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Abstract

Recent theories of choice under uncertainty represent ambiguity via multiple priors,
informally interpreted as alternative probabilistic models of the uncertainty that the
decision-maker considers equally plausible. This paper provides a robust behavioral
foundation for this interpretation.

A prior P is deemed “plausible” if (i) preferences over a subset C of acts are
consistent with subjective expected utility (SEU), and (ii) jointly with an appropriate
utility function, P provides the unique SEU representation of preferences over C.

Under appropriate axioms, plausible priors can be elicited from preferences; more-
over, if these axioms hold, (i) preferences are probabilistically sophisticated if and only
if they are SEU, and (ii) under suitable consequentialism and dynamic consistency
axioms, “plausible posteriors” can be derived from plausible priors via Bayes’ rule.
Several well-known decision models are consistent with the axioms proposed here.
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1 Introduction

Multiple priors, i.e. sets of probabilities over relevant states of nature, are a distinguishing

feature of several decision models that depart from subjective expected utility maximization

(SEU) in order to account for perceived ambiguity. Consider for instance the following

version of the Ellsberg [8] experiment: an urn contains 90 balls, of which 30 are red and

60 are green or blue, in unspecified proportions; subjects are asked to rank bets on the

realizations of a draw from the urn. Denote by r, g and b the possible realizations of

the draw, in obvious notation. The following, typical pattern of preferences suggests that

subjects dislike ambiguity about the relative likelihood of g vs. b: ($10 if r, $0 otherwise)

is strictly preferred to ($10 if g, $0 otherwise), and ($10 if g or b, $0 otherwise) is strictly

preferred to ($10 if r or b, $0 otherwise). While these preferences violate SEU, they are

consistent with the maxmin expected-utility (MEU) decision model first axiomatized by

Gilboa and Schmeidler [15]. According to this model, for all “acts” f, g mapping realizations

to prizes, f is weakly preferred to g if and only if

min
p∈P

∫
u(f(s)) p(ds) ≥ min

p∈P

∫
u(g(s)) p(ds),

where u is a utility index and P a set of “priors”. In order to rationalize the above preferences,

assume that u($10) > u($0), and let P be the set of all probability distributions p on {r, g, b}
such that p(r) = 1

3
and 1

6
≤ p(g) ≤ 1

2
(other choices of priors are possible).

The literature suggests that multiple priors may be interpreted as alternative probabilistic

models of the underlying uncertainty, all equally plausible from the decision-maker’s point

of view. Indeed, a multiplicity of plausible priors is often interpreted as a direct consequence

of ambiguity.1 For conciseness, call this the intuitive interpretation of multiple priors.

This paper provides robust behavioral foundations for this interpretation. To this end,

it identifies a formal notion of “plausible prior” that is both robust to different assumptions

about the decision-maker’s attitudes towards ambiguity, and behavioral, i.e. independent of

the functional representation of overall preferences.

Simple, canonical examples of choice in the presence of ambiguity demonstrate the need

for a robust, behavioral notion of “plausible prior”. Return to the urn experiment; consider

a decision-maker, henceforth referred to as “Ann”, whose preferences are as described above:

that is, they are consistent with the MEU model, with priors P . Then, Ann’s preferences are

also consistent with other decision models, featuring different sets of priors. For instance,

1 See e.g. Ellsberg [8, p 661]), Gilboa and Schmeidler [15, p. 142] and Schmeidler [30, p. 584]; also cf.
Luce and Raiffa [22, pp. 304-305], and Bewley [3].
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consider Hurwicz’ α-maxmin expected utility (α-MEU) model, which prescribes that f be

weakly preferred to g if and only if

α min
q∈Q

∫
u(f(s)) q(ds) + (1− α) max

q∈Q

∫
u(f(s)) q(ds) ≥

α min
q∈Q

∫
u(g(s)) q(ds) + (1− α) max

q∈Q

∫
u(g(s)) q(ds),

where Q is a set of priors and α ∈ [0, 1].2 If α = 3
4

and Q comprises all probabilities q over

{r, g, b} such that q(r) = 1
3
, one obtains an alternative representation of Ann’s preferences.3

The MEU representation of Ann’s preferences might lend some support to the claim

that P is the set of all priors she deems “plausible”. But the 3
4
-MEU representation of

Ann’s preferences lends just as much support to the claim that Q is the set of plausible

priors. Absent any formal behavioral criterion, deciding whether P or Q (or neither) is

the “right” set reduces to a choice between alternative functional representations of the

same preferences. But this diminishes the behavioral content and appeal of the intuitive

interpretation of multiple priors. Hence the need for robust behavioral foundations.

Furthermore, the intuitive interpretation of priors is often invoked to suggest that specific

functional representations of preferences reflect distinct attitudes towards ambiguity; for

instance, the maxmin criterion may suggest “extreme pessimism”. If sets of priors are

identified only by the choice of a specific functional form, this intuition is questionable. But

if a robust behavioral foundation for the notion of plausible priors is provided, this intuition

can be made rigorous. This provides a secondary motivation for the present paper.

An alternative response to these observations is to regard the intuitive interpretation of

multiple priors simply as a loose and informal “rationale” for certain functional represen-

tations of preferences. But this interpretation has played a central role in motivating both

theoretical and applied research on ambiguity (cf. Footnote 1). Furthermore, it underlies

and facilitates the economic interpretation of several results in applications featuring multi-

ple priors.4 These considerations alone justify an attempt to identify conditions under which

the intuitive interpretation is essentially correct.

To complement the behavioral definition of plausible priors, this paper proposes an ax-

iomatic framework wherein preferences satisfy several important properties:

2An axiomatization is provided by Ghirardato, Maccheroni and Marinacci [12].
3α-MEU-type representations featuring arbitrarily small subsets of P can also be constructed. Moreover,

Section 6.1 in the Online Appendix shows that similar constructions are feasible for all MEU preferences.
4See e.g. Mukerji [26, p. 1209], Epstein and Wang [9, p. 289], Hansen, Sargent and Tallarini [17, p. 878],

Billot, Chateauneuf, Gilboa and Tallon [4, p.686].
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• The main result of this paper shows that, under the proposed axioms, plausible priors

may be uniquely derived from preferences.

• The axioms I consider are compatible with a variety of known decision models, so the

proposed definition of plausible prior is indeed robust (cf. Section 2.4). A fortiori, it

is independent of any specific functional representation of preferences.

• A preference relation that satisfies the proposed axioms (“plausible-priors preference”

henceforth) is probabilistically sophisticated in the sense of Machina and Schmeidler

[23] if and only if it is consistent with SEU—and hence admits a single plausible prior.

• The class of plausible-priors preferences is closed under Bayesian updating. Consider an

“unconditional” plausible-priors preference, and a “conditional” preference that is also

characterized by “plausible posteriors”. I identify necessary and sufficient consistency

axioms for plausible posteriors to be related to plausible priors via Bayesian updating.

• Finally, the collection of plausible priors fully characterizes preferences: the ordering

of any two acts is fully determined by their expected utilities computed with respect

to each plausible prior (as is the case e.g. for MEU preferences).

The proposed definition of “plausible priors”.

This paper adopts the Anscombe-Aumann [1] framework (although this is not essential: see

Section 2); thus, acts map states to lotteries over prizes.

I deem a probability measure P over states of nature a plausible prior if there exists a

(suitable) subset C of acts that satisfies the following two conditions:

(i) the decision-maker’s preferences among acts in C satisfy the Anscombe-Aumann [1]

axioms (and hence are consistent with SEU); and

(ii) a unique subjective probability can be derived from preferences among acts in C, and

coincides with P .

More succinctly, P is a plausible prior if it uniquely rationalizes the decision-maker’s choices

over a subset of acts. Informally, a prior is deemed plausible if the decision-maker behaves

as if she “actually used it” to rank a sufficiently rich subset of acts.

The uniqueness requirement in Condition (ii) is relatively demanding, but essential. The

axiomatic framework adopted here ensures that this requirement can be met.

To illustrate the definition, return to the three-color-urn experiment. The set of priors

that Ann considers plausible is {P1, P2}, where P1(r) = P2(r) = 1
3

and P1(g) = P2(b) = 1
6
.
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Let C1 be the set of acts f such that f(b) is weakly preferred to f(g): thus, f ∈ C1 if and only

if u(f(g)) ≤ u(f(b)). Regardless of which representation of Ann’s preferences one chooses

to employ, it is easy to verify that acts in C1 are ranked according to their expected utility

with respect to the probability P1;
5 hence, preferences over C1 are consistent with SEU.

Moreover, P1 is the only probability distribution on {r, g, b} that is compatible with Ann’s

preferences over C1.Similar arguments hold for the set C2 of acts f such that f(g) is weakly

preferred to f(b); preferences over C2 uniquely identify the plausible prior P2. Finally, while

there exist other sets C of acts for which Condition (i) holds (a trivial example is the set of

all constant acts), Condition (ii) fails for such sets (for example, any probability distribution

provides a “SEU representation” of preferences over constant acts).

Condition (i) is expressed solely in terms of preferences: whether or not a set C has the re-

quired properties is independent of specific functional representations of the decision-maker’s

overall preferences. Condition (ii) then establishes the connection between the plausible prior

P and preferences. Thus, the proposed definition is indeed fully behavioral.

The uniqueness requirement in Condition (ii) is essential in supporting the claim that a

candidate prior is considered plausible regardless of any specific functional representation of

overall preferences. As noted above, if uniqueness were dropped in Condition (ii), one would

conclude that any prior is “plausible” in the three-color-urn example.6 Further restrictions

might of course be imposed by arbitrarily adopting a specific representation of Ann’s overall

preferences (e.g. MEU) and insisting that “plausible priors” be elements of the corresponding

set of priors (e.g. P). But these restrictions would be motivated solely by non-behavioral,

functional-form considerations. The uniqueness requirement in Condition (ii) eliminates this

difficulty and preserves the behavioral character of the proposed definition.

Organization of the paper

This paper is organized as follows. Section 2 introduces the decision framework, formulates

and motivates the axioms, presents the main characterization result, and applies it to known

decision models. Section 3 establishes the equivalence of probabilistic sophistication and

SEU for plausible-priors preferences, and presents the characterization of Bayesian updating.

Section 4 discusses the related literature. All proofs are in the Appendix.

5For the 3
4 -MEU representation, consider an act f such that u(f(g)) < u(f(b)); then

arg minq∈Q
∫
u(f(s)) q(ds) = {q1}, where q1(r) = 1

3 , q1(g) = 2
3 ; also, arg maxq∈Q

∫
u(f(s)) q(ds) = {q2},

with q2(r) = 1
3 , q2(g) = 0. Hence, f is effectively evaluated using the prior 3

4q1 + 1
4q2 = P1.

6For a less extreme example, consider the collection C1∩C2 of acts f such that Ann is indifferent between
f(g) and f(b). Dropping the uniqueness requirement, any probability q such that q(r) = 1

3 could be deemed
a “plausible prior”.
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2 Model and Characterization

2.1 Decision-Theoretic Setup

I adopt a slight variant of the Anscombe-Aumann [1] decision framework. Consider a set

of states of nature S, endowed with a σ-algebra Σ, a set X of consequences (prizes), the

set Y of (finite-support) lotteries on X. For future reference, a charge is a finitely, but not

necessarily countably additive measure on (S, Σ).

A regularity condition on the σ-algebra Σ is required. I assume that (S, Σ) is a stan-

dard Borel space (cf. Kechris [20], Def. 12.5). That is, there exists a Polish (separable,

completely metrizable) topology T on S such that Σ is the Borel σ-algebra generated by

T . This assumption is unlikely to be restrictive in applications: examples of standard Borel

spaces include all finite and countable sets, Euclidean n-space Rn and any Borel-measurable

subset thereof, as well as spaces of sample paths in the theory of continuous-time stochastic

processes. The Polish topology T mentioned above plays no role in the axioms.

As in the standard Anscombe-Aumann [1] setup, acts are Σ-measurable maps from S into

Y that are bounded in preference. I assume that preferences are defined over all such acts.

Formally, let �0 be a binary relation on Y , and let L be the collection of all Σ-measurable

maps f : S → Y for which there exist y, y′ ∈ Y such that y �0 f(s) and f(s) �0 y′ for every

s ∈ S. With the usual abuse of notation, denote by y the constant act assigning the lottery

y ∈ Y to each s ∈ S. Finally, denote by � a preference relation on L that extends �0: that

is, for all y, y′ ∈ Y , y � y′ if and only if y �0 y′. Denote the asymmetric and symmetric

parts of � by � and ∼ respectively.

Mixtures of acts are taken pointwise: if f, g ∈ L and α ∈ [0, 1], αf + (1− α)g is the act

assigning the compound lottery αf(s) + (1− α)g(s) to each state s ∈ S.

Finally, a notion of pointwise convergence for appropriate sequences of acts will be intro-

duced: cf. e.g. Epstein and Zhang [10]. Say that a sequence {fn}n≥1 ⊂ L of acts is uniformly

bounded (“u.b.”) if there exist y, y′ ∈ Y such that, for all s ∈ S and n ≥ 1, y � fn(s) � y′.

Say that the sequence converges in preference to an act f ∈ L (written “fn → f”) if, for

all y ∈ Y with y ≺ f (resp. y � f), there is N ≥ 1 such that n ≥ N implies y ≺ fn (resp.

y � fn). Finally, say that {fn} converges pointwise in preference to f (written “fn
∀s−→ f”)

if, for all s ∈ S, fn(s) → f(s).

It should be emphasized that the Anscombe-Aumann setup is adopted here merely as

a matter of expository convenience. The analysis can be equivalently carried out in the

“fully subjective” framework proposed by Ghirardato, Maccheroni, Marinacci and Siniscalchi

[14]. A brief sketch of their approach is as follows. Let X be a “rich” (e.g. connected,
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separable topological) space of prizes; define acts as bounded, measurable maps from S to

X. Then, under appropriate assumptions (cf. [14], Preference Assumption A and Remark

4, and references therein), preferences over prizes are represented by a utility function u

such that u(X) is a convex set; moreover, it is possible to define a “subjective” mixture

operation ⊕ over prizes such that, for all x, x′ ∈ X, and α ∈ [0, 1], u(αx ⊕ (1 − α)x′) =

αu(x) + (1− α)u(x′). All axioms stated below can then be restated simply by replacing the

“objective” Anscombe-Aumann mixture operation with subjective mixtures. This yields a

characterization of plausible-priors preferences in a fully subjective environment.

2.2 Axioms and Interpretation

I begin by introducing a set of basic structural axioms (Axioms 1–5 in §2.2.1). Next, the

notion of mixture neutrality is employed to provide a formal definition of plausible priors

(§2.2.2). Next, I discuss the notion of hedging against ambiguity and define robust mixture

neutrality (§2.2.3); the latter is then employed to formulate the key axiom for preferences

that admit plausible priors: “No Local Hedging” (Axiom 7 in §2.2.4). Two final regularity

conditions (Axioms 8 and 9) are introduced in §2.2.5.

2.2.1 Basic Structural Axioms

The first five axioms will be applied both to the set L of all acts, and to certain subsets of

L. I state them using intentionally vague expressions such as “for all acts f, g...” to alert

the reader to this fact.

Axioms 1–4 appear in Gilboa and Schmeidler [15] and Schmeidler [30], as well as in

“textbook” treatments of the Anscombe-Aumann characterization result; Axiom 5, due to

Gilboa and Schmeidler [15], weakens the standard Independence requirement by imposing

invariance of preferences to mixtures with constant acts only.

Axiom 1 (Weak Order) � is transitive and complete.

Axiom 2 (Non-degeneracy) Not for all acts f, g, f � g.

Axiom 3 (Continuity) For all acts f, g, h such that f � g � h, there exist α, β ∈ (0, 1)

such that f � αf + (1− α)h � g and g � βf + (1− β)h � h.

Axiom 4 (Monotonicity) For all acts f, g, if f(s) � g(s) for all s ∈ S, then f � g.

Axiom 5 (Constant-act Independence) For all acts f, g, all y ∈ Y , and all α ∈ (0, 1):

f � g implies αf + (1− α)y � αg + (1− α)y.
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2.2.2 Mixture Neutrality and Plausible Priors

Recall that, loosely speaking, a prior P is deemed plausible if (i) preferences satisfy the

Anscombe-Aumann axioms for SEU on a subset C ⊂ L of acts, and (ii) P is the unique

probability that yields a SEU representation of preferences on C. The Anscombe-Aumann

characterization of SEU employs Axioms 1–4, plus the standard Independence axiom in lieu

of Axiom 5. An alternative characterization employs Axioms 1–5 plus an additional property,

Mixture Neutrality. Thus, since this paper considers preferences that satisfy Axioms 1–5,

condition (i) corresponds to the requirement that Mixture Neutrality hold on C.

This subsection formalizes the preceding discussion. First, the following notation and

terminology is convenient. Two acts f and g are mixture-neutral if the decision-maker is

indifferent between any mixture αf +(1−α)g and the corresponding mixture αy +(1−α)y′

of lotteries equivalent to them, i.e. such that y ∼ f and y′ ∼ g. In light of Axiom 5,

C-Independence, this requirement can be formalized as follows.

Definition 2.1 (Mixture-neutral acts) Two acts f, g ∈ L are mixture-neutral (f ' g) if

and only if, for every y ∈ Y , g ∼ y implies αf +(1−α)g ∼ αf +(1−α)y for every α ∈ [0, 1].

Axiom 6 (Mixture Neutrality) For all acts f, g, f ' g.

A note on terminology: “mixture neutrality” refers to the property of acts in Def. 2.1;

“Mixture Neutrality” (capital initials) refers to Axiom 6.

The connection between mixture neutrality and ambiguity is discussed at length in the

next subsection. The following proposition confirms that Mixture Neutrality is the key

axiom characterizing SEU preferences in the class of preferences that satisfy Axioms 1–5.

Furthermore, this is the case whether axioms are applied to the entire set L of acts, or to an

appropriate subset thereof. This validates the proposed approach.7

Proposition 2.2 Consider a preference relation � on L and a convex subset C of L that

contains all constant acts. Then the following statements are equivalent:

(1) � satisfies Axioms 1-5 and 6 for acts in C.

(2) there exists a probability charge P on (S, Σ), and an affine, cardinally unique function

u : Y → R, such that, for all acts f, g ∈ C, f � g if and only if
∫

u(f(·)) dP ≥
∫

u(g(·)) dP.

Proposition 2.2 does not guarantee that the probability charge P in (2) is unique. This

is explicitly required in the formal definition of plausible prior, which can finally be stated.

7This result is standard if the set C in the statement below equals L (or the collection of simple acts);
see Remark 5 in Subsection 5.1.5 of the Appendix for a sketch of the argument in the general case.
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Definition 2.3 (Plausible Prior) Consider a preference relation � that satisfies Axioms

1–5 on L. A probability charge P on (S, Σ) is a plausible prior for � if and only if there

exists a convex subset C of L containing all constant acts and such that

(i) � satisfies Axiom 6 on C;

(ii) P is the unique charge that provides a SEU representation of � on C.

I emphasize that a plausible prior is not required to be countably additive.

2.2.3 Hedging and Robust Mixture Neutrality

Gilboa and Schmeidler [15] and Schmeidler [30] suggest that an ambiguity-averse (MEU)

decision-maker may violate Mixture Neutrality when contemplating a mixture of two acts

f, g that provides a hedge against perceived ambiguity.8 On the other hand, if (as prescribed

by the definition of plausible prior) a decision-maker exhibits SEU preferences over a set C

of acts, hedging considerations must be irrelevant for mixtures of acts in C. Thus, loosely

speaking, preferences for which plausible priors can be elicited may exhibit arbitrary “global”

attitudes towards ambiguity, but are “locally” indistinguishable from SEU preferences.

Axiom 7 (“No Local Hedging”), to be introduced in §2.2.4, characterizes this specific

aspect of preferences, building on the notion of robust mixture neutrality. This subsection

formalizes this notion, and clarifies its interpretation by means of examples that will also

prove useful in motivating the axiom.

Notation. All examples in this section employ a finite state space S = {s1, . . . , sN} and a

common set of prizes X = {$0, $10}. The set of probability distributions on S is denoted by

∆(S). Also, a lottery y ∈ Y can be identified with the probability of receiving the prize $10;

similarly, an act f is represented by a tuple (f(s1), . . . , f(sN)) ∈ [0, 1]N , where f(sn) is the

probability of receiving the prize $10 in state sn. Axioms 1–5 imply that the decision-maker

has EU preferences over Y , so such tuples can also be interpreted as utility profiles.

A mixture of two acts f, g intuitively provides a hedge against ambiguity if it reduces out-

come variability across ambiguous events relative to both f and g. Example 1 is a particularly

simple instance of this phenomenon; Examples 2 and 3 are possibly more interesting.

8All considerations concerning MEU preferences in this subsection and the next apply to “maxmax EU”,
or 0-MEU, preferences as well (with the appropriate modifications).
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Example 1 (Ann) This is Ellsberg’s three-color-urn experiment described in the Intro-

duction, restated here for notational uniformity. Ann has MEU preferences, with priors

QA = {q ∈ ∆(S) : p(r) = 1
3
, 1

6
≤ p(g) ≤ 1

2
} (denoted P in the Introduction).

The acts fg = (0, 1, 0) and fb = (0, 0, 1) exhibit considerable variability across the intu-

itively ambiguous events {g} and {b}; however, they vary in opposite, hence complementary

directions—fg(g) � fg(b) and fb(g) ≺ fb(b). Consequently, their strict mixtures display less

variability across {g} and {b} than both fg and fb: indeed, 1
2
fg + 1

2
fb is constant on {g, b}.

Consistently with this hedging intuition, fg 6' fb.

On the other hand, two acts f, f ′ are mixture-neutral if and only if f(g) � f(b) and

f ′(g) � f ′(b), or f(g) � f(b) and f ′(g) � f ′(b). Mixtures of such acts will display more

outcome variability across the intuitively ambiguous events g and b than one of the acts f, f ′,

and less variability than the other.9

Example 2 (Bob) (cf. Klibanoff [21], Ex. 1). A ball is drawn from an urn containing an

equal, but unspecified number of red and blue balls, and an unspecified number of green balls;

thus, S = {r, g, b}. Bob has MEU preferences, with priors QB = {q ∈ ∆(S) : p(r) = p(b)}.
Thus, the relative likelihood of {r} vs. {b} is unambiguous.

Let f = (.2, .3, .5) and f ′ = (.1, .4, .6). Then f and f ′ are comonotonic,10 but the

expected outcomes they yield on the ambiguous events {r, b} and {g} vary in complementary

directions. Hence, their mixtures reduce or eliminate expected-outcome variability across

{r, b} and {g}. Consistently with this hedging intuition, f 6' f ′.

On the other hand, two acts f, f ′ are mixture-neutral if and only if 1
2
f(r)+ 1

2
f(b) � f(g)

and 1
2
f ′(r) + 1

2
f ′(b) � f ′(g), or 1

2
f(r) + 1

2
f(b) � f(g) and 1

2
f ′(r) + 1

2
f ′(b) � f ′(g); mixtures

of such acts do not reduce expected outcome variability across the ambiguous events {r, b}
and {g} relative to both f and f ′, and hence provide no hedging opportunities.

While mixture neutrality correctly reflects absence of hedging opportunities for MEU

preferences, this is not the case for more general preferences that satisfy Axioms 1–5. The

following example demonstrates this.

Example 3 (Chloe) Consider draws from a four-color urn of unknown composition; let

S = {r, g, b, w}, where w is for “white”. Chloe has α-MEU preferences (cf. the Introduction),

with α = 3
4

and set of priors QC = ∆(S). These preferences satisfy Axioms 1–5.

9For such acts, |[γf(g) + (1− γ)f ′(g)]− [γf(b)− (1− γ)f ′(b)]| = γ|f(g)− f(b)|+ (1− γ)|f ′(g)− f ′(b)|.
10Two acts f, f ′ are comonotonic if there do not exist s, s′ ∈ S such that f(s) � f(s′) and f ′(s) ≺ f ′(s′):

see Schmeidler [30]. It may be shown that Axioms 1-5 and Mixture Neutrality restricted to comonotonic
acts characterize Choquet-Expected Utility preferences.
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Let f =
(
1, 2

3
, 1

2
, 1

2

)
and f ′ =

(
1
2
, 1

2
, 1, 2

3

)
. The sets of outcomes delivered by f and f ′

on the intuitively ambiguous events11 {r, g} and {b, w} vary in complementary directions,

so their mixtures reduce or eliminate the variability of sets of outcomes across these events.

For instance, the mixture 1
2
f + 1

2
f ′ =

(
3
4
, 7

12
, 3

4
, 7

12

)
, yields an outcome in the set {3

4
, 7

12
} if

either {r, g} or {b, w} obtains. Thus, by analogy with Examples 1 and 2, it seems at least

conceivable that a mixture of f and g might have some hedging value; yet, f ' g.

On the other hand, the mixture neutrality of f and g is not “robust”. Consider for

instance a small perturbation of f , such as the act fε =
(
1− ε, 2

3
, 1

2
, 1

2

)
.12 Mixtures of fε and

g also exhibit less variability across the events {r, g} and {b, w} than do fε or g. Consistently

with this intuition, it may be verified that fε 6' g.

Example 3 indicates that non-MEU preferences allow for knife-edge, non-robust instances

of mixture-neutrality for acts that may conceivably provide hedging opportunities.13 Appro-

priate “perturbations” of the acts under consideration may then be used to filter out such

non-robust instances of mixture neutrality, and hence identify pairs of acts that genuinely

provide no hedging opportunities. The definition of robust mixture neutrality reflects these

considerations by identifying suitable perturbations.

For the present purposes, a perturbation of an act h0 is a mixture (1− γ)h0 + γh, where

h ∈ L is arbitrary and γ ∈ (0, 1) should be thought of as “small”.14 Two acts f, g ∈ L are

deemed robustly mixture-neutral if every small but arbitrary perturbation of every strict

mixture of f and g is mixture-neutral with both f and g:

Definition 2.4 (Robustly mixture-neutral acts) Two acts f, g ∈ L are robustly mixture-

neutral (written f ≈ g) if and only if for every h ∈ L and h0 ∈ {λf + (1− λ)g : λ ∈ (0, 1)},
there exists γ ∈ (0, 1) such that

γh + (1− γ)h0 ' f, γh + (1− γ)h0 ' g.

To motivate Def. 2.4, note first that f ≈ g implies f ' g (cf. Lemma 5.2, Part 5 in

the Appendix). Moreover, for the MEU preferences in Examples 1 and 2, f ' g implies

11 These events are ambiguous according to the definition provided by Ghirardato and Marinacci [13]. The
example can be slightly modified so as to ensure that they are also ambiguous according to the definition
put forth by Epstein and Zhang [10].

12Formally, the restriction ε ∈ (0, 1
3 ) is required; informally, ε can be “arbitrarily small”.

13The choice of f and g in Example 3 is “knife-edge” also in a different, but related sense. It can be shown
that, for any α-MEU preference with α 6= 3

4 , f and g are not mixture-neutral.
14The specific mixture-based notion of perturbation I adopt is sufficient for the present purposes, but it is

not crucial to the analysis. One might consider more general perturbations, at the expense of introducing
additional definitions and notation (e.g. a notion of “neighborhood” of the act h0).
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f ≈ g: for such MEU preferences, mixture neutrality is always robust.15 This suggests that

the relation ≈ is the appropriate counterpart of ' for non-MEU preferences. The main

characterization result will further strengthen this interpretation.

Turn now to the specific requirements of Def. 2.4. Assume first that λ is close to 1.16

A perturbation γh + (1 − γ)h0 of h0 = λf + (1 − λ)g can then be viewed as a “two-stage”

perturbation of f . The first stage entails perturbing f in the direction of g, and is necessary

to ensure that no opportunity for hedging is introduced by perturbations, when none exist.

For concreteness, in Example 1, 0 ' fg, and indeed 0 ≈ fg; this is in accordance with the

intuition that mixtures with constant acts do not provide any hedge against ambiguity.17

However, (1−γ)(0)+γfb 6' fg for any positive value of γ; intuitively, perturbing the constant

act 0 in the direction of fb introduces spurious hedging opportunities relative to fg. On the

other hand, for every strict mixture h0 = λ(0) + (1− λ)fg there exists a (sufficiently small)

γ ∈ (0, 1) such that [γfb + (1 − γ)h0](g) � [γfb + (1 − γ)h0](b), and hence the two-stage

perturbation [γfb + (1− γ)h0](b) does not provide hedging opportunities relative to fg.
18

Perturbations of h0 = λf + (1− λ)g for intermediate values of λ need also be considered

in order to ensure that the relation ≈ can be viewed as extending ' to non-MEU preferences.

Observe that, by Def. 2.1, if f ' g, then for all strict mixtures λf + (1− λ)g, it is the case

that λf +(1−λ)g ' f and λf +(1−λ)g ' g. Allowing for arbitrary λ ∈ (0, 1) ensures that

robust mixture neutrality also satisfies this property.

2.2.4 The Key Axiom

As noted above, the two key axiom proposed in this paper characterizes preferences that are

“locally” consistent with SEU, but are otherwise arbitrary.

Examples 1 and 2 suggest that the conditions identifying (robustly) mixture-neutral

acts can be quite different for different preferences.19 However, there is some commonality

among all three examples: if, for two acts f and f ′, the outcomes f(s) and f ′(s) are nearly

indifferent, i.e. “close”, in every state s, then f, f ′ are (robustly) mixture-neutral.

This is in accordance with the hedging intuition. For simplicity, assume that the state

15It can be shown that MEU preferences satisfy this property whenever the representing set of priors is
the weak∗-closed, convex hull of a finite or countable collection of points.

16Analogous arguments hold for λ close to 0.
17Recall that this is the motivation for Axiom 5.
18Note also that the act fε in Example 3 can be viewed as a “two-stage” perturbation of f : first, perturb f

by considering the mixture (1− ε)f + εg ≡ h0, for ε > 0 “small”; then, perturb h by considering the mixture
1
2h+ 1

2h0, where h =
(
1− 3

2ε,
2
3 + 1

6ε,
1
2 −

1
2ε,

1
2 + 1

2ε
)
.

19Similar conditions can be provided for Example 3.
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space S is finite. If two acts f, f ′ are sufficiently “close” to each other state-by-state, then

they vary in the same direction across all disjoint events E, F ⊂ S, including potentially

ambiguous events: if f yields better outcomes at states s ∈ E than at states s ∈ F (or,

as in Examples 2 and 3 respectively, a better expected outcome, or better sets of outcomes,

on E than on F ) , then so does f ′. Mixtures of f and f ′ therefore exhibit more variability

across E and F than one of the acts f, f ′, and less than the other; hence, they provide no

hedging opportunities. Therefore, if arbitrarily close acts are not (robustly) mixture-neutral,

this must be a consequence of considerations other than the simple variability-reduction, or

hedging intuition. The axiom I propose thus requires a degree of consistency with the latter.

In the simple setting of Examples 1–3, “closeness” is measured by the absolute differ-

ence between probabilities. Axiom 7 generalizes this by considering pointwise convergent

sequences of acts.

Axiom 7 (No Local Hedging) If {fn}n≥1 ⊂ L is u.b. and, for some f ∈ L, fn
∀s−→ f ,

then there exists N ≥ 1 such that n ≥ N implies fn ≈ f .

The preceding discussion is subject to two qualifications. First, Axiom 7 allows for the

possibility that two acts f, f ′ fail to be (robustly) mixture-neutral, even though they vary

in the same direction across all disjoint ambiguous events; however, it does rule out the

possibility that all acts f ′ that vary in the same direction as f across ambiguous events be

perceived as providing hedging opportunities relative to f . Second, the discussion applies

verbatim to infinite state spaces, if there are finitely many ambiguous events. More generally,

Axiom 7 intuitively suggests that, for two acts f, f ′ to violate robust mixture neutrality, they

must display “sufficiently complementary” patterns of variability across “sufficiently many”

ambiguous events. For further discussion, see Section 4.1.

2.2.5 Additional Regularity Conditions

Axioms 1–5 and 7 should be viewed as capturing the key behavioral properties of prefer-

ences that admit plausible priors. It turns out that two additional regularity conditions are

required. The first is only needed if the state space is infinite; the second is automatically

satisfied in certain specific models of choice (see below), but must be explicitly stated if one

wishes to identify plausible priors without imposing restrictions on ambiguity attitudes.

The first regularity condition requires a form of pointwise continuity for uniformly bounded

sequences of acts; if S is finite, it is of course implied by Axiom 3.20

20Versions of this axiom appear in characterizations of SEU and probabilistically sophisticated preferences
with countably additive probabilities: see e.g. Epstein and Zhang [10], as well as references therein.
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Axiom 8 (Uniformly Bounded Continuity) If {fn}n≥1 ⊂ L is u.b. and, for some act

f ∈ L, fn
∀s−→ f , then fn → f .

Axiom 8 plays a key role in Subsection 5.1.4 of the Appendix. It also implies that

plausible priors are countably additive, but this should be considered a side effect. The

restriction to uniformly bounded sequences of acts is of course essential: even SEU preferences

characterized by countably additive probabilities may fail to be continuous with respect to

sequences of (bounded) acts that are not uniformly bounded.

To motivate Axiom 9, observe first that, for arbitrary MEU preferences, mixture neu-

trality satisfies the following “consistency” property:

Remark 1 Let � be a MEU preference relation. For any triple of acts f, g, h, if f ' g and

h ' γf + (1− γ)g for some γ ∈ (0, 1), then

αf + (1− α)h ' βg + (1− β)h.

for all α, β ∈ [0, 1].21 22

This property ensures that the no-hedging intuition applies to distinct pairs of mixture-

neutral acts in a consistent manner, as the following example suggests.

Example 4 (Dave) S = {rr, rb, br, bb}, representing draws from two urns containing red

and blue balls, in unknown proportions. Dave has MEU preferences, with priors QD = ∆(S).

Let f = (1, 1, 0, 0), g = (1, 0, 1, 0), and h = (0, 1, 1, 0). It may be verified that f ' g.

Since f and g yield the same outcomes in states rr and bb, their mixtures cannot provide a

hedge against the ambiguity of {rr} and {bb}. Such mixtures can reduce outcome variability

across the ambiguous events {rb} vs. {br}, but this turns out to be irrelevant for Dave.

Furthermore, h ' 1
2
f + 1

2
g =

(
1, 1

2
, 1

2
, 0

)
. In particular, mixtures of these acts do not

provide a hedge against the ambiguity of {rr} and {bb}, because h is constant on {rr, bb}.23
It follows that mixtures of f and h, as well as mixtures of g and h, all exhibit the same

pattern of variability across {rr} and {bb}. This suggests that αf +(1−α)h ' βg+(1−β)h

for all α, β ∈ [0, 1]. It may be verified that such acts are indeed mixture-neutral.

In other words, f ' g and γf + (1− γ)g ' h suggest that f , g and h exhibit a common

pattern of variability across at least one pair of ambiguous events, and that furthermore

21The cases α = β = 0 and α = β = 1 are uninteresting.
22The restriction γ ∈ (0, 1) is essential. In Example 1, fg ' (0, 1

4 ,
1
4 ) and (0, 1

4 ,
1
4 ) ' fb, but fg 6' fb.

23That is: outcome variability is of course reduced relative to 1
2f + 1

2g, but not relative to h, so there is no
hedging. Analogously, mixing any act f̄ with a constant act y reduces variability relative to f̄ , but f̄ ' y.
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this variability is crucial to the evaluation of these acts.24 The mixtures αf + (1− α)h and

βg + (1 − β)h also display this pattern of variability, so mixtures of these composite acts

should not provide hedging opportunities. Remark 1 confirms that, indeed, they do not.

As was discussed above, I suggest that robust mixture neutrality be viewed as the ap-

propriate extension of mixture neutrality to non-MEU preferences. However, the preceding

axioms are not sufficient to ensure that the former will satisfy a property analogous to Re-

mark 1. Axiom 9 explicitly requires that such a property hold, and hence reinforces the

suggested interpretation of robust mixture neutrality.

Axiom 9 (Hedging Consistency) For all acts f, g, h ∈ L: if f ≈ g and, for some γ ∈
(0, 1), h ≈ γf + (1− γ)g, then αf + (1− α)h ≈ βg + (1− β)h for all α, β ∈ [0, 1].

2.3 The Main Result

Recall that the definition of plausible priors involves sets of acts restricted to which prefer-

ences satisfy Axiom 6, Mixture Neutrality. The utility profiles of acts in any such collection

is a subset of the space B(S, Σ) of bounded, Σ-measurable real functions on S. Theorem 2.6

indicates that, under the axioms proposed here, B(S, Σ) can be covered by (the conic hull of)

such sets of utility profiles; furthermore, the latter satisfy specific algebraic and topological

properties. For expository convenience, these properties are listed in Definition 2.5.

Definition 2.5 A collection C of subsets of B(S, Σ) is a proper covering if
⋃
{C : C ∈ C} =

B(S, Σ), elements of C are not nested, and:

(1) every element C ∈ C is a convex cone with non-empty interior that contains the constant

functions γ1S, for γ ∈ R;

(2) for all distinct C, C ′ ∈ C: if c ∈ C ∩C ′ and a, b ∈ C are such that αa + (1− α)b = c for

some α ∈ (0, 1), then a, b ∈ C ′;25 and

(3) if a uniformly bounded sequence {an}n≥1 in B(S, Σ) converges pointwise to some a ∈
B(S, Σ), then there exists N ≥ 1 such that, for all n ≥ N , there exists Cn ∈ C with

an, a ∈ Cn.

24Mixtures of f ,g and h may eliminate variability across other events, but this does not lead to departures
from mixture neutrality. So, the residual variability must be a crucial concern for the decision-maker.

25That is, C ∩ C ′ is an extremal subset of C: see e.g. Holmes [18], §2.C.
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Property (1) can be seen to correspond closely to Part (i) in the definition of a plausible

prior; furthermore, nonemptiness of the interior ensures uniqueness of the elicited probability.

Property (2) states that intersections of distinct cones are “small”: in particular, it implies

that they have empty interior. Finally, if C is finite, Property (3) can be replaced by the

assumption that each set C ∈ C is closed with respect to uniformly bounded pointwise limits.

The main result of this paper can finally be stated; N denotes a generic index set.

Theorem 2.6 Let (S, Σ) be a standard Borel space, and consider a preference relation �
on L. The following statements are equivalent:

(1) � satisfies Axioms 1–5, 7, and 8–9;

(2) There exist an affine function u : Y → R, a finite or countable proper covering

{Cn : n ∈ N} and a corresponding collection of probability measures {Pn : n ∈ N} such

that, for all n, m ∈ N and a ∈ Cn∩Cm,
∫

a dPn =
∫

a dPm, and furthermore, for all f, g ∈ L:

(i) if u ◦ f ∈ Cn and u ◦ g ∈ Cm for some n, m ∈ N , then

f � g ⇐⇒
∫

u ◦ f dPn ≥
∫

u ◦ g dPm; (1)

(ii) if f ≈ g, then there exists n ∈ N such that u ◦ f, u ◦ g ∈ Cn; and

(iii) if
∫

u ◦ f dPn ≥
∫

u ◦ g dPn for all n ∈ N , then f � g.

In (2), u is unique up to positive affine transformations, {Cn} is unique, and for every

n ∈ N , Pn is the unique probability charge such that (i) holds for acts in {f : u ◦ f ∈ Cn}.

Henceforth, I will employ the expression plausible-priors preference to indicate a binary

relation � on L for which (2) in Theorem 2.6 holds.

Preferences in Examples 1–4 all satisfy the axioms in (1). In the MEU examples (Ex. 1,

2 and 4), the probabilities {Pn} in (2), i.e. the plausible priors, turn out to coincide with

the priors indicated above. In Example 3, which employs α-MEU preferences, the set of

plausible priors consists of all mixtures of degenerate probabilities of the form 3
4
δs + 1

4
δs′ , for

distinct states s, s′.26

In light of Theorem 2.6, a proper covering may be viewed as a collection of “menus”; the

decision-maker has standard SEU preferences when comparing items on the same menu (i.e.

“locally”), but different considerations may guide her choices from different menus.27

26In Example 3, the 3
4 -MEU criterion associates the value 3

4

∫
u ◦ f dδs + 1

4

∫
u ◦ f dδs′ to acts f such that

f(s) ≺ f(s′′) ≺ f(s′) for all s′′ 6∈ {s, s′}. This clearly corresponds to
∫
u ◦ f d[ 34δs + 1

4δs′ ].
27I owe this interpretation to Mark Machina.
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I now discuss Theorem 2.6 by listing a number of corollaries. First of all, each (countably

additive) probability measure Pn appearing in (2) is a plausible prior; in particular, note

that every Pn is uniquely determined by preferences over acts whose utility profile lies in Cn.

Furthermore, no other charge on (S, Σ) can be a plausible prior for �:

Corollary 2.7 Under the equivalent conditions of Theorem 2.6, the collection of plausible

priors for � is given by {Pn : n ∈ N} in (2).

As noted after Def. 2.5, each set Cn has non-empty interior. This is not a necessary conse-

quence of the definition of a plausible prior. On the other hand, it ensures that the plausible

priors in Theorem 2.6 can be interpreted as the outcome of an elicitation “procedure”.

Fix n ≥ 1, let g ∈ L be such that u ◦ g is an interior point of Cn, and choose prizes

x, x′ ∈ X such that x � x′. For every E ∈ Σ, let bE be the binary act that yields prize x

at states s ∈ E, and prize x′ elsewhere. Since u ◦ g is in the interior of Cn, for α ∈ (0, 1)

sufficiently close to 1, u ◦ [αg + (1− α)bE] ∈ Cn; moreover, there exists πE ∈ [0, 1] such that

αg + (1− α)bE ∼ αg + (1− α)[πEx + (1− πE)x′].

Simple calculations then show that πE = Pn(E).

The “procedure” just described should be viewed merely as a thought experiment.28 It

does suggest, however, a sense in which plausible priors obtained in Theorem 2.6 exhibit

familiar properties of standard SEU priors, even beyond the requirements of Definition 2.3.

Condition (ii) in Part (2) confirms that, under the axioms proposed here, robust mixture

neutrality reflects a strong notion of absence of hedging opportunities: if f ≈ g, then f and g

belong to a set of acts over which preferences are consistent with SEU. Indeed, the converse

of (ii) is implied by (i)-(iii). Thus:

Corollary 2.8 Under the equivalent conditions of Theorem 2.6, for all f, g ∈ L, f ≈ g if

and only if u ◦ f, u ◦ g ∈ Cn for some n ≥ 1.

Part (ii) of Theorem 2.6 also implies that the elements of the proper covering {Cn} have

an important maximality property:

Corollary 2.9 Suppose the equivalent conditions of Theorem 2.6 hold, and let C ⊂ L be

such that, for all f, g ∈ C, f ≈ g. Then there exists n ≥ 1 such that {u ◦ f : f ∈ C} ⊂ Cn.

28In practice, identifying points in the interior of each cone Cn seems non-trivial.
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In particular, the domain of each plausible prior Pn cannot be extended beyond Cn.

Finally, Condition (iii) implies that preferences are fully determined by plausible priors.

To clarify this point, it is useful to construct a functional representation of overall preferences

on the basis of results in Theorem 2.6. Let R = {(
∫

a dPn)n∈N : a ∈ B(S, Σ)} be the

collection of (possibly countably infinite) vectors of integrals of functions with respect to

each plausible prior obtained in Theorem 2.6. If N is finite, R is a vector subspace of RN

that includes the diagonal {(γ, . . . , γ) : γ ∈ R}.29 Then define a map V : R→ R by

∀a ∈ B(S, Σ), V

((∫
a dPn

)
n∈N

)
=

∫
a dPn∗ , (2)

where n∗ is such that a ∈ Cn∗ . By (iii) in Theorem 2.6, V is well-defined and unique.30

The map V can be thought of as “selecting” an index n∗ as a function of the vector

ϕ = (ϕn)n∈N ∈ R, and associating to ϕ the value ϕn∗ . In Examples 1 and 2, N = {1, 2} and

V (ϕ) = minn ϕn. In Example 3, N = {1, . . . , 12}, and the functional V can be explicitly

described by enumerating the possible orderings of the components of the vector ϕ.

The above claim can now be made precise. For all acts f, g ∈ L, f � g if and only if

V ((
∫

u ◦ f dPn)n∈N) ≥ V ((
∫

u ◦ g dPn)n∈N), so the ordering of f and g is entirely determined

by the vectors (
∫

u ◦ f dPn)n∈N and (
∫

u ◦ g dPn)n∈N . As a function of these alone, V selects

indices nf and ng such that f � g if and only if
∫

u ◦ f dPnf
≥

∫
u ◦ g dPng . Thus, plausible

priors fully determine preferences.

The functional V can be interpreted as the decision-maker’s “elicited” choice criterion.

Since plausible priors are identified without assuming any specific functional representation of

overall preferences, V arguably provides a behaviorally accurate description of the decision-

maker’s attitudes towards ambiguity.

2.4 Examples of Plausible-Priors Preferences

This section provides simple sufficient conditions for MEU (or 0-MEU), α-MEU and CEU

preferences to permit the elicitation of plausible priors. Conceptually, these examples demon-

strate that Axiom 7 does not restrict the decision-maker’s attitudes towards ambiguity, and

hence is compatible with a variety of decision models. From a practical standpoint, the

29If N = N, it can be shown that R is a vector subspace of B(N, 2N) that includes all constant functions.
30Additional functional properties of V can be easily established. V is normalized, i.e. V (1N ) = 1;

monotonic: ϕn ≥ ψn for all n implies V (ϕ) ≥ V (ψ); c-linear : for all α, β ∈ R with α ≥ 0, and ϕ ∈ R,
V (αϕ + β) = αV (ϕ) + β. Finally, if {ϕk} is a sequence in R such that ϕk

n → ϕn for all n ∈ N , and
α ≤ ϕk

n ≤ β for some α, β ∈ R and all n ∈ N , k ≥ 1, then V (ϕk) → V (ϕ).
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results in this subsection may be directly invoked in applications to ensure that the intuitive

interpretation of priors is behaviorally sound.

Unless otherwise noted, no cardinality restriction is imposed on the state space S. For

simplicity, I focus on preferences that admit a finite collection of plausible priors. These are

characterized by the following additional axiom (see Online Appendix, §6.2.2):

Axiom 10 If {fn}n≥1 ⊂ L is u.b. and, for some f ∈ L, fn
∀s−→ f , then there exists a

subsequence {fnk
}k≥1 such that, for all k, k′ ≥ 1, fnk

≈ fnk′
.

Recall that Axiom 7 only requires that elements of the sequence {fn} be robustly mixture-

neutral with f , for n large. Intuitively, Axiom 10 additionally requires that, as elements of

the sequence {fn} get closer and closer in preference at each state, a “cluster” of elements

become mutually robustly mixture-neutral.

Given a functional representation of preferences, Condition (ii) in Theorem 2.6 is typically

harder to verify than Conditions (i) or (iii). The following result (Proposition 6.2 in the

Online Appendix) considerably simplifies this task, and is also of independent interest.

Proposition 2.10 Let {Cn}n≥1 be a proper covering and {Pn}n≥1 the corresponding col-

lection of probabilities. Assume that (i) and (iii) in Theorem 2.6 hold. Finally, let f, g ∈ L

be such that f ≈ g and, for some λ, µ ∈ [0, 1] with λ < µ, and an appropriate index n,

u(λf + (1− λ)g), u(µf + (1− µ)g) ∈ Cn.

Then, for all α ∈ [0, 1], there exists nα such that u(αf + (1− α)g) ∈ Cnα and Pnα = Pn.

Loosely speaking, if f ≈ g and the “line segment” {αf + (1 − α)g} has a non-trivial

intersection with some Cn, then every mixture of f and g is evaluated using the prior Pn—

even if it does not belong to Cn. By way of contrast, if Condition (ii) also holds, f ≈ g

implies u(αf + (1− α)g) ∈ Cn for all α.

An analogous property holds for MEU preferences: if f ' g and preferences are repre-

sented by a setQ of priors on (S, Σ), then there is Q ∈ Q such that Q ∈ arg minQ′∈Q
∫

u(αf+

(1− α)g) dQ′ for all α ∈ [0, 1]. This reconfirms that robust mixture neutrality is the appro-

priate generalization of mixture neutrality to non-MEU preferences.

2.4.1 Maxmin and Maxmax EU preferences

MEU preferences serve as a model for the main axioms for plausible-priors preferences. Thus,

unsurprisingly, a rich (indeed, dense) subset of such preferences satisfies the axioms proposed

here. Section 4.1 provides an example of a MEU preference that does not.
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Remark 2 Let � be a 0-MEU or 1-MEU preference, and let P be the corresponding

set of priors. If P is the weak∗-closed, convex hull of finitely many probability measures

{P1, . . . , PN}, then � satisfies the plausible-priors axioms, and the corresponding set of pri-

ors is precisely {P1, . . . , PN}.

For finite state spaces, I am unaware of examples of MEU preferences employing count-

ably many plausible priors. On the other hand, examples for infinite state spaces are easy

to construct (e.g. consider S = N and the set of (degenerate) priors {δ{n} : n ∈ N}).

2.4.2 Generic α-MEU Preferences

Consider now preferences consistent with Hurwicz’ α-criterion. I provide a simple sufficient

condition that relies on Proposition 2.10 and a genericity assumption.

Remark 3 Let � be an α-MEU preference, and let Q be the corresponding set of pri-

ors. Assume that Q is the weak∗-closed, convex hull of finitely many probability measures

{Q1, . . . , QN}, and let M⊂ {1, . . . ,M}2 be defined by

M =

{
(n, m) : {Qn} = arg min

k

∫
u ◦ f dQk, {Qm} = arg max

k

∫
u ◦ f dQk for some f ∈ L

}
.

If, for all distinct pairs (n, m), (n′, m′) ∈ M, αQn + (1 − α)Qm 6= αQn′ + (1 − α)Qm′ ,

then � satisfies the plausible-priors axioms, and the corresponding set of priors is precisely

{αQn + (1− α)Qm : (n, m) ∈M}.

A sketch of the argument is as follows. For all (n, m) ∈ M, let Cn,m be the set of

functions in B(S, Σ) whose expectation is minimized by Qn and maximized by Qm. The

collection of such sets is a proper covering (see the Online Appendix), and functions in Cn,m

are evaluated using the measure Pn,m = αQn + (1− α)Qm. Thus, Condition (i) in Theorem

2.6 holds trivially, and Condition (iii) is easily verified (cf. the argument following Lemma

5.12 in the Appendix). To verify Condition (ii), suppose that f ≈ g and let α and (n,m) be

such that u ◦ f, u ◦ [αf + (1 − α)g] ∈ Cn,m. If α = 0, there is nothing to prove; otherwise,

Proposition 2.10 implies that there exists (n′, m′) ∈ M such that Pn′,m′ = Pn,m; but this

violates the genericity assumption in Remark 3. Thus, Condition (ii) holds.

2.4.3 Generic CEU preferences in finite state spaces

CEU preferences (Schmeidler [30]) can also satisfy the plausible-priors axioms, provided the

state space S is finite. Let v : 2S → [0, 1] be a capacity on S: that is, A ⊂ B ⊂ S imply
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v(A) ≤ v(B), and v(∅) = 0 = 1 − v(S). Assume that S = {s1, . . . , sM}, and let ΠM be the

set of all permutations (π1, . . . , πM) of {1, . . . ,M}.
Again, I employ Proposition 2.10 and genericity. In particular, note that the collections of

maximal cones of comonotonic functions is a proper covering, and the proofs that Conditions

(ii) and (iii) in Theorem 2.6 hold are analogous to the ones sketched above. Thus:

Remark 4 Assume that S is finite and let Σ = 2S. Let � be a CEU preference over L,

and, for all permutations π ∈ ΠM , let Pπ be the probability distribution defined by

Pπ(sπi
) = v({sπ1 , . . . , sπi

})− v({sπ1 , . . . , sπi−1
}).

If, for all π, π′ ∈ ΠM , Pπ 6= Pπ′ , then� satisfies the axioms proposed here, and {Pπ : π ∈ ΠM}
is the collection of plausible priors for �.

3 Probabilistic Sophistication and Updating

3.1 Probabilistic Sophistication

As is well-known, preferences that admit a non-degenerate “multiple-priors” representation

may nevertheless be probabilistically sophisticated in the sense of Machina and Schmeidler

[23].31 Whether or not such preferences should be treated as revealing a concern for ambiguity

is a somewhat contentious issue; see e.g. e.g. Epstein and Zhang [10], §8.3, and Ghirardato

and Marinacci [13], §6.3 for a discussion of alternative viewpoints.

Fortunately, this issue does not arise if the axioms proposed here hold: a probabilistically

sophisticated plausible-priors preference is consistent with SEU.

To clarify, observe first that, within the Anscombe-Aumann decision framework, Axioms

1–5 imply that preferences over lotteries are consistent with EU maximization. The preceding

statement is thus trivially true in such circumstances.32 This section is concerned with

establishing this property in a “fully subjective” setup where lotteries are not available, and

hence cannot be employed to pin down the decision-maker’s risk preferences.

I adopt the decision setup discussed at the end of §2.1, wherein a characterization of

plausible-priors preferences can be provided. Thus, (i) acts are maps from S to a topologically

31The “canonical” example is a CEU preference � represented by a capacity ν that is a convex transfor-
mation of a probability measure (e.g. S = [0, 1] and ν(E) = [λ(E)]2 for all Borel sets E, where λ denotes
Lebesgue measure). Since ν is convex, � also admits a MEU representation.

32Loosely speaking, a probabilistically-sophisticated decision-maker ranks acts by “reducing” them to
lotteries, and then ordering the latter by means of some preference functional V (see [24] for details). In the
Anscombe-Aumann setup, Axioms 1–5 imply that V is the EU functional.
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rich, but otherwise arbitrary set of prizes X, and (ii) regularity assumptions on preferences

guarantee the existence of a convex-ranged utility function u on X.

Probabilistic sophistication can be defined as a restriction on preferences in order to

economize on notation. An act f ∈ L is deemed simple if {x : ∃s ∈ S, f(s) = x} is finite.

Definition 3.1 A preference relation � is probabilistically sophisticated (with respect to µ)

if there exists a probability charge µ on (S, Σ) such that, for all simple acts f, g ∈ L,[
∀x ∈ X, µ({s : f(s) � x}) ≤ µ({s : g(s) � x})

]
⇒ f � g,

with strict preference if strict inequality holds for at least one x∗ ∈ X.

A probabilistically sophisticated decision-maker thus ranks acts in accordance with first-

order stochastic dominance with respect to a charge µ. In particular, she is indifferent among

acts that induce the same distribution over prizes given µ.33 Furthermore, the probability µ

represents her “qualitative beliefs”, as revealed by preferences over binary acts.

Although Def. 3.1 does not require this, the axiomatization of probabilistic sophistication

provided by Machina and Schmeidler [23] delivers a convex-ranged probability charge µ: that

is, for every E ∈ Σ and α ∈ [0, 1], there exists F ∈ Σ such that F ⊂ E and µ(F ) = αµ(E).

On the other hand, µ need not be a measure; however, for plausible-priors preferences, it

will be (due to Axiom 8; cf. also Epstein and Zhang [10]).

Proposition 3.2 Let � be a plausible-priors preference in the decision setting under con-

sideration. If � is probabilistically sophisticated with respect to a convex-ranged probability

charge µ, then µ is the only plausible prior for �. Consequently, � is a SEU preference.

Apart from resolving issues related to differences in the definition of “ambiguity”, Propo-

sition 3.2 is conceptually relevant to the interpretation of plausible priors. It is never the

case that a decision-maker who perceives no ambiguity, but has non-EU risk preferences, is

(incorrectly) deemed to consider more than one prior “plausible”: if her preferences admit a

plausible-priors representation as per (2) in Theorem 2.6, then either she is not probabilis-

tically sophisticated, or she is a SEU decision-maker.34

33Def. 3.1 does not explicitly impose “mixture continuity” (cf. [23], pp. 754-755), because it is immaterial
to the proof of Proposition 3.2. Also, under Axioms 1–8, Def. 3.1 implies that preferences among non-simple
acts are also consistent with FOSD, but this is not used in the proof of Proposition 3.2.

34I emphasize that the assumption that µ is convex-ranged is essential for Proposition 3.2 to hold. However,
to the best of my knowledge, the only characterization of probabilistically sophisticated preferences that does
not deliver a convex-ranged charge is [24], which utilizes objective lotteries. As noted above, the result is
trivially true under Axioms 1–5 in that setup.
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3.2 Updating

The theory presented so far accommodates static decision problems only. This section ex-

tends it to dynamic choice problems, adapting analogous axioms and results for MEU pref-

erences in Siniscalchi [32].

Consider an event E ∈ Σ; interpret it as information the decision-maker may receive in the

dynamic context under consideration.35 Correspondingly, consider a conditional preference

relation �E on the set L of acts; the ranking f �E g is to be interpreted as stating that the

decision-maker would prefer f to g, were she to learn that E has occurred.

This section provides an axiomatic connection between conditional and unconditional

preferences. It shows that, if the unconditional and conditional preference relations satisfy

the axioms of the previous section, plus two joint consistency requirements, then:

• the (unique) set of “plausible posteriors” representing the updated preference is related

to the set of “plausible priors” via Bayesian updating;

• conditional preferences are determined by a unique updating rule.

As is the case for SEU preferences, updating is well-defined only for a subclass of events.

The following definition indicates the relevant restriction. The intuition is that the event E

under consideration “matters”.

Definition 3.3 An event E ∈ Σ is non-null iff, for all pairs of acts f, g ∈ L such that

f(s) ∼ g(s) for all s ∈ S \ E and f(s) � g(s) for all s ∈ E, f � g.

Additional notation will be needed. Given any pair of acts f, g ∈ L, let

fEg(s) =

{
f(s) if s ∈ E;

g(s) if s /∈ E.

Turn now to the key behavioral restrictions, stated as assumptions regarding an arbitrary

conditional preference �E and the unconditional preference �.

First, preferences conditional upon the event E are not affected by outcomes at states

outside E. This is a version of consequentialism.

Axiom 11 (Consequentialism) For every pair of acts f, h ∈ L: f ∼E fEh.

35For instance, E may correspond to the information that a given node in a decision tree has been reached.
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Second, a weakening of the standard dynamic consistency axiom is imposed. Its inter-

pretation (and the relationship with other consistency axioms) is discussed at length in [32].

Loosely speaking, Axiom 12 imposes consistency in situations where hedging considerations

are arguably less likely to lead to preference reversals.

Axiom 12 (Dynamic c-Consistency) For every act f ∈ L and outcome y ∈ Y :

f �E y, f(s) � y ∀s ∈ Ec ⇒ f � y;

f �E y, f(s) � y ∀s ∈ Ec ⇒ f � y.

Moreover, if the preference conditional on E is strict, then so is the unconditional preference.

Observe that the dominance conditions f(s) � y and f(s) � y are stated in terms of the

unconditional preference. It is clear that one could separately assume that conditional and

unconditional preferences agree on Y , and state the dominance conditions in terms of the

conditional preference �Ec . Note also that strict preference conditional on the event E is

required to imply strict unconditional preference.

The main result follows.

Theorem 3.4 Consider an event E ∈ Σ. Suppose the preferences � and �E satisfy Axioms

1–5, 7, and 8–9, and assume that E is non-null. Let � be represented by u, {Cn : n ∈ N}
and {Pn : n ∈ N} as in Theorem 2.6; similarly, let �E be represented by uE, {CE

k : k ∈ K}
and {PE

k : k ∈ K}. Then the following are equivalent:

(1) �E satisfies Axiom 11, and �, �E jointly satisfy Axiom 12;

(2) uE is a positive affine transformation of u, and for every k ∈ K, there exists nk ∈ N

such that PE
k (F ) = Pnk

(F |E) for all F ∈ Σ. Moreover, for every k ∈ K and a ∈ CE
k ,

γ =

∫
a dPnk

(·|E) =⇒ ∀m s.t. 1Ea + 1Ecγ ∈ Cm,

∫
[1Ea + 1Ecγ] dPm = γ. (3)

A few remarks are in order. First, the Theorem ensures that every plausible-priors

preference relation can be uniquely updated in a manner consistent with Axioms 11 and 12,

so as to ensure that the the resulting conditional preference has an analogous “plausible-

posteriors” representation. Conceptually, this is perhaps the most important part of Theorem

3.4, because it indicates that the class of plausible-priors preferences is closed under updating.

Second, every posterior PE
k is obtained by updating one of the priors in {Pn : n ∈ N}.

However, not every plausible prior generates a plausible posterior. Intuitively, this reflects

the possibility that, upon acquiring new information, certain ex-ante plausible probabilistic

models of the underlying uncertainty might have to be discarded.
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Third, the condition in Eq. (3) characterizes the posterior evaluation of a function in

terms of the prior evaluation of a related function. To clarify, define the“evaluation” of a

function a ∈ B(S, Σ) by I(a) =
∫

a dPm whenever a ∈ Cm; as a consequence of Theorem

2.6, this definition is well-posed. The “posterior evaluation” of a function can be similarly

defined. As is shown in the Appendix, Part (2) in Theorem 3.4 implies that the converse

implication in Eq. (3) also holds. Thus, the latter equation states that γ is the posterior

evaluation of a if and only if γ solves the equation

γ = I(1Ea + 1Ecγ).

A similar “fixed point” condition has been used as a definition of posterior preferences in

order to derive Bayesian updating for sets of priors (cf. Jaffray [19], Pires [28] and references

therein). On the other hand, Theorem 3.4 shows that Eq. (3) is a result of consequentialism

and consistency axioms on prior and posterior preferences.

4 Discussion

4.1 Preferences without Plausible Priors

This subsection discusses an example of MEU preferences for which plausible priors cannot be

elicited, because the uniqueness requirement in Def. 2.3 cannot be satisfied. This highlights

important features of plausible-priors preferences. Notation and assumptions about outcomes

are as in the examples of Section 2.

Example 5 (Edith) Let S = {s1, s2, s3} and consider a MEU decision-maker, Edith, with

priors QE = {q ∈ ∆(S) :
∑

i=1,2,3[q(si)− 1
3
]2 ≤ ε2} for ε ∈ (0, 1√

6
]. Graphically, QE is a circle

of radius ε in the simplex in R3, centered at the uniform distribution on S.

Two acts f, g satisfy f ' g if and only if they are affinely related, i.e. if and only if

f(s) = αg(s) + β for some α, β ∈ R with α ≥ 0.36 Now let C be any maximal collection

of affinely related acts. Note that there is a unique prior qC ∈ QE that minimizes
∫

f dq

over QE for all f ∈ C. It is clear that C satisfies Part (i) in Def. 2.3; however, it does not

satisfy Part (ii): any probability q on S that satisfies
∫

f dq =
∫

f dqC for a non-constant act

f ∈ C also satisfies
∫

g dq =
∫

g dqC for any other act g ∈ C, because f and g are affinely

36In general, f and g are affinely related if u ◦ f = αu ◦ g + β, with α, β as above. But recall that, for all
examples, X = {$0, $10}, so Y can be identified with [0, 1] and it is w.l.o.g. to assume that u(y) = y.
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related. Thus, there exists a one-parameter family (hence, a continuum) of probabilities that

represent preferences on C.37 Consequently, no plausible prior can be elicited.

Since in this example f ' g (if and) only if f and g are affinely related, it is easy to

see that only constant acts are robustly mixture neutral. Hence, Axiom 7 is violated in

a relatively trivial sense. However, the preferences in Example 5 also violate a variant of

Axiom 7 wherein robust mixture neutrality is replaced with simple mixture neutrality.38

Since the state space is finite, the discussion preceding Axiom 7 strongly suggests that

considerations other than variability reduction, or hedging, determine Edith’s violations of

mixture neutrality. Moreover, Edith’s preferences satisfy a strict version of Schmeidler’s

“Uncertainy Aversion” axiom [30, p. 582]. In this respect, Edith behaves very differently

from a SEU decision-maker when choosing from a sufficiently rich (although possibly “small”)

set of acts: she is not a “local” SEU maximizer.

Note that the preferences in Example 5, as well as arbitrary MEU preferences, can be

approximated arbitrarily closely by MEU preferences that do satisfy Axiom 7. This indi-

cates that, loosely speaking, plausible-priors preferences are “dense” in the class of MEU

preferences, so that the additional restrictions they are required to satisfy do not exact a

significant price in terms of expressive power.

As the approximation becomes more accurate, it might appear that the behavioral dis-

tinction between preferences that permit the elicitation of plausible priors and those that

don’t “becomes small”—and hence, so does the distinction between plausible priors and el-

ements of sets such as QE in Example 5. But, intuitively and formally, the proposed notion

of plausibility is binary: either a prior provides a unique SEU representation of preferences

on some set of acts, or it does not. On the other hand, to formalize the above “continuity”

intuition, a behaviorally founded notion of degrees of plausibility is required. Similar issues

arise in connection with ambiguity: for instance, refer to Example 1, the Ellsberg Paradox,

and consider the set of priors Qε
A = {q : q(r) = 1

3
, q(g) ∈ [1

3
− ε, 1

3
+ ε]}. For all ε > 0,

however “small”, the events {g} and {b} are ambiguous, and the decision-maker is deemed

ambiguity averse; but ε = 0 corresponds to SEU preferences.

I emphasize that a preference that does not admit plausible priors need not be consid-

ered “defective”. As discussed in the Introduction, the intuitive interpretation of multiple

37I.e., the set QC = {q ∈ R3
+ :

∑
i q(si) = 1,

∑
i fiq(si) =

∑
i fiqC(si)}, where f ∈ C is non-constant.

Geometrically, QC is a line segment in the simplex in R3 tangent to QE at qC . Due to the shape of QE , the
set QC is non-degenerate (i.e. not a singleton) for any maximal collection C of affinely related acts.

38It can be shown that such a version of Axiom 7 characterizes MEU preferences that admit plausible
priors
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priors may or may not apply to such preferences; however, alternative, behaviorally-based

interpretations may be possible. For instance, Wang [33] provides an axiomatization of an

entropy-based multiple-priors model. Another alternative is considered in Siniscalchi [31].

Other decision models (e.g. CEU) may have natural interpretations that are unrelated to

probabilistic priors, and as such are not affected by the considerations in the Introduction.

4.2 Related Literature

4.2.1 Probabilistic Representations of Ambiguity

Sets of probabilities provide an intuitively appealing representation of ambiguity in the α-

MEU decision model. Ghirardato, Maccheroni and Marinacci [12, GMM henceforth] and

Nehring [27] formalize this key insight, and show that it applies to a broader class of prefer-

ences. GMM take as primitive a preference relation over acts that satisfies Axioms 1–5, and

derive from it an auxiliary, incomplete relation �∗ that is intended to capture “unambigu-

ous” comparisons of acts; they then show that �∗ admits a representation à la Bewley [3]:

there exists a set Q of probability charges such that, for all acts f, g ∈ L,

f �∗ g ⇔ ∀Q ∈ Q,

∫
u ◦ f dQ ≥

∫
u ◦ g dQ. (4)

Loosely speaking, Nehring takes as primitive both a preference relation � on acts, and an

incomplete unambiguous likelihood relation D on events; he then axiomatically relates the

two, and provides a Bewley-style representation of D analogous to Eq. (4). Both papers

suggest that a non-singleton set Q is associated with ambiguity; GMM and Nehring then

develop these ideas in several, complementary directions.

Thus, both GMM and Nehring identify a set of probabilities that, as a whole, provides

a specific representation of “unambiguous” preferences and beliefs. This is appropriate for

their purposes, but does not achieve the objectives of the present paper: it is not intended to

deliver priors that can be deemed “plausible” according to the stringent behavioral criteria

set forth in Def. 2.3. Specifically, the identification issues highlighted in the Introduction for

MEU priors apply verbatim to sets of probabilities in the representation of Bewley preferences

such as�∗ (and, by analogy, D). Such sets are identified by the “functional-form” assumption

that they represent �∗ (or D) according to Eq. (4); but, just like a MEU preference, a Bewley

preference admits alternative representations, characterized by different sets of priors.39

These considerations do not invalidate the insight that ambiguity can be represented

via sets of probabilities, or the related developments that are the main focus of GMM and

39Section 6.1 in the Online Appendix discusses Bewley preferences and provides examples.
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Nehring. Moreover, it can be shown that, under the additional axioms provided in the

present paper, the sets identified by GMM and Nehring can be obtained as the weak∗ closed,

convex hull of the set of plausible priors delivered by Theorem 2.6. However, as in the case of

MEU preferences, if Axioms 7 and 9 do not hold, the intuitive interpretation of the elements

of Q as possible probabilistic models of the underlying uncertainty is problematic.

Also note that a probabilistically sophisticated preference may give rise to a non-singleton

set Q in the GMM setup. By Proposition 3.2, this is never the case if Axioms 7 and 9 hold.

4.2.2 Other Related Literature

Castagnoli and Maccheroni [6] (see also [7]) explicitly assume that preferences satisfy the

Independence axiom when restricted to exogenously specified convex sets of acts, and derive a

representation analogous to Eq. (1); the corresponding probabilities are not unique. By way

of contrast, the approach adopted here entails deriving a proper covering from preferences,

and ensuring that the corresponding probabilities are unique.

Machina [25] investigates the robustness of “the analytics of the classical [i.e. SEU]

model... to behavior that departs from the probability-theoretic nature of the classical

paradigm.” [25, p. 1; italics added for emphasis]. Among other results, Machina shows

(Theorem 4, p. 34) that it is sometimes possible to associate with a specific act f0 a local

probability measure µf0 that represents the decision-maker’s “local revealed likelihood rank-

ings” and, jointly with a local utility function Uf0 , her response to event-differential changes

in the act being evaluated. However, he is careful to point out that “the existence of a local

probability measure µf0 at each f0 should not be taken to imply the individual has conscious

probabilistic beliefs that somehow depend upon the act(s) being evaluated.” (p. 35; italics in

the original). This is fully consistent with the point of view advocated in the present paper:

a probability µ can be a useful analytical tool to model certain properties (e.g. responses to

differential changes) of the mathematical representation of preferences; however, for µ to be

deemed a “plausible prior”, additional behavioral conditions must be met.

5 Appendix

5.1 Proof of Theorem 2.6.

5.1.1 Numerical Representation of preferences and restatement of the axioms

Overview. Lemma 5.1 provides a basic representation for the preference �. Henceforth, the

analysis can be carried out with reference to this representation. Lemma 5.2 then furnishes
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basic properties of the relations ' and ≈. These are employed in Lemma 5.3 to translate

Axioms 7–9 into properties of the functional representation of preferences. Building on these

properties, Lemma 5.4 derives further key properties of ' and ≈. All proofs are in the

Online Appendix.

Lemma 5.1 The preference relation � satisfies Axioms 1, 2, 3, 4 and 5 if and only if there

exists a non-constant affine function u : Y → R and a unique, normalized, monotonic and

c-linear functional I : B(S, Σ) → R, such that, for all f, g ∈ L, f � g iff I(u ◦ f) ≥ I(u ◦ g).

Furthermore, u can be chosen so u(Y ) ⊃ [−1, 1]. Finally, for all a, b ∈ B(S, Σ), |I(a)−I(b)| ≤
‖a− b‖.

Throughout the remainder of the appendix, u and I denote a utility function and, re-

spectively, a functional, with the properties indicated in Lemma 5.1.

Denote by B1(S, Σ) the unit ball of B(S, Σ). With an abuse of notation, I write a ' b

for functions a, b ∈ B(S, Σ) as a shorthand for “I(αa + (1− α)b) = αI(a) + (1− α)I(b) for

all α ∈ [0, 1]”. Similarly, I write a ≈ b iff, for every c ∈ B(S, Σ) and c′ ∈ {λa + (1 − λ)b :

λ ∈ (0, 1)}, there exists γ ∈ (0, 1) such that γc + (1− γ)c′ ' a and γc + (1− γ)c′ ' b.

Lemma 5.2 Suppose� satisfies Axioms 1, 2, 3, 4 and 5, and let I, u be its representation.

1. For all f, g ∈ L, f ' g iff u ◦ f ' u ◦ g.

2. For all a, b ∈ B(S, Σ), and α, β ∈ R with α ≥ 0: a ' b implies a ' αb + β.

3. For all a, b ∈ B(S, Σ): a ≈ b iff, for all c ∈ B1(S, Σ) and c′ ∈ {λa+(1−λ)b : λ ∈ (0, 1)},
there exists γ ∈ (0, 1) such that γc + (1 − γ)c′ ' a and γc + (1 − γ)c′ ' b. That is,

only functions c ∈ B1(S, Σ) need be considered in the definition of ≈ for functions.

4. For all f, g ∈ L, f ≈ g iff u ◦ f ≈ u ◦ g.

5. For all a, b ∈ B(S, Σ): a ≈ b implies a ' b.

6. For all a, b ∈ B(S, Σ), and α, β ∈ R with α > 0: a ≈ b implies a ≈ αb + β.

Lemma 5.3 Suppose� satisfies Axioms 1, 2, 3, 4 and 5, and let I, u be its representation.

1. � satisfies Axiom 7 iff, for any sequence {an}n≥1 ⊂ B1(S, Σ) such that an(s) → a(s)

for all s ∈ S and some a ∈ B1(S, Σ), there is N ≥ 1 such that n ≥ N implies an ≈ a.

2. � satisfies Axiom 8 iff, for any sequence {an}n≥1 ⊂ B1(S, Σ) such that an(s) → a(s)

for all s ∈ S, I(an) → I(a).

3. � satisfies Axiom 9 iff, for all a, b, c ∈ B1(S, Σ), a ≈ b and c ≈ γb + (1− γ)c for some

γ ∈ (0, 1) imply αa + (1− α)c ≈ βb + (1− β)c for all α, β ∈ [0, 1].
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Henceforth, the analysis will focus on the properties and representation of the functional

I on B1(S, Σ). In order to streamline the exposition, expressions such as “by Axiom 8 and

Part (2) of Lemma 5.3, I(an) → I(a)” will be shortened to “by Axiom 8, I(an) → I(a).”

That is, references to Axioms 7, 8, or 9 should be interpreted as references to the respective

equivalent conditions on I provided in Lemma 5.3.

I remark that Axiom 9 will be most often invoked with α = 0, β = 1 or α = 1,β = 1:

that is, c ≈ γa + (1− γ)b implies c ≈ a and c ≈ b. However, the full force of the Axiom will

be needed in the proof of Lemma 5.6, Part (3).

Lemma 5.4 Suppose� satisfies Axioms 1, 2, 3, 4, 5, 8, 7, 9. Let I, u be its representation.

1. If {an}, {bn} ⊂ B1(S, Σ), an(s) → a(s), bn(s) → b(s) for all s, and an ' bn for all n,

then a ' b.

2. For every a ∈ B1(S, Σ), a ≈ a.

3. For every a ∈ B1(S, Σ) and β ∈ R, a ≈ β (thus, a ≈ b implies a ≈ αb + β for α ≥ 0

and β ∈ R: cf. Lemma 5.2, Part 6).

4. If a ≈ b, then for all {cn} ⊂ B1(S, Σ) such that, for some c ∈ {λa+(1−λ)b : λ ∈ (0, 1)},
cn(s) → c(s) for all s, there exists N ≥ 1 such that n ≥ N implies cn ≈ a, b, hence

cn ' a, b.

5. If a ≈ b and α, β ∈ [0, 1], then αa + (1− α)b ≈ βa + (1− β)b.

6. If {an}, {bn}, {a, b} ⊂ B1(S, Σ) are such that an(s) → a(s), bn(s) → b(s) for all s, and

an ≈ bn for each n, then a ≈ b.

5.1.2 Necessity of the Axioms

It can now be shown that (2) implies (1) in Theorem 2.6. The following, preliminary result

collects useful properties of proper coverings; in particular, (1) below is related to (ii) in

Theorem 2.6.

Lemma 5.5 Consider a proper covering C. Then:

(1) Suppose that a ≈ b implies a, b ∈ C for some C ∈ C. Then every convex set D having

non-empty algebraic interior40 and such that a, b ∈ D implies a ≈ b is included in some

C ∈ C.

(2) If C, C ′ ∈ C, then C ∩ C ′ is a subset of the boundary of C (and C ′). Consequently,

the intersection of any two C, C ′ ∈ C has empty interior, and a point in the interior of some

40That is, there exists d ∈ D such that, for all a ∈ D, there exists b ∈ D such that 1
2a+ 1

2b = d.
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C ∈ C belongs to no other C ′ ∈ C. Thus, if a ≈ b implies a, b ∈ C ′ for some C ′ ∈ C, c is in

the interior of C ∈ C, and d ≈ c, then d ∈ C.

Proof.

(1) Let D have the required properties and consider d ∈ D in the algebraic interior of D.

Since C is a covering, d ∈ C for some C ∈ C. Now consider an arbitrary a ∈ D: then there

exists b ∈ D such that 1
2
a + 1

2
b = d. By assumption, a, b ∈ C ′ for some (possibly different)

C ′ ∈ C; since C ′ is convex, d ∈ C ′. Thus, one has d ∈ C ∩ C ′ and a, b ∈ C ′: then, by Part

(2) in Def. 2.5, a, b ∈ C as well. Since a was arbitrary, D ⊂ C.

(2) Suppose there exists c ∈ C∩C ′ such that c is an interior point of C. The (non-empty)

topological interior of C coincides with its algebraic interior (cf. e.g. Holmes [18], §11.A), so

for every a ∈ C there exists b ∈ C such that 1
2
a + 1

2
b = c. By Part (2) in Def. 2.5, a, b ∈ C ′:

that is, C ⊂ C ′, which contradicts the requirement that no two elements of C be nested.

Thus, c must lie in the boundary of C; similarly, it must lie in the boundary of C ′.

Now let u, C and {Pn} be as in Theorem 2.6, (2). Then u ◦ f ∈ Cn ∩ Cm implies that∫
u ◦ f dPn =

∫
u ◦ f dPm. Since every Cn is a cone, this holds for all a ∈ B(S, Σ). Hence,

one can define I : B(S, Σ) → R by letting I(a) =
∫

a dPn for a ∈ Cn. Then (I, u) represent

�. It is possible, of course, to assume that u(Y ) ⊃ [−1, 1]. Furthermore, since each Pn is

unique, I is also unique.

Let a ∈ B(S, Σ), β ∈ R+ and γ ∈ R. Since each Cn is a convex cone that contains

all constant functions, βa + γ ∈ Cn implies a = βa+γ
β

− γ
β
∈ Cn; hence, I(βa + γ) =∫

(βa + γ) dPn = β
∫

a dPn + γ = βI(a) + γ, i.e. I is c-linear.

Let a, b ∈ B(S, Σ) be such that a(s) ≥ b(s) for all s; then
∫

a dPn ≥
∫

b dPn for all n ≥ 1.

Since u(Y ) ⊃ [−1, 1], there exist f, g ∈ L and α > 0 such that u ◦ f = αa and u ◦ g = αb.

Then (iii) implies that f � g; since (I, u) represent � and I is positively homogeneous, this

is equivalent to I(a) = 1
α
I(u ◦ f) ≥ 1

α
I(u ◦ g) = I(b), i.e. I is monotonic.

Now Lemma 5.1 implies that I satisfies Axioms 1, 2, 3, 4, and 5. To see that Axioms

8 and 7 hold, consider a ∈ B1(S, Σ) and a bounded sequence {ak} in B1(S, Σ) such that

ak(s) → a(s) for all s.

If a lies in the interior of some Cm ∈ C, so that, by Part (2) of Lemma 5.5, it belongs

to no other element of C, then Part (3) in Def. 2.5 implies that there exists K ≥ 1 such

that, for k ≥ K, ak, a ∈ Cm. Then, since Pm is countably additive and the sequence {ak} is

bounded, by the Dominated Convergence theorem,
∫

ak dPm →
∫

a dPm = I(a); and since

I(ak) =
∫

ak dPm for k ≥ K, I(ak) → I(a), as required.

Now assume instead that a lies on the boundary of Cm. Let ε > 0. Then there exists cε

in the interior of Cm such that ‖a − cε‖ < ε
3
. Furthermore, the sequence {ak − [a − cε]}k≥1
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is bounded and converges pointwise to cε; hence, by the argument just given, there exists K

such that k ≥ K implies |I(cε)− I(ak − [a− cε])| < ε
3
. We then have, for k ≥ K,

|I(a)− I(ak)| ≤ |I(a)− I(cε)|+ |I(cε)− I(ak − [a− cε])|+ |I(ak − [a− cε])− I(ak)| <
< ‖a− cε‖+

ε

3
+ ‖ak − a + cε − ak‖ = 2‖a− cε‖+

ε

3
< ε.

Thus, again I(ak) → I(a). Part (1) of Lemma 5.3 now implies that Axiom 8 holds.

Next, I claim that a, b ∈ Cn ∈ C implies a ≈ b. Fix c ∈ B(S, Σ) and c′ = λa+(1−λ)b ∈ Cn

for some λ ∈ (0, 1). Let ck = 1
k
c + 1−k

k
c′, so ck → c′ uniformly. By Part (3) in Def. 2.5, for

k large, there exists Cnk
such that ck, c

′ ∈ Cnk
. Then c′ ∈ Cnk

∩ Cn, which, by Part (2) in

Def. 2.5, implies that also a, b ∈ Cnk
. Thus, for such k, and for every α ∈ [0, 1], I(αa + (1−

α)ck) =
∫

[αa + (1− α)ck] dPnk
= α

∫
a dPnk

+ (1− α)
∫

ck dPnk
= αI(a) + (1− α)I(ck), i.e.

1
k
c + k−1

k
c′ = ck ' a; similarly, 1

k
c + k−1

k
c′ ' b. Thus, a ≈ b.

Now, to see that Axiom 7 holds, consider {ak} ⊂ B1(S, Σ) u.b. and such that ak(s) →
a(s) ∈ B1(S, Σ) for all s. By Part (3) in Def. 2.5, for k large, there exists Cnk

such that

ak, a ∈ Cnk
; as was just shown, this implies that ak ≈ a for such k. Part (2) of Lemma 5.3

then implies that Axiom 7 holds.

Finally, consider a, b, c ∈ B1(S, Σ) such that a ≈ b and c ≈ γa+(1−γ)b for some γ ∈ (0, 1).

By (ii) in Theorem 2.6, there exists n, m ≥ 1 such that a, b ∈ Cn and c, γa + (1− γ)b ∈ Cm.

Thus, γa + (1 − γ)b ∈ Cn ∩ Cm. By Part (2) in Def. 2.5, a, b ∈ Cm; hence, for all α, β ∈
[0, 1], αa + (1 − α)c, βb + (1 − β)c ∈ Cm as well. As was shown above, this implies that

αa + (1 − α)c ≈ βb + (1 − β)c. Thus, by Part (3) of Lemma 5.3, Axiom 9 holds, and the

proof of necessity is complete.

5.1.3 Sufficiency: Covering C(S) ∩B1(S, Σ).

Turn now to the other direction. Assume throughout that Axioms 1-8, 7 and 9 hold for the

preference relation �. Continue to denote by I, u its representation per Lemma 5.1.

Recall that (S, Σ) is assumed to be a standard Borel space: that is, there exists a Polish

topology τ ⊂ 2S such that Σ is the Borel σ-algebra generated by τ . However, by the Borel

Isomorphism theorem (Kechris [20], Theorem 15.6), it is sufficient to prove the characteriza-

tion result for S compact metrizable, with Σ its Borel σ-algebra [See the Online Appendix

for additional details.]

This subsection and the next contain the heart of the proof that (1) ⇒ (2) in Theorem

2.6. The objective is to construct a proper covering of B(S, Σ); since I is c-linear, it is

actually sufficient to construct a suitable covering of B1(S, Σ), the unit ball of B(S, Σ).
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Overview. Lemma 5.6 establishes the existence of a covering of certain convex subsets of

B1(S, Σ) whose elements are maximal convex sets containing all constant functions, charac-

terized by the property that, if a, b are functions belonging to the same subset, then a ≈ b.

Lemma 5.7 then shows that the covering C0 of the set C(S)∩B1(S, Σ) of continuous functions

with norm at most 1 delivered by Lemma 5.6 has a special structure (and in fact extends

to a proper covering of C(S), although this is not essential to the argument). Finally, Lem-

mata 5.8 and 5.9 in the next subsection exploit the structure of C0 to construct a covering

of B1(S, Σ) that extends (by c-linearity of I) to a proper covering of B(S, Σ).

Lemma 5.6 Let M be a convex subset of B1(S, Σ) that contains all constant functions γ1S,

γ ∈ [−1, 1]. There exists a unique, non-empty collection C of convex subsets of M such that:

(1) For all C ∈ C, γ1S ∈ C for all γ ∈ [−1, 1];

(2) For all C ∈ C and a, b ∈ C, a ≈ b;

(3) For all C ∈ C, if a ∈ M satisfies a ≈ c for all c ∈ C, then a ∈ C, i.e. C is ⊂-maximal

with respect to the relation ≈. In particular, for every C, D ∈ D and a ∈ C\D there exists

b ∈ D such that a 6≈ b, so the elements of C are not nested.

(4) For all a ∈ M , there exists C ∈ C such that a ∈ C. More generally, every convex

subset D of M that satisfies (1) and (2) is contained in some C ∈ C.

Finally, if M is norm-closed, then so are the elements of C.

Note that, in general, elements of the covering constructed in this Lemma may have

empty interior. Note also that, although attention is restricted to elements of a given subset

of B1(S, Σ), in order to determine whether a ≈ b, one still needs to consider all functions

c ∈ B1(S, Σ) and verify that, for all c′ ∈ {λa + (1− λ)b : λ ∈ (0, 1)}, there is γ ∈ (0, 1) such

that γc + (1− γ)c′ ' a, b. That is, the “test set” of perturbations is all of B1(S, Σ).

Proof. Let C ′ be the collection of all convex subsets of M satisfying properties (1) and

(2) above. In particular, for every a ∈ M , {αa + (1 − α)γ1S : α ∈ [0, 1], γ ∈ [−1, 1]} ∈
C ′, because M is a convex subset of B1(S, Σ) that includes γ1S for all γ ∈ [−1, 1], and

αa+(1−α)γ ≈ α′a+(1−α′)γ′ for all appropriate α, α′, γ, γ′, by Lemma 5.4, Parts 2 and 3.

Partially order C ′ by set inclusion (⊂). If C ′′ ⊂ C′ is a chain, consider C =
⋃

C′∈C′′ C
′; then

C satisfies (1), and, furthermore, if a, b ∈ C, then a, b ∈ C ′ for some C ′ ∈ C′′, which ensures

that C is a convex set that satisfies (2) as well. Hence, C ∈ C ′.
Now let C be the set of all maximal elements of (C ′,⊂); Zorn’s Lemma ensures that C is

non-empty. Every element C ∈ C is a convex set that satisfies (1) and (2). The norm-closure

C̄ of any C ∈ C is also convex and satisfies (1); furthermore, it satisfies (2), because, for any

pair of sequences {an}, {bn} ⊂ C such that an → a, bn → b for a, b ∈ C̄, an ≈ bn for all n
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implies that a ≈ b by Lemma 5.4, Part 6. Therefore, if M is norm-closed, every maximal

element C of (C ′,⊂) must be norm-closed.

For (3), consider D ∈ C, so D satisfies (1) and (2). Suppose that, for some c ∈ M \D,

c ≈ d for all d ∈ D. The set D+c = {αc+(1−α)d : d ∈ D, α ∈ [0, 1]} is a convex subset of

M that properly contains D, and hence satisfies (1). To see that it also satisfies (2), consider

αc + (1 − α)d, α′c + (1 − α′)d′ ∈ D+c, so d, d′ ∈ D and α, α′ ∈ [0, 1]. Since D ∈ C, d ≈ d′

and 1
2
d + 1

2
d′ ∈ D; furthermore, by assumption, c ≈ 1

2
d + 1

2
d′. Thus, Axiom 9 implies that

also αc + (1− α)d ≈ α′c + (1− α′)d′. Thus, D ( D+c ∈ C ′, a contradiction. In particular, if

c ∈ C \D, then c ∈ M , so there must be d ∈ D such that c 6≈ d.

For (4), consider any convex set D ∈ C ′ and let C ′D ⊂ C ′ be the collection of convex sets

C ′ ∈ C ′ such that D ⊂ C ′. Order C ′D by set inclusion, and argue as above to conclude that

C ′D has at least one maximal element, say D̄. Then D̄ must also be a maximal element of

C ′: suppose that D̄ ⊂ C ′ for some C ′ ∈ C ′. Since D̄ ∈ C ′D, D ⊂ D̄ ⊂ C ′, so C ′ ∈ C ′D; but

since D̄ is maximal in C ′D, C ′ ⊂ D̄ must hold, i.e. D̄ is also maximal in C ′. Hence, every

D ∈ C ′ is contained in some C ∈ C; in particular, by the argument given above, every a ∈ M

is contained in some C ∈ C.

Finally, C is the only collection of (closed), convex sets for which (1)-(4) hold. To see

this, consider another collection D having the same properties. Fix D ∈ D; then D is a

convex set that satisfies (1) and (2), and therefore it is contained in some C ∈ C. Moreover,

if D 6= C, then there exists a ∈ C \D such that a ≈ b for all b ∈ D ⊂ C; by (4), a ∈ D′ ∈ D,

and indeed a ∈ D′ \ D; hence, (3) is violated. Thus, D = C. Therefore, D ⊂ C; the same

argument shows that C ⊂ D, so D = C.

Now let C0 be the covering provided by Lemma 5.6 for M = C(S) ∩ B1(S, Σ), the unit

ball of the set of continuous functions on S.

Lemma 5.7 For every C ∈ C0, there exists c ∈ C such that a ∈ B(S, Σ) and a ≈ c imply

a ≈ b for all b ∈ C. In particular, a ∈ C(S) ∩B1(S, Σ) and a ≈ b imply a ∈ C.

A function c ∈ C with the properties mentioned in the above statement will be henceforth

referred to as a critical point.

Proof. Recall that C(S), endowed with its relative norm topology, is a separable (cf

e.g. [2], Theorem 7.47) metric space. Thus, every C ∈ C0 is also separable ([2], Corollary

3.2). Furthermore, since C(S)∩B1(S, Σ) is norm-closed, Lemma 5.6 also ensures that every

C ∈ C0 is closed as well. This implies that, if {bn} is a sequence in C ∈ C0 and {βn}n≥1 is a

sequence in (0, 1) such that
∑

n βn ≤ 1, the series
∑

n βnbn converges in C.
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Now fix C ∈ C0 and let {c1, c2, ..., } be a countable dense subset of C. Fix a collection

{αn}n≥1 ∈ (0, 1)N such that
∑

n αn = 1, and define c =
∑

n αncn.

I claim that, if a ∈ B(S, Σ) satisfies a ≈ c, then a ≈ cn for all n ≥ 1. To see this, note

first that, for all n ≥ 1,

c =
∑
k≥1

αkck = αncn + (1− αn)
∑

k∈N\{n}

αk

1− αn

ck.

Since
∑

k∈N\{n}
αk

1−αn
ck ∈ C and αn ∈ (0, 1), Axiom 9 implies the claim. Now fix b ∈ C; I

claim that a ≈ c implies a ≈ b. To see this, note that there is a sequence {cnk
}k≥1 ⊂ {cn}n≥1

such that cnk
→ b in norm. Since a ≈ cnk

for all k, Lemma 5.4, Part 6 implies that a ≈ b, as

needed. In particular, by Lemma 5.6, Part (3), a ≈ c for some a ∈ C(S) ∩ B1(S, Σ) implies

a ∈ C, as required.

5.1.4 Sufficiency: Proper Covering of B(S, Σ)

In order to extend C0 to a covering of B1(S, Σ), consider the Baire hierarchy of functions

from S to [−1, 1] (Kechris [20], §24).

Let B1 contain all pointwise limits of sequences of continuous functions from S to [−1, 1]:

that is, b ∈ B1 iff there exists a sequence {an}n≥1 in C(S)∩B1(S, Σ) such that an(s) → b(s)

for all s ∈ S. Recursively, for every ordinal ξ such that 1 < ξ < ω1 (the latter symbol

denotes the first uncountable ordinal), consider the set Bξ of functions b : S → [−1, 1] for

which one can find a sequence {an} of functions such that (i) for every n ≥ 1, an ∈ Bξn for

some ξn < ξ, and (ii) an(s) → b(s) for all s ∈ S.

Note that, trivially, all limits above involve uniformly bounded sequences of functions.

Furthermore, C(S) ∩B1(S, Σ) ⊂ B1 ⊂ . . . ⊂ Bξ ⊂ . . . ⊂ Bη ⊂ ..., for any ξ ≤ η < ω1.

By Theorem 24.10 and Exercise 24.13 in Kechris [20], B1 is the set of functions of Baire

class 1. Consequently, by Theorem 24.3 in [20],
⋃

ξ Bξ is the class of Borel-measurable

functions from S to [−1, 1], i.e. B1(S, Σ). Furthermore, each member Bξ of the Baire

hierarchy is easily seen to be a convex41 subset of B1(S, Σ) that contains all constant functions

γ1S for γ ∈ [0, 1].

For notational convenience, let B0 = C(S)∩B1(S, Σ); also let ϕ0 : C0 → C0 be the identity

function. Let Cξ be a covering of Bξ by convex sets, as per Lemma 5.6.

Lemma 5.8 For every ordinal ξ < ω1, there exists a one-to-one map ϕξ : C0 → Cξ such

that, for every C ∈ C0:

41See the argument for the convexity of ϕξ(C) in the proof of Lemma 5.8.
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(i) if η < ξ, then ϕη(C) ⊂ ϕξ(C);

(ii) if ξ > 0, then a ∈ ϕξ(C) iff there exists a sequence bn that converges pointwise to a

and such that, for every n ≥ 1, there is an ordinal ξn < ξ such that bn ∈ ϕξn(C);

(iii) if c is a critical point of C, then a ∈ B(S, Σ) and a ≈ c imply a ≈ b for all

b ∈ ϕξ(C)—so, in particular a ∈ ϕξ(C) if a ∈ Bξ;

(iv) the collection {ϕξ(C) : C ∈ C0} covers Bξ.

Proof. The claim is true for ξ = 0: (i) and (ii) hold vacuously, (iii) follows directly from

Lemma 5.7, and (iv) holds because ϕ0 is the identity function on C0. For ξ > 0, consider

C ∈ C0 and let ϕξ(C) be the set of functions a ∈ Bξ that are pointwise limits of sequences

{bn} in B1(S, Σ) such that, for every n ≥ 1, bn ∈ ϕξn(C) for some ξn < ξ.

I claim that ϕξ(C) is a convex subset of Bξ that satisfies conditions (1) and (2) of Lemma

5.6. To see this, note first that ϕξ(C) contains C (consider constant sequences from C =

ϕ0(C)). Hence, in particular it contains all constant functions γ1S, for γ ∈ [−1, 1]. Next,

let a, b ∈ ϕξ(C), so there exist sequences {an} and {bn} converging pointwise to a and b

respectively, and such that, for every n ≥ 1, an ∈ ϕξa
n
(C) and bn ∈ ϕξb

n
(C) with ξa

n, ξ
b
n < ξ.

By Part (i) of the induction hypothesis, for every n ≥ 1, if ξa
n < ξb

n, then ϕξa
n
(C) ⊂ ϕξb

n
(C);

otherwise, the reverse inclusion holds. Moreover, again by the induction hypothesis, for

every n ≥ 1, ϕmax(ξa
n,ξb

n)(C) is an element of Cmax(ξa
n,ξb

n), hence a (maximal) convex set that

satisfies (1) and (2) of Lemma 5.6. Thus, for every α ∈ [0, 1], and for every n ≥ 1, αan +

(1−α)bn ∈ ϕmax(ξa
n,ξb

n)(C), with max(ξa
n, ξ

b
n) < ξ; furthermore, an ≈ bn. Finally, the sequence

{αan + (1 − α)bn} converges to αa + (1 − α)b pointwise. Hence, the latter is a member of

ϕξ(C), and by Lemma 5.4, Part 6, a ≈ b. Thus, ϕξ(C) satisfies conditions (1) and (2) of

Lemma 5.6 for the subset Bξ of B1(S, Σ). Therefore, it is included in at least one element of

Cξ. Let C ′ be one such element. It will now be shown that C ′ ⊂ ϕξ(C), so in fact C ′ = ϕξ(C).

Fix a ∈ C ′ and let c ∈ C be a critical point of C. Then c ∈ C ′, a ≈ c and, for all

α ∈ (0, 1), αc + (1−α)a ∈ C ′. Since a ∈ Bξ, there exists a sequence bn converging pointwise

to a such that bn ∈ Bξn and ξn < ξ for each n. Thus, for every α ∈ (0, 1), αc + (1 − α)bn

converges pointwise to αc + (1− α)a, and since c ∈ B0 and Baire classes are increasing and

convex, αc + (1− α)bn ∈ Bξn .

Now fix one such α ∈ (0, 1). By Axiom 7, there exists N(α) ≥ 1 such that αc+(1−α)a ≈
αc + (1 − α)bn for all n ≥ N(α); thus, by Axiom 9, αc + (1 − α)bn ≈ c for such n. Since

αc + (1 − α)bn ∈ Bξn , Part (iii) of the the induction hypothesis implies that, for such n,

αc + (1− α)bn ∈ ϕξn(C).

To summarize: for any α ∈ (0, 1) there exists N(α) such that, if n ≥ N(α), then

αc+(1−α)bn ∈ ϕξn(C). Now define a sequence {b̄k} as follows. Let n1 = 0 and b̄1 = c; then,

for k ≥ 2, let nk = max(N( 1
k
), nk−1) + 1 andb̄k ≡ 1

k
c + k−1

k
bnk

∈ ϕξnk
(C). Now b̄k(s) → a(s)

36



for all s:

|b̄n(s)− a(s)| =

∣∣∣∣1kc(s) +
k − 1

k
bnk

(s)− 1

k
a(s)− k − 1

k
a(s)

∣∣∣∣ ≤
≤ 1

k
|c(s)− a(s)|+ k − 1

k
|bnk

(s)− a(s)| → 0;

hence, by construction, a ∈ ϕξ(C).

Since a was arbitrarily chosen in C ′, the proof that C ′ ⊂ ϕξ(C) is complete. Since by

assumption ϕξ(C) ⊂ C ′, actually C ′ = ϕξ(C); in particular, there is exactly one element of Cξ

that contains ϕξ(C). Thus, ϕξ : C0 → Cξ is well-defined and, by construction, it satisfies (i)

and (ii); furthermore, ϕξ must be one-to-one, because ϕξ(C) = ϕξ(D) for distinct C, D ∈ C0

violates the maximality of C and D.

To see that (iii) must also hold, suppose a ∈ B(S, Σ) satisfies a ≈ c, and consider an

arbitrary b ∈ ϕξ(C); by construction, b is the (u.b.) pointwise limit of a sequence {bn} such

that, for every n ≥ 1, bn ∈ ϕξn(C) for some ξn < ξ. Since c ∈ ϕξn(C) for all n as well, a ≈ c

and Part (iii) of the induction hypothesis imply that a ≈ bn for all n; therefore, by Lemma

5.4, Part 6, a ≈ b, as required. If a ∈ Bξ, then, by Part (3) of Lemma 5.6, a ≈ b for all

b ∈ ϕξ(C) ∈ Cξ implies a ∈ ϕξ(C).

Turn now to (iv). Fix a ∈ Bξ, and let {bn} be a sequence that converges pointwise to a

such that, for all n ≥ 1, bn ∈ Bξn for some ξn < ξ. By the induction hypothesis, Part (iv),

bn ∈ ϕξn(Cn) for some Cn ∈ C0. Let cn be a critical point of Cn. Recall that cn ∈ ϕξn(Cn),

so clearly bn ≈ cn. For n ≥ 1, let b̄n = 1
n
cn + n−1

n
bn; then clearly b̄n ∈ ϕξn(Cn), and for every

s ∈ S,

|b̄n(s)− a(s)| =

∣∣∣∣ 1ncn(s) +
n− 1

n
bn(s)− 1

n
a(s)− n− 1

n
a(s)

∣∣∣∣ ≤
≤ 1

n
|cn(s)− a(s)|+ n− 1

n
|bn(s)− a(s)| ≤

≤ 1

n
· (‖cn‖+ ‖a‖) +

n− 1

n
|bn(s)− a(s)| ≤

≤ 2

n
+

n− 1

n
|bn(s)− a(s)| → 0,

i.e. {b̄n} also converges pointwise to a. By Axiom 7, a ≈ b̄n for n sufficiently large; by Axiom

9, a ≈ cn for such n; finally, from Part (iii) of the result, since cn ∈ ϕξ(Cn) and a ∈ Bξ,

a ∈ ϕξ(Cn).

The unique proper covering of B(S, Σ) in Theorem 2.6 can finally be constructed:

37



Lemma 5.9 There exists a unique proper covering C of B(S, Σ) such that (i) for all C ∈ C,

a, b ∈ C implies a ≈ b, and (ii) if a, b ∈ B(S, Σ) are such that a ≈ b, then a, b ∈ C for some

C ∈ C. Furthermore, C is finite or countable.

Proof. I first construct a covering of B1(S, Σ) . In the notation of Lemma 5.8, let

C∗ =

{ ⋃
ξ<ω1

ϕξ(C) : C ∈ C0

}
. (5)

C∗ has the following properties. Clearly, each C∗ ∈ C∗ contains all constants γ1S, γ ∈ [−1, 1].

Each C∗ ∈ C∗ is a convex subset of B1(S, Σ), and a, b ∈ C∗ implies a ≈ b: if a, b ∈ C∗ ∈
C∗, then a ∈ ϕη(C), b ∈ ϕζ(C) for some pair of ordinals η, ζ; hence, letting ξ = max(η, ζ),

a, b ∈ ϕξ(C), so αa + (1− α)b ∈ ϕξ(C) ⊂ C∗ and a ≈ b, as required.

C∗ covers B1(S, Σ), because every a ∈ B1(S, Σ) belongs to some Bξ, ξ < ω1, and therefore,

by Part (iv) of Lemma 5.8, to some ϕξ(C), C ∈ C0.

Every C∗ ∈ C∗ contains a function c with ‖c‖ < 1 and such that, for any a ∈ B1(S, Σ),

a ≈ c implies a ∈ C∗—i.e. c is a critical point of C∗. Consider C ∈ C0 and let c be a critical

point of C. Note that ‖c‖ < 1.42 Let C∗ =
⋃

ξ<ω1
ϕξ(C) and consider a ∈ B1(S, Σ) . Then

a ∈ Bξ for some ξ < ω1: thus, by Part (iii) of Lemma 5.8, if a ≈ c, then a ∈ ϕξ(C), which

implies that a ∈ C∗.

Distinct elements of C∗ are not nested. If C∗, D∗ ∈ C∗ and C∗ ⊂ D∗, then D∗ contains

a critical point of C∗, and therefore, by the preceding property, D∗ ⊂ C∗; thus, distinct

elements of C∗ cannot be nested.

Each element of C∗ has non-empty interior. Consider C∗ ∈ C∗ and let c be a critical

point of C∗ with ‖c‖ < 1. Suppose that, for every n > 0 such that the 1
n
-ball around c

lies in B1(S, Σ), there exists bn ∈ B1(S, Σ) such that ‖bn − c‖ < 1
n

and bn 6∈ C∗. Thus,

bn → c in the sup-norm topology, hence pointwise. But then Axiom 7 implies that bn ≈ c for

sufficiently large n. Since c is a critical point of C∗, bn ∈ C∗ for such n, which contradicts

the construction of the sequence {bn}. Therefore, for some n > 0, C contains an open 1
n
-ball

in B1(S, Σ) around c.

C∗ ∩D∗ is an extremal subset of C∗ (and D∗) for all distinct C∗, D∗ ∈ C∗. To see this,

let αa + (1− α)b ∈ C∗ ∩D∗ for a, b ∈ C∗ and α ∈ (0, 1); also let d be a critical point of D∗.

42In the notation of Lemma 5.7, suppose ‖cn‖ = 1 for all n. Then, for k > 1, no 1
k -ball in C(S) around

0 ∈ C contains an element of {cn}. Thus, ‖cn‖ < 1 for some n, so ‖c‖ < 1.
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Then a ≈ b and d ≈ αa + (1 − α)b, so by Axiom 9, d ≈ a and d ≈ b. Since d is a critical

point of D∗, it follows that a, b ∈ D∗, so a, b ∈ C∗ ∩D∗.

For all a, b ∈ B1(S, Σ): if a ≈ b, then there exists C∗ ∈ C∗ such that a, b ∈ C∗. Let a, b

be as stated, and define d = 1
2
a + 1

2
b. Then d ∈ C∗ for some C∗ ∈ C∗. If a = b, there is

nothing to prove. Otherwise, note that in particular c ≈ d for a critical point c of C∗. By

Axiom 9, this implies c ≈ a, c ≈ b; since c is a critical point of C∗, the assertion follows.

If a sequence {an} in B1(S, Σ) converges pointwise to a, then there exists N ≥ 1 such

that, for every n ≥ N , there exists C∗ ∈ C∗ such that an, a ∈ C∗. Note that, by Axiom 7,

there exists N ≥ 1 such that, for n ≥ N , an ≈ a. The previous property now implies the

claim.

The collection C0 (hence, the collection C∗) is at most countable. To see this, recall that

C(S)∩B1(S, Σ) is separable, and let {gn}n≥1 be an enumeration of a countable dense subset.

Also, for every C ∈ C0, let cC denote a critical point of C; since cC lies in the non-empty

interior of C, there exists εC > 0 such that ‖a − c‖ < εC implies a ∈ C. Thus, for distinct

C, D ∈ C0, it must be the case that ‖cC − cD‖ ≥ max(εC , εD).43 Since {gn}n≥1 is dense in

C(S) ∩ B1(S, Σ), for every C ∈ C0 one can choose n ≥ 1 such that ‖gn − cC‖ < εC

2
. This

defines a map N : C0 → N. Now suppose that, for distinct C, D ∈ C0, N(C) = N(D) = n.

Then ‖cC − cD‖ ≤ ‖cC − gn‖ + ‖gn − cD‖ < 1
2
(εC + εD) ≤ max(εC , εD), a contradiction.

Hence, N(·) is an injection, so C0 is finite or countable.

To complete the proof, let {C∗
1 , C

∗
2 , ...} be an enumeration of C∗, and define

∀n ≥ 1, Cn = {γa : γ ∈ R++, a ∈ C∗
n}; C = {Cn}n≥1. (6)

That is, each Cn is the cone generated by C∗
n. It may be verified that {Cn} is a proper

covering that satisfies (i) and (ii) in the Lemma [details in the Online Appendix].

To establish uniqueness, suppose D is another proper covering such that (i) and (ii)

hold. Fix D ∈ D. Then D has non-empty topological, hence algebraic interior; furthermore,

a, b ∈ D implies a ≈ b. By Part (1) of Lemma 5.5, there exists n such that D ⊂ Cn. On the

other hand, since Cn also has non-empty topological, hence algebraic interior, and a, b ∈ Cn

implies a ≈ b, by the same argument it is contained in some D′ ∈ D. Hence, D ⊂ Cn ⊂ D′;

but since elements of D are non-nested, D = D′ = Cn. Conclude that, for every D ∈ D,

there exists n such that D = Cn, so D ⊂ C. But the same argument implies that C ⊂ D, so

C = D, and the proof is complete.

43If not, then cC ∈ D, say, so for all d ∈ D, c ≈ d, which implies d ∈ C, i.e. D ⊂ C. In particular, cD ∈ C,
and by a similar argument C ⊂ D: thus, C = D.
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The following Corollary now establishes that {Cn}n≥1 is in fact the collection of (conic

hull of) sets delivered by Lemma 5.6: that is, it comprises all ⊂-maximal convex cones

containing the constants and consisting of robustly mixture-neutral functions. Furthermore,

it shows that each Cn is norm-closed.

Corollary 5.10 Let {Cn}n≥1 be the proper covering provided by Lemma 5.9. If C ⊂
B(S, Σ) is a convex cone that contains all constant functions γ1S, γ ∈ R, and a, b ∈ C

implies a ≈ b, then C ⊂ Cn for some Cn ∈ C. In particular, every Cn is norm-closed.

Proof. Suppose not: then, for every n ≥ 1, there exists an ∈ C such that an 6∈ Cn.

Since both C and Cn are cones, assume wlog that ‖an‖ = 1. As in the proof of Lemma 5.7,

let {αn}n≥1 be such that αn ∈ (0, 1) for all n ≥ 1 and
∑

n αn = 1; then
∑

n αnan converges

in norm, say to a ∈ B(S, Σ). Moreover, since C is a convex cone and a` ∈ C for all ` ≥ 1,∑m
`=1 α`a` ∈ C for all m ≥ 1; it follows that an ≈

∑m
n=1 αnan for all n, m ≥ 1, and taking

the limit of the r.h.s. as m → ∞, by Lemma 5.4, Part 6, an ≈ a for all n ≥ 1. Now,

since {Cn}n≥1 covers B(S, Σ), there exists n∗ ≥ 1 such that a ∈ Cn∗ . As in Lemma 5.7,

a = αn∗an∗ + (1 − αn∗)
∑

n6=n∗
αn

1−αn∗
an, where, arguing as above,

∑
n6=n∗

αn

1−αn∗
an converges

in B(S, Σ) and satisfies
∑

n6=n∗
αn

1−αn∗
an ≈ an∗ .

Thus, by (ii) in Lemma 5.9,
∑

n6=n∗
αn

1−αn∗
an, an∗ ∈ Cn∗∗ for some n∗∗ ≥ 1. Since Cn∗∗ is

convex, a ∈ Cn∗∗ as well, so a ∈ Cn∗ ∩ Cn∗∗ ; and since Cn∗ ∩ Cn∗∗ is an extremal subset of

Cn∗∗ ,
∑

n6=n∗
αn

1−αn∗
an, an∗ ∈ Cn∗ ∩ Cn∗∗ ⊂ Cn∗ . This contradicts the choice of an∗ .

For the last implication, let C̄n denote the norm-closure of some Cn, n ≥ 1, and consider

a, b ∈ C̄n; then ‖an − a‖ → 0 and ‖bn − b‖ → 0 for some {an}, {bn} ⊂ Cn. Now Lemma

5.9, Part (i) ensures that an ≈ bn for each n, and Lemma 5.4, Part 6 implies that a ≈ b.

Thus, by the result just established, C̄n ⊂ Cm for some m ≥ 1; in particular, n = m, for

otherwise Cn ⊂ Cm, which contradicts the fact that {Cn} is a proper covering. Thus, Cn is

norm-closed.

5.1.5 Sufficiency: completing the argument

Throughout the remainder of this section, C will denote the collection of convex cones con-

structed in Lemma 5.9.

First, the probabilities {Pn}n≥1 representing I on each element of C will be constructed.

Lemma 5.11 For every n ≥ 1, there exists a unique, countably additive probability measure

Pn on (S, Σ) such that, for all a ∈ Cn, I(a) =
∫

a dPn.

Proof. Observe first that a, b ∈ Cn ∈ C implies a ≈ b, and hence, by Lemma 5.2, Part

5, a ' b: that is, the restriction of I to every Cn ∈ C is affine.
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Now fix n ≥ 1. Let c be a point in the interior of Cn: then, for every a ∈ B(S, Σ), there

exists α ∈ (0, 1] such that ac ≡ αa + (1 − α)c ∈ Cn. Thus, a = 1
α
ac − 1−α

α
c. Since a was

arbitrary and Cn is a cone, it follows that {a− b : a, b ∈ Cn} = B(S, Σ).

It may be verified that, for every n ≥ 1, it is possible to define a functional Jn : B(S, Σ) →
R by letting Jn(a−b) = I(a)−I(b) for all a, b ∈ Cn. Furthermore, each Jn is positive, additive,

and homogeneous.

Thus, Jn is linear and norm-continuous (cf. [2], Theorem 7.6) on B(S, Σ); furthermore,

‖Jn‖ = 1. Therefore, there exists a unique, finitely additive probability Pn on (S, Σ) such

that Jn(a) =
∫

a dPn for all a ∈ B(S, Σ) (cf. e.g. [2], Theorem 11.32). In particular,

I(a) = Jn(a− 0) =
∫

a dPn for all a ∈ Cn.

Now consider a sequence of events {Ak}≥1 such that Ak ⊃ Ak+1, k ≥ 1, and
⋂

k≥1 Ak = ∅.
Let c be an interior point of Cn such that, for some ε > 0, a ∈ B(S, Σ) and ‖a − c‖ < ε

implies a ∈ Cn. Consider the sequence {ck}k≥1 of functions defined by ck(s) = c(s)+ ε
2
1Ak

(s)

for all s ∈ S and k ≥ 1. Then ‖ck − c‖ = ε
2

< ε, so ck ∈ Cn for all k ≥ 1. Since I is

monotonic, I(ck) ≥ I(ck+1) for all k ≥ 1; furthermore, for every s ∈ S there exists K ≥ 1

such that, for all k ≥ K, s 6∈ Ak, and therefore ck(s) = c(s). Thus, ck(s) → c(s) for all

s ∈ S, and the sequence {ck} is clearly bounded (e.g. by ‖c‖ + ε). Axiom 8 then implies

that I(ck) ↓ I(c), so that

Pn(Ak) = Jn(1Ak
) =

2

ε
Jn(ck − c) =

2

ε
[I(ck)− I(c)] ↓ 0;

thus (cf. e.g. [2], Lemma 8.32), Pn is countably additive.

Remark 5 The preceding Lemma provides the key step in the proof of Proposition 2.2 for

the case C ( L. Specifically, suppose that � satisfies Axioms 1–5 and Mixture Neutrality on

such a set C of acts. Then, by Lemma 5.1 and arguments in the proof of Lemma 5.3 Part 1,

� is represented by a cardinally unique u and a monotonic, c-linear, normalized functional

I that is affine on the set C̄ = {a ∈ B(S, Σ) : a = γu ◦ f, γ ∈ R+, f ∈ C}. Proceeding as in

the proof of Lemma 5.11, define a positive linear functional J on C̄− C̄ ⊂ B(S, Σ) by letting

J(a−b) = I(a)−I(b); notice that, in general, C̄−C̄ 6= B(S, Σ). Now let J∗ denote a positive

Hahn-Banach extension of J to B(S, Σ), and apply the standard representation theorem to

obtain a probability charge P on (S, Σ) such that J∗(a) =
∫

a dP for all a ∈ B(S, Σ), and

in particular I(u ◦ f) = J(u ◦ f) = J∗(u ◦ f) =
∫

u ◦ f dP for all f ∈ C. Note that, since

the Hahn-Banach extension J∗ is not unique in general, P is not the only probability charge

that represents � on C.

Jointly with the cardinally unique utility function u from Lemma 5.1 and the unique

proper covering C from Lemma 5.9, the collection {Pn}n≥1 of unique countably additive
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probability measures from Lemma 5.11 satisfies (i) of Theorem 2.6, Part (2). By Lemma

5.9, it is also the case that, if f ≈ g, hence u◦f ≈ u◦g, then u◦f, u◦g ∈ Cn for some n ≥ 1:

that is, (ii) also holds. Hence, to complete the proof of the Theorem, it must be shown that

(iii) holds as well. The following, preliminary Lemma provides the key step.

Lemma 5.12 Let a, b ∈ B(S, Σ). Then, for some K ≥ 1, there exists a finite collection

0 = α0 < α1 < . . . < αK = 1 such that, for each k = 0, ..., K − 1, there exists nk ≥ 1 such

that {α ∈ [0, 1] : αa + (1− α)b ∈ Cnk
} = [αk, αk+1].

Proof. Let α0 = 0; for k ≥ 1, let

αk = sup{α ∈ [αk−1, 1] : αa + (1− α)b ≈ αk−1a + (1− αk−1)b}.

By Lemma 5.4, Part 6, αka+(1−αk)b ≈ αk−1a+(1−αk−1)b (i.e. the supremum is achieved).

I claim that, if αk−1 < 1, then αk > αk−1. To see this, consider the sequence {bm} of

functions defined by bm = 1
m

a + m−1
m

[αk−1a + (1− αk−1)b]; thus, bm → αk−1a + (1− αk−1)b

in norm. Axiom 7 then implies that there exists M ≥ 1 such that bm ≈ αk−1a + (1− αk−1)b

for m ≥ M ; thus, αk ≥ 1
M

+ M−1
M

αk−1 > αk−1.

Next, I claim that there exists K ≥ 1 such that αK = 1 (hence, αk = 1 for all k > K)

and αk < 1 for all k < K. Suppose not; then αk ↑ ᾱ ∈ [0, 1]. Consider the sequence {bk} of

functions defined by bk = αka+(1−αk)b; clearly, bk → ᾱa+(1−ᾱ)b, so Axiom 7 implies that

bk ≈ ᾱa+(1−ᾱ)b for large k. In other words, for large k, αka+(1−αk)b ≈ ᾱa+(1−ᾱ)b; but

this contradicts the fact that sup{α ∈ [αk, 1] : αa+(1−α)b ≈ αka+(1−αk)b} = αk+1 < ᾱ.

Now Part (ii) of Lemma 5.9 and convexity of each Cn, n ≥ 1, imply that, for every

k = 0, ..., K − 1, there exists nk ≥ 1 such that αa + (1 − α)b ∈ Cnk
for all α ∈ [αk, αk+1].

Moreover, for k > 0, consider α ∈ [αh, αh+1) for some h < k; then αa + (1 − α)b 6≈
αk+1a + (1 − αk+1)b ∈ Cnk

, for otherwise αha + (1 − αh)b ≈ αk+1a + (1 − αk+1)b (either

because α = αh, or by Axiom 9), which contradicts the fact that αh+1 < αk+1. Similarly,

consider α ∈ (αh, αh+1] for some h > k; then αa + (1 − α)b 6≈ αka + (1 − αk)b ∈ Cnk
, for

otherwise αh+1a+(1−αh+1)b ≈ αka+(1−αk)b, which contradicts the fact that αk+1 < αh+1.

Thus, if α ∈ [0, 1]\ [αk, αk+1], then either αa+(1−α)b 6≈ αka+(1−αk)b, or αa+(1−α)b 6≈
αk+1a + (1− αk+1)b; hence, by Part (i) of Lemma 5.9, αa + (1− α)b 6∈ Cnk

.

Part (iii) of Theorem 2.6 can now be established. Assume that, for a, b ∈ B(S, Σ), it is

the case that
∫

a dPn ≥
∫

b dPn for all n ≥ 1. Let K, αk and nk be as in Lemma 5.12. For

every k = 0, . . . , K − 1,∫
[αka + (1− αk)b] dPnk

≤
∫

[αk+1a + (1− α)k+1b] dPnk
=

∫
[αk+1a + (1− α)k+1b] dPnk+1

:
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the inequality follows from
∫

a dPnk
≥

∫
b dPnk

and αk < αk+1, and the equality holds

because αk+1a+(1−αk+1)b ∈ Cnk
∩Cnk+1

. Thus, I(αka+(1−αk)b) ≤ I(αk+1a+(1−αk+1)b)

for all k = 0, . . . , K − 1; since α0 = 0 and αK = 1, I(b) ≤ I(a).

Finally, Lemma 5.13 implies that {Pn}n≥1 comprises all possible priors for �. To see this,

assume that the set D below is the utility image of a collection C of acts as in Definition

2.3, and P is the unique prior identified by C. Then necessarily P = Pn for some n ≥ 1.

Lemma 5.13 Let D ⊂ B(S, Σ) be a convex set such that a, b ∈ Y implies a ' b. Then

there exists n ≥ 1 such that I(a) =
∫

a dPn for all a ∈ D.

Proof. Since I is norm-continuous, it is wlog to assume that D is norm-closed. Thus, D,

endowed with its relative metric topology, is complete. For every n ≥ 1, Cn is norm-closed

by Corollary 5.10, so D ∩Cn is relatively closed, and D =
⋃

n≥1 D ∩Cn. Thus, by the Baire

Category Theorem ([2], Corollary 3.28), there exists n ≥ 1 such that D ∩Cn has non-empty

relative interior. In particular, there exists c ∈ D ∩ Cn and ε > 0 such that ‖a− c‖ < ε and

a ∈ D imply a ∈ D ∩ Cn.

Now let Jn : B(S, Σ) → R be a linear functional such that Jn(a) = I(a) for all a ∈ D∩Cn.

I claim that then Jn(a) = I(a) for all a ∈ D. To see this, consider a ∈ Y ; by the preceding

argument, since D is convex, there exists γ ∈ (0, 1] such that γa + (1− γ)c ∈ D ∩Cn. Thus,

γJn(a) = Jn(γa + (1− γ)c)− (1− γ)Jn(c) =

= I(γa + (1− γ)c)− (1− γ)I(c) =

= γI(a) + (1− γ)I(c)− (1− γ)I(c) = γI(a).

Therefore, in particular,
∫

a dPn = I(a) for all a ∈ D.

5.2 Proof of Proposition 3.2

Denote by µ the convex-ranged probability charge in Def. 3.1. As in Subsection 5.1.2, let

I(a) =
∫

a dPn for all a ∈ Cn and n ≥ 1. I sometimes write Pn(a) in lieu of
∫

a dPn. Also

assume that u(X) ⊃ [−1, 1] (recall that u(X) is convex by assumption).

I claim that µ is countably additive. To see this, consider a sequence of events {Ak}k≥1

such that Ak ⊃ Ak+1 and
⋂

k≥1 Ak = ∅. Let x1, x0 ∈ X be such that u(x1) = 1, u(x0) = 0.

Then, by Axioms 4 and 8, for every x ∈ X such that x � x0, there exists K ≥ 1 such that

k ≥ K implies x � x1 Ak x0; moreover, clearly x1 Ak x0 � x0. Now suppose µ(Ak) ↓ ε > 0.

Since µ is convex-ranged, there exists an event E such that µ(E) = ε; by Def. 3.1, since

µ({s : x1Akx0(s) � x}) = 1 − µ(Ak) ≤ 1 − µ(E) = µ({s : x1Ex0(s) � x}) for x1 � x � x0,
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x1Akx0 � x1Ex0. Similarly, for x1 � x � x0, µ({s : x1Ex0(s) � x}) = 1 − µ(E) < 1 =

µ({s : x0(s) � x}), so x1Ex0 � x0. Since u(X) is convex and x1 � x1 E x0 � x0, there exists

xε such that xε ∼ x1 E x0, and hence x1Akx0 � xε � x0 for all k ≥ 1: contradiction. Thus,

µ(Ak) ↓ 0, so µ is countably additive.

Let C0 = {Cn}n≥1, C∗ = {C∗
n}n≥1 and {Pn}n≥1 be as in the proof of Theorem 2.6. It is wlog

to assume that S is compact metrizable; since µ is convex-valued, S must be uncountable

It is w.l.o.g. to assume that µ has full support. To elaborate, since µ is countably additive

and µ({s}) = 0 for all s ∈ S because µ is convex-ranged, the Borel Isomorphism theorem for

measures ([20], Theorem 17.41) yields a Borel isomorphism ϕ : S → [0, 1] such that µ ◦ ϕ−1

is Lebesgue measure. Arguing as in Subsection 6.5.5 of the Online Appendix, if the plausible

priors determined by the functional I ◦ϕ−1 agree with Lebesgue measure, the plausible priors

for I coincide with µ (for an alternative, direct proof, see the Online Appendix, §6.5.7).

It will be shown that Pn = µ for all n ≥ 1. Fix an arbitrary n ≥ 1 and let c be a

critical point of Cn ⊂ C(S) ∩ B1(S, Σ). If c is constant, then Cn = C(S) ∩ B1(S, Σ), i.e.

� is EU; thus, assume c is nonconstant. Recall that c is in the interior of C∗
n, so for some

ε > 0, ‖a − c‖ < 2ε implies a ∈ C∗
n. Define cmin = mins c(s), cmax = maxs c(s): then

−1 + 2ε ≤ cmin < cmax ≤ 1− 2ε; finally, let R = cmax − cmin > 0.

Also, c is the uniform limit of the sequence of step functions {aM}M≥1 defined by aM(s) =

cmin + R
M

(m − 1) whenever c(s) ∈ [cmin + R
M

(m − 1), cmin + R
M

m) for m = 1, ...,M − 1, and

aM(s) = cmin + R
M

(M − 1) whenever c(s) ∈ [cmin + R
M

(M − 1), cmax]. For M > R
ε
, ‖aM − c‖ =

R
M

< ε (hence, aM ∈ C∗
n) and furthermore min{aM(s) − aM(t) : aM(s) > aM(t)} = R

M
< ε.

Fix such a value of M ; for simplicity, denote the corresponding step function aM by a,

and let f ∈ L be a simple act such that u ◦ f = a; write f = (x1, E1; . . . xM , EM), where

u(xm) = cmin + R
M

(m− 1). Since µ has full support, µ(Em) > 0 for all m.

Claim 1. For any m ∈ {1, . . . ,M}, Pn(Em) > 0 and Pn(F ) = µ(F )
µ(Em)

Pn(Em) for all F ∈ Σ

such that F ⊂ Em.

Proof : Let x ∈ X be such that u(x) = u(xm)+ R
M

; note that x = xm+1 if m < M . Define

the act f ′ by f ′(s) = f(s) for s 6∈ Em, and f ′(s) = x for s ∈ Em. Note that u◦f ′ ∈ B1(S, Σ),

and ‖u ◦ f ′ − a‖ ≤ ‖u ◦ f ′ − u ◦ f‖+ ‖u ◦ f − a‖ < 2ε, so u ◦ f ′ ∈ C∗
n.

Then Def. 3.1 implies that f ′ � f , because, for x′ such that xm � x′ ≺ x, µ({s : f ′(s) �
x′}) = µ(

⋃m−1
`=1 E`) < µ(

⋃m
`=1 E`) = µ({s : f(s) � x′}), and equality holds for all other x′.

Hence, Pn(u ◦ f ′) = I(u ◦ f ′) > I(u ◦ f) = Pn(u ◦ f), so Pn(Em) > 0 as needed.

By range convexity of µ, for every K ≥ 1 there exists a partition {E1
m, ..., EK

m} of Em

such that µ(Ek
m) = 1

K
µ(Em) for all k = 1, . . . , K. For each such k, construct acts fk such

that fk(s) = f(s) for all s ∈ S \Ek
m, and fk(s) = x for s ∈ Ek

m, where u(x) = u(xm) + R
M

as

above. Then u ◦ fk ∈ C∗
n; furthermore, Def. 3.1 implies that fk ∼ fh, hence Pn(u ◦ fk) =
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I(u ◦ fk) = I(u ◦ fh) = Pn(u ◦ fh), for all k, h ∈ {1, . . . , K}. Since fk and fh only differ

on Ek
m and Eh

m, a simple calculation shows that Pn(Ek
m) = Pn(Eh

m), so Pn(Ek
m) = 1

K
Pn(Em).

Hence, the second part of the claim is true for all events F ⊂ Em such that µ(F )
µ(Em)

is rational.

Now assume µ(F )
µ(Em)

is irrational, and consider r ∈ Q∩ ( µ(F )
µ(Em)

, 1]. By range convexity of µ,

there exists Fr ∈ Σ such that Fr ⊂ Em \ F and µ(F )+µ(Fr)
µ(Em)

= r,44 so Pn(F ∪ Fr) = rPn(Em).

Thus, Pn(F ) ≤ rPn(Em) for all r ∈ Q∩ ( µ(F )
µ(Em)

, 1], which implies that Pn(F ) ≤ µ(F )
µ(Em)

Pn(Em).

Similarly, Pn(F ) ≥ µ(F )
µ(Em)

Pn(Em), so Claim 1 holds for all Borel F ⊂ E.

Claim 2. For any m ∈ {1, . . . ,M}, Pn(F ) = µ(F )
µ(

⋃m
`=1 E`)

Pn(
⋃m

`=1 E`) for all F ∈ Σ such that

F ⊂
⋃m

`=1 E`. Thus, in particular, Pn = µ.

Proof : arguing by induction, the assertion follows from Claim 1 for m = 1; thus, assume

that it holds for m − 1 ≥ 1. Recall that µ(Em−1) > 0 and µ(Em) > 0; since µ is convex-

ranged, there exist events Gm−1 ⊂ Em−1 and Gm ⊂ Em such that µ(Gm−1) = µ(Gm) > 0

[e.g. if µ(Em−1) ≤ µ(Em), let Gm−1 = Em−1 and choose Gm so µ(Gm) = µ(Em−1), which is

possible by range convexity; similarly for µ(Em−1) > µ(Em).]

Now define an act f ′ by f ′(s) = f(s) for s ∈ S \ (Gm−1 ∪Gm), f ′(s) = xm for s ∈ Gm−1,

and f ′(s) = xm−1 for s ∈ Gm. Note that, by construction, u(xm) − u(xm−1) = R
M

< ε, so

‖f ′ − a‖ ≤ ‖f ′ − f‖ + ‖f − a‖ < 2ε, hence f ′ ∈ C∗
n. Furthermore, µ({s : f ′(s) = x`}) =

µ({s : f(s) = x`}) for all ` = 1, ...,M . This is obvious for ` < m− 1 or ` > m; moreover, for

` = m− 1, by the choice of Gm−1 and Gm,

µ({s : f ′(s) = xm−1}) = µ([Em−1 \Gm−1]∪Gm) = µ(Em−1)−µ(Gm−1) +µ(Gm) = µ(Em−1),

and similarly for ` = m. Therefore, f ∼ f ′, which implies Pn(u ◦ f) = Pn(u ◦ f ′); since f, f ′

only differ on Gm−1∪Gm, a simple calculation shows that Pn(Gm) = Pn(Gm−1). By Claim 1,

Pn(Gm) = µ(Gm)
µ(Em)

Pn(Em); by the induction hypothesis, Pn(Gm−1) = µ(Gm−1)

µ(
⋃m−1

`=1 E`)
Pn(

⋃m−1
`=1 E`).

Conclude that Pn(Em)
µ(Em)

=
Pn(

⋃m−1
`=1 E`)

µ(
⋃m−1

`=1 E`)
≡ α; thus,

α =
µ(Em)

µ(
⋃m

`=1E`)
Pn(Em)
µ(Em)

+
µ(

⋃m−1
`=1 E`)

µ(
⋃m

`=1E`)
Pn(

⋃m−1
`=1 E`)

µ(
⋃m−1

`=1 E`)
=

Pn(Em)
µ(

⋃m
`=1E`)

+
Pn(

⋃m−1
`=1 E`)

µ(
⋃m

`=1E`)
=
Pn(

⋃m
`=1E`)

µ(
⋃m

`=1E`)
.

Finally, consider an arbitrary F ⊂
⋃m

`=1 E`. Then

Pn(F ) = Pn(F ∩
m−1⋃
`=1

E`) + Pn(F ∩ Em) =
µ(F ∩

⋃m−1
`=1 E`)

µ(
⋃m−1

`=1 E`)
Pn(

m−1⋃
`=1

E`) +
µ(F ∩ Em)
µ(Em)

Pn(Em) =

= µ(F ∩
m−1⋃
`=1

E`) · α+ µ(F ∩ Em) · α = µ(F ) · α =
µ(F )

µ(
⋃m

`=1E`)
Pn(

m⋃
`=1

E`).

44Equivalently, Fr must satisfy µ(Fr) = rµ(Em)−µ(F ) ≤ µ(Em)−µ(F ) = µ(Em \F ); so range convexity
implies that such Fr can be found.
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5.3 Proof of Theorem 3.4

5.3.1 Notation and Preliminary results

Let u, C = {Cn}n≥1 and {Pn}n≥1 represent �; similarly, let uE, CE = {CE
k }k≥1 and {PE

k }n≥1

represent �E. As in Subsection 5.1.2, let I(a) =
∫

a dPn for all a ∈ Cn and n ≥ 1, and

similarly let IE(a) =
∫

a dPE
k for all a ∈ CE

k and k ≥ 1. Recall that I and IE are monotonic,

normalized, c-linear functionals. Finally, assume that u(Y ) ⊃ [−1, 1], and define aEb =

1Ea + 1Ecb for a, b ∈ B(S, Σ).

Note that E ∈ Σ is non-null if and only if, for all a, b ∈ B(S, Σ), a(s) = b(s) for s ∈ S \E

and a(s) > b(s) for all s ∈ E imply I(a) > I(b).

Overview. Lemma 5.14 characterizes non-null events in terms of the plausible priors

{Pn}. Lemma 5.15 examines the “fixpoint condition” discussed after Theorem 3.4.

Lemma 5.14 An event E ∈ Σ is non-null for � if and only if, for all n ≥ 1, Pn(E) > 0.

Proof. Suppose E is non-null and let c ∈ B(S, Σ) lie in the interior of Cn. Then there

exists ε > 0 such that the function c′ defined by c′(s) = c(s) for s ∈ S \E and c′(s) = c(s)+ ε

for s ∈ E satisfies c′ ∈ Cn. Thus, Pn(E) = 1
ε
[
∫

c′ dPn −
∫

c dPn] = 1
ε
[I(c′)− I(c)] > 0.

Conversely, assume Pn(E) > 0 for all n ≥ 1, and let a, b ∈ B(S, Σ) be such that a(s) =

b(s) for s ∈ S \ E, and a(s) > b(s) for s ∈ E. By Part (3) in Def. 2.5, there exists

γ > 0 such that γa + (1 − γ)b, b ∈ Cn for some n ≥ 1. Since γa(s) + (1 − γ)b(s) = b(s)

for s ∈ S \ E, γa(s) + (1 − γ)b(s) > b(s) for s ∈ E, Pn(E) > 0 and Pn is countably

additive, I(γa + (1 − γ)b) =
∫

[γa + (1 − γ)b] dPn >
∫

b dPn = I(b). Furthermore, since

a(s) ≥ γa(s)+(1−γ)b(s) for all s ∈ S,
∫

a dPm ≥
∫

[γa+(1−γ)b] dPm for all m ≥ 1; hence,

by c-linearity of I [considering acts f, g such that u ◦ f = αa, u ◦ g = αb for appropriate

α > 0] and Part (iii) of Theorem 2.6, I(a) ≥ I(γa + (1− γ)b) > I(b).

Lemma 5.15 Suppose that E ∈ Σ is non-null. Then, For every a ∈ B(S, Σ), there exists a

unique solution x ∈ R to the equation

x = I(aEx). (7)

The map J : B(S, Σ) → R associating to each a ∈ B(S, Σ) the unique solution to Eq. (7) is

monotonic, c-linear and normalized.
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Proof. Let x1 = sups∈E a(s), x0 = infs∈E a(s); by monotonicity, I(aEx1) − x1 ≤ 0 and

I(aEx0)− x0 ≥ 0. By norm-continuity, there exists x ∈ [x0, x1] such that x = I(aEx).

Furthermore, suppose there are two such solutions x, x′, with x > x′. Then I(aEx) −
x = I(aEx′) − x′, i.e. I(1E(a − x)) = I(1E(a − x′)) = 0. But this contradicts the fact

that E is non-null, because 1E(s)[a(s) − x] = 1E(s)[a(s) − x′] = 0 for s ∈ S \ E and

1E(s)[a(s)− x] = a(s)− x < a(s)− x′ = 1E(s)[a(s)− x′] for s ∈ E.

Verifying the other properties of J is straightforward, so the proof is omitted.

5.3.2 Necessity of the Axioms

Now turn to the proof of Theorem 3.4. To show that (2) implies (1), consider a non-null

E ∈ Σ and assume that uE = u (clearly w.l.o.g.) and, for all k, PE
k = Pnk

(·|E) for some

nk ≥ 1 such that Eq. (3) holds; conditional probabilities are well-defined by Lemma 5.14.

Since Pnk
(S \ E|E) = 0 for all k ≥ 1, it is clear that �E satisfies Axiom 11. It remains to

be shown that �,�E jointly satisfy Axiom 12, Dynamic c-Consistency.

Fix an act f ∈ L such that u ◦ f ∈ CE
k ; then a lottery y ∈ Y satisfies f ∼E y, i.e. u(y) =∫

u ◦ f dPnk
(·|E), if and only if fEy ∼ y. “Only if”: assume f ∼E y and u ◦ [fEy] ∈ Cm for

some m ≥ 1; then, by Eq. (3),
∫

u ◦ [fEy] dPm =
∫

u ◦ f E u(y) dPm = u(y), i.e. fEy ∼ y.

“If”: suppose fEy ∼ y and u ◦ [fEy] ∈ Cm, so u(y) solves the equation I([u ◦ f ]Ex) = x; if

f 6∼E y, then f ∼E y′ for some y′ 6∼E y. By the “only if” part, assuming u ◦ [fEy′] ∈ Cm′ ,∫
u ◦ [fEy′]dPm′ = u(y′), i.e. I([u ◦ f ]Eu(y′)) = u(y′); since u = uE, u(y′) 6= u(y), so there

are two distinct solutions to I(u◦fEx) = x, which contradicts Lemma 5.15. Thus, fEy ∼ y

implies f ∼E y. It follows that f �E g iff y � y′, where fEy ∼ y and gEy′ ∼ y′.

Dynamic c-Consistency can now be verified. Suppose f �E y′ and f(s) � y′ for s ∈ Ec;

by Monotonicity of�, f � fEy′. Also, if y ∼ fEy, then y � y′; thus, by monotonicity again,

since I(1E[u◦ f −u(y)]) = 0, I(1E[u◦ f −u(y′)]) ≥ 0, or equivalently I(u◦ fEu(y′)) ≥ u(y′),

i.e. fEy′ � y′. Thus, f � y′, as needed. If instead f �E y′, then y � y′; as above,

I(1E[u◦f −u(y′)]) ≥ 0, but since, by Lemma 5.15, the solution to Eq. (7) is unique, it must

be the case that actually I(1E[u ◦ f − u(y′)]) > 0, or fEy′ � y′. Thus, f � y′, as needed.

The cases f �E y′ and f ≺E y′ are treated similarly.

5.3.3 Sufficiency of the Axioms

Turn now to the proof that (1) implies (2). Begin with two preliminary claims.

Claim 1: For all acts f and outcomes y, f �E y ⇔ fEy � y and f �E y ⇔ fEy � y.

Proof : suppose f �E y. By Axiom 11, fEy ∼E f �E y. Clearly, fEy(s) ∼ y for all
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s ∈ Ec. Thus, by Axiom 12, fEy � y. If instead f ≺E y, the same argument shows that

fEy ≺ y, which proves the first part of the claim. The second is proved similarly.

Claim 2: For all outcomes y, y′, y �E y′ ⇔ y � y.

The preceding claim implies that y �E y′ iff yEy′ � y′; that is, for some n ≥ 1,

u(y)Pn(E) + u(y′)Pn(Ec) ≥ u(y′). Since E is non-null, Pn(E) > 0, so the preceding ex-

pression reduces to u(y) ≥ u(y′). This implies the claim.

Now, by Claim 2, it is wlog to assume uE = u. Also, by Claims 1 and 2, f �E g iff y � y′

for all y, y′ such that fEy ∼ y and gEy′ ∼ y′. To see this, note that, by Claim 1, f ∼E y

and g ∼E y′; hence, f �E g iff y �E y′; by Claim 2, this is equivalent to y � y′, as required.

Thus, the unique, monotonic, c-linear, and normalized fixpoint map J defined in Lemma

5.15 represents�E. Hence (cf. Lemma 5.1), for all a ∈ B(S, Σ), J(a) = IE(a) = I(a E IE(a)).

By assumption, IE(a) =
∫

a dPE
k whenever a ∈ CE

k . It must now be verified that, for

every k ≥ 1, Eq. (3) holds, and PE
k = Pnk

for some nk ≥ 1. Fix k ≥ 1 and consider the set

Dk = {a E IE(a) : a ∈ CE
k }.

Dk is convex: if a E IE(a), b E IE(b) ∈ Dk, then a, b, αa+(1−α)b ∈ CE
k ; also, α[a E IE(a)]+

(1− α)[b E IE(b)] = [αa + (1− α)b] E [αIE(a) + (1− α)IE(b)] = [αa + (1− α)b] E IE(αa +

(1−α)b) ∈ Dk, because IE is affine on CE
k [cf. Lemma 5.9, Part (i) and Lemma 5.4, Part 5.]

Furthermore, consider a′, b′ ∈ Dk, so a′ = aEIE(a), b′ = bEIE(b) for some a, b ∈ CE
k .

Then, for all α ∈ [0, 1], I(αa′ + (1− α)b′) = I([αa + (1− α)b] E [αIE(a) + (1− α)IE(b)]) =

I([αa + (1 − α)b] E IE(αa + (1 − α)b)) = IE(αa + (1 − α)b) = αIE(a) + (1 − α)IE(b) =

αI(aEIE(a)) + (1−α)I(bEIE(b)) = αI(a′) + (1−α)I(b′). That is, a′ ' b′ for all a′, b′ ∈ Dk.

Now, by Lemma 5.13, there exists nk ≥ 1 such that I(a′) =
∫

a′ dPnk
for every a′ ∈ Dk;

thus, for every a ∈ CE
k ,

IE(a) = I(a E IE(a)) =

∫
a E IE(a) dPnk

= Pnk
(E)

∫
a dPnk

(·|E) + [1− Pnk
(E)]IE(a),

so IE(a) =
∫

a dPnk
(·|E). Also, for all a ∈ CE

k , if x = IE(a) =
∫

a dPnk
(·|E) and aEx ∈ Cm,∫

aEx dPm = I(aEx) =

∫
aEx dPnk

=

∫
aEx dPnk

(·|E) = x,

i.e Eq. (3) holds; finally, since PE
k is the unique measure representing �E on CE

k , PE
k =

Pnk
(·|E), and the proof of Theorem 3.4 is complete.
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