
METASTABLE EQUILIBRIA

SRIHARI GOVINDAN AND ROBERT WILSON

Abstract. We define a refinement of Nash equilibria called metastability. This refinement
supposes that the given game might be embedded within any global game that leaves its
local best-reply correspondence unaffected. A selected set of equilibria is metastable if it is
robust against perturbations of every such global game; viz., every sufficiently small pertur-
bation of the best-reply correspondence of each global game has an equilibrium that projects
arbitrarily near the selected set. Metastability satisfies the standard decision-theoretic ax-
ioms obtained by Mertens’ (1989) refinement (the strongest proposed refinement), and it
satisfies the projection property in Mertens’ small-worlds axiom: a metastable set of a global
game projects to a metastable set of a local game. But the converse is slightly weaker than
Mertens’ decomposition property: a metastable set of a local game contains a metastable
set that is the projection of a metastable set of a global game. This is inevitable given our
demonstration that metastability is equivalent to a strong form of homotopic essentiality.
Mertens’ definition invokes homological essentiality whereas we derive homotopic essential-
ity from primitives (robustness for every embedding). We argue that this weak version of
decomposition has a natural game-theoretic interpretation.

1. Introduction

This article contributes to the refinement of the Nash equilibria of a finite game. For a

critical review of equilibrium refinements see Hillas and Kohlberg [9]. The initial sections

of Hillas, Jansen, Potters, and Vermuelen [8] review further those refinements based on

perturbations of a game’s best-reply correspondence, which is the formulation adopted here.

We define a new refinement called metastability. Our definition builds on those pro-

posed by Hillas [7] and variants studied by Hillas, Jansen, Potters, and Vermuelen [8].

However, metastability is a substantially stronger refinement because we invoke a natu-

ral generalization—the Embedding Principle described below—of the Invariance and Small

Worlds axioms proposed by Kolhberg and Mertens [10] and Mertens [15].

Our main results establish that metastability satisfies the standard decision-theoretic ax-

ioms considered by Mertens [13, 14]. It also satisfies the projection property and a slightly

weaker version of the decomposition property—the two parts of Mertens’ [15] Small Worlds

axiom. Due to the latter, metastability is slightly weaker than the refinements proposed by
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Mertens, but in a companion paper [5] we prove that metastability coincides with Mertens’

stability for generic extensive-form games. Mertens invokes homological essentiality as an

integral part of the definitions of his refinements, whereas here we derive a strong form of

homotopic essentiality from our definition. As described below, the definition imposes two

basic requirements called Embedding and Robustness.

Briefly (a precise definition is provided later):

A connected set of the equilibria of a game G is metastable if every neigh-

borhood contains the projection of an equilibrium for each sufficiently small

perturbation of the best-reply correspondence of any global game G̃ in which

G is embedded.

By an embedding we mean a trivial embedding in that the optimal strategies of players in

G are not affected; that is, their best-reply correspondence is not affected.

This definition invokes two principles.1

(1) Embedding. Any game G can be construed as a local version of a global game

G̃ with additional features that do not affect optimal behavior in G. This principle

subsumes those axioms requiring that a refinement is not affected by extraneous

features:

• Small Worlds. The additional features could be actions of players in G̃ who are

not players in G, provided their actions have no effect on the optimal strategies

of players in G.

• Invariance. The additional features could be redundant strategies of players in

G, such as a pure strategy whose payoffs are replicated by some mixed strategy.

• Rationality. The additional features could be presentation effects, behavioral

anomalies, or subjective beliefs that are not relevant for optimal play in G.

Metastability ensures that a selected set of equilibria of a global game G̃ projects to

a selected set of equilibria of any embedded game G. As Mertens [15, p. 555] remarks

regarding the Small Worlds axiom:

“... such a property is essential if one wants to speak of a ‘solution concept.’

Indeed, otherwise one could never apply the ‘solution concept’ to a given

1The requirement that a metastable set is connected excludes the set of all equilibria, which trivially
satisfies (1) and (2). It also reflects the fact that all equilibria in a single connected component of the equilibria
of a generic extensive-form game have the same outcome (Kreps and Wilson [11]), and more fundamentally,
the fact that the uniformly hyperstable sets of Nash equilibria are necessarily connected since they are
precisely the essential sets of fixed points of any map whose fixed points are the Nash equilibria (Govindan
and Wilson [4]). Connectedness excludes the minimal stable sets studied by Kohlberg and Mertens [10]—
Mertens [15] argues that minimality violates the ordinal properties of players’ preferences.
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game; one would first have to embed this game in some ‘universal game’ of

everything going on in the world.”

(2) Robustness. Nearby global games should induce nearby equilibria of the local

game. Specifically, each neighborhood of a selected set should include the projection

of an equilibrium of a sufficiently small perturbation of a global game in which G

is embedded. That is, global perturbations induce small perturbations of optimal

behavior in the local game.

We do not provide here a decision-theoretic justification for Robustness, but in [6] we estab-

lish that two properties (one of which is Invariance) imply robustness with respect to pertur-

bations of strategies in the weaker refinement called stability by Kohlberg and Mertens’ [10].

Although Robustness is a weak requirement, we show in §4 that in combination with

Embedding it is equivalent to a succinct mathematical test. This test is a strong form of

homotopic essentiality called stable essentiality. In technical terms, stable essentiality says

that the strategy set of the given game remains in the range of every homotopic deformation

of any suspension of the local projection map from the graph of equilibria to the space of

strategy perturbations. Although stable essentiality is weaker than the homological essen-

tiality invoked in Mertens’ definition, it suffices to assure that the same decision-theoretic

axioms are satisfied.

The fact that Embedding and Robustness imply stable essentiality has a precedent. In [4]

Invariance and robustness with respect to payoff perturbations are shown to imply homolog-

ical essentiality; viz., a uniformly hyperstable set (Kohlberg and Mertens [10]) of equilibria is

an essential component of every map whose fixed points are the Nash equilibria. In contrast,

Mertens [13] directly imposes essentiality in his definition of a stable set.

As one knows from Mertens’ work, essentiality of the projection map enables verification

that decision-theoretic axioms are satisfied because it ensures that the fixed-point problems

they pose have solutions. In §5 we establish the following properties:

• Admissibility, Perfection, and Backward Induction. A metastable set includes only

perfect (hence admissible) equilibria, and includes a proper equilibrium that induces

a sequential equilibrium in every extensive-form game with G as its strategic form.

• Iterative Elimination of Weakly Dominated Strategies and Never Weak Best Replies,

and Forward Induction. A subset of a metastable set survives iterative elimination

of weakly dominated strategies and strategies that are inferior replies at every equi-

librium in the set.

Additional properties include the axioms of Ordinality and Player-Splitting.
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Metastability differs from Mertens’ stability chiefly in that it satisfies a version of the

Small Worlds axiom that is weaker than the one proposed by Mertens. As stated above, it

satisfies the first part of Mertens’ axiom.

Projection Property. A metastable set of a global game projects to a metastable

set of an embedded local game.

That is, if G is embedded in G̃ and S̃ is a metastable set for G̃ then S ≡ projG(S̃) is

a metastable set for G. Mertens’ stability satisfies the Projection Property and also its

converse in the following strong form:

(1*) Each stable set of G is the projection of a stable set of each game in

which G is embedded.

(2*) If S is a stable set of G then for any stable set S ′ of any other game G′

the product S × S ′ is a stable set of the product game G×G′.

The Projection Property along with (1*) is the Small Worlds Property. The Projection

Property along with (2*) is the Decomposition Property. Metastability satisfies the following

weaker versions of (1*) and (2*).

(1) Each metastable set of G contains the projection of a metastable set of

each game in which G is embedded.

(2) If S is a metastable set of G then for any other game G′ there exists a

metastable set S ′ of G′ such that S×S ′ is a metastable set of the product

game G×G′.

Thus (1) states that if S is a metastable set of G and G is embedded in G̃ then there is a

metastable set S̃ of G̃ such that S ⊇ projG(S̃), where the Projection Property assures that

projG(S̃) is itself a metastable set for G — and analogously in (2).

Our view is that these weaker versions are natural from a game-theoretic viewpoint. A

metastable set is intended to be a collection of possible outcomes that can be refined further

only with additional information. For instance, in an extensive-form game the play off the

equilibrium path is typically indeterminate, but in specific contexts additional considerations

might lead to selection of (say) minimal or maximal ‘punishments’ for deviations from the

equilibrium path. Analogously, embedding a game in a particular global game provides

such a context that can select a metastable set (the projection of a metastable set of the

global game) that is a strict subset of another metastable set. The decomposition property

is thus seen as unduly strong when the product game G × G′ allows correlated selections

of metastable sets for the two embedded games; i.e. correlated selections in the product

game destroy some of the presumed independence between play in the component games.
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Even so, these considerations are relevant only for non-generic extensive-form games, since

metastability agrees with Mertens’ stability for generic extensive-form games.

Our definition of metastability has two key aspects. One is that (as in Govindan and

Mertens [3]) we use the best-reply correspondence of a game as the primitive, rather than

a formulation in terms of payoffs. The second is that (as in Hillas [7] and Hillas, Jansen,

Potters, and Vermuelen [8]) we test for Robustness using perturbations of the best-reply

correspondence. The relevant mathematical tool is then homotopy theory rather than the

stronger homology theory invoked by Mertens [13] for perturbations of strategies.

The key step of our technical development is the demonstration that metastability (like

Mertens’ stability) of a connected set of equilibria is a property of its germ, i.e. its neighbor-

hood in the graph of the equilibrium correspondence over the space of strategy perturbations.

Theorem 4.2 characterizes metastability in terms of the property that the local projection

map from the graph of the equilibrium correspondence is stably essential in the sense of

homotopy theory. That is, as defined in Appendix A’s Definition A.8, the map remains

essential when it is embedded in a space with extra dimensions—using the formal definition

of a ‘suspension’ from algebraic topology. (For the applications here, stably essential is the

same as essential when the dimensions of the domain and range are the same, but not when

the domain has higher dimension than the range.) This characterization is especially rele-

vant for our companion paper [5] on extensive-form games, since nearby points in the germ

(i.e., equilibria of nearby games) induce the beliefs that support sequential equilibria.

After the formulation and definition of metastability and related refinements are estab-

lished in §2, technical aspects of the Robustness condition are established in §3. In particular,

§3.4 shows that the Projection Property is equivalent to stable essentiality of the projection

map from the graph of the equilibrium correspondence. Then in §4 metastability is also

characterized in terms of the stable essentiality of the local projection map. Also in §4, the

relationships of metastability to the stronger refinement of Mertens’ stability and the weaker

refinement of Hillas et al.’s BR-stability are established. Then in §5 we verify that metasta-

bility satisfies the decision-theoretic axioms listed by Mertens [13]. §6 provides concluding

remarks.

Appendix A provides mathematical background regarding homotopic essentiality and de-

fines stable essentiality of a map. Appendix B is a brief summary of the properties of

multisimplicial and polyhedral complexes invoked in the proofs in §3.
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2. Formulation and Definitions of Refinements

2.1. Preliminaries. Throughout, by a map we mean a continuous function. By a cor-

respondence we mean an upper-semicontinuous correspondence whose domain is compact,

whose range is a compact convex subset of a Euclidean space, and whose values are nonempty

compact convex sets. For any two correspondences ϕ, ϕ′ : X → Y their distance is d(ϕ, ϕ′) =

supx∈X dH(ϕ(x), ϕ′(x)) where dH is the Hausdorff distance between compact sets. A corre-

spondence ϕ′ is a δ-perturbation of another ϕ if d(ϕ, ϕ′) 6 δ.

We consider a fixed finite game G in strategic form. The player set is N = { 1, . . . , N }.
Player n’s mixed strategy set is Σn and its vertices comprise his pure strategies Σ◦

n. Let

Σ =
∏

n Σn. Player n’s payoff function is given by a multilinear function Gn : Σ → R. We

use R : Σ → Σ to denote the best-reply correspondence of the game G.

For each δ ∈ [0, 1] let Σδ be the set of σ ∈ Σ such that
∑

sn∈Σ◦n\Rn(σ) σn,sn 6 δ for each

player n, i.e. the total probability of player n’s strategies that are suboptimal against σ is

at most δ. Observe that all fixed points of a δ-perturbation of R are contained in Σδ. Say

that a closed subset V of Σδ is admissible if V \∂Σ is connected and dense in V .

For each nonnegative integer k, let Λk be the k-dimensional unit simplex in Rk+1. (Λ0 is a

single point.) Let Rk : Σ× Λk → Σ be the trivial extension of R, namely, Rk(σ, λ) = R(σ).

Suppose ϕk × πk : Σ×Λk → Σ×Λk is a correspondence where ϕk is a δ-perturbation of Rk.

Observe that if (σ, λ) is a fixed point of ϕk × πk then σ ∈ Σδ.

2.2. Definition of Metastability. We interpret Rk as the best-reply correspondence for

the players in N when G is embedded in a global game G̃ with k additional dimensions

parameterized by λ ∈ Λk. A perturbation of the best-reply correspondence of the global

game is then represented by a correspondence ϕk × πk where ϕk is a δ-perturbation of Rk

and some correspondence πk : Σ× Λk → Λk describes behavior on other dimensions.

Basically, metastability requires that for each neighborhood V of a selected set S and any

k, every correspondence πk and sufficiently small δ-perturbation ϕk of Rk should have an

equilibrium (i.e. a fixed point of ϕk × πk) whose projection is in V . The formal definition is:

Definition 2.1 (metastability). A closed set S ⊆ Σ is a metastable set if there exists a

sequence δi converging to zero and a corresponding sequence of closed subsets Vi of Σδi

converging to S such that for each i:

(1) Connexity: Vi is admissible, i.e. Vi\∂Σ is connected and dense in Vi.

(2) Robustness: Vi contains for every k the projection of a fixed point of the product

ϕk×πk of every δi-perturbation ϕk of Rk and every correspondence πk : Σ×Λk → Λk.
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Among the ways one might consider modifying the Robustness condition, one seems

stronger and the other weaker. First, we could require that for each correspondence ψk :

Σ × Λk → Σ × Λk such that projΣ ◦ ψk is a δi-perturbation of Rk there exists a fixed point

of ψk in Vi × Λk. As Theorem 3.2 shows, this is equivalent to the Robustness condition as

stated. Second, we could require that for each k there exists i(k) such that for each i > i(k)

and each correspondence ϕk × πk : Σ × Λk → Σ × Λk, where ϕk is a δi-perturbation of Rk,

there exists a fixed point in Vi×Λk. As we show at the end of §4 characterizing metastability,

this too is equivalent to the condition as stated.

From the definition one might infer that verifying whether a set of equilibria is metastable

is a formidable task. In §4 we show that a verification is accomplished by checking that

the local projection map from the graph of the equilibrium correspondence to the space

of perturbed is stably essential in the sense of homotopy. Basically, this requires that the

projection map remains essential if it is embedded in a space with extra dimensions. The

following is a version of Definition A.8 in Appendix A (cf. also Lemma A.6).

Definition 2.2 (stably essential map). Given a map p : (E, ∂E) → (P, ∂P ) where (P, ∂P )

is a ball pair with p(E\∂E) ⊆ P\∂P , and a k-dimensional simplex Λk, let pk : (E, ∂E) ×
(Λk, ∂Λk) → (P, ∂P )× (Λk, ∂Λk) be the trivial extension for which pk(e, λ) = (p(e), λ). The

map p is stably essential in homotopy if every trivial extension is essential in homotopy.

2.3. Related Refinements. To enable later comparisons we now state the definitions of

the weaker refinement proposed by Hillas et al. [8] and the stronger refinement proposed by

Mertens.

The following definition is due to Hillas et al. [8].

Definition 2.3 (BR-set, BR-stable set). A closed subset S of Σ is a best-response set (BR-

set) if for every ε > 0 there exists δ > 0 such that each δ-perturbation of R has a fixed point

within ε of S. A BR-set is BR-stable if it is a connected set of perfect equilibria.

Hillas et al. [8] show that a BR-stable set satisfies several of the properties listed by

Mertens [13]. BR-stability is a weaker refinement in that metastability invokes the Embed-

ding Principle described in the Introduction. In effect, metastability requires BR-stability

for any global game in which the given game might be embedded.

To present Mertens’ definition we need some notation. For each player n and each 0 <

δ 6 1, let Pδ = { ετ | 0 6 ε 6 δ, τ ∈ Σ } and denote its topological boundary by ∂Pδ. For

η ∈ P1, η̄n ≡
∑

s∈Σ◦n
ηn,s is the minimum error probability. η̄n is constant across players so

we denote this number by η̄. Given any η ∈ P1 define the perturbed game G(η) to be the
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game where the strategy set of each player n is the same as in G, but where the payoff from

a strategy profile τ is the payoff in G from the profile σ = (1− η̄)τ + η. Then we say that σ

is a perturbed equilibrium of G(η) if τ is an equilibrium of G(η). Let E be the graph of the

perturbed equilibrium correspondence over P1, i.e.,

E = { (η, σ) ∈ P1 × Σ | σ is a perturbed equilibrium of G(η) }.
For (η, σ) ∈ E we use τ(η, σ) ≡ (1− η̄)−1(σ − η) to denote the corresponding equilibrium of

G(η). Observe that a pure strategy s of player n is in the support of τn(η, σ) only if it is

an optimal reply to σ in G. Denote by p the natural projection from E to P1. For E ⊆ E ,

let E0 = { (0, σ) ∈ E }, and for 0 < δ 6 1 let (Eδ, ∂Eδ) = p−1(Pδ, ∂Pδ) ∩ E. That is, as

described in the Introduction, Eδ is a germ.

Let Ȟ refer to Čech cohomology with integer coefficients. As a mnemonic we refer to

Mertens’ definition of ∗-stability as Ȟ-stability.

Definition 2.4 (Ȟ-stable set). S ⊆ Σ is an Ȟ-stable set if for some closed subset E of E
with E0 = { 0 } × S:

(1) Connexity: For every neighborhood V of E0 in E, the set V \∂E1 has a connected

component whose closure is a neighborhood of E0 in E.

(2) Cohomological Essentiality: p∗ : Ȟ∗(Pδ, ∂Pδ) → Ȟ∗(Eδ, ∂Eδ) is nonzero for some

δ > 0.

Mertens [13, 14] proposes several definitions of stability in which the essentiality require-

ment is cast in terms of singular homology with coefficients in an Abelian group M . He then

shows that Ȟ-stability is the union over M of all these refinement concepts and thus is the

most inclusive solution concept.

Instead of working with the graph of the perturbed equilibrium correspondence we could

equivalently work with the graph of the equilibrium correspondence, i.e. the set of (η, τ) ∈
P1 × Σ such that τ is an equilibrium of G(η) and thus σ = (1 − η̄)τ + ητ is a perturbed

equilibrium of G(η). There is an obvious homeomorphism between the two spaces that

commutes with the projections to P1. Hence we obtain the same Ȟ-stable sets if we use the

graph of equilibria. This observation is true for all ‘stability’ definitions involving subsets of

E .

Mertens [14] does not explicitly define stability using essentiality in homotopy but the

following definition is implicit.

Definition 2.5 (homotopy-stable set). S ⊆ Σ is a homotopy-stable (h-stable) set if for some

closed subset E of E with E0 = { 0 } × S:
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(1) Connexity: For every neighborhood V of E0 in E, the set V \∂E1 has a connected

component whose closure is a neighborhood of E0 in E.

(2) Homotopic Essentiality: p : (Eδ, ∂Eδ) → (Pδ, ∂Pδ) is essential in homotopy for some

δ > 0.

In Definitions 2.4 and 2.5, if p is essential for some δ then it is essential for all smaller δ′ < δ.

Mertens [14, Section 5] proves this for the case of Ȟ-stability. Here we show that it is true for

homotopy stability. Suppose the projection is inessential in homotopy for some 0 < δ′ < δ.

We prove that the projection is then inessential in homotopy for δ. Let q : Eδ′ → ∂Pδ′ be a

map that is homotopic to p : Eδ′ → Pδ′ relative to ∂Eδ′ . The map q extends to a map over

Eδ when we let it coincide with p over Eδ\Eδ′ . Moreover p and q are now homotopic as maps

from Eδ relative to ∂Eδ. Now define r : Eδ → ∂Pδ as follows: pick a point η0 ∈ Pδ′\∂Pδ′ ;

then r(η, σ) is the unique point in ∂Pδ that is nearer to q(η, σ) than η0 on the line segment

through η and η0. r agrees with q over ∂Eδ, and there is a linear homotopy between q and

r. Therefore, the projection from Eδ is inessential.

Since essentiality in cohomology implies essentiality in homotopy, Ȟ-stable sets are also

h-stable. If Eδ is semialgebraic and has the same dimension as Pδ then the converse is true.

(In [5] we show that this is precisely the case for generic extensive-form games.) However, the

converse is not true in general since for pathological games Eδ can have greater dimensional

than Pδ—see [14, Section 4] for details.

As mentioned, Appendix A, Definition A.8, defines the stronger property of stably es-

sential in homotopy. A map is stably essential if it remains essential when its domain and

range are extended trivially to higher dimensional spaces. Using this property, the following

strengthens the definition of an h-stable set in Definition 2.5.

Definition 2.6 (stably essential set). S ⊆ Σ is a stably essential set if for some closed subset

E of E with E0 = { 0 } × S:

(1) Connexity: For every neighborhood V of E0 in E, the set V \∂E1 has a connected

component whose closure is a neighborhood of E0 in E.

(2) Stable Essentiality: the projection map p : (Eδ, ∂Eδ) → (Pδ, ∂Pδ) is stably essential

in homotopy for some δ > 0.

As before, one can show that if the k-th suspension (as defined in Appendix A) of the

projection from (Eδ, ∂Eδ) is essential then so is that from (Eδ′ , ∂Eδ′) for any smaller δ′.

In §4 we prove that metastable sets are the limits of stably essential sets.
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3. Suspensions of the Best-Reply Correspondence

The purpose of this Section is to obtain results about the Robustness condition in the

definition of metastability. In §3.4 these are applied to obtain a characterization of the

Small Worlds axiom in terms of a stably essential projection from the equilibrium graph.

This section is mostly technical and so might be skipped on first reading.

Throughout this section, V is a closed subset of Σ. Consider the following two properties.

(1k) There exists 0 < δk 6 1 such that for each δk-perturbation ϕk of Rk and each

correspondence πk : Σ× Λk → Λk, ϕk × πk has a fixed point in V × Λk.

(2) There exists 0 < δ 6 1 such that for each k, each δ-perturbation ϕk of Rk, and each

correspondence πk : Σ× Λk → Λk, ϕk × πk has a fixed point in V × Λk.

Asking for Property (2) to hold is obviously stronger than requiring Property (1k) to hold

for each k, since it is uniform in k.

Remark 3.1. Suppose that property (1k) does not hold. Then for l > k, property (1l) does

not hold. Indeed, fix δ > 0 and let suppose ϕk is a δ-perturbation of Rk such that for some

πk, ϕk×πk does not have a fixed point in V ×Λk. For l > k, let ρl : Λl → Λk be a retraction

(viewing Λk as a face of Λl). Define the correspondence ϕl (resp. πl) from Σ×Λl to Σ (resp.

Λl) by ϕl(σ, λ) = ϕk(σ, ρl(λ)) (resp. πl(σ, λ) = πk(σ, ρl(λ)). Then ϕl is a δ-perturbation of

Rl and ϕl × πl does not have a fixed point in V × Λl.

We begin with some preliminary results about Property (1k). The analogous results for

Property (2) should be obvious and we omit them.

Theorem 3.2. Property (1k) holds iff there exists δk > 0 such that every correspondence

ψk : Σ×Λk → Σ×Λk where ϕk ≡ projΣ ◦ ψk is a δk-perturbation of Rk has a fixed point in

V × Λk.

Proof. The sufficiency part is obvious. As for necessity, given such a correspondence ψk, let

W be the set of (σ, λ) ∈ V × Λk such that σ ∈ ϕk(σ, λ). W is a closed subset of V × Λk.

For (σ, λ) ∈ W , let πk(σ, λ) be the set of λ′ ∈ Λk such that (σ, λ′) ∈ ψk(σ, λ). πk : W → Λk

is a well-behaved correspondence when W is nonempty. Extend it to a correspondence over

Σ× Λk, denoted still by πk. By assumption ϕk × πk has a fixed point (σ, λ) ∈ V × Λk. The

fact that σ ∈ ϕk(σ, λ) means that (σ, λ) ∈ W . Since λ ∈ πk(σ, λ), we therefore have that

(σ, λ) ∈ ψk(σ, λ) and thus (σ, λ) is a fixed point of ψk in V × Λk. ¤

Theorem 3.3. Property (1k) holds iff there exists δk > 0 such that for every δk-perturbation

ϕk of Rk and every function f : Σ× Λk → Λk, V × Λk contains a fixed point of ϕ× f .



METASTABLE EQUILIBRIA 11

Proof. The necessity of the condition is obvious. As for sufficiency, consider a correspondence

πk : Σ × Λk → Λk and a δk-perturbation ϕk of R. By McLennan [12, Proposition 2.25], for

each positive integer m there exists a function fm : Σ× Λk → Λk whose graph is contained

in the m−1-neighborhood of the graph of πk. By assumption, there exists a fixed point

(σm, λm) ∈ V × Λk of ϕk × fm. If necessary by passing to a subsequence, the limit of the

sequence (σm, λm) is a fixed point of ϕk × π that belongs to V × Λk. Hence, Property (1k)

holds. ¤

Remark 3.4. In view of the above Theorem, we could, in studying Properties (1k) and

(2), replace Λk with some Λ̃k that is homeomorphic to Λk as long as we require πk to be a

function. (If we allow πk to be a correspondence then Λ̃k must be convex too.) By a slight

abuse of notation, given such a set Λ̃k, we still use Rk to denote the correspondence from

Σ × Λ̃k → Σ that ignores the coordinates in Λ̃k. (The exact domain of Rk should be clear

from the context.)

Though we do not use the result, the following Theorem shows that the properties we are

studying are related to suspensions of R.

Theorem 3.5. Let Id : Λk×Λk be the identity function. Property (1k) holds iff there exists

δk > 0 such that each δk-perturbation of Rk × Id has a fixed point in V × Λk.

Proof. The necessity follows from Theorem 3.2. As for sufficiency, suppose Property (1k)

does not hold. Then, by Theorem 3.3, for each δk > 0, there exists a δk-perturbation ϕk of

Rk and a function f : Σ × Λk → Σ × Λk such that ϕk × f does not have a fixed point in

V × Λk. Let g : Σ× Λk → Λk be the function g(σ, λ) = (1− δk)λ + δkf(σ, λ). Then, ϕk × g

is a perturbation of Rk × Id that does not have a fixed point in V × Λk. ¤

3.1. Essentiality of Projections. In this subsection, we show the connection among Prop-

erties (1k) and (2) and the essentiality of suspensions of the projection map from E , the graph

of the perturbed equilibrium correspondence. Throughout this section, let E = { η, σ) ∈ E |
σ ∈ V }. p denotes the natural projection from E. In order to make the domain clear, we

sometimes write pδ to denote the projection from (Eδ, ∂Eδ) to (Pδ, ∂Pδ). Skpδ refers to the

k-th suspension of pδ and pk
δ : (Eδ, ∂Eδ) × (Λk, ∂Λk) → (Pδ, ∂Pδ) × (Λk, ∂Λk) is the map

pδ((η, σ), λ) = (η, λ). By Lemma A.6, Skpδ is essential in homotopy iff pk
δ is.

For each 0 < δ 6 1, let Qδ = { η ∈ P | η̄ = δ } and denote its boundary by ∂Qδ. Qδ is

homeomorphic to the strategy space Σ. Let (Fδ, ∂Fδ) = p−1(Qδ, ∂Qδ)∩Eδ. qδ : (Fδ, ∂Fδ) →
(Qδ, ∂Qδ) denotes the natural projection. We define Skqδ and qk

δ like their counterparts

above. As before, Skqδ is essential in homotopy iff qk
δ is.
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Observe that if (η, σ) ∈ Eδ then (η′, σ) ∈ Fδ, where η′ = (1− η̄)−1((δ − η̄)σ + (1 − δ)η).

Indeed, if a pure strategy s is not a best reply for player n against σ then ηn,s = σn,s = η′n,s.

Lemma 3.6. Suppose pk
δ is essential for some k and δ > 0. Then qk

δ′ is essential for each

0 < δ′ 6 δ.

Proof. As in the remarks following Definition 2.5, one verifies straightforwardly that pk
δ′ is

essential for all δ′ < δ. Therefore, it is sufficient to prove that essentiality of pk
δ implies

that of qk
δ . Suppose qk

δ is inessential. Then, by Lemma A.3 there exists a correspondence

ψ : Fδ × Λk → Qδ × Λk such that ψ has no point of coincidence with qk
δ . Construct now a

correspondence ψ̃ : Eδ × Λk → Pδ × Λk as follows: for each ψ̃((η, σ), λ) = ψ((1− η̄)−1((δ −
η̄)σ +(1− δ)η), σ, λ). By our previous observation, ψ̃ is a well-defined correspondence whose

image is contained Qδ × Λk. Obviously, it too does not have a point of coincidence with pk
δ

and therefore pk
δ is inessential. ¤

Theorem 3.7. Suppose that pk
δk

or qk
δk

is essential in homotopy for some δk > 0. Then

Property (1k) holds. In particular, Property (2) holds if either pδ or qδ is stably essential for

some δ > 0.

Proof. The second statement follows trivially from the first. We prove the first state-

ment. Our assumption along with Lemma 3.6 implies that qk
δk

is essential. Let ϕk be a

δk-perturbation of Rk : Σ × Λk → Σ and let f : Σ × Λk → Λk be a function. Define

ψ : Fδk
× Λk → Qδk

× Λk as follows: ψ((η, σ), λ) is the set of all (η′, f(σ, λ)) ∈ Qδk
× Λk

such that there exists σ′ ∈ Σ such that σ′ ∈ ϕk(σ, λ) and η′ = σ′ − (1 − δk)τ(η, σ). (Recall

that τ(η, σ) is the equilibrium of G(η) that corresponds to the perturbed equilibrium σ, i.e.

σ = (1−η̄)τ(η, σ)+η.) It follows from its definition that ψ is compact and convex valued and

upper-semi-continuous. Thus, to show that ψ is a correspondence, there remains to check

that ψ is nonempty valued. Fix ((η, σ), λ). Let s1, . . . , sk1 the set of all pure strategy profiles

that are best replies against σ. Since ϕk is a δk-perturbation of Rk, there exists for each

1 6 i 6 k1 a mixed strategy profile σi ∈ ϕk(σ, λ) that is within δk of si (when viewing si as a

point in Σ). Therefore, ηi ≡ σi− (1−δk)s
i belongs to Qδk

for all i. Let τ(si) be the probabil-

ity of si in τ(η, σ). Obviously
∑

i τ(si) = 1, because τ(η, σ) is the equilibrium of G(η) that

corresponds to the perturbed equilibrium σ. Since ϕk is convex valued, we now have that∑
i τ(si)σi belongs to ϕk(σ, λ). Moreover,

∑
i τ(si)σi − (1 − δk)τ(η, σ) =

∑
i τ(si)ηi ∈ Qδk

.

Hence (
∑

i τ(si)ηi, f(σ, λ)) belongs to ψ((η, σ), λ) and ψ is nonempty valued. Our assump-

tion and Lemma A.2 imply that ψ has a point of coincidence with qk
δk

: there exists (η, σ, λ)

such that (η, λ) ∈ ψ((η, σ, λ)) and η̄ = δk. By the definition of ψ, there exists σ′ ∈ Σ such
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that: (a) σ′ ∈ ϕk(σ, λ); and (b) η = σ′ − (1 − δ)τ(η, σ). Therefore, using the definition of

τ(η, σ) we have η = σ′ − (1 − δk)(1− η̄)−1(σ − η) = σ′ − σ + η. Thus, σ′ = σ ∈ ϕk(σ, λ).

Also, since (σ, η, λ) is a point of coincidence between ψ and qk
δk

, we have that λ = f(σ, λ).

(σ, λ) is then a fixed point of ϕk × f . Since (η, σ) ∈ E, σ ∈ V by definition, and the proof is

complete. ¤

The following theorem gives a partial converse to the previous theorem.

Theorem 3.8. Let d be the dimension of P1.

(1) If Property (1k) holds for some k > d, then pk−d
δ is essential in homotopy for all

0 < δ 6 δk.

(2) If Property (1k) holds for some k > d − 1, then qk−d−1
δ is essential in homotopy for

all 0 < δ 6 δk.

(3) If Property (2) holds, then pδ′ and qδ′ are stably essential for all 0 < δ′ 6 δ. Moreover,

if V is semialgebraic then it contains a stably essential set.

Proof. As before, the first statement in 3 follows from statements 1 and 2. We prove state-

ment 1. (The proof for statement 2 is analogous.) By Lemma A.3 it is sufficient to show that

every function f : Eδ × Λk−d → Pδ × Λk−d has a point of coincidence with the function pk
δ .

Accordingly, fix such a function f . Extend f to a function from Pδ×Σ×Λk−d → Pδ×Λk−d,

denoting it still by f .

Let ϕk : Σ × Pδ × Λk−d → Σ be defined as follows. For each (σ, η, λ), letting η′ be

the projection of f(η, σ, λ) to Pδ, ϕk(σ, η, λ) is the set of τ > η′n,s such that τn,s = η′n,s

if strategy s is not a best reply for player n against σ. Then ϕk is a δ-perturbation of

Rk : Σ × Pδ × Λk−d → Σ. Using Remark 3.4, our assumption implies the existence of a

fixed point (σ, η, λ) of the correspondence ϕk × f where σ ∈ V . Since f(σ, η, λ) = (η, λ), we

have by the construction of ϕk that (η, σ) belongs to Eδ and hence that (σ, η, λ) is a point

of coincidence between pk−d
δ and f , which proves that pk−d

δ is essential in homotopy.

We now prove the second part of statement 3. Suppose now that V is semialgebraic. Then

E is semialgebraic. Let S = {σ | (0, σ) ∈ E }. Obviously S ⊆ V . We now show that S

contains a stably essential set. Since Property (2) holds, pδ is stably essential, as we have

just seen. Let X be the closure of E\∂E1. Clearly, X is a compact semialgebraic set and

{σ | (0, σ) ∈ X } ⊆ S. Moreover, by Remark A.7 the projection from X is also stably

essential.

Let f : X → R be the function f(η, σ) = η̄. By definition, we have that for each δ > 0,

f−1([0, δ]) = Xδ. By [15, Lemma 2] there exist a positive integer l, a real number δ1 > 0,

and semialgebraic sets X1, . . . X l, such that for each 0 < δ 6 δ1: (i) for each i, X i
δ\∂X i

δ is
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connected and dense in X i
δ, where ∂X i

δ = ∂Xδ∩X i
δ; (ii) i 6= j implies X i

δ∩Xj
δ ⊆ ∂X1; and (iii)

∪iX
i
δ = Xδ. By property (i), each of the X i’s satisfies the connexity requirement of Definition

2.6. Since X satisfies the essentiality property of Definition 2.6, by Properties (ii) and (iii),

there exists i such that X i satisfies the stable essentiality property and {σ | (0, σ) ∈ X i } is

a stably essential set. ¤

Remark 3.9. There is a certain asymmetry in the preceding two theorems. While the

essentiality of Skp or Skq implies the Robustness property for Rk, our proof of Lemma 3.8

requires the Robustness property for Rk+d—not just that of Rk—to obtain the essentiality

of Skp. It is not clear to us if Robustness of Rk suffices.

If Property (1k) holds for each k then, by the previous theorem, pk
δk

is essential for each k.

As k grows large, if δk goes to zero, then pδ is not stably essential. In other words Property

(2) fails to obtain. We do not have an example exhibiting this phenomenon. Our next

theorem gives sufficient conditions when this does not happen.

Theorem 3.10. Suppose V is a semialgebraic set. And suppose Property (1k) holds for

each k. Then Property (2) holds.

The proof of this theorem uses the following lemma, which is stated in a slightly more

general form here because it is used in the next section. Let X be a closed semialgebraic

subset of E . For each 0 < δ 6 1, let (Yδ, ∂Yδ) be the inverse image of (Qδ, ∂Qδ) under the

projection map from X to P1, and let qδ : (Yδ, ∂Yδ) → (Qδ, ∂Qδ) be the natural projection.

For each k, qk
δ and pk

δ are defined exactly as we defined them for the sets F and E respectively.

Lemma 3.11. There exists δ0 > 0 such that for each k and 0 < δ 6 δ0, qk
δ is essential iff qk

δ0

is. Moreover, pk
δ0

is essential iff qk+1
δ0

is.

Proof of the Lemma. Since X is semialgebraic, for each maximal proper face Fα of P1 other

than Q1, Xα ≡ X ∩ p−1(Fα) is semialgebraic as well. Let ε : X → [0, 1] be the function

ε(η, σ) = η̄. By the Generic Local Triviality Theorem [1, Proposition 9.3.2] there exists

δ0 > 0, a semialgebraic fiber C, with for each maximal proper face Fα 6= Q1 a closed

semialgebraic subset Cα of C, and a homeomorphism h : (0, δ0]×C → ε−1(0, δ0], such that:

(i) for each α, h maps (0, δ0]× Cα into Xα; (ii) h maps { δ } × C onto Yδ for 0 < δ 6 δ0.

Let ∂C = ∪αCα. For each 0 < δ 6 δ0, define hδ : (C, ∂C) → (Yδ, ∂Yδ) be the map the

hδ(c) = h(δ, c). hδ is then a homeomorphism. And qδ is essential iff qδ ◦hδ is. For each k, we

now have a homeomorphism hk
δ : (C, ∂C)×(Λk, ∂Λk) → (Yδ, ∂Yδ)×(Λk, ∂Λk) with the identity

function on the factor Λk. And qk
δ is essential iff qk

δ ◦ hk
δ is. Define fδ : (C, ∂C) → (Qδ, ∂Qδ)
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by fδ = rδ ◦ qδ0 ◦ hδ0 , where rδ : (Qδ0 , ∂Qδ0) → (Qδ, ∂Qδ) is the function rδ(η) = δη/δ0. We

claim that fδ is linearly homotopic to qδ ◦ hδ. Indeed, this claim follows from the fact that if

c ∈ Cα for some α, then its images under qδ ◦ hδ and qδ0 ◦ hδ0 (and hence also fδ) belong to

Fα. Define fk
δ in the obvious way and we have that qk

δ is essential iff fk
δ is essential. Observe

that rδ is a homeomorphism. Therefore, fδ is essential iff qk
δ0
◦ hk

δ0
is essential, i.e. iff qk

δ0
is.

We now turn to the second statement. As we saw above, qk+1
δ0

is essential iff qk+1
δ0

◦ hk+1
δ0

is. Let (Z, ∂Z) = ([0, δ0], { 0, δ0 }) × (C, ∂C). For each k, let fk : (Z, ∂Z) × (Λk, ∂Λk) →
([0, δ0], { 0, δ0 }) × (Qδ0 , ∂Qδ0) × (Λk, ∂Λk) be the map given by fk(δ, c, λ) = (δ, h(δ0, c), λ).

Using Lemma A.6, therefore, qk+1
δ0

is essential iff fk is essential. Define Z̄ be the quotient

space of Z ≡ [0, δ0] × C obtained by collapsing { 0 } × C to a point, call it c0. And let ∂Z̄

be the image of (([0, δ0]) × ∂C)) ∪ ({ 0, δ0 } × C) under the quotient map. Likewise there

is a quotient map from ([0, δ0], { 0, δ0 }) × (Qδ0 , ∂Qδ0) to (Pδ0 , ∂Pδ0) that sends (δ, η) to δη.

Define f̄k : (Z̄, ∂Z̄) × (Λk, ∂Λk) → (Pδ0 , ∂Pδ0) × (Λk, ∂Λk) as follows: f̄k(c0, λ) = (0, λ); for

0 < δ 6 δ0, c ∈ C, λ ∈ Λk, f̄k(δ, c, λ) = fk(δ, c, λ). By Lemma A.5, fk is essential iff f̄k is.

Let X̄ be the quotient space of Xδ0 obtained by collapsing p−1
δ0

(0) to a point, x0, and let

∂X̄ be the image of ∂Xδ0 under the quotient map. Let p̄δ0 be corresponding projection map

to Pδ0 : it maps x0 to 0 and each other point (η, σ) to η. For each k, p̄k
δ0

is also defined in an

analogous way. By Lemma A.5, for each k, pk
δ0

is essential iff p̄k
δ0

is essential.

The map h extends to a homeomorphism h̄ between (Z̄, ∂Z̄) and (X̄, ∂X̄) by letting

h̄(c0) = x0. For each k, h̄k is defined in the obvious way. We now have that p̄k
δ0

is essential

iff p̄k
δ0
◦ h̄k is essential. The latter map is linearly homotopic to f̄k for the same reason that

fδ was linearly homotopic to qδ ◦ hδ. Hence pk
δ0

is essential iff qk+1
δ0

is. ¤

Proof of Theorem 3.10. Since V is semialgebraic, E is semialgebraic and the above lemma

applies. In particular, there exists δ0 > 0 satisfying the conditions given there. By assump-

tion, for each k, there exists δk such that Property (1k) holds. Without loss of generality we

can assume that δk 6 δ0. Using Theorem 3.8 and the above lemma, qk
δ0

is essential for each

k. By Theorem 3.7, Property (2) holds. ¤

3.2. Sufficiency of Essential Projections. By the results of the previous subsection,

checking whether Property (2) holds is equivalent to checking whether pk
δ or qk

δ is stably

essential, which involves checking the essentiality of an infinity of maps. There is hence the

question of whether there exists a k such that the essentiality of the k-th suspension of pδ

implies that pδ is stably essential. We do not know the answer to this question in general.

However, we know from Lemma A.9 that there are conditions when the essentiality of pδ
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implies its stable essentiality. This result, therefore, yields the following theorem, the proof

of which is obvious.

Theorem 3.12. Suppose V is semialgebraic. Let d be the dimension of P1. If the dimension

of E is less than d, then Property (2) fails to hold. If the dimension of E is d, then Property

(2) holds iff pδ is essential.

3.3. CKM Perturbations. Hillas et al. [8] introduce the notion of continuous Kohlberg-

Mertens perturbations (CKM perturbations). A CKM perturbation is a function g : Σ → P1.

Such a function g produces a perturbation ϕg of R defined as follows: ϕg(σ) is the set of

(1 − ¯g(σ))τ + g(σ) such that τ ∈ R(σ). Analogous to BR-sets, S is a CKM set if for every

ε > 0 there exists δ > 0 such that for each g : Σ → Pδ, ϕg has a fixed point within ε of S.

Hillas et al. [8] show that the CKM sets are exactly the BR-sets.

The results of the preceding subsection show that one obtains such an equivalence between

the two notions. Observe that in the proof of Theorem 3.8, we need only a specific type

of perturbation of Rk, which are “suspensions” of CKM perturbations. Specifically, given a

function g from Σ×Λk to Pδ (resp. Qδ), we can generate a perturbation ϕk
g of Rk by letting

ϕk
g(σ, λ) be the set of (1− ¯g(σ, λ))τ + g(σ, λ), where τ is a best reply to σ. For pδ (resp. qδ)

to be stably essential, it sufficient that for each such g and f : Σ × Λk → Λk, ϕk
g × f have

a fixed point in V × Λk. In conjunction with Theorem 3.7, we therefore have the following

Theorem.

Theorem 3.13. Property (2) holds iff for each k, and each function f×g : Σ×Λk → Λk×Pδ,

ϕk
g × f has a fixed point in V × Λk.

3.4. The Small-Worlds Projection Property. We show here that Property (2) is equiv-

alent to a projection property as in the Small Worlds axiom. We begin with a definition.

Definition 3.14 (N -equivalent game). A finite game G̃ in strategic form is N -equivalent

to G if: (i) the player set of G̃ includes N ; (ii) for each n ∈ N , his set of pure strategies is

Σ◦
n; and (iii) the payoffs of each n ∈ N depend only on the strategy choices of the players in

N and coincide with his payoffs in G.

We refer to those players in G̃ who do not belong to N as the ‘outsiders.’

Theorem 3.15. Property (2) iff there exists δ > 0 such that for each game G̃ that is N -

equivalent to G, every δ-perturbation of the best-reply correspondence of G̃ that leaves the

best-reply correspondence of the outsiders unchanged has a fixed point whose projection to

Σ is contained in V .



METASTABLE EQUILIBRIA 17

Proof. For anN -equivalent game G̃ the strategy set of the outsiders is a convex polytope, call

it Λ̃. Letting k be the dimension of Λ̃, any δ-perturbation of the best-reply correspondence of

G̃ (even those that perturb the coordinates of the outsiders) is of the form Rk×π : Σ× Λ̃ →
Σ× Λ̃. Therefore, the necessity of the condition follows from Remark 3.4.

We now prove the sufficiency part. Fix k and let ϕ be a δ-perturbation of Rk and let

f : Σ × Λk → Λk be a function. Suppose ϕ × f does not have a fixed point in V × Λk.

We now construct an equivalent game and a δ-perturbation of its best-reply correspondence

that leaves the best-reply correspondence of the outsiders unchanged and that does not have

a fixed point projecting to a point in V . The proof of this last fact is quite involved and

is therefore broken into three steps. It uses definitions and results in Appendix B about

multisimplices (i.e., products of simplices) and polyhedral complexes.

Step 1—simplicial preliminaries. Let C be the closed set consisting of those points

(σ, λ) ∈ V × Λk such that σ ∈ ϕ(σ, λ). For each (σ, λ) ∈ C, λ 6= f(λ). Therefore, we

can choose a number α > 0 that is strictly smaller than ‖f(σ, λ) − λ‖ for all (σ, λ) ∈ C.

Let K be the simplicial complex obtained by taking a sufficiently fine simplicial subdivision

of Λk so that each simplex of K is a convex polyhedron and has diameter at most α/2.

By the multisimplicial approximation theorem (see Theorem B.3) there exists a barycentric

subdivision L of K and, for each n, a barycentric subdivision Tn of Σn such that the map

f : Σ×Λk → Λk has a multisimplicial approximation g from the complex T ×L to K, where

T ≡ ∏
n Tn. If (σ, λ) ∈ C, then ‖f(σ, λ) − λ‖ > α, while ‖f(σ, λ) − g(σ, λ)‖ 6 α/2 since

the diameter of each simplex of K is at most α/2; therefore ‖g(σ, λ)− λ‖ > α/2; i.e., λ and

g∗(σ, λ) belong to different simplices of K. Finally let Q be a polyhedral complex that is

a refinement of T × L (viewed as a polyhedral complex) such that there exists a convex,

piecewise-affine function γ : Σ×Λk → R with the property that the maximal convex domains

on which γ is affine are the full-dimensional polyhedra of Q—see Theorem B.4.

Step 2—constructing an equivalent game G̃. We are now ready to define a game G̃

that is N -equivalent to G. The set Ñ of players in G̃ is N ∪O, where the set O of outsiders

comprises three players, denoted o1, o2, o3.

Step 2A—the strategy sets. The strategy sets of players in N are as before. The

mixed strategy sets Σo1 and Σo2 of players o1 and o2 have as their vertices (these players’

pure strategies) the sets of vertices of L and K, respectively. The mixed strategy set Σo3

of player o3 has as its vertices the class of full-dimensional polyhedra of Q. Observe that

each pure strategy s ∈ Σ◦
o1

corresponds to a unique point λ(s) in Λk; since Λk is a convex
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set, there is now an affine function h from the set Σo1 of his mixed strategies to the set Λk

that sends each mixed strategy to the corresponding average of the vertices, i.e., for each

σo1 ∈ Σo1 , h(σo1) =
∑

s∈So1
σo1,sλ(s) ∈ Λk, where σo1,s is the probability of pure strategy s

in σo1 .

Step 2B—the payoff functions. To complete the description of the game we describe

the payoff functions. For players in N their payoffs depend only on the strategy choices of

the players in N and coincide with their payoffs in G.

Player o1’s payoffs depend only on his choice and that of player o2, and they are defined as

follows. For pure strategies s ∈ Σ◦
o1

and t ∈ Σ◦
o2

, o1’s payoff G∗
o1

(s, t) is the t-th barycentric

coordinate of s in the complex K. (Thus player o1 tries to mimic o2’s strategy.)

Player o2’s payoffs depend on the strategy choices of all players. They are defined as

follows. Suppose player o3 picks a pure strategy so3 . Let T × L be the unique multisimplex

of T × L that contains the full-dimensional polyhedron corresponding to so3 . For each pure

strategy s ∈ Σ◦
o2

, define a multilinear function G∗
o2,s,so3

: T × L → R as follows: for each

vertex v of T × L, G∗
o2,s,so3

(v) = 1 if g(v) = s and zero otherwise. Since T × L is a full-

dimensional multisimplex of Σ×Λk, this function extends uniquely to a multilinear function

over the whole of Σ×Λk, denoted still as G∗
o2,s,so3

. Given now a mixed strategy profile σ ∈ Σ

for players in N , a mixed strategy τo1 for player o1, and the pure strategy so3 for player o3,

player o2’s payoff if he plays a pure strategy s is G∗
o2,s,so3

(σ, h(τo1)). Obviously, player o2’s

payoff function is multilinear in the strategies of his opponents.

Player o3’s payoffs are a linear function of the strategies of players in Ñ \{ o2 } and are

defined as follows. Let s be a pure strategy of player o3. Let Q ⊂ Σ × Λk be the full-

dimensional polyhedron corresponding to s. The restriction of γ to Q is affine and, since Q

is full-dimensional, admits a unique affine extension, call it G∗
o3,s, to the whole of Σ × Λk.

Player o3’s payoff function is given by G∗
o3

(so3 , σ
∗
−o3

) = G∗
o3,so3

(σ, λ), where λ = h(σ∗o1
) and σ

is the projection of σ∗ to Σ.

The description of G̃ is now complete. By construction G̃ is N -equivalent to G. Let R̃ be

the best-reply correspondence of the game G̃.

Step 3—analyzing R̃. The perturbation of R̃ we construct below leaves the coordinates

of players not in N the same as in R̃. Therefore, we first analyze the structure of R̃. Let

σ∗ be a mixed strategy profile and let σ be the projection of σ∗ to Σ. Let λ = h(σ∗o1
). The

following Lemma summarizes the relevant aspects of R̃.

Lemma 3.16. For each player m ∈ Ñ , let Σ∗
m ⊂ Σ◦

m be the support of σ∗m. Then:
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(1) Suppose that the vertices in Σ∗
o2

span a simplex K∗ in K. Then each pure optimal

reply of player o1 belongs to K∗.

(2) Suppose that each s ∈ Σ∗
o3

contains (σ, λ). Each pure optimal reply for o2 against σ∗

is a vertex of the unique simplex of K that contains g(σ, λ) in its interior.

(3) Player o3’s set of pure optimal replies to σ∗ is the class of all polyhedra that contain

(σ, λ).

Proof of Lemma. 1. Player o1’s payoff if he plays so1 ∈ Σ◦
o1

, against σ∗ is
∑

s∈Σ∗o2
σ∗o2,s×so1(s),

where σo2,s is the probability of s in σ∗o2
and so1(s) is the s-th barycentric coordinate of so1

in the complex K. By assumption the support of σo2 spans a simplex in K, so it follows

that a pure strategy so1 is an optimal reply if and only if so1(s) = 0 for all s /∈ Σ∗∗
o2

, where

Σ∗∗
o2
⊆ Σ∗

o2
is the subset of pure strategies of o2 that are assigned the highest probability

under σo2 . Since the vertices in Σ∗∗
o2

span a simplex that is a face of K∗, each pure optimal

reply for o1 belongs to K∗.

2. Let T ∗ × L∗ be the unique multisimplex of T × L that contains (σ, λ) in its interior. Let

K ′ be the unique simplex of K that contains g(σ, λ) in its interior. By the construction of

player o2’s payoff function, for each polyhedron so3 ∈ Σ◦
o3

that contains (σ, λ) the payoff to

player o2 from playing so2 ∈ Σ◦
o2

, if player o3 plays so3 and all others play according to σ∗, is

positive iff so2 is a vertex of K ′. Since, by assumption, each so3 ∈ Σ∗
o3

contains (σ, λ), each

optimal reply for o2 is a vertex of K ′.

3. By construction, for each pure strategy s of player o3, G∗
o3

(s, σ∗−o3
) 6 γ(σ, λ) where the

inequality is strict unless the polyhedron s contains (σ, λ). Thus, player o3’s set of pure

optimal replies is the class of polyhedra that contain (σ, λ). ¤

Step 4—perturbing R̃. We now construct a δ-perturbation ϕ̃ of R̃ that perturbs only

the components of R̃ that pertain to the players in N , as follows. For each mixed strategy

profile σ∗ in the game G̃, the coordinates of the original players in N under ϕ̃ are given

by ϕ̃N (σ∗) = ϕ(σ, λ), where σ is the projection of σ∗ to Σ and λ = h(σ∗o1
). Since ϕ is a

δ-perturbation of Rk, ϕ̃ is a δ-perturbation of R̃.

Step 5—fixed points of ϕ̃. To finish the proof we show that ϕ̃ has no fixed point whose

projection is contained in V . Let σ̃ be a fixed point of ϕ̃ and let σ be the projection of σ̃ into

Σ. Also, let λ = h(σ̃o1). Since σ̃ is a fixed point of ϕ̃, σ ∈ ϕ(σ, λ). We show that if σ ∈ V

then (σ, λ) /∈ C, which completes the proof. For each m ∈ Ñ let S∗m be the support of σ∗m.

Also, let K be the unique simplex of K that contains g(σ, λ) in its interior. By Property 3 of

Lemma 3.16, (σ, λ) belongs to each s ∈ Σ∗
o3

. Hence, by Property 2, the vertices in Σ∗
o2

span
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a simplex K∗ that is a face of K. By Property 1 now, each s ∈ Σ∗
o1

belongs to K∗. Hence,

λ ∈ K∗ ⊆ K. By definition, g(σ, λ) ∈ K. Therefore, (σ, λ) /∈ C. (Recall from step 1 that for

a point (σ, λ) ∈ C, λ and g(σ, λ) belong to different simplices.) Thus, ϕ̃ has no fixed point

projecting to a point in V . ¤

4. Characterization of Metastability

We now obtain topological characterizations of metastable sets, and establish the relation

of metastable sets to stably essential and Ȟ-stable sets.

Lemma 4.1. S is metastable iff there exists δ0 > 0 and for each 0 < δ 6 δ0 there exists a

closed semialgebraic subset Wδ of Σδ such that:

(1) Wδ\∂Σ is connected and dense in Wδ.

(2) For each k, each δ-perturbation ϕ of Rk, and each function f : Σ× Λk → Λk,

ϕ× f has a fixed point whose projection to Σ is contained in Wδ.

(3) Wδ′ ⊆ Wδ if 0 < δ′ < δ.

(4) ∩δWδ = S.

Proof. The sufficiency part of the proof is obvious. We turn now to the necessity of the

conditions. Let δi be a monotone sequence of positive numbers converging to zero and let Vi

be a corresponding sequence satisfying the conditions of Definition 2.1. Take a triangulation

of Σ. For each l, let Σl be the l-th barycentric subdivision of this triangulation. Let P l be

the simplices of Σl that intersect S. For each l let X l be the closure of { (δ, σ) ∈ [0, 1]× P l |
0 < δ < 1, σ ∈ Σδ\∂Σ } in [0, 1] × P l, and let ∂X l = { (δ, σ) ∈ X l | δ = 0 or σ ∈ ∂Σ }, and

let gl : X l → [0, 1] be the projection to the first coordinate. By [15, Lemma 2] there exists

0 < δ̄l 6 1, a finite number of closed semialgebraic subsets X l,1, . . . , X l,jl of X l such that for

each 0 < δ 6 δ̄l and each j, letting X l,j
δ = (gl)

−1
([0, δ]) ∩X l,j, we have:

(a) X l,j
δ \(∂X l ∪ (gl)

−1
(δ)) is connected and dense in X l,j

δ ;

(b) X l,j
δ ∩X l,j′

δ ⊆ ∂X l for j′ 6= j;

(c) ∪jX
l,j
δ = (gl)

−1
([0, δ]).

Suppose for 0 < δ, δ′ 6 δ̄l that (δ, σ) and (δ′, σ) belong to X l\∂X l. Then ((λδ + (1− λδ′), σ)

belongs to X l\∂X l for all λ ∈ [0, 1], and the above properties imply the property

(d) (δ, σ) belongs to X l,j
δk

iff (δ′, σ) does.

Since P l is a neighborhood of S, it is a neighborhood of Vi for large i. Therefore, by the

connexity property for Vi, and also by the above properties of X l, if i is also large enough

such that δi 6 δ̄l then there exists 1 6 ji 6 jl such that { δi } × (Vi\∂Σ), and hence also its
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closure { δi } × Vi, is contained in X l,ji

δi
. Along a subsequence of i’s now, ji is constant, say

1. Obtain by the diagonalization process, a subsequence of i’s such that for each l and i > l,

Vi ⊆ P l, δi 6 δ̄l and { δi } × Vi is contained in X l,1

δ̄l
.

For each 0 < δ 6 δ1 define Wδ to be the projection of X l,1
δ to Σ, where l is the unique

integer such that δl+1 < δ 6 δl. We show that the Wδ’s satisfy the four enumerated conditions

of the theorem. For the first three properties, we fix δl+1 < δ 6 δl.

Property 1. Property (a) implies that the set of (δ′, σ) ∈ X l,1
δ such that σ /∈ ∂Σ is connected.

Hence Wδ\∂Σ, which is the image of this set under the projection to Σ, is connected. Suppose

σ ∈ Wδ. Then there exists (δ, σ) ∈ X l,1
δ . By Property (a) again, there exists a sequence

(δi, σi) in X l,1
δ \∂X l,1 converging to (δ, σ). Obviously the sequence σi belongs to Wδ\∂Σ and

converges to σ. Hence Wδ\∂Σ is dense in Wδ.

Property 2. Since Vl ⊆ P l, if σ belongs to Vl ∩ (Σδ\∂Σ) then (δ, σ) belongs to X l. Because

(δl, σ) ∈ X l,1
δl

and 0 < δl 6 δ̄l, property (d) gives us that (δ, σ) belongs to X l,1
δ \∂X l. Hence

Wδ\∂Σ contains σ. In other words, Wδ\∂Σ ⊇ Vl ∩ (Σδ\∂Σ).

Let Qδ = { η ∈ Pδ | η̄ = δ } and let ∂Qδ be its relative boundary. Define Fδ = { (η, σ) ∈
E | σ ∈ Wδ, η̄ = δ }. By Theorem 3.7 it is sufficient to show that the natural projection

qδ : (Fδ, ∂Fδ) → (Qδ, ∂Qδ) is stably essential, where ∂Fδ = q−1
δ (∂Qδ). Let F̄δ = { (η, σ) ∈

E | σ ∈ Vl, η̄ = δ }. By Theorem 3.8 the projection q̄δ : (F̄δ, ∂F̄δ) → (Qδ, ∂Qδ) is stably

essential. Let F̂δ be the closure of F̄δ\∂F̄δ. By Remark A.7, q̂δ : (F̂δ, ∂F̂δ) → (Qδ, ∂Qδ) is

stably essential. Consider now a point (η, σ) ∈ F̂δ\∂F̂δ. Then σ ∈ Vl ∩ (Σδ\∂Σ). As we saw

in the previous paragraph, σ then belongs to Wδ and thus (η, σ) belongs to Fδ. Since F̂δ\∂F̂δ

is dense in F̂δ, we have that (F̂δ, ∂F̂δ) ⊆ (Fδ, ∂Fδ). The stable essentiality of q̂δ now implies

that of qδ.

Property 3. It is sufficient to prove that if δl+1 6 δ′ < δ then Wδ′ ⊆ Wδ. If δ′ > δl+1 then

the result follows from the fact that X l,1
δ′ ⊆ X l,1

δ . Observe that if δ′ = δl+1 then property (a)

for X l+1,1
δl+1

implies that X l+1,1
δl+1

\∂X l+1 is a connected subset of (gl)
−1

([0, δ])\∂X l; moreover,

by construction, it contains { δl+1 } × (Vl+1\∂Σ). Since X l,1
δ \∂X l contains this latter set, by

properties (a) (b) and (c) above X l+1,1
δl+1

\∂X l+1 ⊆ X l,1
δ \∂X l. Using property (a) again, we

get that X l+1,1
δl+1

is contained in X l
δ. Hence Wδl+1

⊆ Wδ.

Property 4. By property (3) it is sufficient to show that ∩lWδl
= S. For each l, since { δl }×Vl

is contained X l,1
δl

, Wδl
contains Vl. Since the Vl’s converge to S, ∩lWδl

contains S. On the

other hand, for each l, Wδl
is contained in P l, and the P l’s form a basis of neighborhoods of

S. Hence ∩lWδl
is contained in S and thus we obtain (4). ¤
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We now provide a characterization of metastability in terms of subsets of the graph E of

the equilibria of perturbed games. For each 0 < δ 6 1, as in the above proof let Qδ = { η ∈
Pδ | η̄ = δ } and let ∂Qδ be its relative boundary. Let (Fδ, ∂Fδ) = p−1(Qδ, ∂Qδ). We have a

well-defined correspondence ψδ : Σδ → Fδ given by ψδ(σ) = { (η, σ) ∈ Fδ }.

Theorem 4.2. S ⊆ Σ is metastable iff there exists a closed subset E of E with E0 = { 0 }×S

and:

(1) Connexity: For every neighborhood V of E0 in E, the set V \∂E1 has a connected

component whose closure is a neighborhood of E0 in E.

(2) Stable Essentiality: There exists δ0 > 0 such for each 0 < δ 6 δ0, letting (Fδ, ∂Fδ) =

p−1(Qδ, ∂Qδ)∩E, the natural projection qδ : (Fδ, ∂Fδ) → (Qδ, ∂Qδ) is stably essential

in homotopy.

Proof. Given a metastable set S there exists a collection of Wδ’s satisfying the conditions in

Lemma 4.1. Define E to be the closure of ∪0<δ6δ0ψδ(Wδ\∂Σ)\∂Fδ. E is obviously a closed

subset of E . Moreover, it is nonempty: indeed, for each 0 < δ < δ′, if σ ∈ Wδ′\∂Σ then

σ ∈ Wδ\∂Σ and ψδ(σ)\∂Fδ is nonempty. We prove that it satisfies the other conditions of

the theorem.

We show first that E0 = { 0 } × S. Observe that (0, σ) ∈ E0 iff there exists a sequence of

δi’s converging to zero, and a corresponding sequence (ηi, σi) in ψδi
(Wδi

\∂Σ) converging to

(0, σ); this last condition is equivalent to the existence of a sequence σi ∈ Wδi
\∂Σ converging

to σ. By Property 4 of Lemma 4.1, therefore, (0, σ) ∈ E0 iff σ ∈ S.

Fix 0 < δ 6 δ0. By the robustness property for Wδ and Theorem 3.8, the projection

q̄δ : (F̄δ, ∂F̄δ) → (Qδ, ∂Qδ) is stably essential, where F̄δ = ψδ(Wδ). Let F̂δ be the closure

of F̄δ\∂F̄δ. Then by Remark A.7, the projection q̂δ : (F̂δ, ∂F̂δ) → (Qδ, ∂Qδ) is also stably

essential. Observe that F̂δ is contained in Fδ. Indeed, if (η, σ) ∈ F̂δ\∂F̂δ then σ ∈ Wδ\∂Σ,

η /∈ ∂Qδ, and (η, σ) ∈ ψδ(σ). Therefore F̂δ\∂F̂δ, and hence its closure F̂δ are contained in

Fδ. The stable essentiality of q̂δ now implies that of qδ. Hence E satisfies the essentiality

condition.

Again fix 0 < δ 6 δ0. Since Wδ\∂Σ is connected and ψδ is a well-defined correspondence,

ψδ′(Wδ′\∂Σ)\∂Fδ′ is connected for all 0 < δ′ < δ. Also, for 0 < δ′ < δ, if (η′, σ) ∈
ψδ′(Wδ′\∂Σ)\∂Fδ′ then for all δ > δ′′ > δ′, σ ∈ Wδ′′ by Property (3) of Lemma 4.1, and

there exists (η′′, σ) ∈ ψδ′′(σ)\∂Fδ′′ . Therefore, for each λ ∈ [0, 1], (λη′′ + (1 − λ)η′, σ) ∈
ψλδ′′+(1−λ)δ′(Wλδ′′+(1−λ)δ′\∂Σ)\∂Fλδ′+(1−λ)δ. Hence, ∪0<δ′<δψδ′(Wδ′\∂Σ)\∂Fδ′ is connected.

Since E is obtained by taking the closure of ∪0<δ′<δ0ψδ′(Wδ′\∂Σ)\∂Fδ′ , we have that Eδ\∂Eδ

is connected; and its closure is a neighborhood of E0 in E, since it contains, e.g., Eδ/2. The
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connexity condition now follows from the fact that the Eδ’s form a basis of neighborhoods of

{ 0 } × S in E. This completes the proof of the necessity of the conditions. The sufficiency

part follows from Theorems 4.3 and 4.4. ¤

Theorem 4.3. Let E be a subset of E that satisfies the connexity and essentiality conditions

of Theorem 4.2 and let S = {σ | (0, σ) ∈ E }. Then S is the Hausdorff limit of a sequence

Sl of semialgebraic stably essential sets. Moreover, the sequence can be chosen such that

for each l, Sl has a germ El that is semialgebraic and satisfies the following stronger version

of the connexity requirement: there exists δl > 0 such that for each 0 < δ 6 δl, El
δ\∂El

δ is

connected and dense in El
δ.

Proof. Triangulate E such that E0 = p−1(0) and ∂E1 = p−1(∂P1) are full subcomplexes. Let Ẽ
be the union of the simplices of E that do not intersect E0. Denote by E l

0 the l-th barycentric

subdivision of E0. Ẽ l
0 and Ẽ uniquely determine a triangulation E l for E .

By the connexity condition there exists a decreasing sequence V r of neighborhoods of S in

E such that V r\∂E1 is connected and dense in V r. Let El,r be the union of the simplices of

E l whose interiors intersect V r\∂E1. Obviously V r is contained in El,r since V r\∂E1 is dense

in V r. For each l, the El,r’s form a decreasing sequence in r. Because E l is a finite complex

there exists r(l) such that for each r > r(l), El,r is constant, say El. If l′ > l then for each

r, El,r ⊇ El′,r and hence El ⊇ El′ . For each l, El
0 contains E0, since it contains V r for large

r. Hence, letting Sl
0 = {σ | (0, σ) ∈ El }, we have S ⊆ ∩lS

l
0. On the other hand, letting P l

be the set of simplices of E l
0 that intersect E0, we have that El

0 ⊆ P l: indeed, each principal

simplex of El intersects V r for large r and hence intersects E0; since E1
0 is full subcomplex

of E l, the intersection of such a simplex with E l
0 is a face of the simplex and hence belongs

to P l; thus El
0 ⊆ P l. The fact that the E l

0 form a decreasing sequence converging to E0

therefore implies that ∩lE
l
0 ⊆ E0. Consequently, the Sl

0’s converge to S.

Fix l. Both El and El
0 are obviously semialgebraic. To finish the proof, we show that El

satisfies the stronger form of the connexity condition in the statement of the theorem and

also the essentiality condition in Definition 2.6, which then ensures that El
0 is stably essential.

To obtain the connexity condition, we use Theorem 1 of Section 2 of [14]: it is sufficient to

show that: (a) El is the closure of El\∂El
1; and (b) for each 0 < α 6 1, the set Wα of points

in El\∂El whose simplicial distance from El
0 is strictly smaller than α is connected. With

regard to (a), since ∂E l
1 is a full subcomplex, the intersection of every principal simplex of

El with ∂E l is a face of the simplex; moreover, it cannot equal the simplex itself because the

simplex intersects V r\∂E1 for all large r; hence El is the closure of El\∂El
1. Now, we turn

to (b). E l
0 and ∂E l

1 being full subcomplexes, the intersection of a principal simplex of El with
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Wα ∩ E l
0 and ∂E l

1 are proper faces of of it; hence its intersection with Wα\∂El is connected.

But, for r large enough, the connected set V r\∂E1 is contained in Wα and intersects every

principal simplex of El. Therefore, Wα\∂El
1 is connected. Thus, we have established the

connexity condition for El.

There remains to prove the essentiality condition for El. By construction El contains Eδ

for all sufficiently small δ. Therefore, by the Robustness condition for E, qδ : (F l
δ , ∂F l

δ) →
(Qδ, ∂Qδ) is stably essential for all small δ, where (F l

δ , ∂F l
δ) is the inverse image of (Qδ, ∂Qδ) in

El under the natural projection. Since El is semialgebraic, by Lemma 3.11, pδ : (El
δ, ∂El

δ) →
(Pδ, ∂Pδ) is stably essential for some small δ. Hence, El satisfies the essentiality condition

in Definition 2.6 as well. ¤

Theorem 4.4. The Hausdorff limit of a sequence of stably essential sets is metastable.

Proof. Let Sl be a sequence of sets converging to a set S such that for each l there exists

El ⊆ E such that El
0 = { 0 }×Sl, and El satisfies the essentiality and connexity conditions of

Definition 2.6. For each l, El satisfies the conditions of Theorem 4.3 and hence we can assume

without loss of generality that El satisfies the stronger form of connexity: for all small δ > 0,

El
δ\∂Eδ is connected and dense in Eδ. Since the Sl converge to S, the El

0 converge to E0,

and we can now choose a sequence of δl’s decreasing to zero such that the El
δl
’s converge to

E0 and, for each l, El
δl
\∂E l

1 is connected and dense in El
δl
, and pδl

: (El
δl
, ∂El

δl
) → (Pδl

, ∂Pδl
)

is stably essential.

For each l, let Vl be the projection of Eδl
to Σ. Then Vl\∂Σ is connected and dense in

Vl. Also, Vl satisfies the Robustness condition of Definition 2.1 by Theorem 3.7. Finally, the

Vl’s converge to S since in E the sets Eδl
converge to E0. Thus S is metastable. ¤

It is natural to wonder if the Hausdorff limit of stably essential sets is itself stably essential,

which would then imply the equivalence between metastability and stable essentiality. In

the two theorems above—whose proof techniques were borrowed from Mertens [14, Section

5B] where it is shown that the limit of a sequence of semialgebraic Ȟ-stable sets is itself

Ȟ-stable—we could, like Mertens, use the approximations El to produce a germ E for S

that satisfies the connexity requirement of Definition 2.6. The problem is with the stable

essentiality condition. In the case of Ȟ-stability the fact that Čech cohomology is weakly

continuous is used to establish the essentiality condition for E. In our case there seems to be

no analogue of the following nature. Suppose (X l, ∂X l) is a decreasing sequence of compact

semialgebraic pairs converging to (X, ∂X) and suppose there is a sequence of stably essential

maps pl : (X l, ∂X l) → (B, ∂B) where for l > 1, pl is the restriction of the map p1 to X l. Is

it then necessarily the case that the restriction of p1 to X is also stably essential? While we
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do not have a counter example, the answer to this question appears to be no. In any event,

the above three theorems readily imply the following compactness result for metastability.

Theorem 4.5. The collection of metastable sets is the Hausdorff closure of the collection of

stably essential sets.

Theorem 4.6. Ȟ-stable sets are stably essential and hence metastable.

Proof. As is shown in Mertens [14, Section 4E] S is Ȟ-stable iff there exists a sequence of

closed d-dimensional semialgebraic subsets El of E , where d is the dimension of P1, such that

for each l, El satisfies the essentiality and Robustness condition in Definition 2.5 and the

sequence El
0 converges to { 0 }×S. Since El is d-dimensional, using Lemma A.9 we therefore

have that Sl
0 ≡ { σ | (0, σ) ∈ El } is stably essential and hence metastable. By Theorem 4.5

S is metastable as well. ¤

The results of this Section show that, as we asserted earlier, the collection of metastable

sets remains the same if we weaken the Robustness condition in Definition 2.1 to the fol-

lowing: For each k there exists i(k) such that for each i > i(k), and each correspondence

ϕk × f : Σ × Λk → Σ × Λk, where ϕk is a δi-perturbation of Rk, there exists a fixed point

in Vi × Λk. We will merely sketch the arguments here. Given a set S and a collection Vi

converging to S that satisfy this weak robustness property above and all the other properties

in Definition 2.1, the proof of Lemma 4.1 can be modified to show that that there exists a

nested collection of Wδ that satisfy all the conditions of Lemma 4.1 except for the robustness

condition, which now becomes: for each k, there exists δk > 0 such that for 0 < δ 6 δk,

and each correspondence ϕk × f : Σ × Λk → Σ × Λk, where ϕk is a δ-perturbation of Rk,

there exists a fixed point in Wδ × Λk. The proof of the necessity part of Theorem 4.2 can

be used to prove the existence of a a set E, with E0 = { 0 } × S, that satisfies the connexity

condition there and the following essentiality condition: for each k, there exists δ(k) > 0

such that for 0 < δ 6 δk, the projection qk
δ : (Fδ, ∂Fδ) → (Qδ, ∂Qδ) is essential. The proof of

Theorem 4.3 does not require the stable essentiality of qδ : (Eδ, ∂Eδ) → (Qδ, ∂Qδ) for some

δ, but rather the essentiality for each k of qk
δk

for some δk: indeed, this follows from the fact

the sets El constructed there are semialgebraic, coupled with Lemma 3.11. Thus, S can be

approximated by a sequence of stably essential sets. Finally, Theorem 4.4 shows that S is

indeed metastable in the sense of Definition 2.1. Thus, it is without loss of generality that

we imposed the seemingly stronger Robustness condition for metastability.
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5. Properties of Metastable Sets

Kohlberg and Mertens [10] and Mertens [13, 14, 15] list a basic set of game-theoretic prop-

erties that they argue any reasonable solution concept should satisfy. In this Section we show

that, except for the decomposition property, metastability satisfies all their requirements.

Metastability satisfies a slightly weaker version of the decomposition property.

5.1. Basic Properties. Since Ȟ-stable sets exist and are metastable, we get existence for

metastability. Also, by definition, metastable sets are connected sets of perfect equilibria.

Metastable sets are BR-sets and the proof in Hillas [7] then shows that a metastable set

contains a proper equilibrium and thus satisfies the backward induction property. Finally,

by Theorem 4.5 the collection of metastable sets is compact in the Hausdorff topology.

5.2. Forward Induction and Iterated Dominance. Kohlberg and Mertens [10] intro-

duce the notion of forward induction by requiring that a solution to the game contain a

solution to a game obtained by deleting a strategy that is not a best reply against any

equilibrium in the solution of the original game. Mertens [13] strengthens this property

by requiring the solution to survive even under deletion of a strategy that, while possibly

optimal against some equilibrium in the solution, is nonetheless inferior in any ε-perfect

equilibrium close to the set. Here we prove this property for metastability.

Theorem 5.1. Suppose S is a metastable set of the game G. If there exist a neighborhood

V of S, δ > 0, and a pure strategy sn for some player n such that sn is an inferior reply

against each σ ∈ V ∩ (Σδ\∂Σ), then S contains a metastable set of the game Ḡ obtained by

deleting the pure strategy sn.

If Vi is a sequence as in Definition 2.1 then for large i, by our assumptions, sn is used with

probability at most δi at each σ ∈ Vi\∂Σ. Hence it is used with zero probability in S. S can

thus be viewed as a subset of the strategy space in Ḡ. And, formally, the theorem states

this subset contains a metastable set in Ḡ.

Proof. Let Vi be a sequence of subsets of Σ converging to S and satisfying the conditions of

Definition 2.1. Assume that for each i, Vi is a subset of V and δi 6 δ. By Lemma 4.1, we

can further assume that Vi is semialgebraic and contains S. Let Σ̄ be the face of Σ where sn

is used with zero probability. We can view Σ̄ as the strategy space of the game Ḡ obtained

by deleting strategy sn. Since Vi contains S, which as we remarked above is contained in

Σ̄, V̄i ≡ Vi ∩ Σ̄ is a closed, nonempty, semialgebraic subset of Σ̄ and V̄i converges to S. By

Statement (3) of Theorem 3.8 and Theorem 4.4, it is sufficient to prove that V̄i satisfies the

Robustness condition of Definition 2.1 in the game Ḡ.
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The set P̄δi
of δi-perturbations for the game Ḡ can be viewed as the face of Pδi

where the

error probability for sn is zero. Fix k and let f̄ × ḡ : Σ̄ × Λk → Λk × P̄δi
be a map. By

Theorem 3.13 it is sufficient to show that ϕ̄k
ḡ× f̄ has a fixed point in V̄i×Λk. Extend f̄× ḡ to

a map f×g from Σ×Λk to P̄δi
×Λk. Suppose (σ, λ) is a fixed point of ϕk

g×f such that σ ∈ V̄i.

Then obviously it is also a fixed point of ϕ̄k
g × f̄ . Hence to finish the proof we prove the

existence of such a fixed point for ϕk
g × f . Choose a sequence of functions gl : Σ×Λk → Pδi

converging to g (in the sup norm) such that for each l the image of the map is contained

in Pδi
\∂Pδi

. For each l there exists a fixed point (σl, λl) of ϕk
gl × f such that σl ∈ Vi. Let

ηl = gl(σl, λl). Since ηl belongs to the interior of Pδi
and σl is a perturbed equilibrium of

G(ηl), σl is completely mixed. By assumption, therefore, sn is used with probability ηl
n,sn

under σl
n. By passing to a subsequence if necessary, the limit (σ, λ), which belongs to Vi×Λk,

is a fixed point of ϕg × f where the probability of sn is zero, i.e. σ ∈ V̄i. ¤

The proof actually implies a slightly stronger forward induction property. If sn is not a

best reply to any strategy in the sets Vi\∂Σ then deleting the strategy preserves a metastable

set of the smaller game.

5.3. Ordinality and Player-Splitting. Kohlberg and Mertens [10] require that a solution

is invariant under the addition or deletion of redundant strategies, i.e. a solution depends

only on the reduced strategic form of the game obtained by deleting redundant strategies.

Subsequently Mertens [15] provides a formal treatment of this notion, generalizing the idea to

the concept of ordinality for solution concepts. Here we show that metastability is ordinal in

the sense of Mertens. While Mertens considered the class of strategic-form games—where the

strategy sets of the players are arbitrary polytopes and the payoff functions are multiaffine—

we restrict ourselves here to games in normal form with finite pure strategy sets. Hence our

treatment of ordinality is in the context of normal-form games (even though there is an

obvious extension of metastability to this general class and ordinality obtains there as well).

Mertens [15, Theorem 2] gives two sufficient conditions for a solution to be ordinal. The

following two theorems establish that metastability satisfies them.

A strategy τn is an admissible best reply against a profile σ if there exists a sequence σk

converging to σ such that τn is a best reply against σk for all k. A profile τ is an admissible

best reply against σ if for each n, τn is an admissible best reply against σ. One then obtains

an admissible best reply correspondence for the game that assigns to each σ the set of

admissible best replies.
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Theorem 5.2. Suppose G and G̃ are two games with the same sets of players and strategies,

and they have the same admissible best-reply correspondence. Then they have the same

metastable sets.

Proof. Let S be a metastable set of G and let E be a germ for S satisfying the conditions

of Theorem 4.2. We can assume without loss of generality that E is the closure of E\∂E1;

indeed, the connexity condition obviously holds if we do so, while the essentiality condition

holds because of Remark A.7. Given δ > 0 and a strategy profile τ ∈ Σ\∂Σ, observe that

G(δτ) and G̃(δτ) have the same set of equilibria, since G and G̃ have the same admissible

best-reply correspondence. Therefore, E is also a subset of the graph of the perturbed

equilibrium correspondence for the game G̃. Hence, S is a metastable set of the game G̃.

The result follows from the symmetry between G and G̃. ¤

We now state and prove a theorem that implies that metastability is invariant under

addition of redundant strategies and also shows that the player-splitting property holds.

Before discussing these properties, we present the theorem.

Suppose G̃ and G are two strategic-form games with strategy spaces Σ̃ and Σ respectively.

Suppose f is a surjective linear mapping from Σ̃ to Σ such that for each 0 6 δ 6 1 and τ̃ ∈ Σ̃,

σ̃ is an equilibrium of the perturbed game G̃(δτ̃) iff f(σ̃) is an equilibrium of G(δf(τ̃)).

Theorem 5.3. If S̃ is a metastable set of G̃ then f(S̃) is a metastable set of G. If S is a

metastable set of G then f−1(S) is a metastable set of G̃.

The proof uses the following lemma. It is a version of the Generic Local Triviality Theorem

for the case of polyhedra and linear mappings, and because of the formulation it yields a

“global triviality” result.

Lemma 5.4. Suppose f : X → Y is a surjective linear mapping where X and Y are

compact convex polyhedra, and let d = dim(X) − dim(Y ). There exists a surjective map

h : Y × [0, 1]d → X such that:

(1) h({ y } × [0, 1]d) = f−1(y) for all y ∈ Y .

(2) h maps (Y \∂Y )× (0, 1)d homeomorphically onto (X\∂X), where ∂X and ∂Y are the

relative boundaries X and Y , respectively.

Moreover, there exists a continuous selection from f−1.

Proof of Lemma. The existence of a continuous selection from f−1 follows from the existence

of the function h with the requisite properties, which we now prove. Let k be the dimension

of Y . Since the graph of f is a compact convex polyhedron homeomorphic to X, it is
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sufficient to prove the lemma for the special case that f is a projection map onto, say, the

first k coordinates.

We can further assume that X is a full-dimensional polyhedron in Rk+d and Y is the

projection of X onto its first k-coordinates. Indeed, suppose X is a polyhedron in Rm with

Y being the projection of X onto, say, the first k coordinates; then, since X is (k + d)-

dimensional and its projection to the first k coordinates is k-dimensional, we can find d

additional coordinates such that, after permuting the last m−k coordinates if necessary, the

projection from X onto the first k + d coordinates is a homeomorphism between X and its

image. Thus, replacing X with its projection onto its first k + d coordinates, we can assume

that X is a full-dimensional polyhedron in Rk+d and f is the projection of X onto the first

k coordinates.

It is now sufficient to prove the theorem for the case where d = 1, since, in general, f

can factored through a series of projections that omit one coordinate at a time. For each

y ∈ Y , let yk+1(y) (resp. y
k+1

(y)) be the maximum (resp. minimum) over yk+1 ∈ R such that

(y, yk+1) ∈ X. Since f : X → Y is a linear map , f−1 : Y → X is a continuous correspondence

and, by the Maximum Theorem, yk+1(y) and y
k+1

(y) are continuous functions of y. Since

X is a full-dimensional polyhedron, (y, yk+1(y)) and (y, y
k+1

) belong to the boundary of X

for all y ∈ Y ; and yk+1(y) > y
k+1

(y) with { y } × (y
k+1

(y), yk+1(y)) ⊂ X\∂X if y belongs to

the interior of Y . Define now h : Y × [0, 1] → X by h(y, λ) = (y, (1− λ)y
k+1

(y) + λyk+1(y)).

Then h has the required properties. ¤

Proof of Theorem 5.3. Because f is a surjective linear map, f−1 is a continuous correspon-

dence and therefore by Theorem 4.5 it is sufficient to prove the result for a stably essential

set. Also, by Theorem 4.3 we can further assume that the relevant sets have semialgebraic

germs and satisfy the stronger connexity condition given there. For simplicity we call a set

S with such a semialgebraic germ a semialgebraic stably essential set.

For this proof we view E and Ẽ as graphs of equilibria (rather than perturbed equilibria)

of perturbed games for G and G̃ respectively.

Suppose S̃∗ is a semialgebraic stably essential set with a semialgebraic germ Ẽ∗. Let Ẽ be

the set of (η̃, σ̃) such that there exists (η̃, σ̃′) ∈ Ẽ∗ with f(σ̃) = f(σ̃′). Then Ẽ is semialgebraic

and f−1(f(S̃)) = { σ̃ | (0, σ̃) ∈ Ẽ }. For each (η, σ′) ∈ Ẽ, (η, λσ′ + (1 − λ)σ) ∈ Ẽ, where

(η, σ) ∈ Ẽ∗ and f(σ) = f(σ′). Therefore, Ẽ satisfies the connexity condition, since Ẽ∗

does. Obviously Ẽ satisfies the essentiality condition since it contains Ẽ∗ which does. Thus

f−1(f(S̃)) is a semialgebraic stably essential set as well. Therefore, to prove the theorem
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it is sufficient to show that S is a semialgebraic stably essential set of G iff f−1(S) is a

semialgebraic stably essential set in G̃.

S is a semialgebraic stably essential set in G iff there exists a semialgebraic subset S of E
satisfying the essentiality condition of Definition 2.6 and the connexity condition of Theorem

4.3. For a semialgebraic subset E ⊂ E , let Ẽ = (δτ̃ , σ̃) ∈ Ẽ be such that (δf(τ̃), f(σ̃)) ∈ S.

Ẽ is obviously semialgebraic and S = {σ | (0, σ) ∈ E } iff f−1(S) = { σ̃ | (0, σ̃) ∈ Ẽ }. Also

E satisfies the connexity condition of Theorem 4.3 iff Ẽ does. Hence, it is sufficient to show

that E satisfies the essentiality condition of Definition 2.6 iff Ẽ does too.

Because E and Ẽ are semialgebraic, by Lemma 3.11 it is sufficient to prove that E satisfies

the essentiality condition of Theorem 4.2 iff Ẽ does. Fix 0 < δ < 1. We show that the

projection qδ from Fδ to Qδ is essential iff q̃δ from F̃δ to Q̃δ is. Since Qδ and Q̃δ are

homeomorphic to Σ and Σ̃, we view Fδ and F̃δ as subsets of Σ× Σ and Σ̃× Σ̃ respectively.

Thus Fδ = (τ, σ) ∈ Σ × Σ is such that (δτ, σ) ∈ Eδ and F̃δ is the set of (τ̃ , σ̃) such that

(δτ̃ , σ̃) belongs to Ẽδ (and therefore (f(τ̃), f(σ̃)) belongs to Fδ). We view q̃δ and qδ as the

projection to the first factor.

Let k = dim(Σ̃)− dim(Σ). qδ is stably essential iff qk
δ : (Fδ, ∂Fδ)× (Λk, ∂Λk) → (Σ, ∂Σ)×

(Λk, ∂Λk) is stably essential. Let F̄δ = (τ̃ , σ) ∈ Σ̃× Σ be such that (f(τ̃), σ) ∈ Fδ and let q̄δ

be the projection from Fδ to Σ̃. By Lemma 5.4 there exists a map h : (Σ, ∂Σ)× (Λk, ∂Λk) →
(Σ̃, ∂Σ̃) whose restriction to (Σ\∂Σ) × (Λk\∂Λk) is a homeomorphism. Therefore, using

Lemma A.5, qk
δ is stably essential iff q̄δ is stably essential.

Observe now that q̃δ = q̄δ ◦ (Id × f). Therefore, if q̃δ is stably essential then so is q̄d and

hence also qδ. On the other hand, suppose qδ is stably essential, and so too is q̄δ. Letting g

be a continuous selection from f−1, we have that q̄δ = q̃δ ◦ (Id × g) and hence q̃δ is stably

essential. Thus we have shown that the essentiality condition for S is equivalent to that for

S̃. Hence S is a semialgebraic stably essential set iff f−1(S) is. ¤

This proof shows that if g is a continuous selection from f−1 then S is a metastable set of

G iff g(S) is. We are unable to ascertain the following stronger version of this property: S̃

is metastable iff f(S̃) is.

The above theorem applies to invariance and player-splitting as follows. Formally, suppose

we have two games G̃ and G with the same player set. Suppose for each player n, there

exists a surjective linear map fn : Σ̃n → Σn such that if f : Σ̃ → Σ̄ is the corresponding

map between the spaces of strategy profiles then for each σ̃ ∈ Σ the payoffs of the players

in G̃ are their payoffs in G from f(σ̃). Since f is surjective, we can actually view Σn as a

subspace of Σ̃ by choosing for each n and each pure strategy sn in G a pure strategy s̃n in
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G̃ such that fn(s̃n) = sn. Thus G̃ is obtained from G by adding redundant strategies. The

above theorem now relates the solutions of G and G̃ and yields the Invariance property for

metastability.

The player-splitting property states the following. In an extensive-form game, if we can

partition some player’s collection of information sets in such a way that no play of the game

intersects more than one element of the partition, then the solution of the game should be

the same if we consider the agent-normal form where this player has as many agents as there

are elements in the partition. We now formally state this property for metastability.

Suppose one has an N -player extensive-form game in which one can partition some player

n’s collection Hn of information sets into two subcollections Hn1 and Hn2 such that no

information set in one subcollection follows an information set in the other. Let G̃ be the

strategic form of the game. Consider now a new game G where we ‘split’ player n into two

players n1 and n2, i.e. the player set in G is (N\{n }) ∪ {n1, n2 }. The strategy sets of the

players other than n in G̃ are the same as in the two games. Each pure strategy s̃n of player

n in G̃ prescribes actions at each information set in Hni
for agent i = 1, 2 and thus gives a

pure strategy for player ni in Gn. Let Sni
be player ni’s set of pure strategies in G and let

Σni
be the corresponding set of mixed strategies. We now describe the payoff functions for

the players. Observe that a pair (sn1 , sn2) of pure strategies for the agents defines uniquely a

pure strategy for player n in G̃. Therefore, given a profile of pure strategies in G, the payoffs

of the players other than the two agents are the payoffs they get from the corresponding

profile in G̃; for agent ni let it be n’s payoff if the outcome induced by the profile follows an

information set in Hni
and let it be arbitrary otherwise.

For each i there is a well-defined affine function fni
from Σ̃n to Σni

that computes for each

σ̃n the corresponding marginal distribution over Sni
. Let f : Σ̃ → Σ be the map f(σ) =

(σ̃1, . . . , σ̃n−1, fn1(σ̃n), fn2(σ̃n), σ̃n+1, . . . σN). Then f satisfies the conditions of Theorem 5.3

and we get the player-splitting property for metastability, in that it does not matter whether

one treats the two agents as one player.

5.4. The Small Worlds and Decomposition Properties. Suppose G̃ is an N -equivalent

game. As specified by Mertens [15] the Small Worlds axiom requires that solutions of G

are precisely the projections of solutions of G̃. Given Theorem 3.15, one might expect

metastability to satisfy the Small Worlds axiom. As the following theorem shows, however,

we obtain a slightly weaker version.
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Theorem 5.5. Let G̃ be an N -equivalent game. If S̃ is a metastable set of G̃ then its

projection to Σ is a metastable set of G. If S is a metastable set of G then it contains a

metastable set that is the projection of a metastable set of G̃.

Proof. Let S̃ be a metastable set of G̃. Let Ṽi be a sequence of sets satisfying the conditions

in Definition 2.1. For each i let Vi be the projection of Ṽi to Σ. Clearly the Vi’s converge to

the projection, call it S, of S̃. Also, the Vi’s satisfy the connexity condition since the Ṽi’s

do. Finally, as for the Robustness condition, given a correspondence ϕk × f : Σ× Λk → Λk,

where ϕk is a δi-perturbation of Rk, there is an extension ϕ̃k×f : Σ̃×Λk → Σ̃×Λk given by:

(ϕ̃k × f)(σ, σ−N , λ) is the set of (σ′, σ′−N , λ′) such that σ′ ∈ ϕk(σ, λ), σ′−N ∈ R−N (σ, σ−N ),

and λ′ ∈ f(σ, λ). By the Robustness property for Ṽi there exists a fixed point (σ, σ−N , λ) of

ϕ̃k × f in Ṽi. Then (σ, λ) is a fixed point of ϕk × f in Vi, which shows that Vi satisfies the

Robustness property and hence that S is metastable.

To prove the second statement, let S be a metastable set of G. Let Vi be a sequence of

sets converging to S and satisfying the conditions of Definition 2.1. By Lemma 4.1 we can

assume that the Vi’s are semialgebraic. Let Σo be the mixed strategy space of the outsiders.

And let Σ̃ = Σ × Σo be the mixed strategy space in G̃. By the Robustness condition for

metastability of S, for each i, every correspondence ϕ̃k × f : Σ̃ × Λk → Σ̃ × Λk, where ϕ̃k

is a δi-perturbation of the best-reply correspondence in G̃, has a fixed point in Vi × Σo. As

Vi×Σ0 is semialgebraic, by Theorem 3.8 it contains a stably essential set S̃i. By going to an

appropriate subsequence, we have that S × Σ0 contains a metastable set. By the first part

of this theorem, its projection onto Σ is a metastable set of G, which is obviously contained

in S. ¤

As shown in [15] the collection of q-stable sets (defined in [14]) satisfy the stronger form

of the Small Worlds property, namely that they are precisely the projections of q-stable sets

of N -equivalent games. Since q-stable sets are metastable as well, it would be interesting to

know if the collection of metastable sets that satisfy the stronger property for metastability

is exactly the collection of q-stable sets.

A property related to the Small Worlds axiom is the Decomposition Property, which states

the following. Suppose G1 and G2 are two games played by two sets of players in two different

rooms. Suppose G is the composite game G1 × G2. Then: (D1) the solutions of G project

to solutions of G1 and G2; and, (D2) the product of solutions to G1 and G2 are solutions

to G. Property (D1) is implied by Theorem 5.5 and hence metastability satisfies it. As for

(D2) metastability satisfies the following weaker form.
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Theorem 5.6. Let S1 be a metastable set of G1. There exists a metastable set S2 of G2

such that S1 × S2 is metastable in G1 ×G2.

Proof. By the compactness property for metastability we can assume that S1 is stably es-

sential. Moreover, by Theorem 4.3 we can assume that S1 has a semialgebraic germ E1:

S1 = {σ1 ∈ Σ1 | (0, σ) ∈ E1}; and there exists δ1 > 0 such that for each 0 < δ 6 δ1 E1
δ\∂E1

δ

is connected and dense in Eδ and the projection from E1
δ is stably essential.

Let E = (η1, η2, σ1, σ2) ∈ E such that (η1, σ1) ∈ E1. E is a closed semialgebraic set. For

each 0 < δ 6 δ0, we claim that p : (Eδ, ∂Eδ) → (Pδ, ∂Pδ) is stably essential. To see this, for

each 0 < δ < δ1, let Vδ be the projection of Eδ onto Σ1. Then, by Theorem 3.7, Vδ satisfies

the robustness condition in the definition of metastability. In particular, for each 0 < δ 6 δ1,

and for each k, each correspondence ϕ× f : Σ×Λk → Σ×Λk where ϕ is a δ-perturbation of

R has a fixed point in Vδ×Σ2. By Theorem 3.8, p : (Eδ, ∂Eδ) → (Pδ, ∂Pδ) is stably essential

as claimed.

Let X be the closure of the set of E\∂E1. Then X is a semialgebraic set as well and by

Lemma A.7 the projection from Xδ is stably essential for each 0 < δ 6 δ0. By [15, Lemma

2] there exists δ0 > 0, a positive integer k, for each k a semialgebraic set Xk such that for

each 0 < δ 6 δ0: (i) Xk
δ \∂Xδ is connected and dense in Xk

δ for each k; Xk
δ ∩ X l

δ ⊆ ∂X1

for k 6= l; (iii) ∪kX
k
d = Xδ. Without loss of generality we can assume that δ0 6 δ1.

The stable essentiality of the projection from Xδ along with properties (ii) and (iii) imply

that there exists k such that the projection from Xk
δ is stably essential. Let Y = Xk. Y

satisfies the conditions of Definition 2.6 and the set S given by the projection of Y0 onto

Σ is stably essential set. Let S2 be the projection of S onto Σ2. We will now show that

that S = S1 × S2. In conjunction with decomposition property (D1) this then proves the

result. Choose σ2 ∈ S2. There exists σ1 ∈ S1 such that σ ≡ (σ1, σ2) ∈ S. Because Yδ0\∂Yδ0

is a semialgebraic set that is connected and dense in Yδ0 , (0, σ) = limδ→0(η(δ), σ(δ)) for

some path (η(δ), σ(δ)) in Yδ0\∂Yδ0 . If σ̃1 is another strategy in S1, then by the connexity

for property for the semialgebraic set E1, there (0, σ̃1) = limδ→0(η̃
1(δ), σ̃1(δ)) for a path in

E1\∂E1. Therefore, (η̃1(δ), η(δ), σ̃1(δ), σ2(δ)) is a path in X\∂X1 whose limit is (0, σ̃1, σ2).

Moreover because E1 satisfies the connexity property, it is clear that this path belongs to

Y . Thus (σ̃1, σ2) belongs to S. Since σ̃2 was an arbitrary strategy in S2, we thus have that

S = S1 × S2. ¤
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6. Concluding Remarks

The refinements defined in §2 differ chiefly in the formulation of the corresponding version

of robustness. As Hillas et al. [8] show, homotopy stability is more restrictive than BR-

stability because homotopic essentiality invokes a richer class of perturbations. Stable essen-

tiality is an even stronger requirement because it invokes the Embedding principle, including

the axioms of Invariance and the projection property of Small Worlds. (Co)homological es-

sentiality is evidently the strongest criterion—and importantly, unlike homotopy criteria it

ensures that essential maps are surjective. It is this difference that accounts for the slightly

weaker form (compared to Mertens’ refinement) of the Small Worlds property established

in Theorem 5.5, and the possible failure of metastability to satisfy (D2) of the Decomposi-

tion property. However, we show in [5] that this difference occurs only for a game whose

extensive-form has nongeneric payoffs.

For the foundations of game theory, the development of a canonical refinement of Nash

equilibria requires one to choose among these topological criteria. This choice must ulti-

mately be guided by decision-theoretic criteria. The results in this paper imply that the

weakest topological criterion that preserves the standard list of decision-theoretic axioms is

stable essentiality. Our exposition is cast differently in that we begin straightaway with the

definition of metastability and its motivation in terms of the principles of Embedding and

Robustness, and then establish that this definition is equivalent to stable essentiality of the

projection map from the equilibrium graph. But this is the crux of the matter technically.

Our view is that metastability is a viable substitute for Mertens’ refinements based on

(co)homological essentiality of the projection map, since metastability yields basically the

same decision-theoretic properties. From a computational viewpoint, the test for metasta-

bility (stable essentiality) is more difficult to apply. It advantage in applications may there-

fore lie in its conceptual justification and its agreement with Mertens’ stability in generic

extensive-form games.
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Appendix A. Mathematical Background

We first study some properties of a map whose range is homeomorphic to a ball. Through-

out, let (X, ∂X) be a compact pair and let (B, ∂B) be homeomorphic to a ball with its bound-

ary. (We are not assuming here that ∂X is the boundary of X.) A map f : (X, ∂X) →
(B, ∂B) is essential in homotopy if it is not homotopic relative to ∂X to a map to ∂B.

Mertens [14, Section 4E, Lemma 2] proves the following equivalent characterizations of

inessentiality.

Lemma A.1. The following statements are equivalent.

• f : (X, ∂X) → (B, ∂B) is inessential in homotopy.

• There exists a map g : X → ∂B that agrees with f on ∂X.

• There exists a map g : X → ∂B such that the restrictions of f and g to ∂X are freely

homotopic.

The following Lemma shows that a map that is essential in homotopy has strong fixed-

point properties.

Lemma A.2. Let f : (X, ∂X) → (B, ∂B) be a map that is essential in homotopy. Then

every function g : X → B has a point of coincidence with f , i.e. there exists x ∈ X such

that f(x) = g(x). Moreover, if X is metrizable and B is convex then every correspondence

ϕ : X → B has a point of coincidence with f .

Proof. Suppose there exists g : X → B that has no point of coincidence with f . Viewing

B as a ball, define a map h : X → ∂B as follows: for each x ∈ X, h(x) is the unique

point in ∂B that is closer to f(x) than g(x) on the line from g(x) through f(x). Clearly h

coincides with f on ∂X and hence f is inessential. Assume now the additional hypotheses

of the second statement. Using McLennan [12, Proposition 2.25], for each ε > 0 there exists

a function gε : X → Y whose graph is within ε of the graph of ϕ. By what we have proved,

each gε has a point xε such that f(xε) = gε(xε). Let x be the limit of a convergent sequence

of xε as ε goes to zero. Then x is a point of coincidence between f and ϕ. ¤

As the following Lemma shows, the above coincidence property completely characterizes

the essentiality of f in some cases.

Lemma A.3. Suppose f : (X, ∂X) → (B, ∂B) is such that f(X\∂X) ⊆ B\∂B. If f is

inessential then there exists a map g : X → B with no point of coincidence with f .

Proof. There is no loss of generality in assuming that B is the unit ball in a Euclidean space.

Suppose f is inessential. Then there exists a map g : X → ∂B that agrees with f on ∂X.
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Define h : X → B by letting h(x) be the “antipode” of g(x) in B, i.e. h(x) = −g(x). Clearly,

f has no point of coincidence with h. ¤

Remark A.4. Let Y be the closure of X\∂X and let ∂Y = Y \(X\∂X). Given f :

(X, ∂X) → (B, ∂B), define g be the restriction of f to Y . If f is inessential then so is

g. On the other hand, any map h : Y → ∂B that agrees with g on ∂Y extends to a map

over X by letting it agree with f on X\Y . Hence if g is inessential then f is too. Thus

essentiality of f and g are equivalent.

We are often interested in quotient spaces X ′ and B′ of X and B obtained by identifying

some points in ∂X and ∂B, respectively, in such a way that the map f induces a map f ′

from X ′ to B′. Under some conditions, the essentiality of f is equivalent to the essentiality

of f ′. Formally, for Y = X, B, suppose qY : (Y, ∂Y ) → (Y ′, ∂Y ′) is a surjective closed map

that sends Y \∂Y homeomorphically onto Y ′\∂Y ′. (Since Y and Y ′ are compact, if Y ′ is

Hausdorff—as it will be in all our intended applications—every surjective map from Y to Y ′

is a closed map.) Furthermore, suppose that (B′, ∂B′) is homeomorphic to a ball pair. Let

f : (X, ∂X) → (B, ∂B) and f ′(X ′, ∂X ′) → (B′, ∂B′) be two maps such that: f ′ ◦ qX = qB ◦f

and f ′(X ′\∂X ′) ⊆ B′\∂B′.

Lemma A.5. f is essential in homotopy iff f ′ is.

Proof. Suppose f is inessential. Let g : X → ∂B be a map that agrees with f on ∂X.

Define g′ : X ′ → ∂B′ by g′(x′) = qB(g(q−1
X (x′))). Obviously, g′(x′) is a singleton set for

x′ ∈ X ′\∂X ′. For x′ ∈ ∂X ′, q−1
X (x′) ⊆ ∂X. Therefore, qB(g(q−1

X (x′))) = qB(f(q−1
X (x′))) =

f ′(qX(q−1
X (x′))) = f ′(x′). Thus, g′ is single-valued and coincides with f ′ on ∂X ′. Finally,

continuity of g′ follows from the fact that qX is a closed map and from the continuity of qB

and g. Consequently, f ′ is inessential.

Suppose f ′ is inessential. By Lemma A.3 there exists a map g′ : X ′ → B′ that does

not have a point of coincidence with f ′. Without loss of generality, we can assume that

g′(X) ⊆ B′\∂B′. (Indeed, viewing B′ as a ball, for a fixed b′ ∈ B′\∂B′, the map sending

x′ to (1 − δ)g′(x′) + δb′ has no point of coincidence with f ′ for sufficiently small δ > 0 and

has all its values in B′\∂B′.) Then, the map q−1
B ◦ g′ ◦ qX is well-defined and has no point of

coincidence with f . Thus f is inessential. ¤

A.1. Extension of Maps to Suspensions. The (unreduced) suspension SX of X is de-

fined as the quotient space of X × [0, 1] obtained by identifying X × { 0 } to a point and

X × { 1 } to another point. One then defines the k-th suspension SkX of X inductively as

follows: S0X = X and SkX = SSk−1X for each k > 0.
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Given the pair (X, ∂X), S∂X can be viewed as a subset of SX if for i = 0, 1, we identify

the “point” ∂X×{ i } with X×{ i }—thus S∂X is the set ∂X× (0, 1) along with the points

X×{ i } for i = 0, 1. One again defines the k-th suspension Sk(X, ∂X) of (X, ∂X) as follows:

S0(X, ∂X) = (X, ∂X) and Sk(X, ∂X) = SSk(X, ∂X) for each k > 0. For example, if B is

n-dimensional then SB is an (n + 1)-ball and S∂B is an n-sphere. Thus, S(B, ∂B) is an

(n + 1)-ball pair.

Given a map f : (X, ∂X) → (B, ∂B), one defines its extension Sf : S(X, ∂X) → S(B, ∂B)

to the suspensions of its domain and range as follows: Sf(x, t) = (f(x), t) for (x, t) ∈
X × (0, 1), and Sf(X × { i }) = B × { i } for i = 0, 1. Then one defines inductively the map

Skf : Sk(X, ∂X) → Sk(B, ∂B) as follows: S0f = f and Skf = SSk−1f for each k > 0.

Lemma A.6. Let f : (X, ∂X) → (B, ∂B) be such that f(X\∂X) ⊆ B\∂B. For k > 0,

let (Bk, ∂Bk) be a pair that is homeomorphic to the k-ball pair and let fk : (X, ∂X) ×
(Bk, ∂Bk) → (B, ∂B) × (Bk, ∂Bk) be the function fk(x, bk) = (f(x), bk). Then Skf is

essential iff fk is.

Proof. It is sufficient to prove the Lemma for the case (Bk, ∂Bk) = ([0, 1]k, ∂[0, 1]k). Since

f(X\∂X) ⊆ B\∂B, we have that Skf(SkX\Sk∂X) ⊆ SkB\Sk∂B. SkX is a quotient space

of Sk−1X× [0, 1] and therefore, by Lemma A.5, Skf is essential iff (Sk−1f)1 : Sk−1(X, ∂X)×
([0, 1], { 0, 1 }) → Sk−1(B, ∂B) × ([0, 1], { 0, 1 }) given by (Sk−1f)1(x′, t) = (Sk−1f(x′), t)

is essential. Again, using the same Lemma, (Sk−1f)1 is essential iff the map (Sk−2f)2 :

Sk−2(X, ∂X)×([0, 1]2, ∂[0, 1]2) → Sk−2(B, ∂B)×([0, 1]2, ∂[0, 1]2) given by (Sk−2f)2(x′, t1, t2) =

(Sk−1f(x′), t1, t2) is essential. Continuing this downward induction yields the result since

(S0f)k is the map fk. ¤

Remark A.7. The property in Remark A.4 obviously extends to suspensions of f and g as

well—a fact that we use later.

Definition A.8 (stably essential). A map f is stably essential if for each k, Skf is essential

in homotopy.

For each k > 0, if Skf is essential in homotopy then so is Sk−1f . The converse is not

true in general—see for instance [14, Section 4F]—but the following Lemma gives a sufficient

condition.

Lemma A.9. Let (X, ∂X) be a CW complex that has the same dimension as (B, ∂B). If

f : (X, ∂X) → (B, ∂B) is essential then it is stably essential.

Proof. For k > 0, suppose the k-th suspension Skf of f is essential. We show that Sk+1f

is essential. (Recall that f 0 = f .) Sk(X, ∂X) is obviously a CW complex. Also, if n is
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the dimension of B then k + n is the dimension of SkX and SkB. Let (Y, y0) be the space

obtained from SkX by collapsing Sk∂X to a point y0. Likewise let (C, c0) be the space

obtained by collapsing Sk∂B to a point c0. Let g : (Y, y0) → (C, c0) be the map induced by

Skf . By Mertens [14, Section 4.E, Theorem], because Sk is essential, g is not homotopic to

the constant map that sends every y ∈ Y to c0.

Let (Y1, y1) be the quotient space of S(Y, y0) obtained by collapsing Sy0 to a point, i.e.

the quotient space of Y × [0, 1] obtained by collapsing (Y × 0) ∪ (Y × 1) ∪ (y0 × [0, 1]) to a

point y1. Likewise let (C1, c1) be the space obtained from (C, c0). Let g1 : (Y1, y1) → (C1, c1)

be the map induced by the suspension Sg of g. By Spanier [16, Suspension Theorem 8.5.11],

since g is not homotopic to the constant map sending points to c0, g1 is also not homotopic

to the constant that sends every y ∈ Y1 to c1. Obviously (Y1, y1) is the quotient space of

the (k + n + 1)-dimensional CW complex Sk+1(X, ∂X) obtained by collapsing Sk+1∂X to a

point y1. The same is true of (C1, c1). Hence we can again apply Mertens [14, Section 4.E,

Theorem] to conclude that Sk+1f is essential. ¤

If the dimension of (X, ∂X) is smaller than the dimension of (B, ∂B) then the map f is

not even surjective, so it is inessential in homotopy. It is when X has higher dimension than

B that stable essentiality is possibly stronger than essentiality.

Appendix B. Multisimplicial and Polyhedral Complexes

B.1. Multisimplicial Complexes. The material of this subsection is based on [4, Appen-

dix B]. We refer the reader to that article for a proof of the multisimplicial approximation

theorem stated below.

A set of points { v0, . . . , vn } in RN is affinely independent if the equations
∑n

i=0 λivi = 0

and
∑

i λi = 0 imply that λ0 = · · · = λn = 0. An n-simplex K in RN is the convex hull of an

affinely independent set { v0, . . . , vn }. Each vi is a vertex of K and the collection of vertices

is called the vertex set of K. Each σ ∈ K is expressible as a unique convex combination∑
i λivi; and for each i, σ(vi) ≡ λi is the vi-th barycentric coordinate of σ. A face of K is

the convex hull of a nonempty subset of the vertex set of K.

A (finite) simplicial complex K is a finite collection of simplices such that the face of each

simplex in K belongs to K, and the intersection of two simplices is either empty or a face of

each. The set V of 0-dimensional simplices is called the vertex set of K. The set given by

the union of the simplices in K is called the space of the simplicial complex and is denoted

|K|. For each σ ∈ |K|, there exists a unique simplex K of K containing σ in its interior;

define the barycentric coordinate function σ : V → [0, 1] by letting σ(v) = 0 if v is not a
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vertex of K and otherwise by letting σ(v) be the corresponding barycentric coordinate of σ

in the simplex K.

A subdivision of a simplicial complex K is a simplicial complex K∗ such that each simplex

of K∗ is contained in a simplex of K and each simplex of K is the union of simplices in K∗.
Obviously |K| = |K∗|.

A multisimplex is a set of the form K1 × · · ·Km, where for each i, Ki is a simplex. A

multisimplicial complex K is a product K1 × · · · × Km, where for each i, Ki is a simplicial

complex. (The vertex set V of a multisimplicial complex K is the set of all (v1, . . . , vm) for

which for each i, vi is a vertex of Ki. The space of the multisimplicial complex is
∏

i |Ki| and

is denoted |K|. A subdivision of a multisimplicial complex K is a multisimplicial complex

K∗ =
∏

iK∗i where for each i, K∗i is a subdivision of Ki. In the following, K = K1× · · · Kn is

a fixed multisimplicial complex and L is a fixed multisimplicial complexes.

Definition B.1 (cellular map). A map f : |K| → |L| is called multisimplicial if for each

multisimplex K of K there exists a simplex L in L such that:

(1) f maps each vertex of K to a vertex of L;

(2) f is multilinear on |K|; i.e., for each σ ∈ |K|, f(σ) =
∑

v∈V f(v)×∏
i σi(vi).

By Property 1 of the Definition, vertices of K are mapped to vertices of L. Therefore, for

each σ ∈ |K|, f(σ) is an average of the values at the vertices of K. Since the simplex L is a

convex set, the image of the multisimplex K is contained in L. If K is a simplicial complex,

then Definition B.1 coincides with the usual definition of a simplicial map. In this case the

image of a multisimplex K under f is a simplex of L, but in the multilinear case the image

of K could be a strict subset of L.

Definition B.2 (multisimplicial map). Let g : |K| → |L| be a map. A multisimplicial map

f : |K| → |L| is a multisimplicial approximation to f if for each σ ∈ |K|, f(σ) belongs to the

simplex that contains g(σ) in its interior.

We could equivalently define a multisimplicial approximation by requiring that for each

σ, and each simplex L of L, g(σ) ∈ L =⇒ f(σ) ∈ L. The following theorem is the

multisimplicial version of the simplicial approximation theorem.

Theorem B.3. Let g : |K| → |L| be a map. There exists η > 0 such that for each subdivision

K∗ of K with the property that the diameter of each multisimplex is at most η, there exists

a multisimplicial approximation f : |K∗| → |L| of g.

B.2. Polyhedral Complexes. A polyhedral complex P is a finite collection of polyhedra

such that: (i) each face of a polyhedron in P belongs to P ; and (ii) the intersection of two
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polyhedra in P is either empty or a face of each of them. The union of the polyhedra in P
is the space of the polyhedral complex and denoted |P|. Every multisimplicial complex, for

example, is a polyhedral complex where the polyhedra are the multisimplices.

A polyhedral complex P ′ is a polyhedral subdivision of P if each polyhedron in P ′ is

contained in a polyhedron of P and each polyhedron in P is the union of polyhedra in P ′.
The following Lemma is the basis for defining Player 0’s payoff function in Step 2 of the

proof of Claim equivalent game.

Theorem B.4. Let P be a polyhedral complex such that |P| is d-dimensional polyhedron

in Rn. There exists a polyhedral subdivision P ′ of P and a convex, piecewise-affine function

γ : |P| → R such that the maximal convex domains on which γ is affine are the d-dimensional

polyhedra in P ′.

Proof. The polyhedral complex P ′ is derived from P as follows (Eaves and Lemke, 1981).

Let P1 be the set of all (d − 1)-dimensional polyhedra in P . For each polyhedron P ∈ P1,

let HP = { z ∈ Rn | a′P z = bP } be the hyperplane that includes P , and if d < n is

orthogonal to |P|. Let P ′0 be the set of all polyhedra of the form |P|∩ [∩P∈P1H
i
P ] where each

i ∈ {+,−} and H+
P and H−

P are the two closed half spaces whose intersection is HP . P ′
0 is a

collection of d-dimensional polyhedra whose union is |P|. Let P ′ be the polyhedral complex

consisting of all the polyhedra that are faces of some polyhedron in P ′0. By construction,

P ′ is a polyhedral subdivision of P . Associate with P ′ the map γ : |P| → R+ for which

γ(σ) =
∑

P∈P1
|a′P σ − bP |. Then γ is convex and piecewise affine. Moreover, the maximal

convex domains on which γ is affine are the polyhedra in P ′
0, which are the d-dimensional

polyhedra of P ′. ¤
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