

Design and Implementation of Integer Transform and
Quantization Processor for H.264 Encoder on FPGA

 N. Keshaveni Dr S. Ramachandran Dr K. S. Gurumurthy
 Electronics and Communication National Academy of Excellence Electronics and communication

 MGR University, Chennai, India Bangalore, India UVCE, Bangalore, India
 keshaveni33@yahoo.com ramachandran_ns@yahoo.com drksgurumurthy@gmail.com

Abstract—This paper proposes a novel implementation of the
core processors, the integer transform and quantization for
H.264 video encoder using an FPGA. It is capable of processing
the frames with the desired compression controlled by the user
input. The algorithm and architecture of the components of the
video encoder namely, integer transformation, quantization were
developed, designed and coded in Verilog. The complete H.264
video encoder was coded in Matlab in order to verify the results
of the Verilog implementation. The processor is implemented on
a Xilinx Vertex – II Pro XC2VP30 FPGA. The gate count of the
implementation is approximately 1,057,000 working at a
frequency of 208 MHz. It can process 1024x768 pixel color
images in 4:2:0 format at 25 frames per second. The
reconstructed picture quality is better than 35 dB.

Keywords— Integer transform, quantization, video encoder,
Verilog, FPGA.

I. INTRODUCTION

With the widespread use of technologies like digital
television, internet streaming video and DVD video, video
compression has become an inevitable component of broadcast
and entertainment media. Currently, the video codec that
achieves the highest data compression without sacrificing on
the picture quality is the MPEG-4 Part 10 Advanced Video
Coding, also known as the H.264 [1]. This codec has many
new features such as intra-frame prediction, 4x4 integer
transform, quantization, context adaptive entropy coding,
deblocking filter etc., which were not available in the earlier
standards.

The present work has realized some of the above features
such as 4x4 integer transform and quantization. The
implementation conforms to the baseline, main as well as
extended profiles since only Intra frames are used. Qiang Peng
and Jin Jing [2] have reported an implementation of the H.264
encoder using a 32-bit RISC CPU on a single chip running on
Linux operating system, which can process PAL, SECAM or
NTSC video at 80 MHz.

This paper is organized as follows: A parallel algorithm is
presented in Section II for evaluating the transform and
quantization suitable for high speed implementation on
FPGA/ASIC. Section III deals with the architecture of the
proposed schemes and Section IV with the implementation of

the design in the FPGA. Results are discussed in Section V and
conclusions are presented in Section VI.

II. ALGORITHM FOR PARALLEL MATRIX MULTIPLICATION
OF INTEGER TRANSFORM AND QUANTIZATION

A parallel algorithm that is capable of being highly
pipelined has been developed for the DCT/IDCT by one of the
authors earlier [3]. Basically, the same algorithm is adapted
for computing the integer transform in the present work so that
it is suitable for FPGA/ASIC implementation. The core integer
transform is expressed as two-stage matrix multiplication as
shown in “(1)”. The scaling factors specified in the standard
are not shown in this equation since the same will be absorbed
in the computation of quantization as MF. The values X00 to
X33 are the pixel inputs. C and C’ (the transpose of C) are
constant matrices. W, containing elements W00 to W33 is a
matrix of coefficients after transforming the matrix X.

Each of the transformed coefficients Wij is quantized by a
scalar quantizer specified as in [4]. A total of 52 values of
quantization step size (Qstep) are supported by the standard
and these are indexed by a Quantization Parameter, QP. Qstep
doubles in size for every increment of 6 in QP. The wide range
of quantizer step sizes makes it possible for an encoder to
accurately and flexibly control the trade-off between bit rate

=

Or in short, W = C * X * C’ (1)

W00 W01 W02 W03
W10 W11 W12 W13
W20 W21 W22 W23
W30 W31 W32 W33

1 1 1 1
2 1 -1 -2
1 -1 -1 1
1 -2 2 -1

X00 X01 X02 X03
X10 X11 X12 X13
X20 X21 X22 X23
X30 X31 X32 X33

1 2 1 1
1 1 -1 -2
1 -1 -1 2
1 -2 1 -1

2009 International Conference on Advances in Computing, Control, and Telecommunication Technologies

978-0-7695-3915-7/09 $26.00 © 2009 IEEE

DOI 10.1109/ACT.2009.164

646

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ePrints@Bangalore University

https://core.ac.uk/display/72805981?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and quality. The quantized coefficients are computed as
follows:

 Zij = floor(Wij * MF / 2qbits) (2)

where qbits = 15 + floor(QP/6) and MF is a multiplication
factor specified in the H.264 reference model software of the
standard. In the present implementation, we have chosen (QP
mod 6) = 4, i.e., the encoder can use QP values of 4, 10, 16, 22
etc. depending on the user’s choice. This requires that a
coefficient be multiplied by 8192, 3355 or 5243 depending on
its position (0, 0), (0, 2), (2, 0), (2, 2); (1, 1), (1, 3), (3, 1), (3, 3)
or others in the matrix W.

The proposed algorithm for the integer transform and

quantization is as follows:

1. Multiply/add the first row of C with each column of X one
after another to generate the first row of partial products,
P00 – P03. Multiplications involved are trivial since 1, -1, 2,
-2 are the multiplying constants.

2. Multiply/add the second row of C with each column of X
one after another to generate the second row of partial
products, P10 – P13. Concurrently multiply the first row of
partial products P00 – P03 (generated in the previous step)
with each of the columns of C’ one after another to
generate the first row of integer transformed coefficients.
Pipeline the quantization (multiplication with MF) as per
“(2)” immediately after each integer coefficient Wij is
generated. It may be noted that the computation 2qbits is just
right shift operation dispensing with division. In this step
the quantized coefficients Zij are generated.

3. Repeat the step 2 for the third and fourth rows of C to
generate the rest of the sixteen quantized coefficients.

III. ARCHITECTURE OF THE INTEGER TRANSFORM AND
QUANTIZATION PROCESSOR

 An image or a frame in a sequence of motion pictures is

processed macro block after macro block in the raster scan
order as shown in “Fig. 1”. A macro block is organized as a 16
x 16 pixel information for Y (luminance) samples, 8 x 8 pixels
for Cb and 8 x 8 pixels for Cr samples in the 4:2:0 color
picture format. The integer transform is applied on 4x4 pixel
sub blocks of a picture. Sub blocks are processed in the order
shown in “Fig. 1”, meeting the H.264 standard.

The basic architecture of a Format Converter, integer
transform and quantization (TQ) processor is shown in “Fig.
2”. As shown therein, the interface that receives the video
input ‘Y_in’ and ‘C_in’ concurrently from a camera decoder
(not shown in the figure) is a format converter which converts
4:2:2 format into 4:2:0 format. The input is written at every
rising edge of ‘write_clk’ and is valid if ‘data_in_valid’ signal
is asserted. The converted signals Y, Cb and Cr are stored in
on-chip memory ‘Dual ram’ at the rising edge of ‘write_clk’
when the corresponding valid signals are asserted.

We are interested in processing pictures of widths up to
1024 pixels. Therefore, we need 16 KB of on-chip RAM for
storing 16 lines of picture for Y. In order to maintain
continuous processing, we need to have a dual RAM instead of
a single RAM, thus requiring a RAM size of 32 KB for Y
component. Also since in 4:2:0 format, there are 4, 1 and 1
block(s) for Y, Cb and Cr components respectively, we need
one-fourth this size of RAM, each for Cb and Cr components.
Thus, the dual RAMs store two numbers of 16 lines, i.e., two
macro block rows. As one RAM buffer gets filled, the
transformation is processed concurrently from the other buffer
previously filled, taking pix_Y, pix_Cb and pix_Cr as inputs.
This is transformed, quantized as per the algorithm explained
earlier using the respective modules. The qstep [1:0], which
determines the desired compression, is input by the user. The
signals, pix_Y_valid, pix_Cb_valid and pix_Cr_valid are the
valid signals of pix_Y, pix_Cb and pix_Cr respectively.

The entire Transformation and Quantization modules are
heavily pipelined with highly parallel circuits such that every
pixel is processed in 3 ‘read_clk’ cycles on an average. Thus a
picture of size 1024x768 pixels in 4:2:0 format can be
processed in 35 ms, thereby at a frame rate of 25 per second if
the FPGA implementation permits 100 MHz operation.

The Y, Cb and Cr components and their valid signals read
from the dual RAM are applied to the Integer Transform. The
transformed coefficients are fed to the next stage, namely, the
quantizer using ‘coeff [15:0]’ signals. Validity of these signals
is reckoned by the corresponding valid signal, ‘coeff_valid’.
The quantization desired by the user is supplied by the input,
‘qstep [1:0]’. The signal ‘read_clk’ serves as the system clock
for the transform and quantization processor modules. Finally,
the quantized coefficients are available as the ‘quant_coeff
[11:0]’ output. Its validity is asserted by the signal
‘quant_coeff_valid’.

IV. FPGA IMPLEMENTATION
 The integer transform and quantization algorithm and
various modules described in previous sections were coded in
Verilog, simulated using ModelSim, synthesized and place
and routed using Xilinx Project Navigator ISE 8.2. The target

Figure 1. Order of processing the Macro block

Macro block

15

4x4 pixels
Sub-block

Cb Cr Y

141110

13 1298

7 632

5 410

19 18

17 16

2322

2120

Image/Frame

647

device chosen was Xilinx Vertex-II Pro XC2VP30 -7 FF896
FPGA since the board available in our laboratory is based on
this FPGA. The core parts of the H.264 video encoder design
(Transform and Quantization) described earlier utilize
1,057,000 gates and 192 numbers of dual port RAMs with 828
numbers of occupied slices. The maximum frequency of
operation is 208 MHz. This works out to a frame rate of 50 per
second for a picture size of 1024x768 pixels. Since we need to
implement the inverse quantization and inverse transform later
on, the frame rate for a complete H.264 video encoder will
ultimately reduce to 25 frames per second. Thus, the claim of

processing video sequences of size 1024x768 pixels at 25
frames per second is feasible.

V. RESULTS AND DISCUSSIONS

The H.264 Video Codec was first implemented in Matlab in
order to estimate the quality of the reconstructed image and the
compression that can be achieved. In addition, Matlab output
serves as a reference for verifying the Verilog output.

Dual ram

4:2:2
to

4:2:0
Format

Converter

read_clk

write_clk

Y_in [7:0]

C_in [7:0]
data_in_valid

Y_valid

Y [7:0]

Cb _valid
Cb [7:0]

Cr _valid

Cr [7:0]

write_clk

reset_n

reset_n

2x16 KB
Y

2x4 KB
Cb

2x4KB
Cr

pix_Y [7:0]

pix_Cb_valid

pix_Cb [7:0]

pix_Y_valid

pix_Cr [7:0]

pix_Cr_valid

coeff_valid

read_clk

reset_n

Integer
Transform
Processor

coeff [15:0]

quant_coeff_valid

Quantizer
quant_coeff [11:0]

qstep [1:0]

read_clk
reset_n

TO CAVLC

Figure 2. Architecture of Format Converter, Integer Transformation and Quantization Processor

Figure 3. Simulation Results of Transform and Quantization Processor for H.264 Video Encoder

 a. Original bird Image (800x512 pixels)
 b. Reconstructed bird Image using Matlab, PSNR: 38.1 dB (Q step =16)

c. Reconstructed bird Image using Verilog, PSNR: 38.3 dB (Q step =16)

a b c

648

Subsequently, the core modules of the encoder such as the
transform and quantization processor as described earlier were
realized using Verilog for ASIC/FPGA implementation. The
resulting qualities of the reconstructed images obtained using
Matlab and Verilog compare favorably as can be seen from
“Fig. 3” and “Fig. 4” for two sample images. It may be seen
from the notes “b” and “c” that Verilog result is very close to
the Matlab result (within 0.4 dB) since the Verilog codes use at
least 16-bits precision. The results shown in “Fig. 4” were
obtained for Qstep = 8 (i.e., QP = 22). The peak signal to noise
ratio (PSNR) for 4:2:0 format was 37.1 with the Matlab coding
and 37.3 by using the Verilog code. Verilog result however,
offered a higher PSNR value, namely, 37.3 dB compared to
Matlab. The proposed FPGA implementation, which processes
motion pictures of size 1024x768 pixels at 25 frames/sec., is
faster by about two times the SOC/ASIC implementation
reported by Qiang Peng and Jin Jing [2].

 VI. CONCLUSIONS
 An FPGA implementation of the core processors of H.264
video encoder, namely, the transform and quantization
processors has been presented. The results were compared by
considering the images which are of different sizes. The gains
obtained vary with the video sequence. The 4x4 integer
transform used is significantly simpler and faster than the 8x8
DCT used in MPEG 2. A significant improvement over
MPEG 2 is the reduction of blocking artifacts, especially for
high compression. The desired compression can be selected by
the user in the implemented processor. The implementation
produces high resolution, high quality reconstructed pictures

and compares favorably with another implementation. The
processor is implemented on a Xilinx Vertex – II Pro
XC2VP30 FPGA. The gate count of the implementation is
approximately 1 Million working at a frequency of 208 MHz.
It can process 1024x768 pixel color images in 4:2:0 format at
25 frames per second. The reconstructed picture quality is
better than 35 dB. Currently, work is under progress for
coding the intra-prediction, inverse quantization and inverse
transform.

REFERENCES
[1] Joint Video Team, Draft ITU-T Recommendation and final draft

international Standard of Joint video specification, ITU-T Rec H.264
and ISO/IEC 14496-10 AVC, Mar. 2005.

[2] Qiang Peng and Jin Jing, “H.264 system on chip design and verification,
the IEEE 2003 Workshop on Signal Processing Systems
(SIPS’03), 2003.

[3] S. Ramachandran and S. Srinivasan, “A fast, FPGA-based MPEG-2
video encoder with a novel automatic quality control scheme,” Elsevier,
Journal of Microprocessors and Microsystems, UK, 25, pp. 449-457,
2002.

[4] I. E. G. Richardson, “H.264 MPEG4 Part 10 Overview,”
www.vcodex.com, 20/12/2002.

[5] Gulistan Raja, Sadiqullah Khan, Muhammad Javed Mirza, “VLSI
architecture and implementation of H.264 integer transform,”
The IEEE 2005 Workshop on Signal Processing Systems (SIPS’05),
2005.

[6] Liu Ling-zhi, Qiu Lin, Rong Meng-tian, Jiang Li, “A 2-D
forward/inverse integer transform processor of H.264 based on highly
parallel architecture,” Proceedings of the 4th IEEE International
workshop on System-on-Chip for Real-Time Applications (IWSOC’04),

 2004.

 Figure 4. Simulation Results of Transform and Quantization Processor for H.264 Video Encoder
 a Original Lena Image (512x512 pixels)
 b Reconstructed Lena Image using Matlab, PSNR: 37.1 dB (Q step =8)
 c Reconstructed Lena Image using Verilog, PSNR: 37.3 dB (Q step =8)

a b c

649

