
 

 

 

 

ROBUST MONOPOLY PRICING: 

THE CASE OF REGRET 

 

By 

Dirk Bergemann and Karl Schlag 

 

July 2005 

 

 

 

 

 

 

 

COWLES FOUNDATION DISCUSSION PAPER NO. 1527 

 

 

 
 

 

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS 

YALE UNIVERSITY 
Box 208281 

New Haven, Connecticut 06520-8281 

 

http://cowles.econ.yale.edu/ 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7280584?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Robust Monopoly Pricing:

The Case of Regret�

Dirk Bergemanny Karl Schlagz

First Version: May 2003

This Version: June 2005

Abstract

We consider a robust version of the classic problem of optimal monopoly pricing with

incomplete information. The robust version of the problem is distinct in two aspects:

(i) the seller minimizes regret rather than maximizes revenue, and (ii) the seller only

knows that the true distribution of the valuations is in a neighborhood of a given model

distribution.

We characterize the robust pricing policy as the solution to a minimax problem

for small and large neighborhoods. In contrast to the classic monopoly policy which

is a single deterministic price, the robust policy is always a random pricing policy, or

equivalently, a multi-item menu policy. The responsiveness of the robust policy to an

increase in risk is determined by the curvature of the static pro�t function.
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1 Introduction

1.1 Motivation

In this paper, we investigate a robust version of the classic monopoly problem of selling a

product under incomplete information. The optimal pricing policy is the most elementary

instance of a revenue maximizing design problem. In recent years, the theory of mechanism

design has found increasingly widespread applications in the real world, favored partly by

the growth of the electronic marketplace and trading platforms on the internet. Many

selling procedures, such as auctions and exchanges implement key elements stemming from

the theoretical models. Naturally, with an increase in the use of optimal design models, the

performance of these mechanisms becomes an important issue.

Within the narrow context of the Bayesian models, the question of performance permits

a straightforward answer. Given the prior of the designer, the optimal mechanism achieves

the maximal feasible expected revenue or utility possible. The logical next step is then

to ask how well the recommended policies perform outside of the narrow con�nes of the

model given by the prior. There are currently two approaches to address this question.

The �rst approach is often referred to as worst case analysis whereas the second approach

is often referred to as model misspeci�cation or robust analysis. The worst case analysis

largely disregards any information contained in a prior or a set of priors. It does not

compute expected revenues but focuses on the worst case performance of a policy. It

then typically compares the worst case performance of the objective function to some ideal

performance measure. The second approach begins with a model (distribution) of the world

but acknowledges that the model might be misspeci�ed. It then considers the policy which

maximizes the true objective function of the designer for the worst possible distribution in

the neighborhood of the model distribution. The later distribution is therefore referred to

as worst case distribution or worst case demand.

In this paper, we investigate the performance of the optimal selling policy by enriching

the canonical model in two key aspects. First, instead of a given true distribution regarding

the valuations of the buyers, in our set-up the seller only knows that the true distribution

is in a neighborhood of a given model distribution. The enlargement of the set of possible

priors represents the model misspeci�cation. Second, the objective function of the seller

is formulated as a regret minimization rather than a revenue maximization problem. The

regret is the di¤erence between the actual valuation of the buyer for the object and the

actual revenue obtained by the seller. The regret of the seller can be positive for two
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reasons: (i) the buyer has a low valuation relative to the price and hence does not purchase

the object, or (ii) he has a high valuation relative to the price and hence the seller could

have obtained a higher revenue. For a given neighborhood of possible distributions, we then

characterize the pricing policy which minimizes maximal regret. The main objective of the

paper is to describe how the robust policies depend on the model distribution and the size

of the risk as represented by the size of the neighborhood. As part of the analysis, we also

determine how the regret varies with the amount of risk faced by the seller.

By pairing the robustness analysis with the notion of regret rather than revenue we com-

bine the attractive features of the worst case analysis with those of the robustness analysis.

In particular, for any given neighborhood, the seller applies the information contained in

the model distribution and its neighborhood in the regret minimization. In addition, at

the worst case demand, the pricing policy which minimizes regret also maximizes revenue.

Thus the regret minimization problem has a direct decision theoretic link to the original

objective function of the seller, namely revenue maximization. We also show that for small

neighborhoods, the regret minimizing policy is also a nearly optimal revenue maximizing

policy for any given distribution among all distributions of the given neighborhood.

Yet, for large neighborhoods, in particular when the neighborhood contains the set of

all possible distributions, the regret minimization problem still leads the seller to adopt a

non-trivial policy. In contrast, a worst case revenue maximizing policy under a large neigh-

borhood would simply set the price equal to the lowest possible realization. The resulting

policy recommendation would hence be extremely pessimistic and would not suggest any

trade-o¤s. In contrast, by solving the regret minimization problem, the seller weighs the

bene�t of lowering price to increase the probability of sale against the increased revenue

conditional on making a sale to a high value customer.

The notion of regret contains a benchmark against which the realized revenue is mea-

sured and o¤ers a trade-o¤ which determines the optimal policy. In this respect, the notion

of regret shares features with the notion of competitiveness central in the worst case analysis.

In the context of the optimal selling problem studied here, the competitiveness of a policy

is the ratio of actual revenue against the value of the buyer, where the valuation constitutes

clearly the maximal feasible revenue. Yet, the notion of competitive ratio lacks a deci-

sion theoretic foundation and it is di¢ cult to relate the competitive ratio to an associated

Bayesian revenue maximizing problem.

We obtain the robust pricing policy as the solution to a saddlepoint problem in which the

seller minimizes regret whereas malevolent nature maximizes regret. The resulting minimax
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regret problem thus represents a zero sum game between seller and nature. The buyers acts

optimally given their valuations and the prices.

We begin our analysis with the case of large neighborhoods. With large neighborhoods,

nature is not restricted by a model distribution and can choose any feasible distribution. In

the equilibrium of the zero sum game, the optimal pricing policy for the seller has to resolve

the con�ict between the regret which arises with low prices against the regret associated

with high prices. If she o¤ers a low price, nature can cause regret with a distribution which

puts substantial probability on high valuation buyers. On the other hand, if she o¤ers a

high price, nature can cause regret with a distribution which puts substantial probability

at valuations just below the o¤ered price. It then becomes evident that a single price

will always expose the seller to substantial regret. Consequently, she can decrease her

exposure by o¤ering many prices. This can either be achieved by a random pricing policy

or, alternatively, by a menu pricing policy. With a probabilistic pricing policy, the seller

diminishes the likelihood that the nature will be able to cause large regret. Equivalently,

the seller can o¤er a menu of prices and quantities. The quantity element in the menu can

either represent a true quantity in the case of a divisible object or a probability of obtaining

the indivisible object.

The intuition regarding the nature of the robust policy is easy to establish in comparison

to the optimal revenue maximizing policy for a given distribution. An optimal policy for

a given distribution of valuations is always to o¤er the entire object at a �xed price. In

contrast a robust policy will o¤er many prices (with varying quantities). With a single

price, the risk of missing a trade at a valuation just below the given price is substantial

(especially in the presence of malevolent nature). On the other hand, if the seller were

simply to lower the price, she would miss the chance of extracting revenue from higher

valuation customers. She resolves this con�ict by o¤ering smaller trades at lower prices

to the low valuation customers. The size of the trade is simply the probability by which

a trade is o¤ered or the quantity o¤ered at a given price. In the game against nature,

the seller will have to be indi¤erent between o¤ering small and large trades. In terms of

the virtual utility, the key notion in optimal mechanisms, this requires that the seller will

receive zero virtual utility over a range of valuations. The resulting implication on the

distribution of valuations determine the worst case demand chosen by nature. Similarly,

the worst case demand by nature cannot be a pure strategy as the seller would then have a

best response which would guarantee her zero regret. But for nature to choose a nongeneric

distribution, it must be indi¤erent over a set of valuations. As nature seeks to maximize
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the regret, the indi¤erence condition requires that the regret is constant across a set of

valuations. In consequence, the density of the pricing policy has to be inverse proportional

to the valuations. The indi¤erence condition then �xes the random pricing policy of the

seller in a transparent fashion. The complete equilibrium analysis also has to locate the

support of the distribution and locate mass points, but the basic trade-o¤s determine the

nature of pricing and worst case demand.

The derivation of the equilibrium is indeed elementary when nature is unconstrained

and the neighborhood is assumed to be so large that it encompasses the set of feasible

distributions. While the determination of the equilibrium turns into a substantially more

challenging task for small neighborhoods, the basic elements in the pricing and demand

strategies derived for large neighborhoods, will appear again for small model misspeci�-

cations. More precisely, the equilibrium strategies for small neighborhoods will be scaled

down versions of the strategies for large neighborhoods. Indeed, an additional attractive

feature of our robust policy is that an increase in risk will simply lead to a scale change

in the policies by means of a change in the support of the distribution, but will leave the

densities intact (up to constant factor).

We de�ne the notion of a neighborhood through the usual metric of weak convergence,

often called Prohorov metric. In the Prohorov metric two distributions are close to each

other if they permit with large probability small changes in the valuations and with small

probability large changes in the valuations. After describing robust policies for small and

large neighborhoods in terms of regret minimization, we �nally return to revenue maxi-

mization. Here we show that the robust policies resulting from regret minimization have a

second and important link to revenue maximization. We already mentioned that in equi-

librium, the regret minimizing policy is equivalent to the revenue maximizing policy at the

worst case demand. The second link extends this relationship to small amounts of model

speci�cation in the following sense. The regret minimizing policy will be a nearly optimal

revenue maximizing policy for every distribution in a small neighborhood. In this sense,

the regret minimizing policy is also a robust policy for revenue maximization with model

misspeci�cation.

1.2 Related Literature

The basic ideas of robust analysis were �rst formalized in the context of statistical inference,

in particular with respect to the classic Neyman-Pearson hypothesis testing. The statistical

problem is to distinguish on the basis of a sample between two known alternative distrib-
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utions. The model misspeci�cation and consequent concern of robustness comes from the

fact that each one of the two distributions might be misspeci�ed. Huber (1964), (1965)

�rst formalized robust estimation as the solution to a minmax problem and an associated

zero sum game.1 The basic ideas of robust statistics were introduced in the optimal control

literature as robust control methods since the early �80s (see Zhou, Doyle & Glover (1996)).

The techniques of robust control were recently introduced into dynamic macroeconomic

models by Hansen and Sargent and their co-authors to investigate robust intertemporal

decision making (see the survey by Hansen & Sargent (2004)).

The robust policy in our model is the result of a minmax regret problem. The seller

could therefore also be interpreted as an ambiguity averse seller in the sense of Gilboa &

Schmeidler (1989) if we were to maximize revenue rather than minimize regret. A recent

paper by Bose, Ozdenoren & Pape (2004) investigates the nature of the optimal auction

in the presence of an ambiguity averse seller as well as ambiguity averse bidders. As we

consider a monopoly pricing problem the ambiguity aversion (or robustness concern) is of

no consequence for the behavior of the buyers.

The worst case analysis and the notion of competitiveness is central in many optimal

design problems analyzed in computer science (see speci�cally Goldberg, Hartline & Wright

(2001) for an application to auctions with multiple goods and the recent survey to online

design problems by Borodin & El-Yaniv (1998)). In auction theory, Neeman (2003) analyzes

the competitiveness of the second price auction. A recent article by Prasad (2003) presents

negative result, an in particular shows that the standard optimal pricing policy of the

monopolist is not robust to small model misspeci�cations.

The idea of a minimax regret rule was advocated by Savage (1954) and appears to have

originated in Wald (1950). A decision theoretic axiomatization of regret was provided by

Milnor (1954). A recent contribution by Hayashi (2005) provides an axiomatization for

minimax regret for a subset of priors. Stoye (2005) provides axioms which are necessary

conditions for interim regret.2 The notion of regret was investigated in the context of

mechanism design by Linhart & Radner (1989) as well as by Selten (1989). Linhart &

Radner (1989) analyze minimax regret strategies in a bilateral bargaining framework. In

their framework, the valuation of the buyer and the cost function of the seller depend on

a choice variable q which may represent quantity or quality. In contrast to the incomplete

1See also Huber (1981) and Hampel, Ronchetti, Rousseeuw & Stahel (1986) for more up-to-date surveys

on robust statistics.
2Recently, the notions of regret and interim regret have also received attention in the econometrics

literature, e.g. Chamberlain (2000) and Manski (2004).
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information environment here, the bulk of the analysis in Linhart & Radner (1989) is

concerned with bilateral trade under complete information. In addition, they largely restrict

their analysis to deterministic strategies, even though mixed strategies will typically lead

to lower regrets. In Selten (1989) �rst and second price auctions are considered under a

modi�ed form of regret for the bidders.

The reminder of the paper is organized as follows. In Section 2 we present the model,

the notion of regret and the neighborhoods. In Section 3 we characterize the robust pricing

policy with large risk. In Section 4, we characterize the robust policy in the presence of

small risks. Here, an important special case is the Dirac function as a model distribution.

In Section 5 we show that a policy which minimizes regret is also a nearly optimal revenue

maximizing policy for all distributions contained in a small neighborhood of the model

distribution. Section 6 provides a discussion of some related and open issues. Section 7

concludes. Section 8 collects auxiliary results and the proofs.

2 Model

Demand The seller faces a single potential buyer with value v for a unit of the object.

The value v of the object is private information for the buyer and unknown to the seller.

The marginal cost of production is constant and normalized to zero. The buyer wishes to

buy at most one unit of the object but we allow for purchases of intermediate quantities

x 2 (0; 1). The net utility of the buyer of purchasing a quantity x at price px is given by

u (v; x; px) = vx� px.

With continuous allocations, the optimal policy of the seller extends from a price to menu

policy.

The valuation v of the buyer is drawn from a probability distribution on [0; 1].

Robustness In contrast to the standard model of incomplete information, in our robust

version the seller is uncertain about the true distribution over the buyer�s valuations. The

risk (or ambiguity in the language of Ellsberg (1961)) is represented by a model distribution

F0 (v) and the requirement that the true distribution Fv (v) is in a neighborhood of the model

distribution F0 (v). The magnitude of the risk is quanti�ed by the size of the neighborhood

around the model distribution.
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Neighborhoods We describe " neighborhoods of the model distribution F0 (v) by the

Prohorov neighborhood, denoted by P" (F0), and associated metric:

P" (F0) = fFv jFv (A) � F0 (A") + "; 8Ag , (1)

where the set A" denotes the closed " neighborhood of any Borel measurable set A. Formally,

the set A" is given by

A" =

�
v 2 [0; 1]

���� infy2A
d (x; y) � "

�
;

where d (x; y) = jx� yj is the distance on the real line. The Prohorov metric has evidently
two components. The additive term " in (1) allows for a small probability of large changes

in the valuations relative to the model distribution whereas the larger set A" permits large

probabilities of small changes in the valuations. The notion of a Prohorov neighborhood is

illustrated in the graphic below for a Dirac function �v0 at some v0 with 0 < v0 < 1.

Insert Figure 1: The Prohorov Neighborhood of a Dirac Function

The distributions which are in the Prohorov neighborhood of the Dirac function �v are

described by all those distribution function which place at least probability 1 � " in the
" neighborhood of the point v given by [v � "; v + "]. The remaining " probability can be
placed anywhere by nature.3

We shall refer to the case of " = 1 as the case of large risk. With " = 1, the neighborhood

is not anchored by any model distribution F0 at all. Similarly, we refer to the case of small

" as the case of small risk.

Regret In the standard monopoly problem with incomplete information, the seller maxi-

mizes the expected revenue for a given prior distribution F over valuations. In contrast, we

analyze the problem in which the seller seeks to minimize the expected regret. The regret

of the monopolist at a given price p and valuation v of the buyer is de�ned as:

r (p; v) , v � pIfv�pg; (2)

3The band around the model distribution �v in the above �gure is not exactly the Prohorov neighborhood,

but contains the Prohorov neighborhood. The inequality of the Prohorov distance (1) has to hold for all

measurable sets A. It therefore imposes additional constraints on the shape of nearby distributions. In the

above example of the Dirac distribution it implies that for all sets A such that A \ [v � "; v + "] = ?, the
probability assigned to the set A under a nearby distribution F has to be less or equal to ". A distribution

F in the neighborhood of �v can therefore not be simultaneously at the upper bound of the band for values

smaller than v � " and at the lower bound for values larger than v + ".
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where Ifv�pg is the indicator function specifying:

Ifv�pg =

(
0; if v < p;

1; if v � p:

The regret of the monopolist charging price p facing a buyer with value v is the di¤erence

between (a) the pro�t the monopolist could make if she were to know the value v of the

buyer before setting her price and (b) the pro�t she makes without this information. The

regret is non-negative and can only vanish if p = v. The regret of the monopolist is strictly

positive in either of two cases: (i) the value v exceeds the price p, the indicator function is

then Ifv�pg = 1, and the regret is the di¤erence between possible revenue and actual price
or (ii) the value v is below the price p, the indicator function is then Ifv�pg = 0, and the
regret is the foregone surplus due to a high price.

The strategy space of the seller is the set of all probabilistic pricing policies with support

on the positive real line. The random variable associated with the mixed strategy is denoted

by ~p; the distribution function by Fp 2 �R+ and the density by fp. The expected regret from
adopting a probabilistic pricing policy Fp when facing a buyer with value drawn according

to Fv is given by:

r (Fp; Fv) , E [r (~p; ~v)] =
Z Z

r (p; v) dFp (p) dFv (v) .

In the presence of robustness concerns, the seller chooses a pricing policy which mini-

mizes over all policies Fp the maximum regret over all distributions Fv in the neighborhood

of a model distribution F0:

inf
Fp2�R+

sup
Fv2P"(F0)

Z Z
r (p; v) dFp (p) dFv (v) .

The robust policy F �p 2 �R+ attains minimax regret if

F �p 2 argmin
Fp2�R+

sup
Fv2P"(F0)

r (Fp; Fv) :

Correspondingly, we refer to F �v which maximizes the regret as worst case demand :

F �v 2 argmax
Fv2P"(F0)

inf
Fp2�R+

r (Fp; Fv) :

3 Large Risk

We begin our robust analysis with the case of large risk and hence " = 1. Under large

risk, the speci�c model distribution F0 does not matter for the model misspeci�cation. The
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relevant neighborhood is the entire set of possible distributions on the interval [0; 1]. In

other words, the neighborhood is not anchored by any model distribution F0 at all. The

support of the valuations is the only information that the seller has. While the case of large

risk is interesting in its own rights, the analysis here also will be useful in two additional

aspects. First it will help us understand the di¤erences between revenue maximization and

regret minimization. Second, the resulting equilibrium pro�les will reappear in a scaled

down version in the case of small risk.

3.1 Regret and Saddlepoint

We begin with a general saddlepoint characterization of the optimal policies for arbitrary

neighborhoods. The expected regret from adopting a probabilistic pricing policy Fp when

facing a buyer with value drawn according to Fv equals

r (Fp; Fv) =

Z
v

Z
p

�
v � pIfp�vg

�
dFp (p) dFv (v) ;

which we may rewrite as

r (Fp; Fv) =

Z
v
vdFv (v)�

Z
p

�Z
v:v�p

pdFv (v)

�
dFp (p) :

The �rst integral in the above expression is simply the expected value of the random variable

~v. It also represents the expected pro�t the seller could obtain if she would learn the value

of the buyer before she sets her price. The double integral is the expected pro�t of the seller

under her actual pricing strategy. If we de�ne the expected pro�t of the seller as:

� (p; Fv) ,
Z
v:v�p

pdFv (v) ;

then we can express the regret of the seller simply as

r (Fp; Fv) =

Z
v
vdFv (v)�

Z
p
� (p; Fv) dFp (p) . (3)

It is now apparent that if the seller were to know the true distribution over the buyer�s

valuations, which is true for the special case of " = 0; then the seller minimizes regret if

and only if she maximizes expected pro�t.

Consider now the case of true risk in which the neighborhood around a model distri-

bution is given by P" (F0) with " > 0: Three questions arise that we will solve in this

order: (i) how can the minimax regret solution be formally derived, (ii) does a minimax

regret solution always exist and (iii) is the minimax regret solution related to Bayesian

decision-making?
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Following Savage (1954) we obtain the minimax regret strategies by solving the associ-

ated saddle point problem. For this we consider a zero-sum (normal-form) game between

the seller and nature where the seller chooses the probabilistic pricing policy Fp and nature

chooses the distribution of buyer values from the set P" (F0) : In this game the payo¤ of the
seller is the negative of regret while the payo¤ to nature is regret itself. It is well known that

if
�
F �p ; F

�
v

�
is a Nash equilibrium of this game then F �p attains minimax regret as de�ned

above and similarly F �v attains maximin regret and is hence a worst case demand. More-

over, we know that the equilibrium payo¤ equals the value of maximin regret and equals

the negative of minimax regret. Formally, a Nash equilibrium of this zero-sum game can be

characterized as a solution to the saddle point problem of �nding
�
F �p ; F

�
v

�
that satisfy:

r
�
F �p ; Fv

�
� r

�
F �p ; F

�
v

�
� r (Fp; F �v ) ; 8Fp 2 �R+, 8Fv 2 P" (F0) . (SP)

If
�
F �p ; F

�
v

�
solve this saddle point problem then the equilibrium regret r� is:

r� , r
�
F �p ; F

�
v

�
= inf
Fp2�R+

sup
Fv2P"(F0)

r (Fp; Fv) :

We prove existence of a solution to this saddlepoint problem and thus existence of a

minimax regret pricing policy using results from Reny (1999). From (SP) we see that

F �p minimizes regret against F
�
v : Together with (3) we observe that the solution F

�
p to

minimax regret is also a pro�t maximizing strategy against the worst case demand F �v :

More speci�cally, any price in the support of F �p maximizes pro�ts against the worst case

demand. In particular, a Bayesian decision maker cannot say that the minimax regret

solution is implausible if she cannot rule out F �v as a subjective prior.

Theorem 1

1. A solution
�
F �p ; F

�
v

�
to the saddlepoint condition (SP) exists.

2. If Fp attains minimax regret and
�
F �p ; F

�
v

�
satis�es (SP) then (Fp; F �v ) also satis�es

(SP).

3. If
�
F �p ; F

�
v

�
satisfy (SP), then (i) F �p attains minimax regret; (ii) F

�
v is worst case

demand and (iii) supp
�
F �p
�
� argmaxp � (p; F �v ).

In addition, with large risk, i.e. " = 1, the saddlepoint condition (SP) is equivalent to a

condition involving the pure rather than mixed strategies of seller and nature:

r
�
F �p ; v

�
� r

�
F �p ; F

�
v

�
� r (p; F �v ) , 8p 2 R+; 8v 2 [0; 1] .
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The saddlepoint result allows us to connect minimax regret behavior to payo¤ maximizing

behavior under a prior as follows. When minimax regret is derived from the equilibrium

characterization in (SP) then any price chosen by a monopolist who minimizes maximal

regret, is at the same time a price which maximizes expected pro�ts against a particular

demand, namely the worst case demand. We shall use the above result to establish robust

strategies for the seller and worst case demand by nature.

3.2 Random Pricing

We now consider the robust pricing strategy in the case of large risk. The robust pricing

strategy of the monopolist minimizes her regret. The regret arises qualitatively from two,

very di¤erent exposures. If the valuation of the buyer is very high, then the regret may

arise from having o¤ered a price too low relative to the valuation. We might refer to this as

the upward exposure. On the other hand, by having o¤ered a price too high, the buyer risks

to have a valuation below the price and the regret of the seller arises from not selling at all.

Correspondingly, we may refer to this as the downward exposure. At every given price p,

the seller faces both a downward and an upward exposure. In this context, a deterministic

price policy will always leave the seller exposed to substantial regret and the regret can be

reduced signi�cantly by o¤ering a probabilistic pricing policy. If the seller is to be indi¤erent

in her pricing policy against the worst case demand, then the marginal revenue must be

zero over the range of prices which the seller o¤ers. In the language of optimal monopoly

pricing this means that the virtual utility of di¤erent prices has to be constant and equal

to zero:

p� 1� F
�
v (p)

f�v (p)
= 0.

For nature to be indi¤erent between valuations, it must be that the regret:

r
�
v; F �p (p)

�
= v �

Z
p�v

pdF �p (p) ;

is constant for those valuations, and di¤erentiating with respect to v we obtain:

1� pf�p (p) = 0;

or

f�p (p) =
1

p
.

For very low valuations of the buyer, the possible downward risk is small and in consequence

the seller will o¤er only prices above a certain positive threshold.
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Theorem 2 (Large Risk)

1. The minimax regret strategy is given by F �p :

F �p (p) =

(
0 if 0 � p < 1

e

1 + ln p if 1
e � p � 1

. (4)

2. The worst case demand is given by F �v :

F �v (v) =

8>><>>:
0 if 0 � v < 1

e

1� 1
ev if 1

e � v � 1
1 if v = 1

. (5)

3. The minimax regret r� is

r� = 1� E [~p�] = 1

e
.

The above minimax regret strategy F �p and worst case demand F
�
v are unique solutions

to the regret problem. The indi¤erence conditions for nature determine exactly the ran-

domization of the seller (up to the size and position of the mass point). In contrast, the

indi¤erence condition of the seller determines only a class of distribution functions, whose

single parameter is determined by the boundary of the support. The density f�v (v) is di-

minishing less rapidly than the density f�p (p) because an increase in price by the seller is

made less appealing by the decrease in sales, whereas an increase in the value leads to a

direct increase in the regret. The equilibrium as represented by the distribution functions

F �p and F
�
v are depicted below.

Insert Figure 2: Optimal Pricing and Worst Case Demand With Large Risk

The equilibrium pricing policy F �p is one of many revenue maximizing policies against

the worst case demand F �v . As the seller is indi¤erent between all deterministic prices

p 2
�
1
e ; 1
�
, there are indeed many revenue maximizing prices. Yet even with the multiplicity

of revenue maximizing prices, the regret strategy F �p is uniquely determined as any other

strategy would allow nature to establish a larger regret. The trade-o¤ between downward

and upward risk thus leads to an interesting prediction of optimal behavior under regret

even though there is maximal ambiguity about the true distribution over valuations. If the

seller were constrained to o¤er a deterministic price then she would set p� = 1
2 and the

resulting regret would be 1
2 as well:
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3.3 Menu Pricing

So far, our analysis assumed that the seller can only o¤er an indivisible object at some price

p. We now extend the instruments of the seller and allow her to o¤er a menu of items. The

equilibrium policies with menus rather than single prices can be directly derived from the

random pricing policies studied earlier and thus little new analysis will be necessary. The

equilibrium use of menus allows us to understand the selling policies from a di¤erent and

perhaps more intuitive point of view. The optimality of menus also emphasizes the role of

robustness concerns in the optimal selling policies as would never be used in the standard

setting.

If the allocative decision regards an indivisible object, or x 2 f0; 1g, then a speci�c
item on the menu assigns a probability of receiving the object at a corresponding price.

If on the other hand, the allocative decision regards a continuous variable, or x 2 [0; 1],
then a menu o¤ers a variety of quantities at di¤erent prices. We observe that with the

multiplicative utility vx used here, the notions of probability and quantity are mathemati-

cally interchangeable. In a direct mechanism, a menu is a pair (x (v) ; p (v)) which maps a

reported type v into a quantity x (v) and price p (v). We transform an equilibrium random

pricing policy into a menu policy by de�ning the quantity assigned in the direct mechanism

through:

x� (v) , F �p (v) ; (6)

and the corresponding nonlinear prices as:

p� (v) ,
Z v

0
ydF �p (y) : (7)

By standard arguments this assignment of quantities to values de�nes an incentive compati-

ble mechanism. Vice versa, we can also start with an incentive compatible direct mechanism

(x� (v) ; p� (v)) and transform this into a mixed pricing policy F �p by means of (6). As an

aside, we should mention that if we start with any incentive compatible menu, then x� (v)

may not be right continuous, a necessary property for a distribution function. But it is

immediate that for every incentive compatible x� (v), there is a right continuous version,

which is at least weakly preferred in terms of expected payo¤s and regret to the original

version. For this reason, it is without loss of generality to focus on right continuous menus

here.
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Proposition 1 (Saddlepoint for Menus)

F �p attains minimax regret with random pricing policies if and only if (x� (v) ; p� (v)) attains

minimax regret with menu policies. In particular, a menu that attains minimax regret with

menu policies exists and the value of minimax regret among random pricing policies is the

same as under menu policies.

The probabilistic pricing policy now translates into a multi-item menu o¤ered by seller.

In fact, the menu will be the unique equilibrium o¤er by the seller. This has to be contrasted

to the optimal o¤er by the seller in the case without risk in which the model distribution

constitutes the true distribution. In this case, there always exist an optimal policy in

the form of a single item menu in which the entire object is o¤ered at a �xed price.4 The

optimality of a single item menu even in the case of a divisible good comes from the fact that

if the marginal cost of production is constant, then a lower priced item on the menu would

lower the revenue which can be extracted from higher types. The worst case demand has

the property that any increasing menu which o¤ers the entire object at the upper boundary

point is revenue maximizing or regret minimizing against the worst case demand. Yet, in

the presence of robust concerns there is a unique multi-item menu which is the optimal

choice of the seller. This underlines the impact of robustness on the policy selection of the

seller. By combining the insights of Theorem 1 and Proposition 1, we obtain the following

characterization of the robust menu for large risk.

Corollary 1 (Menues with Large Risk)

The robust menu (x� (v) ; p� (v)) is given by:

x� (v) =

(
0 if 0 � v < 1

e

1 + ln v if 1
e � v � 1

;

and

p� (v) =

(
0 if 0 � v < 1

e

v � 1
e if 1

e � v � 1
:

It is a noteworthy feature of the robust menu that the price in the direct mechanism is

linear in the valuation v.
4The optimality of a single price policy under constant marginal cost was initally derived by Riley &

Zeckhauser (1983).



Robust Monopoly Pricing July 11, 2005 16

4 Small Risk

Next we describe the robust policy and some of its properties when the risk, represented

by the size " of the neighborhood, is small. We begin the analysis with an arbitrary model

distribution. We then illustrate the robust policy for two speci�c model distributions, the

uniform density and the Dirac function. The example of the Dirac function, representing a

mass point, is of independent interest as in this context the standard revenue maximizing

policy dramatically fails to be revenue robust. It thus represents a leading example for the

robustness analysis in the next section.

4.1 Small Neighborhoods

We shall consider small neighborhoods for a general model distribution F0. We denote the

revenue maximizing price for the model distribution F0 by p0 :

p0 , argmax
p
� (p; F0) .

For the remainder of this Subsection we shall assume that (i) p0 is the unique maximizer of

the pro�t function, (ii) the pro�t function, � (p; F0) at the model distribution F0 is strictly

concave near p0, (iii) the density f0 is continuously di¤erentiable near p0, and (iv) that

either f0 (v) > 0 in the neighborhood of v = 0 or that F0 (0) > 0. We comment on the role

of these regularity assumptions after the statement of the result.

The basic insights into the nature of robust policies which we gained from the analysis of

large risk can be transferred into the analysis of small risk. The new element with small risk

is that nature will be constrained in its choice of the worst case demand. The nature of the

constraint is described by the size of the neighborhood, namely ". First, we will therefore

characterize the robust policy of the seller for a given neighborhood. Second, we will

investigate the response in the robust policy to an increase in the size of the neighborhood.

It is one of the conceptual advantages of model misspeci�cation that we can describe risk

by a one dimensional parameter, namely the size of the neighborhood, and in turn consider

comparative static results as a function of the neighborhood size.

In the case of small risk, the robust policy of the seller has to respond to a smaller

set of possible distributions. Yet, the basic trade-o¤s which we discovered in the large risk

environment will again be present, only on a smaller scale. With malevolent nature, the

robust policy of the seller will again be to o¤er many prices. But as nature is constrained,

the equilibrium prices will now be close to the revenue maximizing price for the model
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distribution. On the other hand, the indi¤erence conditions which we derived for the case

of large risk are still valid in the case of small risk. Thus the general features of random

pricing policy of the seller will be similar, and in particular the density function identical,

in the case of small or large risk. The only new aspect is the determination of the support

of the pricing policy and the location of the mass point.

The existence of a mass point in the pricing strategy of the seller naturally creates an

incentive for nature to place a positive probability event just below the mass point of the

seller. This in turn might suggest that an equilibrium of the robust pricing game fails to

exist. In the case of large risk, the existence of equilibrium could be guaranteed as the seller

o¤ered such low prices that nature could create more regret by o¤ering valuations above the

lowest price. Under small risk, we might guess intuitively that even the lowest price o¤ered

by the seller is not very far away from p0, the optimal price for the model distribution. In

consequence, the price might not be low enough to dissuade nature from �undercutting�by

placing probability just below the mass point of the seller. The stability of the equilibrium

strategies will be restored by using the constraints on the worst case demand. In particular,

the mass point in the pricing strategy of the seller will be placed precisely at the point

where nature is constrained by the neighborhood to place any additional probability just

below the mass point of the seller. In consequence, the probability mass will appear in the

interior of the support rather than at the boundary points of the support of the pricing

strategy.

We describe the robust policy of the seller in terms of the distribution F �p (p) of the

pricing policy.

Theorem 3 (Small Risk)

If " is su¢ ciently small then the robust pricing policy F �p is given by:

F �p (p) =

8>>>>><>>>>>:
0 if 0 � p < a

ln pa if a � p < b

1� ln cp if b � p � c

1 if c < p � 1

,

where 0 < a < b < c < 1 and a < p0 < c.

The support of the pricing policy F �p is hence given by [a; c]. The mass point in the

pricing policy is located at b. The earlier equivalence result between random pricing and

menu pricing remains valid. The above result therefore also characterizes the optimal menu
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policy once we recall that:

x� (v) = F �p (v) ,

and the pricing schedule of the menu is obtained from incentive compatibility, or:

p� (v) =

Z v

0
pdF �p (p) .

The robust menu o¤ered by seller then has three important characteristics, which can be

described with reference to the mass point b: (i) low volume o¤ers are made for buyers

with low valuations, or v < b, (ii) a much higher o¤er is made for all buyers with valuation

v � b, and (iii) even higher volume o¤ers are made to buyers with large values v > b. We
may think of a standard o¤er given by the quantity o¤ered at v = b, and given by x� (b). In

addition, the seller o¤ers low volume downgrades and high volume upgrades. The expanded

menu relative to the optimal single item menu for the model distribution seeks to minimize

the exposure of the seller. Obviously, the seller looses revenue on the high value buyers from

making o¤ers to the low value buyers by granting the high value buyers a larger information

rent. The size of the information rent is kept small by o¤ering menu items to the low value

buyers only of substantially lower volume. This is the source of the gap in the quantities

o¤ered in the menu.

A natural comparison to a robust decision maker is a risk averse decision maker. In

particular, we could ask how the behavior of a risk-averse seller would di¤er from the

behavior of a robust seller. Clearly, a risk averse seller would never �nd a probabilistic

pricing policy optimal. Similarly, she would never o¤er a menu consisting of lotteries. In

contrast, if the good were divisible, then a risk averse seller might indeed o¤er a menu

consisting of di¤erent quantities. The di¤erence with respect to the robust seller would

then be in the shape of the menu. In particular, if a risk averse seller were to face a

continuous demand function (as expressed by F �v ), then the optimal menu would also be

continuous. Yet, with a robust seller, we saw that the optimal menu is discontinuous (at a

single jump point) and essentially o¤ers two (or three) classes of distinct service.5

It remains to describe the comparative static of the pricing policy and the regret of

the seller as a function of the size of the neighborhood. The behavior of the regret and

the expected price to an increase in the risk can be explained intuitively by the �rst order

5To the best of our knowledge, the problem of a risk averse seller in an optimal pricing environment (in

contrast to auctions where results do exist) has not been investigated in the literature. The comparitive

results reported here rely on preliminary work by the authors based on standard optimal control techniques.
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e¤ects. For a small level of risk, we may represent the regret through a linear approximation

r� = r0 + "
@r�

@"
,

where r0 is the regret at the model distribution. For a small level of risk, the marginal change

in regret can then be computed by holding the price policy of the seller at the optimal price

p0 without risk. Suppose then for the moment that p0 � 1
2 : If the risk increases marginally,

the constraints on the choice of a worst case demand are relaxed. What precisely then can

nature do given the speci�cation of neighborhood. First nature can place the density f0 (p0)

slightly below p0 to marginally increase regret by p0f0 (p0), then nature can shift each value

up by " to marginally increase regret by 1 and �nally shift mass from 0 to 1 to marginally

increase regret by 1 � p0: The �rst two changes correspond to small changes in valuation
with large probability, the third to large changes in the valuation with small probability.

So the overall marginal e¤ect of an increase in " near " = 0 is:

p0f0 (p0) + 1 + (1� p0) :

If instead the optimal price without risk would be p0 > 1
2 , then the only modi�cation would

a¤ect the third element as nature would move mass for 0 to just below p0, so that the

marginal increase would be

p0f0 (p0) + 1 + p0.

The optimal response of the seller to an increase in risk is now to �nd a pricing policy which

minimizes the additional regret

"
@r�

@"

coming from the increase in risk. Of course, the cost of adjusting the price to minimize the

marginal regret is that it changes the regret relative to the model distribution F0. Locally,

the cost of changing the policy variable away from the optimum is given by the second

derivative of the objective function. With small risk, the curvature of the regret is identical

to the curvature of the revenue function. The rate at which the robust price responses to an

increase in risk is then simply the ratio of the response of the marginal regret to a change

in price divided by the curvature of the revenue function, or

@E
@"
[ep] = @

@p

�
@r�

@"

�
@2

@p2
� (p0; F0)

.

The next proposition shows that the above intuition can be made precise and shows its

implication for the net utility of the buyer.
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Proposition 2 (Risk and Pricing)

For small risk, the expected price E [~p] responds to an increase in risk by:

@

@"
E [~p] j"=0 =

8<: �1 + 1+f0(p0)
2f0(p0)+p0f 00(p0)

if p0 � 1
2

�1 + f0(p0)�1
2f(p0)+p0f 0(p0)

if p0 >
1
2

, (8)

and the expected regret r
�
F �p ; F

�
v

�
j"=0 responds by:

@

@"
r (Fp; Fv) j"=0 =

(
2� p0 + p0f0 (p0) if p0 � 1

2

1 + p0 + p0f0 (p0) if p0 >
1
2

:

The net utility of a buyer with value v is increasing in " for all v if @
@"E [~p] j"=0 < 0.

We construct the robust pricing policy by means of the implicit function theorem, for

which we need the di¤erentiability of the density function near p0. The worst case demand

makes the seller indi¤erent among all prices p 2 [a; c]. With the strict concavity of the
pro�t function around p0, we know that there do not exist other local optima nearby which

the seller may choose to avoid malevolent nature. The �nal regularity assumption of either

F0 (0) or f0 (v) > 0 near v = 0 guarantees that nature always removes initially density from

v = 0 to increase regret. The nature of the robust policy would not change if there were no

mass or density at v = 0, it would merely change the position of the midpoint 1=2 in the

above comparative static result.

In this paper, we report the robust policies for the case of small and large risk. We

expect that the solution to the case of intermediate risk shares all the features of the

small and large risk cases. In fact for the class of linear densities we have obtained the

complete characterization of robust policies, con�rming our intuition. The basic obstacle to

completely solve the case of intermediate risk is that the implicit function technique does

not apply anymore, while the guess and verify method used for large risk cannot account

for the constraints imposed on nature through the size of the neighborhood.

The robust response of the seller to an increase in risk is perhaps even more informative

when we consider the menu policy. In a menu, the seller is o¤ering many di¤erent choices

to the buyers. An immediate question therefore is how the choice set for the buyers changes

with an increase in the risk. We de�ne the size of the menu simply as the set of quantities

o¤ered by the seller (and accepted by some buyers) in equilibrium.
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Proposition 3 (Risk and Menus)

For small risk:

1. The size of the menu is increasing in ":

2. The price per unit p� (v) =x� (v) is decreasing in ".

As the risk increases, the seller seeks to minimize her exposure by o¤ering more choices

to the buyers and hence increasing the probability of a sale, even if the sale is not �big�in

terms of the sold quantity. For every given valuation v, the seller also increases the size of

the deal o¤ered. As larger deals are o¤ered to buyers with lower valuations, it follows that

the seller is willing to concede a larger information rent to buyers with higher valuations. In

consequence, the average price per unit is decreasing as well. Jointly, these three properties

imply that the seller is o¤ering her products more aggressively and to a larger number of

buyers with an increase in risk. We observe that the monotonicity in the unit price holds

even as the previous proposition showed that the expected price may be increasing. The

resolution of this apparent con�ict comes from the fact that the seller is o¤ering larger

quantities in response to an increase an risk.

4.2 Linear Density

We now illustrate the equilibrium behavior with the uniform model distribution:

F0 (v) = v;

and the revenue maximizing price p0 under the model distribution is given by:

p0 =
1

2
:

We graphically represent the optimal behavior of the seller and nature for a small neigh-

borhood.

Insert Figure 3: Optimal Pricing and Worst Case Demand With Linear

Model Density

The interior curve in the above graph identi�es the model distribution. Constraints

induced by small changes in values constrain the distribution function of F �v to be within

an " bandwidth of the model distribution. The large changes of values, occurring with
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probability of most " move the smallest valuation to the largest valuation, namely 1. The

strategy of nature is then to place as little probability as necessary below the range of the

prices o¤ered by the seller and to shift values above the range as high as possible. Inside

the range of prices o¤ered by the seller, nature uses a density function which maintains the

virtual utility of the seller at 0. In turn, the seller sets the density to make nature indi¤erent

between all values above the mass point and all values below the mass point. Given the

mass point set by the seller, nature shifts as much mass as possible below this point. We

observe that even with the small neighborhood of " = 0:04, the impact of the risk on the

pricing policy is rather large and leads to a wide spread in the prices o¤ered by the seller.

As an implication from Proposition 2, we �nd that in the class of linear densities the

change in expected price as well as the change in the mass point is strictly positive if and

only if the density is strictly decreasing. This can be contrasted with the robust behavior

under max min of revenues where it is immediate to see that any increase in " uncertainty

has a downward e¤ect on prices.

4.3 Dirac Function

The second class of model distributions which we shall study in some more detail is the

class of Dirac functions, �v0 , for some 0 < v0 < 1. The example of a Dirac function will be

informative for at least two reasons. First, the Dirac function describes the case of certainty

in the absence of any model misspeci�cation. The changes in the robust pricing policies

relative to the optimal policy can therefore be traced directly to the model speci�cation. The

simplicity of the model distribution in fact allows us to explicitly derive the robust pricing

policy and the worst case demand as functions of the size " of the neighborhood. Second,

and perhaps more importantly, the case of Dirac distribution is the simplest example of an

environment for which the standard pricing policy clearly fails robustness. In particular,

the optimal price p = v0, will result in zero revenue if the true distribution is not given by

�v0 but rather �v0�". In the next section we shall argue that the robust policy derived here

is also robust when we consider revenues rather than regret.

We described the neighborhood of the Dirac function in Section 2 to illustrate the

Prohorov distance. Compared to the case of large risk, the seller now faces a dramatically

smaller window of risk, yet on this smaller scale the trade-o¤s are almost exactly the same

ones as in the case of large risk. The main di¤erence concerns the placement of the remaining

" probability. In the case of large risk, the choice of nature was completely unrestricted.

With small neighborhoods, most of the probability has be assigned to valuations near v0.
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As the remaining " probability is unconstrained, its placement will depend on the size of the

downward and upward exposure. The relative size of each exposure is determined by the

location of v0. For v0 � 1
2 , the upward risk looms large as nature can place " probability

outside of the reach of the pricing policy by placing at 1 and hence creating a regret of

1� v0. In contrast for v0 > 1
2 , the downward exposure creates the larger regret and hence

nature is tempted to place the remaining " probability just below the support of the seller�s

strategy, for a regret arbitrarily close to v0.

Proposition 4 (Dirac Function)

For " su¢ ciently small:

1. the minimax regret pricing policy F �p is given by

F �p (p) =

8>>>>>>><>>>>>>>:

0 if 0 � p < (v0 � ") (1� ")
0 if (v0 � ") (1� ") � p < (v0 � ") and v0 � 1

2

ln pa if (v0 � ") (1� ") � p < (v0 � ") and v0 > 1
2

1� ln v0+"p if v0 � " � p < v0 + "

1 if v0 + " � p � 1

;

2. the response in expected price satis�es @
@"E [~p] j"=0 = �1;

3. the expected regret r� is increasing in " with

@r�

@"
j"=0 =

(
3� v0 if v0 � 1

2

2 + v0 if v0 >
1
2

;

4. the net utility of any buyer is continuously increasing in ":

The equilibrium strategies are illustrated in Figure 4.

Insert Figure 4: Optimal Pricing and Worst Case Demand With Dirac

Model Distribution

We observe that as v0 � 1
2 , the maximal regret is achieved by placing all the mass at

the top of the interval.

The expected price is decreasing initially at the rate of �1. The decrease in the price
is a direct response to the possibility that the true value might not be v0 but rather v0� ".
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At " = 0, the price completely and exclusively responds to this risk that the true value

might not be v0 but rather v0 � ". The marginal regret converges to 2 + v0 and 3 � v0 as
" converges to zero for v0 � 1

2 and v0 >
1
2 , respectively. As the seller is worried that the

true value might be v0 � " rather than v0, she essentially lowers her price to v0 � ". At
that point, malevolent nature puts much of the weight on v0+ ". The resulting regret is 2",

and hence the marginal increase is 2. The additional component, which varies across the

two situations comes from the small probability that there is large change. With v0 � 1
2 ,

nature places the additional probability on the largest possible value, 1, and the resulting

regret per 1� (v0 � "), which yields 1� v0 as " goes to zero. Conversely, for v0 > 1
2 , nature

places the " probability just below v0� ", and as " goes to zero, the additional component
is v0. Yet we observe that the regret and in particular the marginal regret is continuous

across the two regimes. The comparative static results for the menu are identical to the

ones obtained for the concave and di¤erentiable environment, and the proof is analogous.

Proposition 5 (Robust Menus with Dirac Function)

For " su¢ ciently small:

1. The size of the menu is increasing in ":

2. The price per unit p� (v) =x� (v) is decreasing in ".

The equilibrium menu is illustrated in Figure 5.

Insert Figure 5: Robust Menu With Dirac Model Distribution

In the case of a model distribution without uncertainty, it is natural to investigate the

relationship between a deterministic and probabilistic pricing policy. The deterministic

solution to the minmax regret problem naturally does not satisfy the saddlepoint charac-

terization and if we restrict the seller to deterministic strategies then we observe that:

min
p

max
Fv2P"(F0)

r (p; Fv) > max
Fv2P"(F0)

min
p
r (p; Fv) .

We should perhaps add that the above inequality is true for general distributions and not

only for the Dirac distribution. To see this suppose, that there is indeed a saddle point

in which the seller uses a single price. For p to be optimal for the seller, there must be a

positive probability of valuations at or above p. But now nature has an incentive to move

some of these valuations to slightly below p, contradicting the saddle point hypothesis.
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On the other hand, it is immediate that the respective local responses of the randomized

and deterministic pricing policy converge as " goes to zero. It follows that for small values of

", the loss from concentrating on deterministic policies is minor. Yet as the risk grows, the

loss due to a deterministic strategy increases at an increasing rate. Similarly, the di¤erence

between the expected price under the randomized strategy and the deterministic strategy

is increasing at an increasing rate.

Corollary 2 (Deterministic Versus Random Strategies)

For " su¢ ciently small:

1. The optimal deterministic strategy is p�d = v0 � ".

2. The di¤erence between deterministic and stochastic price, E [~p�]� p�d, is an increasing
and convex function in ".

3. The di¤erence between deterministic and stochastic regret, r�d � r�, is an increasing
and convex function in ".

5 Revenue Robustness

We �nally return to the issue of revenue robust policies and the link to minmax regret

strategies. We de�ne a general pricing rule p̂ as a mapping from a model distribution F0

for demand and a neighborhood of size " into a probability distribution over prices:

p̂ : � [0; 1]� (0; 1)! � [0; 1] ,

such that p̂ (F0; ") is the mixed pricing policy chosen under prior F0 and a neighborhood of

size ". For instance, a pricing strategy that attains minimax regret for all F0 and all " is

such a decision rule.

De�nition 1 (Revenue Robust)

A pricing rule p̂ is called revenue robust at F0 if for each  > 0 there is " > 0 such that for

all priors F 2 � [0; 1] :

F 2 P" (F0) ) � (p� (F ) ; F )� � (p̂ (F0; ") ; F ) < :

A pricing rule p̂ is revenue robust if it is revenue robust at every F0:
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The notion of revenue robustness provides a formal de�nition of robustness for revenue

maximization in the spirit of Huber (1964). It generalizes the de�nition of �-robustness of

Prasad (2003). The robust policy is allowed to depend on the size " of the neighborhood.

Similarly, Hansen & Sargent (2004) use the term robustness for maximizing the minimum

utility within an " neighborhood. A stronger notion of robustness would require the robust

policy to be independent of ". Under this stronger notion, typically only the optimal policy

at F0 would be a candidate for a robust policy. We next show that the minimax regret

policy is a revenue robust policy.

Theorem 4 (Robustness)

If p̂ attains minimax regret at F0 for all su¢ ciently small " then p̂ is revenue robust at F0:

6 Discussion

Neighborhoods The local notion of robustness is naturally tied with the corresponding

neighborhood notion.6 The Prohorov metric allows nearby distributions to be di¤erent

either through a small probability of large changes relative to the model distribution or

through a large probability of small changes in the valuations. The �rst advantage of the

Prohorov metric is that it applies to both discrete as well as continuous distributions. In

contrast, the Kullback-Leibler distance only usefully de�nes neighborhoods for continuous

distributions. In addition, the Prohorov metric is actually a metric for weak convergence of

probability measures.7

A related model to represent neighborhoods is given by the contamination �neighbor-

hood�, where the neighborhood of a model distribution F0 is described by N" (F0):

N" (F0) = fFv jFv = (1� ")F0 + "G for some G 2 �R+ g : (9)

The contamination neighborhood is actually not a neighborhood in the sense of the weak

topology. Yet it is somewhat easier to handle than the Prohorov neighborhood as the

additive term "G only allows for a small probability of a large change, but not for a large

probability of a small change. For a given ", the contamination neighborhood is then strictly

smaller than the Prohorov neighborhood. The di¤erence between the two neighborhoods

6The issue of an appropriate neighborhood also appears in stability analysis of evolutionary games, see

Oechssler & Riedel (2001) and Oechssler & Riedel (2002).
7There is also a close relationship between the Prohorov norm and the variational norm, see Shiryaev

(1995), p.360.
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is most apparent when we look at our earlier example of a Dirac distribution. The conta-

mination neighborhood essentially reduces to the horizontal bands but omits the vertical

bands as displayed below.

Insert Figure 6: Contamination Neighborhood With Dirac Model

Distribution

In consequence, for a given neighborhood size ", the robust policy has to secure itself

against fewer possible distributions and the robust policy will be closer to the pricing policy

before robustness concerns arise.

Interim Regret The notion of regret we used here is an ex-post criterion as we compare

the realized revenue with the revenue she could have realized for the given realization of the

random variable ev. This suggests a weaker version of regret in form of an interim regret.8

Interim regret is the di¤erence between the expected revenue if the seller knew the true

distribution and the expected revenue she actually obtains:

R (Fp; Fv) = sup
p
� (p; Fv)�

Z
� (p; Fv) dFp (p) .

The resulting minmax problem would be given by:

inf
Fp2P"(F0)

sup
Fv

R (Fp; Fv) . (R)

Interestingly, the robust pricing policy coincide for the case of large risk in the case of

interim or ex post regret. In the case of small risk, the equilibrium policies sill have the

same shape as under ex post regret but typically the support of the pricing policy and the

worst case demand is located lower with interim regret. The reason is that with interim

regret, the benchmark is the expected revenue and hence the missed opportunities due to

upward exposure matter less.

The notion of interim regret also permits an alternative interpretation with a continuum

of buyers. Our earlier notion of regret investigates the impact of not knowing the value of

a single buyer. Consider now a continuum of buyers. There are two possible benchmarks

with which expected payo¤s are compared. One is where the monopolist is able to price

discriminate among buyers if she knew their values. Here our original notion of regret

8The notion of interim regret is called �regret risk�in Chamberlain (2000) and is the basis of the analysis

in Manski (2004).
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applies and the monopolist prices as if facing a single buyer. However, if the monopolist

is not able to price discriminate, but instead has to set a single price then the original

notion of regret may appear less plausible as a benchmark. Without the ability to price

discriminate, a monopolist who knows Fv will charge p� 2 argmaxp2R+ � (p; Fv) and an
alternative notion of regret with many buyers and without price discrimination would be

interim regret.

Competitive Analysis In computer science the optimality of a selling mechanism is

often evaluated by its competitive ratio, see Borodin & El-Yaniv (1998). The evaluation

criterion is the ratio between realized revenue and feasible revenue. The optimal policy or

mechanism is de�ned as the one which maximizes the competitive ratio among all possible

distributions Fv (v). In our setting the competitive ratio is given by

pIfp�vg
v

:

The competitive ratio is obtained by random policies of seller and nature. A random

strategy of nature now requires that for all v in the support of the distribution Fv the above

ratio is constant in expectations, or: R
p�v pfp (p) dp

v
: (10)

A similar condition can be established based for the competitive pricing policy of the seller,

which requires that for all p in the support of the distribution Fp, the competitive ratio is

constant in expectations, or:
pR 1

p vfv (v) dv
: (11)

The conditions (10) and (11) then yield the characterization of competitive pricing and

worst case demand. In fact, the competitive pricing policy has the same density (up to a

constant factor) as the robust pricing policy. Yet in contrast to the robust pricing policy, the

competitive pricing policy has as its support the entire interval, [v; 1] of possible valuations.

The worst case demand for the competitive ratio is given by f (p) = ae�p for some constant

factor �. The competitive strategies also display the mass points at the same locations as

the robust policies, namely a mass point in the strategy of seller at v = v and a mass point

in the strategy of nature at v = 1.

Thus, while the notion of competitive ratio does not address the case of small risks, in

the case of large risk, the resulting competitive policy is very close to our robust policy with

large risk.
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7 Conclusion

In this paper we analyzed robust pricing policies by a monopolist. We began by considering

globally robust policies as solution to minimax regret strategies with an unconstrained

adversary. We then considered locally robust policies by restricting the strategy space

by the adversary to contain only nearby distributions. The monopolist anticipates that

her prior is only a noisy forecast of the true distribution. The magnitude of the change

in expected price is approximately indirectly proportional to the curvature of the pro�t

function at the optimal price.

The problem of optimal monopoly pricing is in many respects the most elementary

mechanism design problem. It would be of interest to extend the insights and apply the

techniques developed here to a wide class of design problems, such as the discriminating

monopolist (as in Mussa & Rosen (1978) and Maskin & Riley (1984)) and optimal auctions.

The monopoly setting has the simplifying feature that the buyers have complete information

about their payo¤ environment. Given their know valuation and known price, each buyer

simply had to make a decision as to whether or not to purchase the object. With the

complete information by the buyer, there was no need to look for a robust purchasing policy.

A substantial task would consequently arise by considering multi-agent design problems with

incomplete information such as auctions, where it becomes desirable to �robustify�both the

decisions of the buyers and the seller. The recent result by Segal (2003) and Chung & Ely

(2003) regarding the su¢ cient conditions for the existence of dominant strategies for the

bidders in optimal auctions might o¤er a �rst step in this direction. The complete solution

of these problems poses a rich �eld for future research.
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8 Appendix

The appendix contains some auxiliary results and the proofs for the results in the main

body of the text.

Proof of Theorem 1. (1.) We apply Corollary 5.2 in Reny (1999). Clearly we have

a compact Hausdor¤ game. Reciprocal upper semi continuity follows directly as we are

investigating a zero sum game. So all we have to ensure is payo¤ security. Payo¤ security

for the monopolist means that we have to show for each
�
F �p ; F

�
v

�
with F �v 2 P" (F0) and

for every � > 0 that there exists  > 0 and �Fp such that Fv 2 P (F �v ) implies r
�
�Fp; Fv

�
�

r
�
F �p ; F

�
v

�
+ �:

Let  , �=4 and let �Fp be such that �Fp (p) , F �p (p+ ) : Then using the fact that

Fv (v) � F �v (v � )�  we obtainZ 1

0
vdFv (v) � 2 +

Z 1

0
vdF �v (v) :

Using the fact that Fv (v) � F �v (v + ) +  we obtain

�
�
�Fp; Fv

�
� �

�
F �p (p+ ) ;min fF �v (v + ) + ; 1g

�
� �

�
F �p ; F

�
v

�
� 2

and hence r
�
�Fp; Fv

�
� r

�
F �p ; F

�
v

�
+ �:

To show payo¤ security for nature we have to show for each
�
F �p ; F

�
v

�
with F �v 2 P" (F0)

and for every � > 0 that there exists  > 0 and �Fv 2 P" (F0) such that Fp 2 P
�
F �p
�
implies

r
�
Fp; �Fv

�
� r

�
F �p ; F

�
v

�
� �:

Here we set �Fv , F �v : Given  > 0 consider any Fp 2 P
�
F �p
�
. All we have to show is

that � (Fp; F �v ) � �
�
F �p ; F

�
v

�
+ � for su¢ ciently small : Note that Fp (p) � F �p (p+ ) + 

implies

� (Fp; F
�
v ) �  +

Z
(p+ )

�Z 1

p
dF �v (v)

�
dF �p (p+ ) =  +

Z
p

�Z 1

p�
dF �v (v)

�
dF �p (p)

=  + �
�
F �p ; F

�
v

�
+

Z
p

 Z
[p�;p)

dF �v (v)

!
dF �p (p)

�  + �
�
F �p ; F

�
v

�
+

Z Z
[p�;p)

dF �v (v) dF
�
p (p) :

Given continuity of
R R

[p�;p) dF
�
v (v) dF

�
p (p) in  the claim is shown.

(2.) The proof is a standard result of zero-sum games and is easily veri�ed directly

using (12).
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(3.) Let
�
F �p ; F

�
v

�
be a solution to (SP). Parts (i) and (ii) follow directly from

r
�
F �p ; F

�
v

�
= max

Fv2P"(F0)
r
�
F �p ; Fv

�
� inf
Fp2�R+

sup
Fv2P"(F0)

r (Fp; Fv) = r
� (12)

� sup
Fv2P"(F0)

inf
Fp2�R+

r (Fp; Fv) � min
Fp2�R+

r (Fp; F
�
v ) = r

�
F �p ; F

�
v

�
as inf sup � sup inf holds generally. Part (iii) follows from the fact that (SP) and linearity

of r in p implies supp
�
F �p
�
� argminp r (p; F �v ) and thus supp

�
F �p
�
� argmaxp � (p; F �v ) as

r (p; F �v ) =
R
vdF �v (v)� � (p; F �v ). �

Proof of Theorem 2. Let ~v� have cdf F �v 2 �
�
1
e ; 1
�
with density 1

ev2
and where

Pr (~v� = 1) = 1
e : Hence Pr (~v

� � v) = 1
ev for v 2

�
1
e ; 1
�
and

r (p; F �v ) =
1

e
+

Z 1

1
e

v
1

ev2
dv � p 1

ep
=
1

e
for p 2

�
1

e
; 1

�
;

r (p; F �v ) =
1

e
+

Z 1

1
e

v
1

ev2
dv � p > 1

e
for 0 � p < 1

e
;

r
�
F �p ; v

�
= v �

Z v

1
e

p
1

p
dp =

1

e
for v 2

�
1

e
; 1

�
;

r
�
F �p ; v

�
= v <

1

e
for 0 � v < 1

e
.

Hence,
�
F �p ; F

�
v

�
satis�es the conditions of Theorem 1. Note that r� = r

�
F �p ; 1

�
so r� =

1� E [~p]. �

The proof of Proposition 1 follows directly from the following lemma.

Lemma 1 (Equivalence)

1. For any mixed pricing policy Fp (v) the menu (x (v) ; p (v)) is incentive compatible.

2. If (x (v) ; p (v)) is incentive compatible, then there exists a mixed pricing policy Fp such

that � (Fp; v) � p (v) for all v 2 [0; 1] :

Proof. First we show that if g : [0; 1]! [0; 1] is non decreasing then

vg (v)�
Z v

0
sdg (s)�

Z v

0
g (s) ds � 0:

Let h be the left hand side of this equation. Clearly, h (0) = 0. Since g is non decreasing and

bounded, h is di¤erentiable almost everywhere which implies that h0 = 0 almost everywhere.



Robust Monopoly Pricing July 11, 2005 32

Consider some �v 2 [0; 1] : If g is continuous at �v then so is h: Assume that g is not continuous
at �v: Then

�vg (�v)�
Z �v

0
sdg (s) = lim

v<!�v
vg (v)+�v

�
g (�v)� lim

v<!�v
g (v)

�
� lim
v<!�v

Z v

0
sdg (s)��v

�
g (�v)� lim

v<!�v
g (v)

�
so h is continuous at �v and thus h � 0.

For the proof we can use a standard result on incentive compatibility, see Proposition

23.D.2 in Mas-Collel, Whinston & Green (1995). Part (1) follows immediately from the fact

that Fp is nondecreasing and that vFp (v) � � (Fp; v) =
R v
0 Fp (s) ds given our calculations

above.

For part (2), notice that x (v) 2 [0; 1] and that incentive compatibility implies that

x (v) is non decreasing and vx (v) � p (v) =
R v
0 x (s) ds. Moreover, we can limit attention

to menus where x is right continuous as otherwise there exists a right continuous incentive

compatible menu (x̂ (v) ; p̂ (v))v2[0;1] such that p̂ (v) � p (v) for all v: As we consider x that
is right continuous, Fp such that Fp (v) , x (v) for all v is a well de�ned mixed pricing

policy and we obtain p (v) = vx (v) �
R v
0 x (s) ds. Our calculations above then imply that

� (Fp; v) = p (v) :

In order to derive the equilibrium policies in the case of small risk we present a charac-

terization of the Prohorov distance that builds on the following celebrated result of Strassen

(1965).

Theorem (Strassen (1965)).

F and G have Prohorov distance " if and only if there exist random variables X and Y such

that X has distribution F; Y has distribution G and Pr (jY �Xj � ") � 1� ".

The two cumulative distributions F;G are close if and only if they are associated to two

random variables that realize similar values with high probability. Our characterization

describes the Prohorov distance in terms of cumulative distribution functions only. In order

to stay within epsilon distance of a given distribution function G one may �rst alter any

value by at most ", this creates a probability measure F1, and then take " mass away

from some values, the removal is described by a measure F3, and move it to other values,

described by a measure F2.

Lemma 2 (Decomposition)

Consider " > 0 and probability measures F and G. F 2 P" (G) if and only if there exists a
probability measure F1 and positive additive measures F2 and F3 such that:
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G (x� ") � F1 (x) � G (x+ ") ; F2; F3 � " and F � F1 + F2 � F3:

Proof. (() Suppose F can be decomposed into F1; F2 and F3. We then want to show
that F (A) � G (A") + ". To this purpose, it is clearly su¢ cient su¢ cient to consider only
closed sets A.

(a) We �rst prove the claim for A = [x; y] with 0 � x � y � 1: Given a probability

measure H let H� (v̂) , limv<!v̂H (v) : Then

F1 ([x; y]) = F1 (y)� F�1 (x) � G (y + ")�G� (x� ") = G ([x; y]
") :

Since F2 ([x; y]) � " and F3 ([x; y]) � 0 we obtain

F ([x; y]) = F1 ([x; y]) + F2 ([x; y])� F3 ([x; y]) � G ([x; y]") + ":

(b) Next we consider A = [x1; y1] [ [x2; y2] with y1 + 2" < x2 which implies [x1; y1]" \
[x2; y2]

" = ;. Using the results obtained in part (a) together with the fact that A" =
[x1; y1]

" [ [x2; y2]" holds for the " operator it follows that

F1 (A) = F1 ([x1; y1]) + F1 ([x2; y2]) � G ([x1; y1]") +G ([x2; y2]") = G (A") :

Since F2 (A) � " and F3 (A) � 0 the claim is proven.

(c) The arguments in part (b) are easily generalized for any set A that can be decomposed

into a �nite union of disjoint closed intervals of distance greater than 2" so A = [mk=1 [xk; yk]
with xk � yk < xk+1 + 2" for k � m� 1:

(d) Finally we show that we do not have to prove the statement for more general sets

A:

Notice that if A"1 = A
"
2; A1 � A2 and F (A2) � G (A"2) + " then F (A1) � G (A"1) + ":

So we can restrict attention to proving the claim for closed sets A such that A" = A"1 and

A � A1 implies A = A1: Consider x; y 2 A such that x < y � x+2": Then fA [ [x; y]g" = A"

and hence [x; y] � A: It now follows easily that A belongs to the class of sets investigated
in part (c).

()) Consider probability measures F and G with kF �Gk � ": Extend G to [�"; 1 + "]
such that G (x) = 0 for �" � x < 0 and G (x) = 1 for 1 < x � 1+ ": Given the above result
of Strassen (1965), there exist random variables X and Y such that X has distribution F;

Y has distribution G and Pr (jY �Xj � ") � 1� ".
Let Z1 be the random variable with cdf F1 such that Z1 , X if jY �Xj � " and Z1 , Y

if jY �Xj > ". Let "0 , Pr (jY �Xj > ") so "0 � ": Then G (x� ") � F1 (x) � G (x+ ") :
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Let Z2 be the random variable with cdf F̂2 such that Z2 , 0 if jY �Xj � " and Z2 , X if

jY �Xj > ": Let Z3 be the random variable with cdf F̂3 such that Z3 , 0 if jY �Xj � "
and Z3 , Y if jY �Xj > ": Then X = Z1 + Z2 � Z3 and F̂2 (0) ; F̂3 (0) � 1 � "0: Let
Fi , F̂i � (1� "0) for i = 2; 3: Then F2; F3 are positive additive measures with F2; F3 � "0

and the proof is complete.

Proof of Theorem 3. We start by assuming p0 > 1
2 : The proof proceeds in three steps.

First we show the existence of the parameters a; b and c and use these to construct the

worst case demand F �v : Second, we decompose the worst case demand by using Lemma 2 to

show that it is close to F0: Third we use this decomposition to verify that we have a saddle

point.

Step 1. We start by showing that for su¢ ciently small " there exist parameters a; b; c

such that a < b < c and a < p0 < c such that

F0 (a� ")� " = 1� b
2f0 (b+ ")

a
; (13)

F0 (b+ ") = 1� b
2f0 (b+ ")

b
; (14)

F0 (c� ") = 1� b
2f0 (b+ ")

c
: (15)

Concerning existence of b note that b = p0 solves (14) if " = 0. As

d

db
(1� F0 (b+ ")� bf0 (b+ ")) j"=0 = �2f (p0)� p0f 0 (p0) < 0;

due to strict concavity of pro�ts at p0, the implicit function theorem implies that a solution

b = b (") to (14) (with b > 0) exists for " in a neighborhood of 0.

To prove existence of c; de�ne

h (v) , 1� b
2f0 (b+ ")

v
� F0 (v � ") forv > 0:

Then h (b) = F0 (b+ ")� F0 (b� ") with

h0 (b) = f0 (b+ ")� f0 (b� ") ;

and

h00 (b) = �2f0 (b+ ")
b

� f 00 (b� ") � �
2f0 (p0) + p0f

0
0 (p0)

p0
< 0:

We note that h (b) > 0 by our assumptions on F0: Looking at the Taylor approximation of

h near v = b for small " we obtain that there exists c > b such that h (c) = 0 with c ! p0
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as " ! 0: As for existence of a; analogous calculations for h (v) + " show that there exists

a < b such that h (a) + " = 0 with a! p0 as "! 0:

We can describe the local behavior of the parameters a; b;and c by appealing to the

implicit function theorem. Since 2f0 (p0) + p0f 00 (p0) > 0 we know that b is di¤erentiable

and by implicitly di¤erentiating (14) we obtain:

b0 (0) = � f0 (p0) + p0f
0
0 (p0)

2f (p0) + p0f 0 (p0)
: (16)

Next we show that a is di¤erentiable. Since

b2f0 (b+ ")� a2f0 (a� ")
b� a = (b+ a) f0 (b+ ")+a

2 f0 (b+ ")� f0 (a� ")
b� a � 2p0f0 (p0)+p20f 00 (p0) ;

we �nd that b2f0 (b+ ") > a2f0 (a� ") near " = 0. Hence we can implicitly di¤erentiate

(13) to obtain

a0 (") = �aa+ af0 (a� ") + bf0 (b+ ")
b2f0 (b+ ")� a2f0 (a� ")

(17)

so

lim
"!0

�
b� a
a
a0 (")

�
= � 1 + 2f0 (p0)

2f0 (p0) + p0f 00 (p0)
:

In particular we obtain that

lim
"!0

a0 (") = �1: (18)

Similarly for c, we �nd that:

c0 (") = �c cf0 (c� ") + bf0 (b+ ")
b2f0 (b+ ")� c2f0 (c� ")

(19)

and hence

lim
"!0

�
c� b
c
c0 (")

�
=

2f0 (p0)

2f0 (p0) + p0f 00 (p0)
:

In particular,

lim
"!0

c0 (") =1: (20)

It now follows from (18) and (20) that a < p0 < c.

Step 2. We now construct the worst case demand on the basis of a; b and c. Consider

F �v given by

F �v (v) ,

8>>>>><>>>>>:
max f0; F0 (v � ")� "g , if v 2 [0; a]

1� b2f0(b+")
v , if v 2 (a; c)

F0 (v � ") , if v 2 [c; 1)
1 if v = 1

,
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where the de�nitions of a and c imply that F �v is continuous at a and c. It follows that F
�
v

is a probability measure.

We now show that F �v 2 P" (F0) by using Lemma 2. Consider F �1 de�ned by

F �1 (v) ,

8>><>>:
F0 (v � ") , if v 2 [0; a]

max fF �v (v) ; F0 (v � ")g , if v 2 (a; b)
F �v (v) ; if v 2 [b; 1]

.

Then F �1 is a probability measure with F0 (v � ") � F �1 (v) : By de�nition of b we obtain

F �v (b) = F0 (b+ ") and F �0v (b) =
d
dvF0 (v + ") jv=b: Moreover, given F

�00
v (v) = �2b2f0(b+")

v3

and d2

(dv)2
F0 (v + ") = f 00 (v + "), strict concavity of pro�ts near p0 implies that F

00
0 (v) <

F �00v (v) for v 2 [a; c] and " su¢ ciently small. Thus, for su¢ ciently small "; as a and

c are close to p0; we obtain F �1 (v) � F0 (v + ") with equality if and only if v = b: So

F0 (v � ") � F �1 (v) � F0 (v + ").
Consider F �2 de�ned by

F �2 (v) ,

8>><>>:
0, if v 2 [0; a]

"�max fF0 (v � ")� F �v (v) ; 0g , if v 2 (a; b]
"; if v 2 (b; 1]

.

Then
d

dv
(F �v (v)� F0 (v + ")) =

b2f0 (b+ ")

v2
� f0 (v + ") � 0 for v � b;

as
d

dv

�
v2f0 (v + ")

�
= v2f 00 (v + ") + 2vf0 (v + ") > 0;

holds for " su¢ ciently small and hence F �2 is weakly increasing with F
�
2 (1) = ": Since F

�
2

is also right continuous we obtain that F �2 can be extended to a non additive probability

measure.

Let F �3 be de�ned by

F �3 (v) , min fF0 (v � ") ; "g ; if v 2 [0; 1] ;

so F �3 (v) is a non additive probability measure and F
�
3 (1) = ": Since F

�
v = F

�
1 + F

�
2 � F �3

we obtain from Lemma 2 that F �v 2 P" (F0) :
Step 3. Next we show that

�
F �p ; F

�
v

�
is a saddle point. For the monopolist we verify

easily that � (p; F �v ) = b2f0 (b+ ") for p 2 [a; c] : Similar to the calculations following the
de�nition of F �1 it is easily shown that there exists � > 0 such that 1 �

b2f0(b+")
v < F �v (v)

holds for all v 2 [p0 � �; p0 + �] n [a; c] and all su¢ ciently small ": Thus, for su¢ ciently small
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" we obtain [a; c] = argmaxp2[p0��;p0+�] � (p; F
�
v ) and together with the upperhemicontinuity

of pro�ts that [a; c] � argmaxp � (p; F �v ).
Consider now the incentives of nature. Note that

r
�
F �p ; F

�
v

�
= r

�
F �p ; F

�
1

�
+ r

�
F �p ; F

�
2

�
� r

�
F �p ; F

�
3

�
;

where the de�nition of regret r is naturally extended to arbitrary measures. Notice that it

is best to choose F �2 and F
�
3 such that F

�
2 (1) = F

�
3 (1) = ": In the following we show that

each term is maximized separately starting with F �2 : If nature could put all mass on a single

value v, by construction of F �v nature would be indi¤erent over v 2 [a; b) and over v 2 [b; c] :
Since r

�
F �p ; v

�
is monotone increasing on [0; a] and [c; 1] it follows that argmaxv r

�
F �p ; v

�
�

[a; b) [ f1g : For su¢ ciently small "; r
�
F �p ; a

�
� p0 while r

�
F �p ; 1

�
� 1� p0 so given p0 > 1

2

we obtain [a; b) = argmaxv r
�
F �p ; v

�
:

Concerning F �3 let �v = inf fv : F0 (v � ") � "g : We have to show that r
�
F �p ; ~v

�
�

r
�
F �p ; v̂

�
for ~v � �v � v̂: Given the above it is su¢ cient to consider only ~v = �v and v̂ = c

where r
�
F �p ; c

�
= c� E (~p) : Let  , 2 supv>0 v

F0(v)
. For v su¢ ciently small,  � v

F0(v)
and

hence r
�
F �p ; ~v

�
= ~v � "+ F0 (~v � ") = " (1 + ) : On the other hand, we show in the proof

of Proposition 2 that @
@"cj"=0 =1 and @

@"E (~p) j"=0 <1 so @
@"r
�
F �p ; c

�
j"=0 =1 and hence

r
�
F �p ; ~v

�
< r

�
F �p ; c

�
for " su¢ ciently small.

Finally, consider F �1 :More mass cannot be allocated to regret maximizing values [a; b) as

F �1 (b) = F0 (b+ ") ; weight on values below a and above c are shifted up as far as possible as

Fv (v) = F0 (v � ") for v < a and c < v < 1 and allocation of F �1 for F �1 2 (F �1 (b) ; F0 (c� "))
will not in�uence regret as r

�
F �p ; v

�
is constant on [b; c] :

The case of p0 � 1
2 proceeds in an analogous manner. It is easily shown that there exist

parameters a; b; c such that a < b < c and a < p0 < c such that

F0 (a� ")� " = 1� b
2f0 (b+ ")

a

F0 (b+ ") = 1� b
2f0 (b+ ")

b
+ " (21)

F0 (c� ")� " = 1� b
2f0 (b+ ")

c
:

Let the worst case demand F �v be de�ned by

F �v (v) ,

8>>>>><>>>>>:
max f0; F0 (v � ")� "g , if v 2 [0; a]

1� b2f0(b+")
v , if v 2 (a; c)

max f0; F0 (v � ")� "g , if v 2 [c; 1)
1 if v = 1

.
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F �v is now decomposed such that F
�
v = F

�
1 + F

�
2 � F �3 where

F �1 (v) ,

8>>>>><>>>>>:
F0 (v � ") , if v 2 [0; a]

1� b2f0(b+")
v + ", if v 2 (a; c)

F0 (v � ") ; if v 2 [c; 1)
1 if v = 1

,

F �2 (v) ,
(
0, if v 2 [0; 1)
", if v = 1

,

F �3 (v) , min fF0 (v � ") ; "g ; if v 2 [0; 1] :

Lemma 2 can be applied to show that F �v 2 P" (F0) : In contrast to the previous case of
p0 >

1
2 , now v = 1 maximizes r

�
F �p ; v

�
so that F �2 puts all mass at v = 1: For the case

of p0 = 1
2 Proposition 2 can be used to show that r

�
F �p ; 1

�
= 1 � E [~p] > r

�
F �p ; a

�
= a.

As in the case where p0 > 1
2 ; F

�
1 (v) � F0 (v + ") with tangency only at v = b so F �1 again

maximizes weight on [a; b). [a; b) is now only a local maximum of r
�
F �p ; v

�
but nevertheless

it still follows easily that F �1 maximizes regret (use the fact that F0 (b+ ") < F0 (c� ")). �

Proof of Proposition 2. We obtain that

E [~p] =
Z c

a
p
1

p
dp+ b

�
1�

Z c

a

1

p
dp

�
= c� a+ b

�
1� ln c

a

�
:

As a; b; and c are di¤erentiable as shown in Proposition 3, we have:

@

@"
E [~p] =

b� a
a
a0 (") +

c� b
c
c0 (") +

�
1� ln c

a

�
b0 (") :

Inserting the value for a0 (") ; b0 (") and c0 (") from (16), (17) and (19) respectively, we obtain

for p0 > 1
2 :

@

@"
E [~p] j"=0 = �1 +

f0 (p0)� 1
2f (p0) + p0f 0 (p0)

:

The same operations yield the result for p0 < 1
2 .

Next we consider the behavior of the regret with an increase in risk. Given our assump-

tions on f (�) there exists � such that F0 (�� ") = " so f0 (�� ")�0 (") = 1+ f0 (�� "). We
can then write the regret as:

r (Fp; Fv) = r (a; Fv) =

Z a

�
vf0 (v � ") dv +

Z c

a
v
b2f0 (b+ ")

v2
dv +

Z 1

c
vf0 (v � ") dv

+(1� F0 (1� "))� a (1� F0 (a� ") + ") :
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We calculate

@

@"
r (a; Fv) = �

Z a

�
vf 00 (v � ") dv � �f0 (�� ")�0 (") +

Z c

a

b2f 00 (b+ ")

v
dv �

Z 1

c
vf 00 (v � ") dv

+f0 (1� ")� af0 (a� ")� a

! �
Z 1

0
vf 00 (v) dv + f0 (1)� p0f0 (p0)� p0 = 1� p0f0 (p0)� p0 as "! 0;

as Z 1

0
vf 00 (v) dv = [vf0 (v)]

1
0 �

Z 1

0
f0 (v) dv = f0 (1)� 1:

Similarly we �nd
@

@a
r (a; Fv) = 2

a2f0 (a� ")� b2f0 (b+ ")
a

+ ";

so

@

@a
r (a; Fv) a

0 (") = �2a
2f0 (a� ")� 2b2f0 (b+ ") + "a

a
a
a+ af0 (a� ") + bf0 (b+ ")
b2f0 (b+ ")� a2f0 (a� ")

! 2 (p0 + 2p0f0 (p0)) for "! 0;

as lim"!0 b�a" =1 from the local behavior of a (") and b (") near " = 0.

By a similar argument, we can evaluate the behavior of the regret at the price p = a

lim
"!0

�
@

@c
r (a; Fv) c

0 (")

�
= �2p0f0 (p0)

and p = b:

lim
"!0

@

@b
r (a; Fv) = 0

so
@

@"
r (a; Fv) j"=0 = 1 + p0 + p0f0 (p0) = 2 + p0 � F0 (p0) :

The proof for p0 � 1
2 is analogous and we omit the details. �

Proof of Proposition 3. Clearly, (1) holds for " su¢ ciently small. Next we verify (2).

Assume a < v < b. Then x� (v) = ln va and p
� (v) =

R v
a y

1
ydy = v � a so given a

0 < 0 for "

small we obtain @
@"x

� (v) > 0; @
@"p

� (v) > 0 and

@

@"

p� (v)

x� (v)
=
(v � a) 1a � ln

v
a�

ln va
�2 a0 < 0

as d
dv

�
(v � a) 1a � ln

v
a

�
= 1

a �
1
v > 0. Thus, x

� (v) v � p� (v) is strictly increasing in ":
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Assume b < v < c. Then x� (v) = 1� ln cv and p
� (v) = v�a+

�
1� ln ca

�
b = E [~p]+v�c

so @
@"x

� (v) < 0; @
@"p

� (v) < 0 and

@

@"

p� (v)

x� (v)
=

@
@"E [~p]
1� ln cv

+
1
c (E [~p] + v � c)�

�
1� ln cv

��
1� ln cv

�2 c0 < 0

where we use the fact that c0 (") is large and d
dv

�
1
c (E [~p] + v � c)�

�
1� ln cv

��
= 1

c �
1
v < 0

for " small.

We obtain

@

@"
u (v) =

�
v � p� (v)

x� (v)

�
@

@"
x� (v)� x� (v) @

@"

p� (v)

x� (v)
=
c� v
c
c0 (")� @

@"
E [~p] :

Since incentive compatibility implies that x� (v) v � p� (v) is continuous in v and since x�

has an upwards jump at v = b we obtain

p� (b)

x� (b)
> lim
v!b�

p� (v)

x� (v)
:

Clearly, p
�(v)
x�(v) >

p�(b)
x�(b) for v > b holds from above using right continuity of x�.�

Proof of Proposition 4. Assume v0 � 1
2 and " su¢ ciently small. Note that F

�
p is well

de�ned. Let F �v be de�ned by

f�v (v) ,
v0 � "
v2

; v 2 (v0 � "; v0 + ") ;

with two upper mass points:

Pr (v = v0 + ") , 1� "�
2"

v0 + "
and Pr (v = 1) , ".

Then F �v is also well de�ned and F
�
v 2 P" (F0) :

It su¢ ces to verify that
�
F �p ; F

�
v

�
constitutes a saddlepoint. It is clear that r

�
F �p ; v

�
is

constant on [v0 � "; v0 + "] and that v = 1 maximizes r
�
F �p ; v

�
: Similarly, it is immediate

to see that the seller is indi¤erent over all prices in the interval [v0 � "; v0 + "]. Since

� (v0 � "; F �v ) = v0 � " > " = � (1; F �v ) it follows that the seller is choosing a best response
to F �v :

The expected price is now given by

E [~p] = (v0 � ")
�
1� ln v0 + "

v0 � "

�
+ 2";

so
@E [~p]
@"

= �1 + 2"

v0 + "
+ ln

v0 + "

v0 � "
:
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The regret is given by

r
�
F �p ; F

�
v

�
= (1� ") r

�
F �p ; v0 + "

�
+ "r

�
F �p ; 1

�
= (1� ") (v0 + ") + "� E [~p] ;

so
@r
�
F �v ; F

�
p

�
@"

j"=0 = 3� v0.

Assume now that 12 < v0 > 1. Clearly, F
�
p is well de�ned. Let F

�
v be de�ned by

f�v (v) ,
(1� ") (v0 � ")

v2
; v 2 ((1� ") (v0 � ") ; v0 + ") ;

with one upper mass point

Pr (v = v0 + ") , (1� ")
v0 � "
v0 + "

.

Note that F �v is well de�ned and that F
�
v 2 P" (F0) :

The argument showing that
�
F �p ; F

�
v

�
forms a saddle point is as before with the exception,

due to v0 > 1
2 ; that nature now places mass " on the interval ((1� ") (v0 � ") ; v0 � ") instead

of mass " on v = 1: The rest follows directly from

E [~p] = (v0 � ")
�
1� ln v0 + "

(1� ") (v0 � ")

�
+ 2"+ " (v0 � ") ;

r (Fv; Fp) = (1� ") ((v0 + ")� E [~p]) + " (v0 � ") ;

which concludes the proof.�

Proof of Theorem 4. Assume that p̂ attains minimax regret but is not robust. So there

exists  > 0 such that for all " > 0 there exists F" such that F" 2 P" (F0) but

� (p� (F") ; F")� � (p̂ (F0; ") ; F") � : (22)

Assume that (p̂ (F0; ") ; G") is a saddle point of the regret problem (SP) given " > 0. Then

r (p̂ (F0; ") ; G") = sup
F2P"(F0)

r (p̂ (F0; ") ; F ) ;

and hence

p̂ (F0; ") = p
� (G") :

We can rewrite the rhs of (22) as follows:

� (p� (F") ; F")� � (p̂ (F0; ") ; F") (23)

= � (p� (F") ; F")� � (p� (G") ; G") + � (p� (G") ; G")� � (p� (G") ; F") :
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Using (SP) we also obtain

0 � r (p� (G") ; G")�r (p� (G") ; F") =
Z
vdG" (v)�

Z
vdF" (v)+� (p

� (G") ; F")�� (p� (G") ; G")

so that:

� (p� (G") ; G")� � (p� (G") ; F") �
Z
vdG" (v)�

Z
vdF" (v) :

Entering this into (23) we obtain from (22) that:

� (p� (F") ; F")� � (p� (G") ; G") +
Z
vdG" (v)�

Z
vdF" (v) � : (24)

Since F"; G" 2 P" (F0) and since h (v) = v is a continuous function and the Prohorov norm
metrizes the weak� topology we obtain thatZ

vdG" (v)�
Z
vdF" (v) < =2;

if " is su¢ ciently small.

Now we will show that � (p� (F ) ; F ) is continuous with respect to the Prohorov neigh-

borhood at F = F0. Consider F;G such that G 2 P" (F ) :Consider p" , p� (F )� 2": Then
the claim follows as from the following relationship of the probabilities:

G (v < p") � G (p") � F (p" + ") + " = F (p� (F )� ") + " � F (v < p� (F )) + ":

The second inequality follows from the hypothesis of the Prohorov neighborhood, We use

implies that

� (p� (G) ; G) � � (p"; G) = p" (1�G (v < p")) � p" (1� F (v < p� (F )))

= � (p� (F ) ; F )� 2" (1� F (v < p� (F )))

� � (p� (F ) ; F )� 2":

Since � (p� (F ) ; F ) is continuous in F at F = F0 we �nd that

� (p� (F") ; F")� � (p� (G") ; G") < =2

if " is su¢ ciently small. This yields the desired contradiction.�
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Figure 2. Optimal Pricing and Worst Case Demand with Large Risk
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