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Abstract

This paper presents a general model of an exchange economy with con-

sumption externalities, and establishes the existence of equilibrium in the

model, under assumptions comparable to those in classical models. The key

aspect of the model is that the economy is described in distributional terms.



1 Introduction

The classical model of competitive markets assumes that each agent cares

only about his/her own consumption, but there has long been interest in

relaxing that assumption to allow for the possibility that agents care about

the consumption of others (consumption externalities) and even about prices

(price externalities). For the case of a finite number of agents, a satisfactory

model and a proof of existence of equilibrium in that model (with assumptions

comparable to the assumptions in classical models) have been known for

some time. (See Shafer & Sonnenschein (1975) for a model and existence

proof, and Laffont (1977) for discussion and applications.) For the case of

a continuum of agents, however, a satisfactory model has proved elusive.

The issue has recently received increased attention: Balder (2000) identifies

unexpected difficulties with previous models, and Noguchi (2001), Balder

(2003), and Cornet & Topuzu (2004) offer models with a continuum of agents

and proofs of existence of equilibrium in those models — but only under

assumptions that are restrictive, or at least unpleasantly strong. (See below

for a discussion and comparison with the assumptions in this paper.)

In this paper, we offer a simple, but quite general, model of an economy

with a continuum of agents and consumption externalities, and establish

the existence of equilibrium in that model, under assumptions comparable

to those in classical models.1 Our point of departure is that we describe

an economy in distributional terms as in Hart, Hildenbrand & Kohlberg

(1975), rather than in function-theoretic terms as in Aumann (1964, 1966).

Aside from some fussiness required to avoid circularity in the description of

agent characteristics and to deal with a space of agent characteristics that

is not metrizable, our model and existence proof are surprisingly clean and

straightforward.

It is useful to contrast our model and assumptions with those in the pa-

pers mentioned above. Out model, and all of those above, view consumer

1For simplicity, we focus here on consumption externalities, but there would be no diffi-
culty in allowing for price externalities as well, following Greenberg, Shitovitz & Wieczorek
(1979).
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preferences as depending on own consumption, taking the consumption of

others as a parameter. In the papers cited above, the consumption of others

is described by a function from the space consumer names to the space of

consumptions. In this paper, the consumption of others is described by a

distribution on the product of the space of consumer characteristics with the

space of consumptions. In terms of the dependence of preferences on own

consumption, Noguchi (2001) and Cornet & Topuzu (2004) require, in ad-

dition to the standard assumptions (continuity, anti-symmetry, irreflexivity,

transitivity, negative transitivity), that preferences be convex in own con-

sumption, while Balder (2003) assumes a rather general functional form but

does not require convexity. In this paper, we make only the standard assump-

tions about preferences for own consumption. In terms of the dependence of

preferences on the consumption of others, Noguchi (2001) requires that con-

sumers care only about the mean consumption of others, Cornet & Topuzu

(2004) requires that preferences be continuous with respect to the topology

of weak convergence of social allocations (as we illustrate in Section 4, this is

a very strong requirement when allocations are described as functions from

consumer names to consumption bundles), while Balder (2003) requires that

the social allocation enters into the preferences of every consumer in exactly

the same way. In this paper, we allow preferences to depend rather arbitrarily

on the consumption of others, and we allow this dependence to be different

for each consumer, and we require only that preferences be continuous with

respect to the topology of weak convergence of distributions (as we illustrate

in Section 4, this is a rather weak requirement).

However, we should offer a word of caution about our distributional frame-

work: When agents care only about their own consumption, the number of

commodities is finite, and commodities are divisible, the function-theoretic

description of an economy and the distributional description of an economy

are “almost” equivalent, in the sense that every function-theoretic descrip-

tion of an economy gives rise to a distributional description of an economy,

any two function-theoretic descriptions that give rise to the same distribu-

tional description give rise to sets of Walrasian equilibrium distributions that

have the same closure, and every Walrasian equilibrium distribution of an

economy arises from some function-theoretic description. Hence, the choice
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to describe an economy with a finite number of divisible commodities in

function-theoretic terms or in distributional terms is largely one of taste

and convenience. However, when agents care about the consumption of oth-

ers, or when the number of indivisible commodities is infinite, the situation

is different: although every well-behaved distributional economy admits an

equilibrium, not every well-behaved function-theoretic economy admits an

equilibrium. (See Mas-Colell (1986) and Gretsky, Ostroy & Zame (1982) for

the case of infinitely many indivisible economies and Balder (2003) for the

case of externalities.)

Following this Introduction, we present the model in Section 2 and the

existence theorem and its proof in Section 3. Section 4 presents several simple

examples that illustrate our assumptions.
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2 The Economy with Externalities

For X a completely regular topological space2 we write B(X) for the family

of Borel subsets of X. By a measure on X we always mean a finite, positive,

countably additive measure σ on B(X) that is regular, in the sense that for

each Borel set B and each ε > 0 there are a closed set F ⊂ B and an open

set U ⊃ B such that σ(U \ F ) < ε. The norm, or total mass of a measure

σ, is ‖ν‖ = ν(X). A probability measure or distribution on X is a measure

having total mass 1. We write M(X)+ for the space of measures on X and

Prob(X) ⊂M(X)+ for the subspace of probability measures. We equip both

M(X)+ and Prob(X) with the topology of weak convergence: σα → σ weakly

if and only if ∫
ϕdσα →

∫
ϕdσ

for all bounded continuous functions ϕ : X → IR. (The assumption of

complete regularity of X guarantees that M(X)+ is a Hausdorff space.)

We consider economies with L ≥ 1 perfectly divisible consumption goods,

so the commodity space and price space are both IRL. It is convenient to

normalize prices to sum to 1; write

∆ = {p ∈ IRL :
∑

p` = 1, p ≥ 0}

for the simplex of normalized, positive prices and

∆ = {p ∈ IRL :
∑

p` = 1, p� 0}

for the simplex of normalized, strictly positive prices.

We allow agent preferences to depend on the consumption of others. (It

would be entirely straightforward to allow for preferences to depend on prices

as well.) Because we describe the economy in distributional terms, the most

obvious way to formalize this idea is to parametrize agent preferences by a

distribution on the product of the space of consumer characteristics with the

2Recall that a topological space X is completely regular if a) points are closed, and b)
for each closed subset Y ⊂ X and each point z ∈ X \ Y there is a continuous function
ϕ : X → [0, 1] such that ϕ(z) = 1 and ϕ(y) = 0 for each y ∈ Y .
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space of consumptions. However, because consumer characteristics include

preferences, this obvious approach leads to a circularity. In order to avoid

this circularity, we follow the approach suggested by Mas-Colell (1984): we

take as given an abstract space of observable characteristics and parametrize

agent preferences by a distribution on the product of the space of observable

characteristics with the space of consumptions.

Formally, we take as given a complete separable metric space T and a

probability measure τ on T . We view T as the space of observable character-

istics of agents and τ as the distribution of observable characteristics in the

actual economy.

Agents care about their own consumption and about the consumptions

of others. Because we assume consumptions are non-negative, we can sum-

marize the consumptions of others as a distribution in Prob(T × IRL
+). It is

conceivable that agents care about all possible distributions of consumptions

of others, but it is only necessary for our purposes that agents care about

those distributions that involve a finite amount of total resources, shared

among the actual population. To identify the relevant distributions, we say

that σ ∈ Prob(T×IRL
+) is integrable if

∫
|x|dσ <∞. We write D for the set of

integrable distributions and D(τ) for the subset of integrable distributions σ

for which the marginal of σ on T is τ . With the topology of weak convergence,

Prob(T × IRL
+) is a complete metric space; we give D(τ) ⊂ Prob(T × IRL

+)

the relative topology.

As in Hildenbrand (1974), we write P∗ for the space of (continuous, anti-

symmetric, irreflexive, transitive, negatively transitive) preference relations

on IRL
+ and P∗

mo ⊂ P∗ for the subspace of strictly monotone preference rela-

tions. In the topology of closed convergence, P∗ and P∗
mo and are completely

metrizable. We shall assume that preferences are strictly monotone in own

consumption, so we define a preference relation with consumption externali-

ties to be a map

R : D(τ) → P∗
mo

We use interchangeably the notations (x, y) ∈ R(σ) or xR(σ)y to mean that

the consumption bundle x is preferred to the consumption bundle y when σ
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is the distribution of consumption.3 As usual, the preference relation R is

continuous if the set

{(x, y, σ) ∈ IRL
+ × IRL

+ ×D(τ) : xR(σ)y}

is open. The following Proposition shows that continuity of the preference

relation R in this sense is equivalent to continuity of the mapping R; the

simple proof is left to the reader.

Proposition The mapping R : D(τ) → P∗
mo is continuous if and only if

the preference relation R is continuous in the sense that the set

{(x, y, σ) ∈ IRL
+ × IRL

+ ×D(τ) : xR(σ)y}

is open.4

Write R∗
mo for the space of continuous preference relations, and give R∗

mo

the topology of uniform convergence on compact sets.5 A subbase for this

topology consists of all sets of the form

W (K,U) = {R ∈ R∗
mo : R(K) ⊂ U}

where K ⊂ D(τ) is compact and U ⊂ P∗ is open.

Agents are characterized by an observable characteristic, a preference

relation, and an endowment, so the space of agent characteristics is

C = T ×R∗
mo × IRL

+

3The restriction to integrable distributions of consumption is analogous to the restric-
tion, in the function-theoretic formulations of Noguchi (2003), Balder (2003) and Cornet
& Topuzu (2004), to allocations that are integrable with respect to the given population
measure.

4Strict monotonicity is important here.
5Again: we could insist that preferences be defined even for distributions of consump-

tions that involve an infinite amount of total resources, or are shared among a population
different from the actual population, but it is only necessary for our purposes that pref-
erences be defined for distributions that involve a finite amount of total resources, shared
among the actual population. Thus, the formulation we have chosen has the advantage of
being more general and no less complicated.
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(We will show in the following section that R∗
mo and C are completely reg-

ular.) Following Hart, Hildenbrand & Kohlberg (1975), an economy is a

tight probability measure λ on T ×R∗
mo × IRL

+ whose marginal on T is the

given population measure τ and for which aggregate endowment is finite:∫
e`dλ < ∞ for each `. (Recall that a measure λ on a completely regular

space X is tight if for every ε > 0 there is a compact set K ⊂ X such that

λ(X \K) < ε. Billingsley (1968) shows that every measure on a complete,

separable metric space is tight. However, the space R∗
mo of preference rela-

tions and the space C of agent characteristics are not metrizable, so we build

the requirement of tightness into our description of the economy.)

An equilibrium for the economy λ is a price p ∈ ∆ and a probability

measure µ on T ×R∗
mo × IRL

+ × IRL
+ such that

(a) the marginal of µ on T ×R∗
mo × IRL

+ is λ

(b) almost all agents choose in their budget set:

µ{(t, R, e, x) : p · x > p · e} = 0

(c) markets clear ∫
xdµ =

∫
edλ

(Note that (a) and (c) imply that the marginal µ14 of µ on T × IRL
+

(the distribution of consumption) belongs to D(τ).)

(d) almost all agents optimize given the price p and the distribution of

consumption µ14:

µ{(t, R, e, x) : y ∈ RL
+, yR(µ14)x⇒ p · y > p · e} = 0
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3 Existence of Equilibrium

Our main result is:

Theorem Let (T, τ) be a population and let λ ∈ Prob(T ×R∗
mo × IRL

+) be

an economy (i.e, a tight probability measure whose marginal on T is τ and

for which
∫
e`dλ <∞ for each `). If 0 <

∫
e`dλ for each ` (i.e., each good is

present in the aggregate), then the economy λ admits an equilibrium.

Before beginning the proof, it is convenient to collect some preliminary

results. Recall that a family S ⊂M(X)+ of measures is uniformly tight if for

each ε > 0 there is a compact set K such that σ(X \K) < ε for each σ ∈ S.

The two lemmas below record extensions to the case of completely regular

spaces of familiar facts about separable metric spaces (see Billingsley (1968)

for example); we offer proofs here for convenience (but claim no originality).

Lemma 1 If X is a completely regular topological space and {σα} is a uni-

formly tight net of measures converging weakly to the measure σ then

(i) σ(F ) ≥ lim supσα(F ) for every closed set F ⊂ X

(ii) σ is tight

Proof Fix a closed set F and suppose, for the purpose of obtaining a

contradiction, that σ(F ) < lim supσα(F ). Choose ε > 0 so that

σ(F ) < lim supσα(F )− 3ε

Because {σα} is uniformly tight, there is a compact set K such that

σα(X \K) < ε for each α. Write L = F ∩K. Note that σα(L) > σα(F )− ε

for each α. Because σ is positive, σ(F ) ≥ σ(L). Use regularity of σ to choose

an open set U ⊃ L such that σ(U) < σ(L) + ε. Use complete regularity of
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X to choose a continuous function Φ : X → [0, 1] such that Φ|L ≡ 1 and

Φ|(X \ U) ≡ 0.6 Weak convergence entails that∫
Φdσα →

∫
Φdσ

On the other hand

σα(F )− ε ≤ σα(L) ≤
∫

Φdσα∫
Φdσ ≤ σ(L) + ε ≤ σ(F ) + ε

Putting these together yields

lim supσα(F ) ≤ σ(F ) + 2ε

This is a contradiction, so we obtain (i).

To see that σ is tight, note first that

σα(X) =
∫

1dσα →
∫

1dσ = σ(X)

Fix ε > 0 and choose a compact set K ⊂ X such that

σα(X)− σα(K) = σα(X \K) ≤ ε

for each α. In view of (i) we have

σ(K) ≥ lim supσα(K) ≥ lim supσα(X)− ε = σ(X)− ε

Since ε > 0 is arbitrary, we conclude that σ is tight.

Lemma 2 If X is a completely regular topological space then every norm

bounded and uniformly tight family of measures S ⊂ M(X)+ is relatively

weakly compact.

6To construct such a function, note first that for each x ∈ L there is a continuous
function ψx : X → [0, 1] such that ψx(x) = 0 and ψx|(X \ U) ≡ 1. For each x ∈ L, set
Vx = {y ∈ X : ψx(y) < 1

2}. Compactness of L entails that the covering {Vx} of L has
a finite subcover, so we can find a finite family of continuous functions ψi : X → [0, 1]
such that (a) for each x ∈ L there is some i for which ψi(x) < 1

2 , (b) ψi|(X \ U) ≡ 1
for each i. Set Ψ =

∏
ψi, so that Ψ(x) < 1

2 for each x ∈ K and Ψ|F ≡ 1. Then define
Φ = 2− 2 max{ 1

2 ,Ψ}.
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Proof It suffices to prove that every net in S contains a convergent subnet.

To this end, let {σα} be a net in S. By assumption, there is an M > 0 such

that σ(X) ≤M for each σ ∈ S. For each integer n, use uniform tightness to

choose a compact set Kn ⊂ X such that σ(X\Kn) < 1/n for each σ ∈ S. For

each n, {σα|Kn} is a net of measures in M(Kn)+ each of which has total mass

bounded by M . Because norm bounded balls in M(Kn)+ are weakly compact

(see Dunford & Schwartz (1957) for example), the net {σα|Kn} contains a

weakly convergent subnet. By a familiar diagonal argument, there is a single

subnet {σβ} of σα with the property that {σβ|Kn} is weakly convergent for

each n; say σβ|Kn → σn ∈ M(Kn)+. Note that σn ≤ σn+1|Kn, so if we view

each σn as a measure on X, then σn ≤ σn+1. Set σ = supn σn. That is, for

each Borel set B ⊂ X,

σ(B) = sup
n
σn(B ∩Kn)

Straightforward calculations show that σ ∈M(X)+ and that σβ → σ weakly,

so the proof is complete.

Finally, we prove, as promised in Section 2, that R∗
mo is a completely

regular space. Since metric spaces are completely regular and products of

completely regular spaces are completely regular, it follows that the space

T×R∗
mo×IRL

+ of consumer characteristics, and the space T×R∗
mo×IRL

+×IRL
+

of characteristics and consumptions are also completely regular.

Lemma 3 The space R∗
mo of consumer preference relations is a completely

regular topological space.

Proof Fix a metric ρ on P∗. To see that points are closed, fix R0 ∈ R∗
mo

and let R1 ∈ R∗
mo be any other point. Since R0 6= R1, there is some σ ∈ D(τ)

such that R0(σ) 6= R1(σ), whence ρ(R0(σ), R1(σ)) > 0. Let U be the ε-ball

around R1(σ) in P∗. Then W (σ, U) is an open set that contains R1 and not

R0. Since R1 is arbitrary, we conclude that R0 is closed, as desired.

To see that a point and a closed set can be separated by a function,

let F ⊂ R∗
mo be a closed set and let R0 ∈ R∗

mo be any point not in F .
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By definition, there are compact subsets K1, . . . Km ⊂ D(τ) and open sets

U1, . . . , Um ⊂ P∗ such that

R0 ∈ W (K1, U1) ∩ . . . ∩W (Km, Um)

and

W (K1, U1) ∩ . . . ∩W (Km, Um) ∩ F = ∅

Let ρ be any metric on P∗ that defines the topology, and use compactness

of R0(K) to choose an ε > 0 sufficiently small that, for each i, Ui contains

the ε-ball around every point of R0(Ki). Set K = K1 ∪ . . . ∪Km and define

ϕ : R∗
mo → [0, 1] by

ϕ(R) = 1− 1

ε
min

{
ε, sup

σ∈K
ρ(R0(σ), R(σ))

}

It is easily checked that ϕ is continuous, that ϕ(R0) = 1, and that ϕ(R) = 0

for each R ∈ F , as desired.

With these preliminaries in hand, we proceed to the proof of the Theorem

Proof of Theorem The proof proceeds in several steps.

Step 1 Tightness of λ entails that there is an increasing sequence {Hi} of

compact subsets of T ×R∗
mo× IRL

+ such that λ(Hi) > 1− 2−i for each i. For

each n, i, set

∆n = {p ∈ ∆ : p` ≥
1

n
for each `}

Kn = {(t, R, e, x) : |x| ≤ 2Ln|e|}
Kni = {(t, R, e, x) ∈ Kn : (t, R, e) ∈ Hi}
Fn = {µ ∈ Prob(Kn) : µ123 = λ}

(where µ123 is the marginal of µ on the first three factors).

We assert that each Fn is non-empty, convex, and weakly compact. To

see that Fn is non-empty, write

proj : T ×R∗
mo × IRL

+ × IRL
+ → T ×R∗

mo × IRL
+
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for the projection on the first three factors. For B ⊂ Kn a Borel set, write

B0 = B ∩
(
T ×R∗

mo × IRL
+ × {0}

)
Now define a probability measure µ ∈ Prob(Kn) by µ(B) = λ (proj(B0)),

and note that µ ∈ Fn, so Fn is non-empty. It is obvious that Fn is convex

and that it is weakly closed. Moreover, µ(Kni) > 1− 2−i for each µ ∈ Fn, so

Fn is uniformly tight, hence compact.

Step 2 For (t, R, e) ∈ T × R∗
mo × IRL

+, µ ∈ Prob(T × R∗
mo × IRL

+ × IRL
+)

such that µ14 ∈ D(τ) (µ14 is the marginal of µ on the product of the first and

fourth factors), and p ∈ ∆, define individual budget and demand sets by:

β(t, R, e;µ, p) = {x ∈ IRL
+ : p · x ≤ p · e}

d(t, R, e;µ, p) = {x ∈ β(t, R, e;µ; p) : yR(µ14)x⇒ p · y > p · e}

Finally, let D(µ, p) be the set of agents who choose in their demand set:

D(µ, p) = {(t, R, e, x) : x ∈ d(t, R, e;µ, p)}

For each n, define correspondences

φn : ∆n ×Fn → Fn

ψn : ∆n ×Fn → ∆n

Fn : ∆n ×Fn → ∆n ×Fn

as follows:

φn(p, µ) = {ν ∈ Fn : ν(D(µ, p)) = 1}

ψn(p, µ) = argmax
{
q ·

(∫
xdµ−

∫
edµ

)
: q ∈ ∆n

}

Fn(p, µ) = ψn(p, µ)× φn(p, µ)

We claim that φn, ψn, Fn are upper-hemi-continuous, and have compact, con-

vex, non-empty values.
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It is evident that φn has convex values. Because ∆n,Fn are compact, to

see that φn is upper-hemi-continuous and has compact values, it suffices to

show that it has closed graph. To this end, let {(pα, µα)} be a net in ∆n×Fn

converging to (p, µ); for each α, let να ∈ φn(pα, µα) and assume να → ν. We

must show ν ∈ φn(p, µ). By assumption, να(D(µα, pα)) = 1. It follows that

να(D(µα, pα) ∩Kni) = λ(Hi)

for each i. Set

Li = lim sup [D(µα, pα) ∩Kni]

If V is a closed neighborhood of Li then V ⊃ D(µα, pα)∩Kni for sufficiently

large α. In view of Lemma 1, it follows that

ν(V ) ≥ lim sup να(V ) ≥ lim sup να [D(µα, pα) ∩Kni] = λ(Hi)

Because V is arbitrary, it follows that ν(Li) ≥ λ(Hi). On the other hand,

the usual argument for upper-hemi-continuity of demand shows that

Li = lim sup [D(µα, pα) ∩Kni] ⊂ D(µ, p) ∩Kni

It follows that ν(D(µ, p) ∩Kni) = λ(Hi) and hence that ν(D(µ, p)) = 1, so

that ν ∈ φn(p, µ). We conclude that φn has closed graph, as desired.

To see that φn has non-empty values, fix (p, µ). Because Hi is compact,

λ|Hi
is the weak limit of a net {ζαi} of measures with finite support; say

ζαi =
∑

aαi
k δyαi

k

where

yαi
k = (tαi

k , R
αi
k , e

αi
k ) ∈ Hi

For each yαi
k , choose zαi

k ∈ d(tαi
k , R

αi
k , e

αi
k ;µ, p). Set wαi

k = (tαi
k , R

αi
k , e

αi
k , z

αi
k )

and

ναi =
∑

aαi
k δwαi

k

For each n, i, ναi is a measure on Kni of total mass equal to λ(Hi). The

net {ναi} is uniformly tight, hence has a convergent subnet; the limit of this

subnet belongs to φn(p, µ). Hence φn(p, µ) is not empty, as asserted.
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That ψn is upper-hemi-continuous, and has compact, convex, non-empty

values follows immediately from the usual argument for Berge’s Maximum

Theorem.

Finally, Fn is upper-hemi-continuous, and has compact, convex, non-

empty values because φn, ψn enjoy these properties.

Step 3 Because ∆n,Fn are compact and convex and Fn is upper-hemi-

continuous and has compact, convex, non-empty values, Fn has a fixed point

(pn, µn). By definition, pn maximizes the value of excess demand at pn, µn.

However, Walras’s Law guarantees that the value of excess demand at pn, µn

is 0. Hence, if q = ( 1
L
, . . . , 1

L
) ∈ ∆n, then

q ·
(∫

xdµn −
∫
edµn

)
≤ 0

whence
L∑

j=1

∫
xjdµn ≤

L∑
j=1

∫
ejdµn

Because consumptions and endowments are non-negative, it follows that:∫
|x|dµn =

L∑
j=1

∫
xjdµn

≤
L∑

j=1

∫
ejdµn

=
L∑

j=1

∫
ejdλ

Write M =
∑ ∫

ejdλ, so that
∫
|x|dµn ≤ M ; that is, total demand for all

goods (and hence for each good separately) is bounded by M , independently

of n.

Step 4 We construct a limit point of some subnet of the sequence {(pn, µn)}.
To this end, define for each k, i:

Gk = {(t, R, e, x) : |x| > k}
Vi = {(t, R, e, x) : (t, R, e) ∈ Hi}
Lki = {(t, R, e, x) : (t, R, e) ∈ Hi, |x| ≤ k}
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Notice that ∫
Gk

|x|dµn ≥ kµn(Gk)

and hence that

µn(Gk) ≤
M

k

By construction, the marginal of µn on T ×R∗
mo × IRL

+ is λ, so

µn(Lki) ≥ 1− M

k
− 2−i

for each n, k, i. Because each Lki is compact, this means that {µn} is a

uniformly tight family, so some subnet of {µn} converges. Because prices pn

lie in the closed price simplex ∆, some subsequence of prices also converges.

Hence some subnet {(pα, µα)} of {(pn, µn)} converges; call the limit (p∗, µ∗).7

Note that p∗ ∈ ∆ and that µ∗14 ∈ D(τ).

Step 5 We claim that p∗ ∈ ∆; that is, no component of p∗ is 0. If not,

assume without loss that the first component of p∗ is strictly positive. Let

E = {(t, R, e) : e1 > 0}. Because
∫
edλ > 0 it follows that λ(E) > 0. Because

λ is regular and tight, it follows that there is a compact set J ⊂ E such that

λ(J) > 0.

Define

Z = {ζ ∈ Prob(T ×R∗
mo × IRL

+ × IRL
+) : ζ123 = λ,

∫
xdζ ≤

∫
edλ}

Arguing as above, we see that Z is weakly closed and uniformly tight, hence

weakly compact. We claim that as n→∞ demand is uniformly unbounded

on Z. Precisely, we claim: For every A > 0 there is an integer n0 such

that if n ≥ n0, (t, R, e) ∈ J and ζ ∈ Z and y ∈ d(t, R, e; ζ, pn) then |y| >
A. To see this, suppose not. Then there is some A > 0 such that for

every n0 there is some n > n0, some (t, R, e) ∈ J , some ζ ∈ Z and some

yn ∈ d(t, R, e; ζ, pn) such that |yn| ≤ A. Letting n0 tend to infinity, passing

to limits of subnets where necessary, and recalling that J, Z are compact,

7Because Prob(T ×R∗
mo × IRL

+ × IRL
+) is not metrizable, {(pn, µn)} might not contain

a convergent subsequence.
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that preference relations are continuous in the distribution of consumption,

and that the topology on R∗
mo is that of uniform convergence on compact

sets, and making use of the familiar argument for upper-hemi-continuity of

demand, we find (t∗, R∗, e∗) ∈ Z, ζ∗ ∈ J and y∗ ∈ d(t∗, R∗, e∗; ζ∗, p∗) such

that |y∗| ≤ A. However, since (t∗, R∗, e∗) has non-zero wealth at prices p∗,

the price of the last good is 0, and preferences are strictly monotone, this is

absurd. This contradiction establishes the claim.

Now apply the claim with A = 2 |
∫
edλ| /λ(J) to conclude that there is an

n0 such that for every (t, R, e) ∈ J , each n ≥ n0 and every y ∈ d(t, R, e; ζ, pn)

we have:

|y| > 2
∣∣∣∣∫ edλ

∣∣∣∣ /λ(J)

If follows in particular that∫
J

inf{|y| : y ∈ d(t, R, e;µn, pn)}dλ ≥ 2
∣∣∣∣∫ edλ

∣∣∣∣
for each n. However, as we have shown above,∫

|x|dµn ≤
∣∣∣∣∫ edλ

∣∣∣∣
so we have obtained a contradiction. We conclude that p∗ ∈ ∆, as asserted.

Step 6 Because p∗ ∈ ∆, it follows that there is some n0 such that pn ∈ int∆n

for all n ≥ n0. By construction, pn maximizes the value of excess demand

among all prices in ∆n. Because the maximizer lies in the interior of ∆n,

it follows that the value of excess demand must be constant for all prices

in ∆n, and hence that excess demand must actually be 0. It is immediate,

therefore, that (pn, µn) is actually an equilibrium for the economy λ, provided

that n ≥ n0, so the proof is complete.
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4 Examples

Some simple examples may help to illustrate the meaning and generality of

our assumptions.

The first example is very much in the spirit of Balder (2003). Take

T = [0, 1] and let τ be Lebesgue measure. Let

φ : T × IRL
+ → IRn

be a bounded, continuous function, and let

v : IRL
+ × IRn → IR

be a continuous function. For x ∈ IRL
+, µ ∈ Prob(T × IRL

+), define the utility

of consuming x, given the consumption distribution µ, by

u(x;µ) = v
(
x,

∫
φ(t, y)dµ(t, y)

)
It is easily checked that u is jointly continuous (giving Prob(T × IRL

+) the

topology of weak convergence). If v is strictly increasing in x (own consump-

tion) then so is u. Hence the utility function u induces a preference relation

with consumption externalities R : D(τ) → P∗
mo defined by

R(µ) = {(x, x′) : u(x, µ) > u(x′, µ)}

It is easy to check that the preference relation R satisfies all our assumptions.

(Indeed, R is defined and continuous on the entire space of distributions on

T × IRL
+, not just on the subspace D(τ) of integrable distributions whose

marginal is τ .) Note that utility is a function of own consumption and an

average of some function of social consumption.

It may be enlightening to contrast this example with an example in the

spirit of Cornet & Topuzu (2004). As above, take T = [0, 1] and let τ be

Lebesgue measure. Let

ψ : T → IRL
+

w : IRL
+ × IRL → IR

17



be continuous functions. Given x ∈ IRL
+ (own consumption) and an inte-

grable function f : T → IRL
+ (the allocation of social consumption), define

utility by

u(x; f) = w(x,
∫
ψ(f(t))dτ

Thus utility is again a function of own consumption and an average of a func-

tion of social consumption. If w is strictly increasing in x (own consumption)

then so is u. However, if w is not a constant function, then in order that u be

continuous with respect to the topology of weak convergence of allocations,

as required by Cornet & Topuzu (2004), it is necessary and sufficient that ψ

be an affine function. Requiring that ψ be affine amounts to requiring that

utility be a function of own consumption and an average of a weighting of

social consumption, rather than an average of an arbitrary function of social

consumption, as above.

The examples above share the feature that utility is separable in own

consumption and social consumption, but a simple variant allows for non-

separability. Again, take T = [0, 1] and let τ be Lebesgue measure. Let

Φ : IRL
+ × T × IRL

+ → IRn

be a bounded, smooth function, and let

V : IRL
+ × IRn → IR

be a smooth function. For µ ∈ Prob(T × IRL
+), define

U(x;µ) = V
(
x,

∫
Φ(x, t, y)dµ(t, y)

)
In order that U be strictly monotone in x (own consumption) it suffices that

∂V

∂x`

+
∂V

∂yi

∂Φ

∂x`

> 0

whenever 1 ≤ ` ≤ L, n+ 1 ≤ i ≤ n+L. (Note that this condition is satisfied

in the first example because ∂φ
∂x`

= 0 for each `.) If U is strictly monotone in

x then it induces a preference relation with consumption externalities

R : D(τ) → P∗
mo

18



defined by

R(µ) = {(x, x′) : U(x, µ) > U(x′, µ)}

This preference relation satisfies our assumptions. (Indeed, R is continuous

on the whole space of distributions on T × IRL
+, not just on the space D(τ)

of integrable distributions whose marginal is τ .)
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