(x̄) = minp{π(p) + px̄} (since the minimum

is always above v(x̄)). It is clear from the first part of the proof that if the economy has a

Walrasian equilibrium, the set of Walrasian prices is exactly the set of pseudo-equilibrium

prices. �

Theorem 18 shows that whenever a Walrasian equilibrium exists, the concepts of pseudo-

equilibrium and equilibrium coincide. In binary economies, where nonlinear pricing is

available, the question of the existence of a Walrasian equilibrium have been solved by

Gul and Stacchetti (1999) and Milgrom (2000), who both show that equilibrium exists in

the binary formulation when goods are strong substitutes and establish the two partial

converses described above.

For the multi-unit formulation, we have already established the partial converse in Theo-

rem 16. We now consider the other direction: we prove that strong substitutes implies the

existence of a Walrasian equilibrium with linear pricing. This result is then used to prove

the stronger theorem that strong-substitute valuations are closed under aggregation: if

all valuations satisfy strong-substitutes, then so does the market valuation.

Theorem 19 (Linear-Pricing Walrasian Equilibrium) In a multi-unit exchange

economy with individual strong-substitute valuations, there exists a Walrasian equilibrium

with linear prices.

Proof. Considering the binary form of the economy, Gul and Stacchetti (1999, Corollary

1) have shown that the set of (nonlinear pricing) Walrasian equilibria is a complete lattice.

In particular, it has smallest and largest elements. We now prove that these two elements
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consist of linear prices, which proves the result. Suppose by contradiction that the largest

element p̃ is such that p̃ki 6= p̃kj for some units i, j of some good k. Then the price vector

p̃′ equal to p̃ except for units i and j of good k, where p̃ki and p̃kj are swapped, is also

a Walrasian equilibrium. Therefore p̃ ∨ p̃′ > p̃ is also a Walrasian equilibrium, which

contradicts maximality of p̃. Linearity of the smallest element is proved similarly. �

Corollary 2 (Concavity of Aggregate Demand) In a multi-unit exchange econ-

omy with individual strong-substitute valuations, the market valuation is concave.

Proof. Denote by x the total endowment of the economy, and n the number of firms.

We show that for all y such that 0 ≤ y ≤ x, there exists a linear price vector p such

that y is in the demand set of the market valuation. From Theorem 19, we already know

that the result is true if y = x. Thus suppose that y < x. Consider an additional firm

with valuation vn+1(z) = Kz ∧ (x − y), where K is a large constant, greater than the

total value of other firms for the whole endowment x. One can easily check that vn+1

is an assignment valuation, and therefore a strong-substitute valuation (see Hatfield and

Milgrom (2004)). Applying Theorem 19 to the economy with (n + 1) firms, there exists a

Walrasian equilibrium with linear price vector p. At this price, the additional firm obtains

the bundle x−y since its marginal utility dominates all other firms’ for any unit up to this

bundle, and vanishes beyond this bundle. This implies that the remaining firms ask for y

at price p, or equivalently, that y belongs to the demand set of n firms’ market valuation

at price p. Concavity is then obtained as in the proof of Theorem 9. �

Theorem 20 (Aggregation) If individual firms have strong-substitutes valuations, then

the market valuation v is a strong-substitute valuation.

Proof. Let {vi}1≤i≤n denote the family of individual valuations and v denote the market

valuation, defined by v(x) = max {
∑

i vi(xi) :
∑

xi = x, xi ∈ N}. From Theorem 12, we

will prove the result if we show that v is a concave weak-substitute valuation that satisfies

the consecutive-integer property. Corollary 2 states that v is concave. From Corollary 1, v

is a weak-substitute valuation. It thus remains to show that v satisfies the consecutive-

integer property. For any price p, the demand set of v is the solution of

max
x
{v(x)− px} = max

x

{
max

{∑
i

vi(xi) :
∑

i

xi = x

}
− px

}
=

∑
i

max
xi

vi(xi)− pxi.

Therefore, D(p) =
∑

i Di(p). In particular, the projection of D on the kth coordinate

satisfies Dk =
∑

i Di,k. The sets Di,k consist of consecutive integers by Theorem 9,
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implying that Dk also consists of consecutive integers. �

Finally, we examine the connections between strong-substitute valuations and the struc-

ture of the core of the associated cooperative game. The setting considered in this section

is the same as Ausubel and Milgrom (2002), but with the multi-unit formulation replacing

their binary formulation. We first recall the definitions of coalitional value functions, the

core, and Vickrey payoffs.

Suppose that, in addition to bidders, there exists a single owner (labeled “0”) of all units

of all goods, who has zero utility for her endowment.

Definition 12 The coalitional value function of a set S of bidders is defined by

w(S) = max
{∑

i∈S vi(xi) :
∑

xi ∈ X
}

if 0 ∈ S, and w(S) = 0 otherwise.

Denote L the set consisting of all bidders and the owner of the good.

Definition 13 The core of the economy is the set

Core(L, w) =

{
π : w(L) =

∑
l∈L

πl, w(S) ≤
∑
l∈S

πl for all S ⊂ L

}
.

Definition 14 The Vickrey payoff vector is given by π̄l = w(L)−w(L \ l) for l ∈ L \ 0,

and π̄0 = w(L)−
∑

l∈L\0 π̄l.

Ausubel and Milgrom (2002) show that this is the payoff at the dominant-strategy solution

of the generalized Vickrey auction.

Definition 15 The coalitional value function w is bidder-submodular if for all l ∈ L \ 0

and sets S and S ′ such that 0 ∈ S ⊂ S ′, w(S)− w(S \ l) ≥ w(S ′)− w(S ′ \ l).

Theorem 21 Suppose that there are at least 2 + maxk Nk bidders. If any bidder has

a concave, weak-substitute valuation that is not a strong-substitute valuation, then there

exist linear or unit-demand valuations for remaining bidders such that the coalitional value

function is not bidder-submodular and the Vickrey payoff vector is not in the core.

Proof. See the Appendix.

Theorem 22 If all bidders have strong-substitute valuations, then the coalitional value

function is bidder-submodular and the vector of Vickrey payoffs is in the core.
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Proof. From Ausubel and Milgrom (2002, Theorem 7), it is enough to show that the

coalitional value function is bidder-submodular. By assumption, the binary form ṽi of

each bidder satisfies the substitutes property. Therefore, applying Theorem 11 in Ausubel

and Milgrom (which is valid for the binary formulation) implies that the coalitional value

function is bidder-submodular (a property which is independent of the formulation (binary

or multi-unit). �

6 Walrasian Tâtonnement and Clock Auctions

This section analyzes auctions where goods are available in multiple units and prices are

linear. The goods are summarized by a vector x̄ ∈ X = NK
++. We propose a class of

algorithms guaranteeing monotonic convergence of the auction to a pseudo-equilibrium

whenever bidders have weak-substitute valuations. Combining that with the the results

of Section 5 leads to the conclusion that if bidders have strong-substitute valuations, the

auctions converge to a Walrasian equilibrium.

For the present analysis, we define a clock auction as a price adjustment process in

which the path of prices is monotonic—either increasing or decreasing. In practice this

monotonicity and other features, especially activity rules for bidders (see Milgrom (2000)),

differentiate clock auctions from a Walrasian tâtonnement. In order to understand the

relation between substitute valuations and clock auctions, it is useful to start the analysis

with Walrasian tâtonnement and only later to impose monotonicity on the process.

6.1 Continuous time and price

We begin by analyzing an idealized economy with prices changing continuously through

time and where bidders submit their entire demand set. Later, we adapt the results to

economies with a discrete price and time, and where bidders only demand a single bundle

for each announced price vector.

There are n bidders with valuations {v1, ..., vn} and a corresponding market valuation v.

At any time t, a price vector p(t) is posted. We limit attention to linear pricing. Each

bidder submits his demand set, resulting in an aggregate demand x(t) in the demand

set D(p(t)) of v.
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The goal of this section is to construct algorithms that are monotonic and converge to a

pseudo-equilibrium. We focus on algorithms for which initial price is low, then increases

and converges to the smallest pseudo-equilibrium price p
¯
. Reverse algorithms, where price

decreases and converges to the largest pseudo-equilibrium price can be constructed in a

similar way.

We have seen that pseudo-equilibrium prices are the minimizers of the convex function

f : p → π(p) + x̄p. Among the general algorithms to find such minimizers are steepest-

descent algorithms. At any time, price changes are determined by the gradient of f

whenever f is differentiable, and by the vector of smallest norm of its subdifferential

otherwise.13 Such algorithms are a particular Walrasian tâtonnement, as they adjust

prices to eliminate excess demand. Moreover, they follow the steepest descent and are

therefore particularly efficient. For any price vector p, we denote by z(p) the point of

smallest norm in the opposite of the differential of f at p. When f is differentiable, z

corresponds to the excess (aggregate) demand D(p) − x̄. In general, z is the vector of

smallest norm in the convex hull of the set of excess demand. Intuitively, an algorithm is

a procedure that determines the evolution of price through time as a function of excess

demand D(p) − x̄ and of time itself. In continuous time, an algorithm would then be

defined by a function F such that ṗ(t) = F (D − x̄, t). However, this definition is not

formally satisfactory in our setting, because F need not be continuous. The steepest-

descent algorithm, in particular, follows discontinuous changes of direction. In general,

we will say that an algorithm is well-defined if, from any initial price, it generates a unique

trajectory in the price space. The previous considerations lead to the following definition.

Definition 16 A continuous, correspondence-based, steepest descent algorithm is defined

by

ṗr(t) = α(t, p(t))z(p(t)), (3)

where the subscript r denotes right derivative, the function α : (t, p) → α(t, p) is real-

valued and continuous, and takes values in [α
¯

, ᾱ] for some 0 < α
¯

< ᾱ.

Using right derivatives addresses discontinuities of z(p). The lower bound α
¯

ensures

that the algorithm does not stall at a suboptimal price, and the upper bound ensures

that that the equation is integrable. The following theorem states that, starting from any

13By definition, the subdifferential ∂f(p) at p of a convex function f is the set of vectors x such that

f(q)− f(p) ≥ x(q− p) for all q. The subdifferential is always a nonempty convex set, and coincides with

f ’s gradient whenever it is differentiable.
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sufficiently low price, the algorithm is well defined, monotonic and converges to the lowest

pseudo-equilibrium price, p
¯
. Let L = {p : p ≤ p

¯
and z(p) ≥ 0}.

Theorem 23 Any continuous, correspondence-based, steepest-descent algorithm is well

defined. Suppose that bidders have weak-substitutes valuations. For any such algorithm,

if p(0) ∈ L, then p(t) ∈ L for all t, p(t) is increasing and converges to p
¯

in finite time.

The proof is in the Appendix. Theorem 23 implies that, when bidders have weak-

substitute valuations, any steepest-descent algorithm starting from low prices is an as-

cending clock auction and converges to the smallest pseudo-equilibrium price. This result

is important in practice, and can be reformulated as follows. We define a continuous,

correspondence-based, ascending clock auction as a continuous, correspondence-based

steepest-descent algorithm, except that (3) is replaced by ṗr(t) = max{α(t, p(t))z(p(t)), 0},
where the maximum is taken componentwise.

Corollary 3 If bidders have weak-substitute valuations, any continuous, correspondence-

based clock auction starting from a price in L converges to the smallest pseudo-equilibrium

price.

In particular, if goods are weak substitutes, ascending clock auctions will find an equilib-

rium whenever there exists one. By contrast, it is easy to build examples of valuations

violating weak-substitutes such that a Walrasian equilibrium exists but ascending clock

auctions fail to find it.

Our result extends Ausubel (2006) in three ways. First, it searches on the space of

linear prices, while Ausubel’s algorithm specifies separate prices for each unit of the good.

Second and more importantly, it relies only on the assumption of weak substitutes, where

Ausubel’s analysis requires on the stronger assumption of strong substitutes. Third, it

shows the the process converges monotonically to pseudo-equilibrium prices, which always

exist in this setting and which are equilibrium prices whenever an equilibrium exists.

In theory, L depends on bidder valuations, which may see problematic, given that the

auctioneer does know them. In practice, the assumption p0 ∈ L means that the clock

auction can start at any price low enough to guarantee that there is excess demand in

all goods. This obviously includes zero initial prices, but also “reasonably low” reserve

prices.
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6.2 Discrete time and price

We now consider the case in which prices evolve on a grid. In such setting, it is natural

to consider discrete-time models, as nothing happens in any interval of time during which

prices remain constant. We thus consider a discrete time scale, where prices are adjusted

at each period.14 The first goal of this section is to show that the results derived in the

previous section are approximately true, in the sense that trajectories obtained with dis-

cretized algorithms are very close to those generated by continuous algorithms, provided

that the price grid is fine enough. The second goal of the section is to show that the

algorithm still works if bidders only announce one desired bundle at each period, rather

than their entire demand set, consistent with what is observed in current practice.

A price grid is a lattice Pη = (ηN)K , where η is a small positive constant. A discrete

algorithm generates a sequence of prices {pt : t = 0, 1, . . .} in Pη, whose evolution is

determined by excess demand at any period. In a discrete setting, algorithms are always

well-defined. A new issue is that price changes, which are restricted to a grid, may not be

able to follow exactly the gradient z. In general, vector directions can be approximated

up to the fineness of the grid, which is indexed by η. The following lemma goes further

by showing that, provided the grid is fine enough, even the exact direction is feasible.

Following the previous section, we let z(p) denote the vector of smallest norm in the

convex hull of the excess (aggregate) demand set D(p)− x̄. The proof of the lemma is in

the Appendix.

Lemma 2 (Feasible directions of descent) Suppose that the number of bidders is

less than some constant N > 0, and that no bidder can demand more than overall supply

x̄. Then, for any grid Pη, there exists α(η) > 0 such that α(η)z(p) ∈ Pη for all p and all

bidder valuations. Moreover, α can be chosen such that α(η) → 0 as η → 0.

In the rest of this section, we may therefore assume that the price grid is fine enough for

price changes to exactly follow steepest-descent directions and be arbitrarily small. In

order to stay exactly on the grid, we assume from now on that step sizes are integer mul-

tiples of α(η). Another issue is that discrete algorithms sometimes “overshoot”, meaning

that the discrete price sequence crosses a region boundary while the continuous algorithm

follows the boundary, causing the discrete algorithm to enter regions where some goods

14The lapse between two periods has no importance, and in fact could in principle vary during the

auction, possibly stochastically.
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are in excess supply, and where the algorithm gradient z, which is not continuous, takes

very different values from the gradient of the continuous algorithm. The purpose of the

following lemma is to show that such overshoots are not important, as nearby trajecto-

ries of any discrete steepest-descent algorithm stay close to each other. Let {p(t)}t∈N and

{q(t)}t∈N denote the trajectories generated by a given steepest-descent algorithm, starting

from respective initial prices p(0) and q(0).

Lemma 3 (Nearness Lemma) Suppose that the number of bidders is less than some

constant N > 0, that no bidder can demand more than aggregate supply x̄, and that there

exists a vector M ∈ RK
+ such that bidders demand none of good i whenever pi > Mi.

Then, for any ε > 0, there exists (̄η) > 0 and ᾱ > 0 such that for all η < (̄η) and step

sizes less than ᾱ, ‖p(0)− q(0)‖ < ε implies ‖p(t)− q(t)‖ < ε for all periods and all bidder

valuations.

Proof. See the Appendix.

The nearness lemma states that overshooting is not going to affect the trajectory by

more than some arbitrarily small constant. This leads to the following theorem, which

states that the discrete algorithm essentially follows the continuous one. For any price

p0, denote by T (p0) = {p(t) : t ∈ R+, p(0) = p0} the trajectory generated by the con-

tinuous, correspondence-based steepest-descent algorithm of the previous section, and let

T (p0, ε) = ∪p∈T (p0)B(p, ε) denote the tube15 of radius ε around T (p0).

Theorem 24 (Discrete Steepest-Descent Algorithm) For any ε > 0, there ex-

ists η > 0 and ᾱ > 0 such that for any grid finer than η, step size less than ᾱ, and initial

price p0, the trajectory generated by the discrete steepest descent algorithm is contained in

T (p0, ε).

Proof. Starting in the same region, trajectories of both algorithms are undistinguishable,

since they follow the same direction. Let t0 denote the first time that the trajectory T

of the discrete algorithm overshoots, causing the two paths to have distinct vectors. Let

ε > 0 be a positive constant (to be chosen later), and denote by pt0 the price of the discrete

algorithm, and by qt0 a price on T (p0) such that ‖pt0 − qt0‖ < ε. Such a price exists if

the step size ᾱ(ε), which gives an upper bound on the overshoot, is small enough. Let

T1 denote the trajectory that the discretized algorithm would generate if it were starting

from qt0 . By construction T1 coincides with T (p0) until there is a second overshoot. By the

15B(p, ε) is the open ball centered at p and radius ε.
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nearness lemma, T and T1 are within ε from each other. Therefore, when T1 overshoots,

at time t1, there is a price qt1 of T (p0) such that ‖p(t1)− qt1‖ < 2ε. Iterating the process,

we thus prove that, up to the kth overshoot, we have T ⊂ T (p0, kε) when T is truncated

at t = tk. The number of overshoots is bounded above by the number R of regions (since

any region is visited at most once by the continuous algorithm, see proof of Theorem 23).

Therefore, the result obtains by setting ε = ε/R. �

As a by-product of Theorem 24, we can get rid at little cost of the assumption that bidders

submit their entire demand set. Bidder valuations can be seen as vectors of the finite-

dimensional space V = Rx̄. A property of an algorithm holds “for almost all economies”

if it holds for all bidder valuations, except for a subset of Lebesgue measure zero of Vn,

where n is the number of bidders. A singleton-based steepest-descent algorithm, is the

same as the discrete steepest-descent algorithm, except that bidders ask only one bundle

at each period. Concretely, this means that instead of using the vector of smallest norm

of the excess demand set, the algorithm may follow any vector of that set. The following

result shows that this information loss does not affect Theorem 24 except possibly on a

set of economies with Lebesgue measure zero.

Theorem 25 (Singleton-Based Algorithm) Under the assumptions of Theorem 24,

let p0 be any initial price of the algorithm. The trajectory of a singleton-based steepest-

descent algorithm is contained in T (p0, ε) for almost all economies.

The proof is based on the following proposition.

Proposition 4 For all (v1, . . . , vn) ∈ Vn, the demand correspondence p → D(p) is

single-valued almost everywhere in P with respect to the Lebesgue measure on this set.

Proof. We suppose first that there is a unique bidder. For any two bundles x and x′, the

subset P (x, x′) of P defined by P (x, x′) = {p : p(x−x′) = v(x)−v(x′)}, is the intersection

of a hyperplane with the positive orthant P , and has therefore zero Lebesgue measure.

Since the number of possible bundles is finite, the set

Q =
⋃

x 6=x′

P (x, x′),

which contains all prices at which the bidder’s demand is multi-valued, also has zero

Lebesgue measure. For a countable (in particular, finite) number of bidders, the set of

prices where aggregate demand is multi-valued is contained in Qa = ∪Qi, which has zero

Lebesgue measure. �
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Proposition 4 implies that the set of economies such that Qa ∩Pη 6= ∅ has Lebesgue mea-

sure zero. Therefore, singleton-based and correspondence-based algorithms are identical

in almost all economies.

In practice, the auctioneer does not know bidder valuations. Theorem 25 implies that

for any belief that is absolutely continuous with respect to the Lebesgue measure, the

algorithm is arbitrarily close to the continuous, correspondence-based steepest descent

algorithm of the ideal economy. In particular, the algorithm completely ignores bidders’

indifference sets. This feature contrasts with Gul and Stacchetti (2000), whose algorithm

gives much importance to indifference sets.

7 Conclusion

The substitutes concepts play a critical role in equilibrium theory. For discrete economies,

strong substitutes is necessary for the robust existence of equilibrium and weak substitutes

drive the monotonicity that is exploited by current auction algorithms. Strong substitutes

is also the condition that determines whether the Vickrey outcome is in the core. A

related concept–the law of aggregate demand–has been the informal justification for the

wide adoption of activity rules in practical auctions. Among our findings is that the law

of aggregate demand is precisely the additional property that converts a concave weak

substitute valuation to a strong-substitute valuation when goods are discrete. Adapting

results from Hatfield and Milgrom (2005), it is also possible to show that strong substitutes

is necessary for the existence of stable matchings in their contracting model. The analysis

also showed that the two concepts of substitutes are closed under aggregation.

Milgrom and Strulovici (2006) extend the analysis to divisible goods. In particular, for

divisible goods and concave valuations, a natural extension of strong substitutes coin-

cides with weak substitutes. In that case, the law of aggregate demand and its unit-free

extensions generally fail. Thus, for concave valuations, the law of aggregate demand

characterizes the difference between the cases of discrete goods and divisible goods.
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8 Appendix: Proofs

8.1 Section 4

Proof of Lemma 1. Consider a bundle x such that xk ≤ Nk−1 and xj ≤ Nj−2. Take

any binary representant x̃ of x, and call l and m two units of good j not in x̃, and s a

unit of good k not in x̃. Since ṽ satisfies the gross-substitute property, the triple

{ṽ(x̃ + el + em)− ṽ(x + el)− ṽ(x̃ + em), ṽ(x̃ + el + es)− ṽ(x̃ + el)− ṽ(x̃ + es),

ṽ(x̃ + em + es)− ṽ(x̃ + em)− ṽ(x̃ + es)} (4)

has at least two maximizers. Symmetry of ṽ implies that the last two arguments of that

quantity are equal, and therefore greater than or equal to the first one. That is, written

in multi-unit form v(x + ek + ej)− v(x + ek)− v(x + ej) ≥ v(x + 2ej)− 2v(x + ej) which

concludes the proof after simplification. �

Proof of Theorem 10. Suppose by contradiction that the law of aggregate demand is

violated: there exist k, p and x such that for all ε small enough, we have (i) x ∈ D(p−εek),

and (ii) for all y ∈ D(p + εek), ‖y‖1 > ‖x‖1. Clearly, for any such y, we have yk < xk.

Let Dk = Dk(p), d
¯

= min Dk and d̄ = xk = max Dk. By continuity, we have (i) x ∈ D(p),

(ii) there exists some y ∈ D(p) such that yk < xk, and (iii) for all y ∈ D such that yk = d
¯
,

‖y‖1 > ‖x‖1.

For each d ∈ Dk, define g(d) = min{‖y−k‖1 : yk = d and y ∈ D(p)}. Let γ : [d
¯
, d̄] → R

denote the largest convex function such that γ(d) ≤ g(d) for all d ∈ Dk. The function γ

is well defined and piecewise affine: there exists a partition ∆ = {δl}l∈Λ of [d
¯
, d̄] such that

γ is affine on [δl, δl+1]. Moreover, d̄ and d
¯

are elements of ∆: there exist l
¯

and l̄ such that

d
¯

= δl
¯

and d̄ = δl̄. For l ∈ {l
¯

+ 1, l̄}, denote H(l) the hyperplane containing the two

(K − 2)-dimensional affine varieties

{z ∈ RK : ‖z−k‖1 = γ(δl) and zk = δl}

and

{z ∈ RK : ‖z−k‖1 = γ(δl−1) and zk = δl−1}.

There exists a unique hyperplane containing these two affine varieties, so H(l) is well

defined. Moreover, H(l) lies below D(p) and contains at least two elements z and y of

D(p) such that zk = δl and yk = δl−1.
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We claim that there exists l ∈ {l
¯
+1, l̄} such that γ(δl−1)−γ(δl) > δl−δl−1. Suppose that

the contrary holds. Then, γ(d
¯
)− γ(d̄) ≤ d̄− d

¯
= xk − d

¯
. But then, there exists y in D(p)

such that yk = d
¯

and ‖y−k‖1 = γ(d
¯
), implying that ‖x‖1 = xk + γ(d̄) ≥ d

¯
+ γ(d

¯
) = ‖y‖1,

which contradicts the hypothesized violation of the law of aggregate demand.

Consider an index l as in the previous paragraph, and modify p slightly so that the de-

mand set becomes D(p) ∩ H(l). The price vector can be further modified so that the

remaining bundles in the demand set are aligned on a unique straight line and, for the

new price p̄, there still exist z and y in D(p̄) such that zk > yk and ‖z‖1 < ‖y‖1. There

are two cases: either there are two indices i and j such that yi > zi and yj > zj, or there

exists an index i such that yi − xi > xk − yk. Since optimal bundles are aligned, the

same properties hold for the extremities bundles of the segment containing D(p̄), so we

assume without loss of generality that z and y are these extreme bundles. In the first

case, increasing pi slightly violates the weak-substitute property, as the optimal quantity

of good j also decreases. In the second case, the convex-demand property is violated: the

set Di(p̄) contains a hole between zi and yi. �

Proof of Proposition 1 Trivially,

max
x

min
p
{π(p) + px− (p̃, x)} ≤ min

p
max

x
{π(p) + px− (p̃, x)}. (5)

We need to prove that the reverse inequality also holds. We fix p̃ throughout the proof.

Consider a price p solving minp maxx{π(p)+px−(p̃, x)}. Let N(p) = arg maxx{px−(p̃, x)}.
N(p) is a hyper-rectangle: there exist two bundles r and R with r ≤ R such that N(p) =

{z ∈ ZK : r ≤ z ≤ R}.

Suppose that there exists a bundle x in N(p) ∩ D(p). Then, the right-hand side of (5)

equals π(p) + px− (p̃, x) = v(x)− (p̃, x), where the last equality comes from the fact that

x belongs to D(p). Now consider any linear price vector q. We have π(q) + qx− (p̃, x) ≥
v(x) − (p̃, x), by definition of π(q). This last inequality implies that the left-hand side

of (5) is actually greater than or equal to its right-hand side. Therefore, we will have

concluded the proof if we show that N(p) ∩D(p) is nonempty, which we now turn to.

Let Co(D(p)) and Co(N(p)) denote the convex hulls of D(p) and N(p). We first show

that Co(D(p)) ∩ Co(N(p)) has a nonempty intersection. Suppose by contradiction that

Co(D(p)) ∩ Co(N(p)) = ∅. Then, since these two sets are closed and convex, the
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separating-hyperplane theorem implies that there exists a direction δ and a number a

such that yδ < a for y ∈ N(p) and xδ > a for x ∈ D(p). Now modify p by an

infinitesimal amount along the direction δ, yielding a new level q = p + εδ. The ob-

jective function π(p) + maxz{pz − (p̃, z)} is affected by this change in two ways. First,

through the sensitivity of π with respect to p. Taking any x ∈ D(q) ⊂ D(p), we have

π(p) = v(x) − px and π(q) = v(x) − qx. Therefore, the change of π is −εxδ. Second,

through the sensitivity of maxz{pz− (p̃, z)} with respect to p. There exists y ∈ N(p) such

that maxz{pz− (p̃, z)} = py− (p̃, y) throughout the price change. Therefore, the effect on

this term equals εyδ. The overall change of the objective function is then ε(y − x)δ < 0,

implying that q leads to a strictly lower objective function than p, which contradicts

optimality of p.

We have proved that the sets Co(D(p)) and Co(N(p)) have a non empty intersection. We

now prove that this intersection contains a point with integer coordinates. Consider any

polytope of RK . We say that an edge (i.e. a segment joining two vertices of the polytope)

is simply oriented if either (i) it is parallel to one coordinate axis {λei : λ ∈ R} of the

space or (ii) there exist two coordinates i and j such that the edge is parallel to ei−ej. We

say that a polytope is simply oriented if all its edges are simply oriented. Last, we recall

that a polytope all of whose vertices have integer coordinates is called a lattice polytope.

Lemma 4 If a lattice polytope P is simply oriented, and H is the half space {x : xk ≥ q},
where k ∈ {1, . . . , K} and q is an integer, then P ∩H is either the empty set, or a simply

oriented, lattice polytope.

Proof. Suppose that Q = P ∩ H is nonempty. Its vertices are either vertices of P , in

which case they are integral, or new vertices belonging to H. We prove that any such

vertex also has integer coordinates. Any new vertex x is the intersection of H with an

edge E of P that is not parallel to H. In particular, there exists an integral vertex y of

P such that x− y is parallel to E. Moreover, yk 6= q, since the edge is not parallel to H.

The edge is either parallel to ek or to ek − ei for some i 6= k. In the first case, we have

xj = yj ∈ Z for all j 6= k and xk = q ∈ Z, so x has integer coordinates. In the second

case, xj = yj ∈ Z for all j /∈ {i, k}, xk = q ∈ Z, and xi = yi + (yk − xk) ∈ Z, so x also

has integer coordinates. We now prove that the edges of Q are simply oriented. Thus

consider an edge E of Q, joining vertices x and y. If either x or y are vertices of P , then

E is either an edge of P , or the result of such an edge being cut by H. In either case, it is

simply oriented because P is simply oriented. If both x and y are new vertices, E is the

32



intersection of a two-dimensional face F of P with H, where F is not parallel to H. F is

defined by two linearly independent edges E ′ and E ′′ of P which are simply oriented, and

at least one of which contains ek. Suppose first that either E ′ or E ′′, say E ′, is orthogonal

to ek. Then it is easy to show that E is parallel to E ′′ and therefore simply oriented. Now

suppose that both E ′ and E ′′ have a nonzero kth component. Because they are linearly

independent, there exist i and j such that F is generated by ek − ei and ek − ej (where

the signs come from the fact that P is simply oriented). In that case, as can be easily

verified, E is parallel to ei − ej, and therefore simply oriented. �

We observe that Lemma 4 still holds if the inequality sign is reversed in the definition of

H.

Co(D(p)) is a lattice polytope since D(p) consists of integral vectors. We now prove that

Co(D(p)) is simply oriented. Thus consider any edge E of Co(D(p)). There exists a

vector δ of RK such that E is included in some straight line ∆ = {x0 + λδ}λ∈R. We first

show that δ has at most two nonzero components. Suppose on the contrary that δ has at

least three components, say i, j, and k. Without loss of generality assume that δi and δj

are positive. Since E is a face of Co(D(p)), there exists an infinitesimal modification of

the price vector p, such that D(p) = E. Moreover, E contains two vectors x and y such

that x− y = λδ for some λ > 0. If we slightly increase pi, x becomes suboptimal, so the

optimal quantity of good j decreases, which violates the weak-substitute property. Thus,

δ has at most two nonzero components. We now prove that E is simply oriented. If δ

has only one nonzero component, the claim is trivial. Suppose that δ has two positive

components, say i and j. We show that δi = −δj. Since E has integer vertices, we can

assume that δi and δj are integers.16 If δiδj > 0, slightly increasing pi reduces the optimal

quantity of good j which violates the weak-substitute property. Thus, δi and δj have

opposite signs. Now suppose that |δi| < |δj|. This implies that for all integral vectors x

and y in E, we have |xj − yj| ≥ 2, which violates the consecutive-integer property. Thus,

δi = −δj, which concludes the proof.

We have shown that Co(D(p)) is a simply oriented lattice polytope. Since Co(N(p)) is a

hyperrectangle of the form {x ∈ RK : a ≤ x ≤ b} for some integral vectors a and b, we

have, denoting H(k, q)+ = {x : xk ≥ q} and H(k, q)− = {x : xk ≤ q},

Co(D(p)) ∩ Co(N(p)) = Co(D(p))
⋂

1≤k≤K

(H+(k, ak) ∩H−(k, bk)) .

Iterating Lemma 4 2K times implies that Co(D(p)) ∩ Co(N(p)) is either the empty set

16See for example Korte and Vygen (2000).
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or a lattice polytope. Since we have already shown that this intersection is nonempty, it

must contain an integral point, which concludes the proof of Proposition 1. �

8.2 Section 5

Proof of Theorem 16. We extend part of the proof of Theorem 2 in Gul and Stacchetti

(1999) to a multi-unit context. By assumption, there exist a price vector p̄, a good k,

and bundles x and x′ such that (i) {x, x′} ∈ D(p̄), (ii) x′k − xk ≥ 2, and (iii) for all z

in D(p̄), zk /∈ (xk, x
′
k). This implies that at the price p = p̄ − ηek, x is only dominated

by bundles z such that zk ≥ xk + 2. In particular, the single-improvement property is

violated by x at price p. Therefore, any bundle y that solves minz

∑
k |xk − zk| subject to

u1(z, p) > u1(x, p) satisfies yk ≥ xk + 2.

Let ρ =
∑

j(yj−xj)+. By hypothesis, ρ ≥ 2. Let ε = u1(y,p)−u1(x,p)
2ρ

. Let I+ = {j : xj < yj},
I− = {j : xj > yj}, and I0 = {j : xj = yj}. If j ∈ I+, introduce Nj − yj firms, call them

“Cj”, with unit-demand valuation v1(X ) + 2 for a single unit of good j. If j ∈ I+ \ {k},
introduce yj−xj firms, call them “cj”, with unit-demand valuation pj +ε for a single unit

of good j. If j = k, introduce yk − xk − 1 firms (“ck”) with unit-demand valuation pk + ε

for a single unit of good k. If j ∈ I−, introduce Nj − xj firms (Cj) with unit-demand

valuation v1(X ) + 1 for a single unit of good j, and xj − yj firms (cj) with unit-demand

valuation pj for a single unit of good j. If j ∈ I0, introduce Nj−xj firms with unit-demand

v1(X ) + 1. Last, introduce a special firm, “firm 2”, with unit-demand pk + v1(X ) + 1 for

a single unit of good k.

Now suppose that there exists a Walrasian equilibrium with price vector t, and let Xi

denote the bundle of the equilibrium received by firm i. Necessarily, (X1)j ≥ min{xj, yj}
for all j, since even if all unit-demand firms get one unit, there remain min{xj, yj} units

of good j. Define a new price vector as follows: qj = tj for j /∈ I− and qj = pj for j ∈ I−.

For j ∈ I−, Nj − xj units go to firms Cj. The remaining xj units are shared between

firm 1 and firms cj, with at least yj units for firm 1. Now, if firm 1 has none of the

remaining xj − yj units, it means that tj ≤ pj, and this share remains optimal when tj is

increased to pj. If firm 1 has all of the remaining units, it means that tj ≥ pj, and this

share remains optimal when tj is decreased pj. If firm 1 has only a part of these remaining

units, it means that tj is already equal to pj. Thus (X, q) is also a Walrasian equilibrium,
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such that X1 ≥ x ∧ y. Moreover, all Cj get their units, so that X1 ≤ x ∨ y. Therefore

x ∧ y ≤ X1 ≤ x ∨ y. (6)

Firm 2 necessarily gets a unit of good k ∈ I+. Therefore, X1k < yk. This, together

with (6), implies that
∑

k |xk −X1k| <
∑

k |xk − yk|, and thus

u(X1, p) ≤ u(x, p). (7)

Suppose that there exist some goods j in I+ such that X1j > xj. This implies that

qj ≥ pj + ε, since firms cj would otherwise want to get all the units. Combining these

price inequalities with (7) yields u1(X1, q) < u1(x, q), which contradicts optimality of X1

for firm 1.

Suppose instead that X1j ≤ xj for all j. Then, all units between xj and yj for j ∈ I+ are

consumed by firms cj and by firm 2. For j 6= k, this implies that cj have a positive value

for the good: qj ≤ pj + ε. For j = k, even though firm 2 takes one units of the yk − xk

available units of k, the fact that yk ≥ xk + 2 implies that there is also a firm ck taking

one unit of good k, which implies that qk ≤ pk + ε. Since X1 = x on I+ and pj = qj

for j /∈ I+, (7) implies u1(X1, q) ≤ u1(x, q). Since qj ≤ pj + ε for all j ∈ I+, the value

initially chosen for ε implies that u1(x, q) < u1(y, q), and thus u1(X1, q) < u1(y, q), which

contradicts optimality of the bundle X1 for firm 1. �

Proof of Theorem 21 From A&M Theorem 7 (which allows for multiple units of

goods), the vector of Vickrey payoff vector is in the core if and only if the coalitional

value function is bidder-submodular. We show that under the assumptions of Theorem 21,

there always exist bidder valuations such that the coalitional value function is not bidder-

submodular. Suppose that bidder 1’s valuation violates the consecutive-integer property.

There exist p̂ and k such that Dk(p̂) does not consist of consecutive integers. Let p =

p̂ + εek for ε small enough. Then there exists x and z such that xk ≥ zk + 2, and

v(z)− pz > v(x)− px > v(y)− py (8)

for all y such that yk ∈ (zk, xk). Introduce a second bidder with linear valuation v2(x) =

p−kx−k, and xk − zk unit-demand bidders who only value good k. The total number of

bidders is xk − zk + 2 ≤ Nk + 2 ≤ maxk Nk + 2. From (8), we have

v(x) + p−k(x̄− x)−k ≥ v(y) + p−k(x̄− y)−k + pk(xk − yk)
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whenever xk − yk ≤ xk − zk − 1, and

v(z) + p−k(x̄− z)−kpk(xk − zk) > v(x) + p−k(x̄− x)−k.

Therefore, denoting S the set consisting of bidders 1, 2 and the xk − zk − 2 unit-demand

firms, and s and t the last two unit-demand bidders, we have w(S ∪ {s}) = w(S) and

w(S ∪ {s, t}) > w(S ∪ {t}), showing that w is not bidder-submodular. �

8.3 Section 6

Proof of Theorem 23. The proof is based on three lemmas, proving respectively

well-definedness, monotonicity, and confinement in L.

Lemma 5 (Well-definedness) The continuous SDA algorithm is well defined.

Proof. On any region of the price space where excess demand is constant, the algorithm

defines a straight trajectory of direction z, and is thus well-defined.17 The only possible

problem, thus, is to rule out the possibility that there are infinitely many region changes

in an arbitrarily small amount of time. With the steepest-descent algorithm, the norm of

z is nondecreasing in time. Since z is constant over any region where aggregate demand

is constant, and the norm of z strictly decreases each time it changes, any region that is

left is never visited again. �

Lemma 6 (Monotonicity) When bidders have weak-substitute valuations and z(0) ≥
0, p(·) is nondecreasing.

Proof. Suppose by contradiction that z(t) fails to be nonnegative at some time t,

and take the smallest such time. Since z(0) ≥ 0, t > 0. By construction, z(s) ≥ 0

on a left neighborhood of t. Let m = z(t), x = z(t−), and P be the opposite of the

subdifferential of f at p(t). P is a convex polytope, whose vertices are elements of the

excess demand at p(t), and m is the element of P with smallest norm. By assumption, x

is nonnegative. By continuity of demand, x must also belong to P . Let J = {k : mk < 0}.
By assumption, J 6= ∅. Let H be the affine hyperplane going through (the point) m

and orthogonal to (the vector) m. By assumption, P is on one side of H and touches

H at m. Let F be the largest face of P contained in H, y be any vertex of F , and

17The scalar function α is immaterial, as long as it is bounded away from 0 and +∞.
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Cy = {z :
∑

J mkzk ≥ ‖m‖2 −
∑

Jc msys}. Since y −m is orthogonal to m, Cy is a cone

with vertex y. We will show that Cy contains P but not x, a contradiction.

Since y−m is orthogonal to m, we have ‖m‖2−
∑

Jc msys =
∑

J mkyk = mJyJ , where the

components of mJ are equal to those of m on J and vanish on J c, and a similar definition

for yJ . By convexity of F , m = y +
∑

l αlEl, where {El} is the family of direction vectors

of the edges of F emanating from y. Taking the scalar product of the previous equality

with mJ yields mmJ = yJmJ +
∑

l αlElmJ . We now prove that ElmJ = 0 for all l. By

construction of F ,

m.El = 0. (9)

Moreover the weak substitute property implies that El has at most two nonzero com-

ponents, and any two nonzero components are of opposite sign (see the proof of Propo-

sition 1). If El has one nonzero component, it must be in J c, otherwise it would vio-

late (9). If it has two nonzero components, then either they are both in J or both in

J c, for otherwise (9) would be violated. In any case, this implies that El.mJ = 0. Thus,

mJvJ = m2
J > 0. In particular Cy = {z :

∑
J mkzk ≥ m2

J}. Since the components of x

are nonnegative by construction, x cannot belong to Cy.

To conclude the proof, we show that Cy contains P . By convexity of P , it is enough to

show that all edges of P emanating from y are going in the cone Cy. This will be the case

if we show that for any such edge with direction δ (away from y), we have

δmJ ≥ 0. (10)

By definition of F , we have δm ≥ 0 (i.e. any edge from y must point outwards from H).

Since bidders have weak-substitute valuations, δ has at most two nonzero components.

Suppose first that it has exactly two components, δi and δj. If i, j are in J , then (10)

trivially holds. If i, j are in J c, then (10) is an equality. If i ∈ J and j ∈ J c, then δm ≥ 0

and the fact that δiδj < 0 (by weak-substitutes) implies that δi < 0, and thus that (10)

holds. If there is only one nonzero component, (10) holds trivially. �

Lemma 7 (Confinement) If bidders have weak-substitute valuations, p(0) ≤ p
¯

and

z(0) ≥ 0, then p(t) ≤ p
¯

for all t ≥ 0.

Proof. Suppose not: there exists a time t such that p(t) crosses the hyperrectangle

R = {z : z ≤ p
¯
} from inside out. In particular, the index subset I = {j : pj(t) = p

¯j
}

is nonempty, and we have pj(t) < p
¯j

for j /∈ I. Moreover, p(s) � p
¯

for s in a right

neighborhood of t: there exists a nonempty subset J ⊂ I such that ps,j > p
¯j

for j ∈ J
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and s ∈ (t, t + ε). By construction of the algorithm, this means that the vector n of

smallest norm in the opposite of the subdifferential of p(t) satisfies nj > 0 for j ∈ J .

We will contradict this statement by showing that the vector m defined by mj = nj for

j /∈ J and mj = 0 for j ∈ J is in the opposite of the subdifferential. m’s norm is strictly

smaller than n’s, contradicting the assumption that n is of smallest norm in the opposite

of the subdifferential. By definition of the subdifferential, we need to show that, letting

p = p(t),

m(q − p) ≥ f(p)− f(q) (11)

for all q. We first show this inequality in a neighborhood of p. By construction of n,

n(q − p) ≥ f(p)− f(q) for all q. Therefore, (11) is automatically satisfied for q such that

qj ≤ pj for j ∈ J . Now consider the case where qj > pj for a subset J(q) of J . Consider

the vector q′ such that q′j = qj for j /∈ J(q) and q′j = pj for j ∈ J(q). Since we are in

a neighborhood of p, qj ≤ p
¯j

for all j /∈ J(q). This implies that q′ ≤ p
¯

and, therefore,

that q′ = q ∧ p
¯
. Submodularity of f implies f(p

¯
∧ q) + f(p

¯
∨ q) ≤ f(p

¯
) + f(q). The

inequality, combined with the fact that p
¯

is a minimum of f , implies that f(q′) ≤ f(q).

By construction of q′,

m(q − p) = m(q′ − p) ≥ n(q′ − p) ≥ f(p)− f(q′) ≥ f(p)− f(q),

which concludes the proof on a neighborhood of p. To prove the result globally, consider

any vector q and let qλ = λq + (1 − λ)p where λ ∈ (0, 1). From the previous analysis,

we have for λ small enough m(qλ − p) ≥ f(p) − f(qλ). By convexity of f , f(qλ) ≤
λf(q) + (1 − λ)f(p). Combining the previous two inequalities and dividing by λ yields

the result. �

We now conclude the proof of the theorem. Since p(t) is nondecreasing and bounded, it

must converge to some limit in L. Since α is bounded away from zero, the rate of change

of p is bounded away from zero on any closed subset of the price space that does not

contain any pseudo-equilibrium price. Since the only pseudo-equilibrium price contained

in L is p
¯
, this has to be the limit.

Proof of Lemma 2. By assumption, the excess demand set is an integer polytope of

RK , bounded by the rectangle [−x̄, Nx̄]. Therefore, z can only take finitely many values.

Since any such z is the vector of minimum norm of an integral polytope, it has rational

coordinates. Therefore, its direction can always be achieved on any regular lattice. That

is, there exists a positive number α(z) such that α(z)z is the difference vector of two

points of the lattice. Moreover, the smallest such α(z) gets arbitrarily small as the grid
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gets arbitrarily thin. Since there are finitely many values of z, maxz{α(z)} goes to zero

as the grid thinness η goes to zero. �

Proof of Lemma 3. Without loss of generality, we can restrict attention to price

vectors less than M . Since the number of bidders is finite, the function f : p → π(p) + x̄p

is piecewise affine, with finitely many regions. Moreover, directions of the hyperplanes

supporting f are determined by excess demand vectors, which take finitely many values

(cf. proof of Lemma 2). Since z is in the opposite of the differential of f , f(q)− f(p) ≥
z(p)(p − q) for all q, with strict inequality if p and q are in distinct regions. The fact

that p is bounded by M and that there are finitely many possible slopes for f implies the

existence of a constant ρ > 0 such that

f(q)− f(p) ≥ ρ + z(p)(p− q) (12)

whenever p and q are not in the same region. We now consider paths of the discrete

steepest-descent algorithm starting from respective initial price vectors p0 and q0, with

‖p0 − q0‖ < ε. Trajectories are parallel until the two prices reach different regions, and

thus leave the vector pt − qt unchange until that time. Let s ≥ 0 denote the first time

that the two paths hit distinct regions. (12) implies f(qs)− f(ps) ≥ ρ+ z(ps)(ps− qs) and

f(ps)−f(qs) ≥ ρ+z(qs)(qs)−ps). Summing these inequalities yields18 (z(ps)−z(qs))(ps−
qs) ≤ −2ρ. Let α be the step size19 of the steepest-descent algorithm: ps+1 = ps +αz(ps),

and qs+1 = qs + αz(qs)

‖ps+1 − qs+1‖2 = ‖ps − qs‖2 + ‖α(z(ps)− z(qs))‖2 + 2α(z(ps)− z(qs)) · (ps − qs).

Therefore,

‖ps+1 − qs+1‖2 − ‖ps − qs‖2 ≤ −4ρα + O(α2),

which is negative for α small enough, which we impose by appropriately setting ᾱ. Thus,

we have proved that ‖pt − qt‖ remains constant when prices are in the same region, and

decreases otherwise. �
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