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Prices and Portfolio Choices in Financial Markets:
Theory and Experiment

Abstract

Most tests of asset pricing models address only the pricing predictions —

perhaps because the portfolio choice predictions are obviously wrong. But

how can pricing theory be right if the portfolio choice theory on which it rests

is wrong? This paper suggests an answer: the assumptions about individual

preferences that underly common asset-pricing models are wrong, but the

deviations between the demands predicted by these models and the true

demands have mean zero in the population, and hence wash out in prices.

The starting point for this work is a set of experimental markets in which

risky and riskless assets are traded. This experimental setting offers an op-

portunity to study asset pricing in an environment in which crucial variables

can be controlled or observed — in contrast to field environments, in which

these variables cannot be controlled and frequently cannot be observed ac-

curately. The experimental data exhibit the same puzzling characteristics as

the historical data: asset prices are consistent with the price predictions of

familiar theories (for instance, the market portfolio is nearly mean-variance

efficient) but portfolio choices are wildly divergent from the portfolio choice

predictions of the same theories (for instance, portfolio separation does not

obtain). To explain the data, we build a structural model based on pertur-

bations of individual demand functions (in the familiar style of much applied

work). The central feature of this model is that the perturbations (i.e.,

the differences between individual demands and the demands predicted by

mean-variance utility) have mean zero in the population. We develop an

econometric test of the model which tests both prices and portfolio choices,

and find that the empirical distribution of the test statistic is consistent with

model predictions.



1 Introduction

Most asset pricing models predict both asset prices and portfolio choices.

Forty years of econometric tests of such models present weak support for the

pricing predictions, but even casual empiricism suggests that the portfolio

choice predictions are badly wrong. Because the pricing predictions of these

models are built on the portfolio choice predictions, these studies offer a

puzzle: How can the price predictions of asset pricing models be right if the

portfolio choice predictions of these same models are wrong?

In this paper we suggest a resolution to this puzzle. Our analysis has

three parts. The first part presents data from experimental asset markets

— an environment in which asset payoffs and the information available to

investors can be controlled and prices and portfolio choices can be observed.

The price data from these experiments are consistent with the pricing predic-

tions of standard asset pricing models, including CAPM — in particular, the

market portfolio is mean-variance efficient — but the portfolio choice data

are not consistent with the portfolio choice predictions of the same models —

in particular, investors do not hold the market portfolio. Indeed, the distance

from actual portfolio choices to theoretical predictions of portfolio choices is

uncorrelated with the distance from actual asset prices to theoretical pre-

dictions of asset prices. (These findings are perhaps all the more striking

because subjects are not informed of the holdings of others or of the mar-

ket portfolio, and hence cannot use standard asset-pricing models to predict

prices.) The second part presents a simple theoretical model that is capable

of explaining these data. Our model differs from the standard CAPM in

assuming that demand functions of individual traders can be decomposed as

sums of mean-variance components and idiosyncratic components, and that

the idiosyncratic components are drawn from a distribution that has mean

zero. In a large market, the idiosyncratic components average out across the

population, and CAPM pricing prevails — but CAPM portfolio choice pre-

dictions do not. The third part takes this theory to the experimental data

using novel econometric tests based on a cross-sectional version of GMM,

and testing both prices and portfolio choices. We find that the empirical
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distribution of the test statistic is consistent with model predictions.

In our experimental markets, ∼ 30 - 60 subjects trade riskless and risky

securities (whose dividends depend on the state of nature) and cash. Each

experiment is divided into 6-9 periods. At the beginning of each period,

subjects are endowed with a portfolio of securities and cash. During the pe-

riod, subjects trade through a continuous, web-based open-book system (a

form of double auction that keeps track of infra-marginal bids and offers).

After a pre-specified time, trading halts, the state of nature is drawn, and

subjects are paid according to their terminal holdings. The entire situation

is repeated in each period but states are drawn independently at the end of

each period. Subjects know the dividend structure (the payoff of each secu-

rity in each state of nature) and the probability that each state will occur,

and of course they know their own holdings and their own attitudes toward

wealth and risk. They also have access to the history of orders and trades.

Subjects do not know the number of participants in any given experiment,

nor the holdings of other participants, nor the market portfolio. We analyze

our data in the context of the static Capital Asset Pricing Model (CAPM).1

To do so, we follow the standard strategy, familiar from empirical studies of

historical data, and use end-of-period prices and portfolio holdings, ignoring

intra-period prices.2 (Because our securities have only one-period lives, so

that we can use liquidating dividends as security payoffs, while empirical

tests of historical data usually take end-of-month prices as security payoffs,

our experiments actually represent an environment that is closer to a static

asset-pricing model than are typical field studies.) Our experimental data

are consistent with the pricing predictions of CAPM: the market portfolio

is (approximately) mean-variance efficient. On the other hand, our experi-

mental data are inconsistent with the portfolio choice predictions of CAPM:

individual investors do not hold the market portfolio. Indeed, individual

portfolio holdings seem almost random. And, as we have said, the distance

from actual portfolio choices to theoretical predictions of portfolio choices is

uncorrelated with the distance from actual prices to theoretical predictions

1Other standard asset pricing models would yield similar implications.
2This is not to say that intra-period prices are of no interest; see Asparouhova, Bossaerts

and Plott (2003) and Bossaerts and Plott (2004) for detailed discussions.
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of prices.

To explain these findings, we extend the standard CAPM to incorporate

unobserved heterogeneity; we call the extended model CAPM+ε. Our ap-

proach is similar to that used in much applied work: we assume that demand

functions of individual traders can be decomposed as sums of mean-variance

components and idiosyncratic components (perturbations), and that these id-

iosyncratic components are drawn from a distribution that has mean zero. If

these idiosyncratic components are independent and the population is large,

the Law of Large Numbers implies that the perturbations (approximately)

wash out in the aggregate. Hence CAPM+ε predicts the same equilibrium

prices as does CAPM but is consistent with portfolio choices very different

than those predicted by CAPM.

To test our model, we make use of the model assumption that individual

demand functions can be decomposed into mean-variance components and

idiosyncratic components and that the idiosyncratic components are drawn

from a distribution that has mean zero. These tests are novel in that they

link prices and portfolio choices, and also in other ways:

• In the usual models of choice with unobserved heterogeneity, the null

hypothesis is that the idiosyncratic components of demand have mean

zero and are orthogonal to prices. In our setting, however, it is the only

the idiosyncratic components of demand functions, rather than realized

demands that have mean zero. Because demands influence equilibrium

prices, realized (equilibrium) demands need not be orthogonal to prices.

This induces a significant small-sample bias. Our tests accommodate

this bias, which means that our null hypothesis reflects a Pitman drift.

As a result, the asymptotic distribution of our GMM test statistic is

non-central χ2. (Absent the small-sample bias, the asymptotic distri-

bution would be central χ2.)

• To obtain a meaningful test, we need to estimate the unknown noncen-

trality parameter of the asymptotic distribution of our test statistic.

To do this, we use our multiple experiments to generate multiple sam-

ples. Because samples from different periods within a single experiment
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are not independent, we construct empirical distribution functions us-

ing data across experiments rather than within experiments, and use

standard Kolmogorov-Smirnov and Cramer-von Mises statistics to test

whether the empirical distribution function could have been generated

by a member of the family of non-central χ2 distribution functions.

• To compute the weighting matrix for our GMM statistic, we need es-

timates of individual risk tolerances (inverses of risk aversion coeffi-

cients). Inspired by techniques introduced in McFadden (1989) and

Pakes and Pollard (1989), we obtain individual risk tolerances using

(unbiased) OLS estimation. Because the error averages out across sub-

jects, this strategy enables us to ignore the (fairly large) error in esti-

mating individual risk tolerances.

Following this Introduction, Section 2 describes our experimental asset

markets. Section 3 describes the data generated by our experiments, and

discusses the relationship of these data to the standard CAPM. Section 4

describes our expanded theoretical model and Section 5 describes the econo-

metric methodology and findings. (Technical details are relegated to Appen-

dices.) Section 6 concludes.
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2 Experimental Design

In our experimental markets the objects of trade are assets (state-dependent

claims to wealth at the terminal time) N (Notes), A, B, and Cash. Notes are

riskless and can be held in positive or negative amounts (can be sold short);

assets A, B are risky and can only be held in non-negative amounts (cannot

be sold short). Cash can only be held on non-negative amounts.

Each experimental session of approximately 2-3 hours is divided into 6-9

periods, lasting 15-20 minutes. At the beginning of a period, each subject

(investor) is endowed with a portfolio of riskless and risky assets and Cash.

The endowments of risky assets and Cash are non-negative. Subjects are also

given loans, which must be repaid at the end of the period; we account for

these loans as negative endowments of Notes. During the period, the market

is open and assets may be traded for Cash. Trades are executed through an

electronic open book system (a continuous double auction). While the market

is open, no information about the state of nature is revealed, and no credits

are made to subject accounts. (In effect, consumption takes place only at the

close of the market.) At the end of each period, the market closes, the state of

nature is drawn, payments on assets are made, and dividends are credited to

subject accounts. Accounting in these experiments is in a fictitious currency

called francs, to be exchanged for dollars at the end of the experiment at a

pre-announced exchange rate. (In some experiments, subjects were also given

a bonus upon completion of the experiment.) Subjects whose cumulative

earnings at the end of a period are not sufficient to repay their loan are

bankrupt; subjects who are bankrupt for two consecutive trading periods are

barred from trading in future periods. In effect, therefore, consumption in

a given period can be negative. (In the experiments considered here, the

bankruptcy rule was seldom triggered.)

Subjects know their own endowments, and are informed about asset pay-

offs in each of 3 states of nature X, Y, Z, and of the objective probability

distribution over states of nature. In some experiments, states of nature for

each period were drawn independently from the uniform distribution. Ran-

domization was achieved by the use of a random number generator or by
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drawing balls from an urn, with drawn balls replaced. In the remaining ex-

periments states were not drawn independently. Rather, balls marked with

the state were drawn from an urn that initially contained 18 balls, 6 for each

state, and drawn balls were not replaced. In each treatment, subjects were

informed as to the procedure. Subjects are not informed of the endowments

of others, or of the market portfolio (the social endowment of all assets), or

the number of subjects, or whether these were the same from one period to

the next.

The information provided to subjects parallels the information available

to participants in stock markets such as the New York Stock Exchange

and the Paris Bourse. (Indeed, since payoffs and probabilities are explic-

itly known, information provided to subjects is perhaps more than in these

or other stock markets.) We were especially careful not to provide informa-

tion about the market portfolio, so that subjects could not easily deduce the

nature of aggregate risk — lest they attempt to use a standard model (such

as CAPM) to predict prices, rather than to take observed prices as given.

Keep in mind that neither general equilibrium theory nor asset pricing the-

ory require that participants have any more information than is provided

in these experiments. Indeed, much of the power of these theories comes

precisely from the fact that agents know — hence optimize with respect to

— only payoffs, probabilities, market prices and their own preferences and

endowments.

In the experiments reported here, there were three states of nature X, Y, Z.

The state-dependent payoffs of assets (in francs) are recorded in the following

table.

Table 1: Asset Payoffs

State X Y Z

A 170 370 150

B 160 190 250

N 100 100 100

1 unit of Cash is 1 franc in each state of nature. The remaining parame-
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ters for the various experiments are displayed in Table 2. Experiments are

identified by the year-month-day on which it was conducted. Note that the

social endowment (the market portfolio) and the distribution of endowments

differ across experiments. Since equilibrium prices and choices depend on

the social endowment (the market portfolio) and on the distribution of en-

dowments, as well as on the preferences of investors, there is every reason

to expect equilibrium prices to differ across experiments. Indeed, because

subject preferences may not be constant across periods (due to wealth ef-

fects, and possible effects of bankruptcy or the fear of bankruptcy), there is

every reason to expect equilibrium prices to differ across periods in a given

experiment. Note that, given the true probabilities, cov(A, B) < 0; as we

shall see later, this simplifies the theory.

Subjects were given clear instructions, which included descriptions of

some portfolio strategies (but no suggestions as to which strategies to choose).3

Most of the subjects in these experiments had some knowledge about eco-

nomics in general and about financial economics in particular: Caltech un-

dergraduates had taken a course in introductory finance, Claremont and Oc-

cidental undergraduates were taking economics and/or econometrics classes,

and MBA students are exposed to various courses in finance. In the experi-

ment 011126, for which the subjects were undergraduates at the University

of Sofia (Bulgaria), subjects may have been less knowledgeable.

3Complete instructions and other details are available at
http//eeps3.caltech.edu/market-011126; use anonymous login, ID 1, password a.
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Table 2: Experimental Parameters

Date Draw Subject Bonus Endowments Cash Exchange
Type a Category Reward A B Notesb Rate

(Number) (franc) (franc) $/franc
981007 I 30 0 4 4 -19 400 0.03
981116 I 23 0 5 4 -20 400 0.03

21 0 2 7 -20 400 0.03
990211 I 8 0 5 4 -20 400 0.03

11 0 2 7 -20 400 0.03
990407 I 22 175 9 1 -25 400 0.03

22 175 1 9 -24 400 0.04
991110 I 33 175 5 4 -22 400 0.04

30 175 2 8 -23.1 400 0.04
991111 I 22 175 5 4 -22 400 0.04

23 175 2 8 -23.1 400 0.04
011114 D 21 125 5 4 -22 400 0.04

12 125 2 8 -23.1 400 0.04
011126 D 18 125 5 4 -22 400 0.04

18 125 2 8 -23.1 400 0.04
011205 D 17 125 5 4 -22 400 0.04

17 125 2 8 -23.1 400 0.04

aI: states are drawn independently across periods; D: states are drawn without replacement, starting
from a population of 18 balls, six of each type (state).

bAs discussed in the text, endowment of Notes includes loans to be repaid at the end of the period.
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3 Experimental Data

In this Section, we summarize the data from our experimental markets, using

a simple model to help organize it.

In our experiments, we observe and record every transaction. However,

we focus here only on the ends of periods: that is, on the prices of the

last transaction in each period and on individual holdings at the end of

each period.4 Our focus on end-of-period prices and holdings is parallel to

that of most empirical studies of historical data, which typically consider

only beginning-of-month and end-of-month prices, and ignore prices at all

intermediate dates.5 In historical data, there is uncertainty at the beginning

of each month about what prices — used as proxies for payoffs — will be

at the end of each month. In our experiments, there is uncertainty at the

end of each period about what state will be drawn and hence about what

payoffs will be. (It is important to keep in mind that, although trading in

our experimental markets occurs throughout each period, no information is

revealed during that time; information is only revealed after trading ends,

when the state of nature is drawn.)

Given our focus on end-of-period prices and holdings, it is appropriate to

organize the data using a static model of asset trading, as in Arrow and Hahn

(1971) or Radner (1972): investors trade assets before the state of nature is

known; assets yield dividends and consumption takes place after the state

of nature is revealed. (Because there is only one good, there is no trade in

commodities, hence no trade after the state of nature is revealed.)

4A complete record of every transaction in every experiment is available at:
http://www.hss.caltech.edu/∼pbs/BPZdata. Because the end of the period is in some
ways a bit arbitrary, other possibilities might have been equally sensible. For example, we
might have chosen instead to focus on averages over the last 10 seconds of each period.

5The historical record provides little information about holdings.
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3.1 CAPM

In our experiments, two risky assets and a riskless asset (Notes) are traded

against Cash. However, Cash and Notes have the same payoffs. Simplifying

slightly, we therefore treat Cash and Notes as perfect substitutes, hence re-

dundant assets, and use a model with two risky assets and one riskless asset.

(If Cash and Notes were exact perfect substitutes, then the price of Notes

would be exactly 100 at the end of each trading period. As Table 3 shows,

this is approximately the case in most periods in most experiments. That

the price of Notes is not exactly 100 at the end of every period reflects the

fact that all transactions must take place through Cash, so that there is a

transaction value of Cash.)

In our model, investors trade assets A, B, N , which are claims to state-

dependent consumption. In our experiments, there are 3 states of nature

X, Y, Z. We write div A for the state-dependent dividends of asset A, div A(s)

for dividends in state s, and so forth. If θ = (θA, θB, θN) ∈ IR3 is a portfolio

of assets, we write

div θ = θA(div A) + θB(div B) + θN(div N)

for the state-dependent dividends on the portfolio θ.

There are I investors. Investor i is characterized by an endowment port-

folio ωi = (ωi
A, ωi

B; ωi
N) ∈ IR2

+× IR of risky and riskless assets, and a strictly

concave, strictly monotone utility function U i : IR3 → IR defined over state-

dependent terminal consumptions. (To be consistent with our experimental

design, we allow consumption to be negative.) Endowments and holdings of

risky assets are constrained to be non-negative, but endowments and hold-

ings of the riskless asset can be negative. In particular, risky assets cannot

be sold short, but the riskless asset can be. Investors care about portfolio

choices only through the consumption they yield, so given asset prices q,

investor i chooses a portfolio θi to maximize div θi subject to the budget

constraint q · θi ≤ q · ωi.

An equilibrium consists of asset prices q ∈ IR3
++ and portfolio choices

θi ∈ IR2
+ × IR for each investor such that
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• choices are budget feasible: for each i

q · θi ≤ q · ωi

• choices are budget optimal: for each i

ϕ ∈ IR2
+ × IR, U i(div ϕ) > U i(div θi) ⇒ q · ϕ > q · ωi

• asset markets clear:
I∑

i=1

θi =
I∑

i=1

ωi

Because the stakes in our experiments are small (in comparison to current

wealth and even more so in comparison to present value of lifetime wealth), it

is natural to approximate true preferences of subjects by mean-variance pref-

erences. That is, we assume investor i’s utility function for state-dependent

wealth x is the form

U i(x) = E(x)− bi

2
var (x)

where expectations and variances are computed with respect to the true

probabilities, and bi is absolute risk aversion.6 We assume throughout that

risk aversion is sufficiently small that the utility functions U i are strictly

monotone in the range of feasible consumptions (or at least observed con-

sumptions).

In our environment, mean-variance utilities imply the Capital Asset Pric-

ing Model (CAPM ). We summarize the relevant implications of CAPM here;

see Appendix A for a more complete derivation. Write M =
∑

ωi for the

market portfolio of all assets, m =
∑

(ωi
A, ωi

B) for the market portfolio of

risky assets and M = M/I, m = m/I for the respective per capita portfolios.

6An alternative would be to assume individual preferences are of the state-independent
expected-utility family and use the quadratic approximation given by Taylor’s theorem.
At the scale of our experiment, the differences between the mean-variance approximation
and the quadratic approximation are almost unobservable; we prefer the mean-variance
approximation only for econometric convenience.
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Write µ = (E(A), E(B)) for the vector of expected dividends of risky assets

and

∆ =

(
cov [A, A] cov [A, B]

cov [B, A] cov [B, B]

)
for the covariance matrix of risky assets. It is convenient to normalize so that

the price of the riskless asset is 1, so that (pA, pB, 1) = (p, 1) is the vector of

all asset prices. Abusing notation, write asset demands as functions of (p, 1)

or as functions of p, as is convenient. Write Zi(p) for investor i’s demand

for all assets at prices p, and zi(p) for investor i’s demand for risky assets at

prices p.

CAPM equilibrium prices p̃ for risky assets and equilibrium demands are

given by the formulas:

p̃ = µ−
(

1

I

I∑
i=1

1

bi

)−1

∆m (1)

zi(p̃) =
1

bi
∆−1(µ− p̃) (2)

(The quantity
(

1
I

∑ 1
bi

)−1
is frequently called the market risk aversion and(

1
N

∑ 1
bi

)
is frequently called the market risk tolerance.) Because the de-

mand and pricing formulas involve individual risk aversions, which are not

directly observable, they are not testable. However, the following immediate

consequences of these formulas are testable.

• Mean-Variance Efficiency The market portfolio m of risky assets is

mean-variance efficient; that is, the expected excess return E(div m)−
q ·m on the portfolio m is highest among all portfolios having variance

no greater than var(div m).7

• Portfolio Separation All investors hold a portfolio of risky assets

that is a non-negative multiple of the market portfolio m of risky assets.

7Because M,m differ only by riskless assets, the entire market portfolio M is also
mean-variance efficient.
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All of the predictions derived above depend on the assumption that in-

vestors are strictly risk averse: bi > 0. It is not obvious that subjects will

display strict risk aversion in a laboratory setting. However, this is ultimately

an empirical question, not a theoretical one. Our data suggest strongly in-

consistent that individuals are risk averse. This is not a new finding; see Holt

and Laury (2002) for instance.

3.2 Prices and Holdings

Table 3 summarizes end-of-period prices in all of our experiments. Note that

prices are below expected returns in the vast majority of cases; this provides

evidence that subjects are indeed strictly risk averse.

To compare observed prices with the predictions of CAPM we need a con-

venient measure of the deviation of the market portfolio from mean-variance

efficiency; Sharpe ratios provide such a convenient measure. Recall that,

given asset prices q, the rate of return on a portfolio θ is E[div θ/q · θ], and

the excess rate of return is the difference between the return on θ and the

return on the riskless asset. In our context, the rate of return on the riskless

asset is 1, so the excess rate of return on the portfolio θ is E[div θ/q · θ]− 1.

The Sharpe ratio of θ is the ratio of its excess return to its volatility:

ShR (θ) =
E[div θ/q · θ]− 1√

var(div θ/q · θ)

The market portfolio is mean variance efficient if and only if the market

portfolio has the largest Sharpe Ratio among all portfolios, so the difference

between the maximum Sharpe ratio of any portfolio and the Sharpe ratio of

the market portfolio

max
θ

ShR (θ)− ShR (m)

is a measure of the deviation of the market portfolio from mean-variance

efficiency. Figure 1 summarizes these deviations in all our experiments.

Because a typical experiment involves more than 30 subjects, displaying

portfolio holdings of each subject in each experiment is impractical and un-

13



Table 3: End-Of-Period Transaction Prices

Date Seca Period

1 2 3 4 5 6 7 8 9

981007 A 220/230b 216/230 215/230 218/230 208/230 205/230

B 194/200 197/200 192/200 192/200 193/200 195/200

Nc 95d 98 99 97 99 99

981116 A 215e 203 210 211 185 201

B 187 194 195 193 190 185

N 99 100 98 100 100 99

990211 A 219 230 220 201 219 230 240

B 190 183 187 175 190 180 200

N 96 95 95 98 96 99 97

990407 A 224 210 205 200 201 213 201 208

B 195 198 203 209 215 200 204 220

N 99 99 100 99 99 99 99 99

991110 A 203 212 214 214 210 204

B 166 172 180 190 192 189

N 96 97 97 99 98 101

991111 A 225 217 225 224 230 233 215 209

B 196 200 181 184 187 188 188 190

N 99 99 99 99 99 99 99 99

011114 A 230/230 207/225 200/215 210/219 223/223 226/228 233/234 246/242 209/228

B 189/200 197/203 197/204 200/207 189/204 203/208 211/212 198/208 203/210

N 99 99 99 99 99 99 99 98 99

011126 A 180/230 175/222 195/226 183/217 200/220 189/225 177/213 190/219

B 144/200 190/201 178/198 178/198 190/201 184/197 188/198 175/193

N 93 110 99 100 98 99 102 99

011205 A 213/230 212/235 228/240 205/231 207/237 232/242 242/248 255/257 229/246

B 195/200 180/197 177/194 180/194 172/190 180/192 190/195 185/190 185/190

N 99 100 99 99 99 99 99 99 100

aSecurity.
bEnd-of-period transaction price/expected payoff.
cNotes.
dFor Notes, end-of-period transaction prices only are displayed. Payoff equals 100.
eEnd-of-period transaction prices only are displayed. Expected payoffs are as in 981007. Same for

990211, 990407, 991110 and 991111.
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Figure 1: Plot of distance from CAPM pricing (measured as difference be-

tween the maximum Sharpe ratio and the Sharpe ratio of the market port-

folio) in all periods of all experiments
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informative. Instead, we focus on the average deviation between actual hold-

ings of risky assets and the holdings of risky assets predicted by CAPM. Port-

folio Separation predicts that each investor’s holding of risky assets should be

a non-negative multiple of the market portfolio of risky assets; equivalently,

that the ratio of the value of investor i’s holding of asset A to the value of

investor i’s holding of all risky assets should be the same as the ratio of the

value of the market holding of asset A to the value of the market portfolio

of all risky assets. A measure of the extent to which the data deviates from

the prediction is the mean absolute difference of these ratios:

1

I

∑∣∣∣∣∣pAθi
A

p · θi
− pAmA

p ·m

∣∣∣∣∣
Figure 2 displays mean absolute differences for each period in each experi-

ment. As the reader can see, Portfolio Separation fails quite substantially.

Indeed, the average deviations are roughly as large as they would be if in-

vestors chose portfolio weightings at random.8

As Figures 1 and 2 show, Mean Variance Efficiency seems confirmed in

the experimental data while Portfolio Separation does not. An even more

striking fact which is difficult to see in these tables, can be seen quite clearly

in Figure 3. Each point (small circle) in Figure 3 represents a single period of

a single experiment. The horizontal component of each point is the deviation

(at the end-of-period prices) of the market portfolio from mean-variance effi-

ciency; the vertical component of each point is the mean absolute deviation

from portfolio separation. As can be seem very clearly in Figure 3, there is

no correlation between the deviation from mean variance efficiency and the

deviation from portfolio separation.

8To make the point simply, suppose all investors hold the same risky wealth but choose
the weighting on asset A at random. The population mean of weighting on asset A must
then equal the market weighting on asset A, which is approximately .4 in many of our
experiments. This will be the case if weightings on asset A are drawn independently from
the distribution

3
2
λ[0,.4] +

2
3
λ[.6,1]

where λE denotes the restriction of Lebesgue measure to E ⊂ [0, 1]. If this is the case
then the mean absolute deviation will be only .24.
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Figure 2: Plot of deviation from Portfolio Separation (measured as mean ab-

solute difference between individual weighting on asset A and market weight-

ing on asset A) in all periods of all experiments
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Figure 3: Plot of mean absolute deviations of subjects’ end-of-period hold-

ings from CAPM predictions against distances from CAPM pricing (absolute

difference between market Sharpe ratio and maximal Sharpe ratio, based on

last transaction prices), all periods in all experiments. There is no correla-

tion between distance from CAPM pricing (x-axis) and violations of portfolio

separation (y-axis).
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4 CAPM+ε

In this Section we offer a model that is capable of explaining the data we have

seen: it yields pricing predictions close to that of CAPM but is consistent

with very different portfolio choices. Because the model differs from CAPM

in that it adds perturbations (of demand functions), we refer to our model

as CAPM+ε.

Our starting point is suggested by the idea, familiar from applied work,

that parametric specifications of preferences represent only a convenient ap-

proximation of the observed (true) demand structure in the marketplace. We

implement this idea by viewing observed (true) demands as perturbations

of hypothetical demands. In principle, these perturbations might represent

some combination of subject errors (in computing and implementing optimal

choices), market frictions and unobserved heterogeneity of true preferences.

Because an adequate treatment of subject errors or market frictions would

necessitate a fully stochastic model, which we are not prepared to offer, and

because we have some evidence that subject errors and market frictions are

not of most importance in our setting (see Bossaerts, Plott and Zame (2002)),

we focus here on unobserved heterogeneity.

Because the approach we follow is quite intuitive, the following informal

description is sufficient for our needs. Appendix B presents a careful and

rigorous justification.

Consider an economy with I investors. Investor i has endowment portfolio

ωi and utility function U i. Write zi(p) for i’s demand for risky assets at prices

p (which we assume to be single-valued). CAPM assumes that each U i is

a mean-variance utility function. Whether this is the case or not, however,

we can always view U i as a perturbation of a mean-variance utility function,

and hence can write the true demand function zi as a perturbation of a

mean-variance demand function z̃i:

zi(p) = z̃i(p) + εi(p)

In this way, we can view the true economy as a perturbation of a hypothetical

economy in which the same number of investors have the same endowments
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but have mean-variance utilities. Write D, D̃ as the mean market excess

demand functions in the true economy and in the hypothetical economy. By

definition:

D(p) =
1

I

∑(
zi(p)− ωi

)
=

1

I

∑(
z̃i(p) + εi(p)− ωi

)
=

1

I

(∑
z̃i(p)−

∑
ωi
)

+
1

I

∑
εi(p)

= D̃(p) +
1

I

∑
εi(p)

All this is simply formal manipulation. The economic content of our

model is in the following two assumptions:

i) The characteristics (asset endowments ωi and demand functions zi) of

investors in the economy are drawn independently from some distribu-

tion of characteristics.

ii) The perturbations εi are drawn independently from a distribution with

mean zero.

The first of these assumptions is innocuous; the second has real bite. To

see the implications of these assumptions, note first that, by definition, an

equilibrium price is a zero of mean market excess demand. Thus, if the mean

perturbation 1
I

∑
εi is identically zero, then equilibrium prices in the true

economy and in the hypothetical economy coincide. More generally, if the

mean perturbation 1
I

∑
εi is uniformly small, then equilibrium prices in the

true economy and in the hypothetical economy nearly coincide. (This asser-

tion requires some justification, which we provide in Appendix B.) Because

the perturbations are drawn independently from a distribution with mean

zero, a suitable version of the Strong Law of Large Numbers will guarantee

that if the number I of investors is sufficiently large then, with high prob-

ability, the mean perturbation 1
I

∑
εi will be uniformly small. In view of

CAPM, the market portfolio of the hypothetical economy is mean-variance

efficient at the equilibrium price p̃ of the hypothetical economy. Because the

20



market portfolio of the true economy is the same as the market portfolio of

the hypothetical economy we conclude that, if the number I of investors is

large then, with high probability, the market portfolio of the true economy

will be approximately mean-variance efficient at the equilibrium prices of the

true economy. Of course, individual portfolio choices in the true economy

need bear no obvious relationship to individual portfolio choices in the hy-

pothetical economy; in particular, because the perturbations εi need not be

small, approximate portfolio separation need not hold in the true economy.

Perhaps the most important feature of this model is that provides a mech-

anism leading to mean-variance efficiency of the market portfolio even though

no single investor chooses a mean-variance optimal portfolio. (In the stan-

dard CAPM of course, the market portfolio is mean-variance optimal because

every investor chooses a mean-variance optimal portfolio.)

Because the pricing conclusions in our model are driven by the Strong

Law of Large Numbers, our model suggests that the likelihood that CAPM

pricing will be observed is increasing in the number of market participants.

Evidence for this suggestion can be found in Bossaerts and Plott (2002).
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5 Structural Econometric Tests

In this Section, we construct a structural econometric test of CAPM+ε, and

then apply this test to the data from our experiments. Our approach has a

number of novel features that distinguish it from the usual approaches to the

econometric analysis of field data:

• The usual approaches rely entirely on market prices. Our approach

links market prices and individual holdings.

• In the usual approaches, randomness is viewed as the sampling error in

estimation of the distribution of returns. In our approach, randomness

is viewed as the deviations of observed choices from hypothetical mean-

variance optimal choices.

• In the usual approach, GMM (Generalized Method of Moments) is

used to construct an estimator that has good properties for long time

series. In our approach GMM is adapted to construct an estimator

that has good properties for large cross sections. (We use this approach

because we do not have long time series: our experiments are only 6-9

periods long, and it is simply impractical to conduct significantly longer

experiments. However, we can exploit the fact that each experiment

involves approximately 30-60 subjects, so that we have large cross-

sections.)

• The usual approach is to test a theory on each sample separately, and

then aggregate the results. Our approach is to construct samples as ag-

gregates of periods in different experiments, use our theory to infer the

class of distribution to which our test statistic should belong, and use

measures of goodness-of-fit to determine whether the empirical distri-

bution of our test statistic on these samples is generated by a member

of this class. (We use this approach because we lack information about

perturbation terms that would be necessary to uniquely identify the

asymptotic distribution of our test statistic, and hence cannot test our

theory on the data from a single period in a single experiment. Be-

cause outcomes across periods within an experimental session are not
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independent — each period involves the same collection of subjects,

and wealth effects in early periods may influence attitudes toward risk

in later periods — our samples consist of outcomes in the same period

across the various sessions: one sample consists of outcomes from the

first period in each experiment, etc.)

An additional novel feature of our approach is in our estimation of coeffi-

cients of risk aversion for each individual in each period. To obtain these

estimates, we use observed choices for that individual in other periods of the

same experimental session. Because the number of periods in each session

is small, our estimates cannot be accurate. However, we are able to use an

estimation procedure with the property that estimation error tends to cancel

out across subjects. This approach is reminiscent of one used to obtain con-

sistent standard errors in method of simulated moments with only a limited

number of simulations per observation; see McFadden (1989) and Pakes and

Pollard (1989).

5.1 The Null Hypothesis

We focus on an economy Et representing a single period t of a single experi-

ment, in which there are I subjects/investors. Investor i is characterized by

an endowment ωi and a demand function for risky assets zi
t; as in Section 4

and Appendix B, we view the characteristics of the subjects as drawn from

a population with a given distribution. As before, we write µ for the vector

of mean payoffs of the risky assets, ∆ for the covariance matrix of payoffs of

risky assets, and mI for the per capital market portfolio of risky securities.

The superscript makes explicit that mI may vary with the number of sub-

jects/investors I. This will facilitate econometric analysis: we are interested

in asymptotic properties of our test statistic as I → ∞. We subscript de-

mand functions zi
t to emphasize that they depend on the particular period;

we do not subscript the quantities ωi, µ, ∆, mI because they do not depend

on the particular period t. Because endowments are fixed throughout the

experiment, we suppress them in what follows.
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For each i, let bi
t be the coefficient of risk aversion that most closely

matches investor i’s end-of-period asset choices in other periods of the same

experiment, and let z̃i
t be the demand function for risky assets of investor

having the same endowment as trader i and a mean-variance utility function

with coefficient of risk aversion bi
t. The difference between the true demand

function zi
t and the hypothetical demand function z̃i

t is the perturbation or

error:

εi
t = zi

t − z̃i
t (3)

Let Ẽt be the economy populated by these mean-variance traders, and write

BI
t =

(
1

I

I∑
i=1

1

bi
t

)−1

,

for the market risk aversion for the economy Ẽt. (We use the superscript I

to emphasize that we have an economy with I investors.)

Assume that CAPM holds in the hypothetical economy Ẽt and write p̃I
t for

the CAPM equilibrium prices (again, dependence on I is made explicit). At

equilibrium, per capita demand must equal the per capita market portfolio

so rewriting equation (2) in the present notation yields

z̃i
t(p̃

I
t ) =

1

bi
t

∆−1(µ− p̃I
t ) (4)

As we show in Appendix A, it follows that p̃I
t = µ−BI

t ∆mI , and (assuming

that ‖pI
t − p̃I

t‖ is not too large):

z̃i
t(p

I
t ) =

1

bi
t

∆−1(µ− pI
t ) (5)

Assuming that end-of-period prices pI
t are actually equilibrium prices for the

economy Et, per capita demand must equal the per capita market portfolio:

1

I

∑
zi

t(p
I
t ) = mI (6)

Summing (4) and (5) over all investors i, combining with (6) and doing a

little algebra yields the following relationship:

pI
t = p̃I

t + BI
t ∆

1

I

I∑
i=1

εi
t(p

I
t ) (7)
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(Again, we use the superscript I to emphasize that we are considering an

economy with I investors. Note that prices pI
t appear on both sides of this

equation so it is not a formula for equilibrium prices.)

It might seem natural to proceed as is common in applied work and

take as null hypothesis the statement: The perturbations εi
t are mutually

independent across i, given pI
t , and

E[εi
t|pI

t ] = 0. (8)

This null hypothesis would would lend itself readily to testing by means of the

Generalized Method of Moments statistic (GMM, or minimum χ2 statistic).

In our setting, however, this is the wrong null hypothesis: when I, the number

of investors in the economy, is finite, market clearing condition implies that

the perturbation terms cannot be independent of prices. Hence E[εi
t|pI

t ], the

mean of the perturbations conditional on prices, may be different from zero

even though E[εi
t] = 0, the unconditional mean of the perturbations, is zero.

(Of course, E[εi
t|pI

t ] → 0 as I → ∞ — perturbations have asymptotical

conditional mean 0 — but we have only a finite sample, and we must take

that into account.)

Instead, we take as null hypothesis that the conditional means of pertur-

bations exhibit Pitman drift: for some λ,

lim
I→∞

√
I
(
E[εi

t|pI
t ]
)

= λ (9)

Here we view the economy as a draw of I investors from a distribution of

investor characteristics. So the expectation is taken over all investors in

a particular draw, conditional on prices for that draw, and then over all

draws. Under Pitman drift, the asymptotic distribution of the usual GMM

statistic is non-central χ2 with non-centrality parameter λ2. Unfortunately,

λ is unknown. As a result, CAPM+ε cannot be tested on a single sample (a

single period). However, CAPM+ε can be tested based on the behavior of the

GMM statistic across samples (periods), because the form of its distribution

(non-central χ2) is known.
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5.2 Specifics of The GMM Statistic

Define

hI
t (β) = β

1

I

I∑
i=1

zi
t(p

I
t )−∆−1(µ− pI

t ). (10)

We continue to use the superscript I to make explicit the dependence on

the size of the drawn economy. Keep in mind that hI
t (β) depends on the

particular draw, and therefore is a random variable. Now let βI be the

solution to the minimization problem:

min
β

[
√

IhI
t (β)t]W−1[

√
IhI

t (β)], (11)

where W is a symmetric, positive definite weighting matrix (to be chosen

below). The depence of the solution on I is made explicit because we are

interested in its asymptotic distributional characteristics as I →∞.

Under our null hypothesis, hI
t (β) is asymptotically zero in expectation

when β = BI
t . (To see this, note that:

hI
t (B

I
t ) = BI

t

1

I

I∑
i=1

zi
t(p

I
t )−∆−1(µ− pI

t )

= BI
t

1

I

I∑
i=1

[
zi

t(p
I
t )−

1

bi
t

∆−1(µ− pI
t )

]

= BI
t

1

I

I∑
i=1

εi
t(p

I
t ) (12)

Hence, E[hI
t (B

I
t )|pI

t ] = BI
t

1
I

∑I
i=1 E[εi

t|pI
t ] → 0, as asserted.) The solution

of (11) therefore defines a GMM estimator of the market risk aversion: it

generates the value β which makes the sample version of the expectation

in (12) as close as possible to zero, the (asymptotic) theoretical value of this

expectation when β = BI
t .

Because there are two risky assets, random variation in finite samples

ensures that at βI the distance from zero of the sample version of (12) is al-

most surely strictly positive. Our criterion function [see (11)] will be strictly

positive in large samples as well, because the sample version of (12) is scaled
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by the factor
√

I. It has a well-defined asymptotic distribution. With the

right choice of weighting matrix W , at its optimum βI , our criterion function

will be χ2 distributed with one degree of freedom (the number of risky as-

sets minus one) and with non-centrality parameter λ2. Hence, our criterion

function defines a GMM test of goodness-of-fit.

5.3 Economic Interpretation of The GMM Test

It is illuminating to interpret the minimization that is part of the GMM

test in terms of portfolio optimization. Because the weighting matrix W is

required to be symmetric and positive definite, our GMM test verifies whether

the vector in (10) is zero. (To see this, note that 1
I

∑I
i=1 zi

t in (10) is the

mean demand for risky securities; at equilibrium prices, equals the market

portfolio. Hence, if hI
t = 0, the first-order conditions for mean-variance

optimality are satisfied.) In particular, the market portfolio will be optimal

for an agent with mean-variance preferences and risk aversion parameter β,

so our GMM test verifies mean-variance optimality of the market portfolio.

Of course, verifying mean-variance optimality of the market portfolio is the

usual way of testing CAPM on field data. In the usual field tests, however,

distance from mean-variance efficiency is measured as a function of the error

in the estimation of the distribution of payoffs; here we measure distance as

a function of the weighting matrix W .

We define the weighting matrix W to be the asymptotic covariance matrix

of
√

IhI
t (B

I
t ) = Bt

√
I
1

I

I∑
i=1

εi
t (13)

(see equation (12)). W is proportional to the asymptotic covariance matrix

of the perturbations, so our GMM statistic measures distance from CAPM

pricing in terms of variances and covariances of the perturbations. Alloca-

tional dispersion is the source of errors, not randomness in the estimation of

return distributions. Our test thereby links prices to individual allocations,

and thus provides a more comprehensive test of equilibrium than field tests

– which rely only on prices or returns.
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5.3.1 Estimating The Weighting Matrix W

For the necessary asymptotic distributional properties to obtain, the weight-

ing matrix W should be estimated from the sample covariance matrix of

the perturbations across subjects. Perturbations depend on individual risk

tolerances 1/bi
t. Using an asymptotically (as I → ∞) unbiased estimator,

we obtain individual risk tolerances from portfolio choices across all peri-

ods in an experimental session except the period t on which the GMM test

is performed. From the estimated risk tolerances, we compute individual

perturbations for period t and, from those, we estimate W .

Since the number of periods in an experimental session (T ) is small, the

error in estimating risk tolerances may be large. However, because we use an

asymptotically unbiased estimator of risk tolerances, the Law of Large Num-

bers implies that population means of the estimated risk tolerances converge

to true population means. Moreover, since risk tolerance in period t is esti-

mated from observations in periods other than t, the error in estimating an

individual risk tolerance and that individual’s perturbation for period t will

be orthogonal, provided individual perturbations are independent over time.

We write our estimator of W in such a way that we can exploit these two

properties and ensure concistency even for fixed T . Appendix C discusses

our procedure in more detail.

5.3.2 Testing Strategy

The (asymptotic) distribution of the GMM statistic under the CAPM+ε is

non-central χ2 with one degree of freedom (the number of risky assets minus

one), and with unknown non-centrality parameter. Our test builds on this

property. Specifically, we compute the GMM statistic for the 60+ periods

(samples) across our experiments. These outcomes are then used to construct

empirical distribution functions of the GMM statistic.

We cannot readily aggregate the results over all periods, because the

GMM statistics across periods within an experiment are not independent

(because of wealth effects and because we estimate individual risk tolerances
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from choices in other periods, among other reasons). Fixing a period, how-

ever, the GMM statistics can safely be assumed to be independent across

experiments. (The subject populations of different experiments are disjoint.)

Thus, we test whether the empirical distribution of GMM statistics is non-

central χ2 for a given period.

We use both the Kolmogorov-Smirnov statistic and the Cramer-Von Mises

statistic. The former uses the supremum of the deviations of the empirical

distribution function (of the GMM statistic) from a non-central χ2 distri-

bution function; the latter uses the density-weighted mean squares of these

deviations. We estimate the non-centrality parameter from all the data (all

periods in all experiments) in order to minimize estimation error. Effectively,

the non-centrality parameter is estimated on the basis of a sample that is

at least seven times as large as the samples on which we test whether the

empirical distribution function of the GMM statistic is non-central χ2.9

There are two reasons why our test should be considered to be powerful.

i) We require the non-centrality parameter to be the same across periods

as well as across experimental sessions. Since distributional properties

of the individual perturbation terms ultimately determine the value

of the non-centrality parameter, this means that we implicitly assume

that these properties do not change across experiments. In other words,

we impose a strong homogeneity assumption across different subject

populations.

ii) The non-centrality parameter imposes a tight relationship between the

moments of the GMM statistic. In particular, the difference between

its variance and its mean is equal to the (fixed) number of degrees of

freedom plus three times the non-centrality parameter.

9An alternative approach would be to estimate the non-centrality parameter in-sample
and adjust p values accordingly. We have not done this because the correct adjustments
are not known.

29



5.4 Test Results

Table 4 reports Kolmogorov-Smirnov (KS) and Cramer-von Mises (CvM)

tests of whether the empirical distribution functions of our GMM statistics

for a fixed period across experiments is non-central χ2 with the best-fitting

non-centrality parameters (11.6 for for KS, 10.0 for CvM).10 All statistics are

corrected for small-sample biases as suggested in Shorack and Wellner (1986)

[p. 239]; p values are obtained from the same source.11

At the 1% level, both KS and CvM goodness-of-fit tests reject only in

period 2; both tests fail to reject in other periods. At the 5% level, KS rejects

only in periods 1, 2, 5 while CvM rejects only in periods 1, 2; both fail to

reject in other periods. The data therefore appear to support CAPM+ε.

Lest the reader find the p values in Table 4 smaller than one might hope,

it may be useful to keep in mind that the p values derived in econometric

tests of models on the basis of field data are usually much smaller (despite

the fact that our tests are more stringent, in the sense that they test prices

and holdings). For example, in arguing that the performance of the three-

factor model is superior to other models, despite the fact that it is rejected

at the p = .005 significance level, Davis, Fama and French (2000) [p. 450]

write : “[...] the three-factor model [...] is rejected by the [...] test. This

result shows that the three-factor model is just a model and thus an incom-

plete description of expected returns. What the remaining tests say is that

the model’s shortcomings are just not those predicted by the characteristics

model.”

Figure 4 depicts the empirical distribution of the logarithm of the GMM

10Best fits are obtained as follows. Let FE(·) denote the empirical distribution function
of the GMM statistic. Let Fλ2(·) denote the χ2 distribution with one degree of freedom
and non-centrality parameter λ2. The best fit is obtained as

infλ2 sup
x
|FE(x)− Fλ2(x)|.

11Since critical values for the Cramer-von Mises statistic are known only for specific p

values, we report the range in which a p value fall.
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Table 4: Tests Of CAPM+ε Accommodating Correlation Between Prices And Per-

turbations

Period Number of KSa p valueb CvMc p valued

Numbere Observations

1 9 1.53 0.05 > p > 0.025 0.49 0.05 > p > 0.025

2 9 2.01 p < 0.01 0.91 p < 0.01

3 9 1.01 p > 0.15 0.21 p > 0.15

4 9 1.33 0.15 > p > 0.10 0.30 0.15 > p > 0.10

5 8 1.50 0.05 > p > 0.025 0.31 0.15 > p > 0.10

6 9 1.06 p > 0.15 0.39 0.10 > p > 0.05

7 6 0.96 p > 0.15 0.11 p > 0.15

8 4 1.26 0.10 > p > 0.05 0.42 0.10 > p > 0.05

aKolmogorov-Smirnov (KS) statistic of the difference between the empirical distribution func-
tion of GMM statistics across experiments for a fixed period and a non-central χ2 distribution with
non-centrality parameter 11.6. The KS statistic is modified for small sample bias. See Shorack
and Wellner (1986) [p. 239].

bBased on Table 1 on p. 239 of Shorack and Wellner (1986).
cCramer-von Mises (CvM) statistic of the difference between the empirical distribution function

of GMM statistics across experiments for a fixed period and a non-central χ2 distribution with
non-centrality parameter 10.0. The CvM statistic is modified for small sample bias. See Shorack
and Wellner (1986) [p. 239].

dBased on Table 1 on p. 239 of Shorack and Wellner (1986).
ePeriod 9 is not listed because of insufficient sample size.
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Figure 4: Empirical distribution of the GMM statistic, all periods in all

experiments (jagged line), against a central χ2 distribution. A noncentral

χ2 distribution provides a better fit, consistent with the small-sample biases

expected if CAPM+ε is correct.

statistic across all periods in our experiments. For comparison, the smooth

line represents the distribution of the logarithm of a central χ2-distributed

random variable. The empirical distribution (jagged line) appears to be a

horizontal translation of the latter. This suggests that the GMM statistics

are drawn from a non-central χ2 distribution, which is confirmed in Table 4.

To gain further perspective, Tables 5 and 6 show GMM statistics and

estimates of the harmonic mean risk aversion for all periods across all ex-

periments. (We show experiments where states were drawn independently

and experiments where states were drawn without replacement only because

32



the combined table would be too large to display legibly on a single page.)

p-values are provided based on the central χ2 distribution (which ignores the

correlation between prices and perturbations inherent to CAPM+ε). Put

differently: p values in Table 5 are computed under the assumption that the

non-centrality parameter λ = 0.

Note that the estimates βI of the market mean risk aversion BI
t are of the

same order of magnitude across experiments, and are almost uniformly pos-

itive and significant: risk neutrality is rejected. This confirms our interpre-

tation of the relation of prices to expected payoffs as reflecting “significant”

risk premia.
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Table 5: GMM Tests Of CAPM+ε Ignoring Correlation Between Prices and

Perturbations — Experiments where Draws were Independent

Experiment Statistic Periods
1 2 3 4 5 6 7 8 9

981007 χ2
1 36.2 2.2 79.3 28.9 21.0 12.6

p level for λ = 0 .00 .14 .00 .00 .00 .00
βI (*10−3) 0.8 0.7 1.3 1.1 1.3 1.1
s.e. (*10−3 ) 0.0 0.1 0.0 0.1 0.0 0.0

981116 χ2
1 23.7 0.9 1.0 4.4 3.5 30.3

p level for λ = 0 .00 .35 .32 .04 .06 .00
βI (*10−3) 1.5 1.1 0.8 1.0 1.9 2.0
s.e. (*10−3 ) 0.1 0.1 0.1 0.1 0.1 0.1

990211 χ2
1 5.3 11.2 5.5 33.3 4.0 15.4 0.2

p level for λ = 0 .02 .00 .02 .00 .04 .00 .69
βI (*10−3) 1.1 1.5 1.4 2.8 1.2 1.5 -0.2
s.e. (*10−3 ) 0.1 0.1 0.1 *a 0.1 0.1 0.1

990407 χ2
1 7.5 0.7 13.8 116.7 †b 2.5 13.6 †

p level for λ = 0 .01 .39 .00 .00 - .62 .00 -
βI (*10−3) 0.5 0.5 0.3 -0.3 2.8 0.3 0.2 0.9
s.e. (*10−3 ) 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1

991110 χ2
1 197.5 72.8 31.6 7.4 2.7 6.9

p level for λ = 0 .00 .00 .00 .01 .10 .01
βI (*10−3) 3.0 2.4 1.9 1.2 1.1 1.4
s.e. (*10−3 ) * 0.1 0.1 0.1 0.1 0.1

991111 χ2
1 4.8 1.5 114.4 61.4 36.3 43.4 31.6 30.8

p level for λ = 0 .03 .23 .00 .00 .00 .00 .00 .00
βI (*10−3) 0.4 0.3 1.7 1.4 1.2 1.0 1.3 1.3
s.e. (*10−3 ) 0.0 0.1 * 0.0 0.0 0.0 0.0 0.0

a* denotes that the weighting matrix was not positive definite, and hence, standard errors
could not be computed.

b† denotes negative χ2 because weighting matrix was not positive definite.

34



Table 6: GMM Tests Of CAPM+ε Ignoring Correlation Between Prices and

Perturbations — Experiments where Draws were without Replacement

Experiment Statistic Periods
1 2 3 4 5 6 7 8 9

011114 χ2
1 37.5 2.3 2.2 5.4 17.6 15.4 10.7 21.8 4.4

p level for λ = 0 .00 .13 .14 .02 .00 .00 .00 .00 .04
βI (*10−3) 0.9 0.9 0.9 0.9 1.4 0.5 0.1 1.1 1.3
s.e. (*10−3 ) 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0

011126 χ2
1 186.6 0.6 7.8 5.6 1.5 1.3 0.2 6.8

p level for λ = 0 .00 .44 .01 .02 .23 .25 .65 .01
βI (*10−3) 4.1 1.3 1.7 1.7 1.0 1.3 1.1 1.7
s.e. (*10−3 ) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

011205 χ2
1 2.9 10.4 17.4 13.8 13.0 15.3 7.8 19.0 5.0

p level for λ = 0 .09 .00 .00 .00 .00 .00 .01 .00 .02
βI (*10−3) 0.8 1.8 1.7 1.5 1.9 1.3 0.6 0.6 0.7
s.e. (*10−3 ) 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0
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6 Conclusion

This paper has argued that findings from experimental financial markets pro-

vide significant insight into asset-pricing theory. Specifically, these findings

demonstrate that deviations of observed individual demands from hypothet-

ical mean-variance demands are idiosyncratic, and hence have little effect on

prices but may have an enormous effect on portfolio holdings. These findings

suggest that it makes sense to test asset pricing models that rely on strong

portfolio separation results, such as CAPM and its multi-factor extensions,

even in the absence of convincing evidence for such portfolio separation.

As a by-product of our structural tests, we provide evidence that the stan-

dard model of choice under unobserved heterogeneity in applied economics

needs to be re-considered. In smaller markets, unexplained heterogeneity in

demands (usually a key determinant of the unexplained portion of observed

choices) need not be orthogonal to prices, and such non-orthogonality may

have significant effect on the econometric analysis.

The econometric procedure introduced here explicitly links prices to al-

locations, unlike in standard field tests of asset pricing theory. With repre-

sentative data on portfolio choices, this procedure could be applied to field

data as well.
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Appendix A: CAPM

To derive the conclusions of CAPM in our setting in which sort sales of

risky assets are not permitted, we begin by analyzing the setting in which

arbitrary short sales are permitted. Write ẑi(p) for investor i’s demand for

risky assets when the price of risky assets is p. (We suppress demand for

the riskless asset because it is determined by budget balance.) Assuming, as

we do throughout, that consumptions are in the range where preferences are

monotone, the first-order conditions for optimality and some algebra show

that

ẑi(p) =
1

bi
∆−1(µ− p) (14)

At equilibrium, the demands for risky assets must clear the market for risky

assets, so if p̂ is an equilibrium price then:

I∑
i=1

ẑi(p̂) = m

From these equations we can solve for the unique equilibrium price p̂:

p̂ = µ−
(

I∑
i=1

1

bi

)−1

∆ m = µ−
(

1

I

I∑
i=1

1

bi

)−1

∆m

In our setting, short sales of risky assets are not permitted, and demand

functions are not given by the equation (14). However, we assert that the

model with short sales and the our model without short sales admit the same

equilibrium prices.

To see this, write zi(p) for investor i’s demand for risky assets when

prices are p and short sales of risky assets are not permitted. Note that

zi(p) = ẑi(p) whenever ẑi(p) ≥ 0: in particular, zi(p̂) = ẑi(p̂); it follows

immediately that p̂ is an equilibrium price in the setting when short sales

of risky assets are not permitted. To see that there is no other equilibrium

price in this setting, suppose that p∗ 6= p̂ were such an equilibrium price.

If constrained demand zj(p∗) were strictly positive for some investor j, then

constrained demand zj(p∗) would coincide with unconstrained demand ẑj(p∗)
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for investor j. However, formula (14) guarantees that if ẑj(p∗) were positive

for some investor j then ẑi(p∗) would be positive for every investor i, whence

zi(p∗) would coincide with ẑi(p∗) for every investor i. Because p∗ 6= p̂, this

would imply that p∗ was not an equilibrium price after all. It follows that

constrained demand zj(p∗) cannot be strictly positive for any investor j.

At equilibrium, asset markets clear; because the market portfolio is strictly

positive, it follows that some investor k chooses an equilibrium portfolio that

involves the risky asset A but not the risky asset B and some investor `

chooses an equilibrium portfolio that involves the risky asset B but not the

risky asset A:
zk

A(p∗) > 0 , zk
B(p∗) = 0

z`
A(p∗) = 0 , z`

B(p∗) > 0

The first-order conditions for investors k, ` entail:

p∗A
p∗B

≤ MUk
A

MUk
B

p∗B
p∗A

≤ MU`
B

MU`
A

Direct calculation using the explicit form of utility functions and making use

of the fact that var (x + y) = var (x) + 2cov (x, y) + var (y) yields

MUk
A

MUk
B

=
E(A)− bkzk

A(p∗)var (A)

E(B)− bkzk
A(p∗)cov (A, B)

MU`
B

MU`
A

=
E(B)− b`z`

B(p∗)var (B)

E(A)− bkzk
B(p∗)cov (A, B)

Our assumptions guarantee that bk, b`, var (A), var (B) are all strictly pos-

itive, and the particular structure of payoffs of the risky assets and state

probabilities guarantee that cov (A, B) < 0. Combining all these yields:

p∗A
p∗B

≤ MUk
A

MUk
B

< 1

p∗B
p∗A

≤ MU`
B

MU`
A

< 1

This is a contradiction, so we conclude that p̂ is the unique equilibrium price,

as asserted.
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Appendix B: CAPM+ε

In this Appendix we give a formal and rigorous presentation of the idea of the

true economy as draw from a distribution of individual characteristics and

as a perturbation of a mean-variance economy. Although the ideas are very

simple, and the conclusions both intuitive and expected, the details require

a little care.

We work throughout in the setting of Section 4, and retain the same

notation. In particular, two risky assets and one riskless asset are traded; the

risky assets cannot be sold short but the riskless asset can be; the covariance

of the risky assets is negative; consumption may be negative. We normalize

throughout so that the price of the riskless asset is 1; the vector of asset

prices is q = (p, 1) ∈ R3
++. As before, we write µ for the vector of expected

returns on risky assets and ∆ for the covariance matrix of risky assets.

Distributions and Draws from a Distribution

We follow Hart, Hildenbrand and Kohlberg (1979) in describing economies as

distributions on the space of investor characteristics. The usual description

of an investor is in terms of an endowment bundle of commodities and pref-

erences over commodity bundles, but we find it more convenient to adopt a

description in terms of an endowment portfolio of assets and a demand func-

tion for assets. We assume that endowments and prices, hence wealth, lie in

given compact sets End ⊂ IR2
+ × IR, P ⊂ IR3

++, [0, w] ⊂ IR+. An investor

is characterized by an endowment ω ∈ End of riskless and risky assets and

by a continuous demand function

Z : P × [0, w] → IR2
+ × IR

for risky and riskless assets as a function of wealth w ∈ [0, w] ⊂ IR+ and

prices for risky assets p ∈ P ⊂ IR2
++. (Recall that we have normalized so

that the price of the riskless asset is 1.) We assume throughout that the

value of demand is equal to the value of the endowment:

(p, 1) · Z(p, (p, 1) · ω) = (p, 1) · ω ≤ [0, w]
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for each ω, p. (We could assume that demand satisfies properties that follow

from revealed preference, but there is no need to do so.) Write D for the space

of demand functions, and equip D with the topology of uniform convergence.

End×D is the space of investor characteristics.

We view a compactly supported probability measure τ on End × D as

the distribution of investor characteristics in a fixed economy and also as the

distribution of characteristics of the pool from which economies are drawn.

Given an integer I, a particular draw of I investors from τ can be described

by a distribution of the form

τ̃ =
1

I

I∑
i=1

δ(ωi,Zi)

where δ(ωi,Zi) is point mass at the characteristic (ωi, Zi) ∈ supp τ ⊂ End×D.

We identify the set of such draws with (supp τ)I , which, by abuse of notation,

we view as a subset of M(E × D), the space of all compactly supported

probability measures on End×D. The I-fold product measure τ I on (supp τ)I

is the distribution of all draws.

Equilibrium

Given a distribution η ∈ M(E × D), an equilibrium for η is a price p ∈ P
such that ∫

Z(p, (p, 1) · ω)dη =
∫

ωdη

(Because we describe investor characteristics in terms of demand functions,

we focus on prices and suppress consumptions. Of course, Z(p, (p, 1) · ω) is

the equilibrium consumption of the investor with characteristics (ω,Z).)

We caution the reader that a distribution η need not admit an equilibrium,

and that convergence of distributions does not imply convergence of (sets of)

equilibria. However, as we shall show, the situation is much better for the

distributions of most interest to us.
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CAPM Distributions

Given an endowment ω, the portfolio θ is budget feasible if (p, 1) ·θ ≤ (p, 1) ·ω
for every p ∈ P. We say σ ∈ M(End × D) is a mean-variance distribution

if for each (ω,Z) ∈ supp σ there is a coefficient of risk aversion b(ω,Z) > 0

such that the mean-variance utility function

U b(ω,Z) = E(x)− 1

b(ω,Z)
var (x)

is strictly monotone on the set of dividends of feasible portfolios and Z is the

(restriction of) the portfolio demand function derived from U b(ω,Z). (Keep

in mind that we require holdings of risky assets to be non-negative.) Given

a mean-variance distribution σ we write Bσ =
∫

b(ω,Z)−1dσ for the market

risk tolerance and mσ =
∫

ωdσ for the per capita market portfolio. We say

the mean-variance distribution σ is a CAPM distribution if the price

pσ = µ−B−1
σ ∆mσ

belongs to the interior intP of P . If σ is a CAPM distribution, it follows

as in Appendix A that σ admits pσ as the unique equilibrium price, that

the mean market portolio m is mean-variance efficient at prices pσ and that

equilibrium holdings of risky assets z(pσ, (pσ, 1)·ω) are non-negative multiples

of the mean market portfolio m (portfolio separation).

Mean Zero Perturbations

Write πE : E×D → E for the projection on the first factor. If τ, σ ∈M(E ×D)

we say τ is a perturbation of σ if there is a measurable function f : supp τ → D
such that σ = (πE, f)∗τ ; that is,

σ(B) = τ((πE, f)−1(B)) = τ{(ω,Z) : (ω, f(ω,Z)) ∈ B}

for each Borel set B ⊂ E ×D. We say τ is a mean zero perturbation of σ if

in addition ∫
[Z − f(ω,Z)]dτ =

∫
Zdτ −

∫
Z ′dσ = 0

Evidently, if τ is a mean zero perturbation of σ, then τ and σ admit the same

equilibria — although neither may admit any equilibrium at all.
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Perturbations of CAPM Distributions

We are now in a position to state and prove the result we require.

Theorem Let σ be a CAPM distribution, and let τ be a mean-zero pertur-

bation of σ. For each ε0 > 0 there is an integer I0 and for every I > I0 there

is a subset ΓI ⊂ (supp τ)I such that

i) τ I(ΓI) > 1− ε0

ii) for every γ ∈ ΓI , the draw γ̃ = F (γ) from σ admits a unique equilibrium

pγ̃ and the draw γ from τ admits at least one equilibrium

iii) if γ ∈ ΓI and pγ is any equilibrium of γ then ‖pγ − pγ̃‖ < ε0

Informally: if we draw a large enough sample from τ then, with high

probability the sample economy and the CAPM economy of which it is a

perturbation have nearly the same equilibrium price(s).

Proof If ν is a distribution, let Dν : P → IR2
+ × IR be the market demand

function for assets:

Dν(p) =
∫

Z(p, (p, 1) · ω)dν

and let M ν be the per capita market portfolio

M ν =
∫

ωdν

By definition, an equilibrium for ν is a zero of excess demand Dν −M ν .

By assumption, pσ ∈ intP . Choose ε1 < ε0 so that B(pσ, ε1) ⊂ P. Direct

computation shows that the excess demand function Dσ −Mσ is regular at

pσ. It follows that there is an ε2 > 0 such that if H : P → IR2
+ × IR is any

continuous function and

‖H − (Dσ −Mσ)‖B(pσ ,ε1) < ε2
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then H has at least one zero in B(pσ, ε1).

On the other hand, Dσ −Mσ is bounded away from 0 on P \ B(pσ, ε1),

so there is an ε3 > 0 such that if

‖H − (Dσ −Mσ)‖P\B(pσ ,ε1) < ε3

then H is bounded away from 0 on P \B(pσ, ε1). Setting ε = min{ε1, ε2, ε3},
we conclude: if H : P → IR2

+ × IR is any continuous function for which

‖H − (Dσ −Mσ)‖P < ε

then H has at least one zero on P , and all its zeroes belong to B(pσ, ε), and

hence to B(pσ, ε0).

For each I, set

G1
I = {γ ∈ (supp τ)I : ‖Zγ − Zτ‖ < ε/2}

H1
I = {γ ∈ (supp τ)I : ‖Mγ −M τ‖ < ε/2}
G2

I = {ζ ∈ (supp σ)I : ‖Zζ − Zτ‖ < ε/2}
H2

I = {ζ ∈ (supp σ)I : ‖M ζ −Mσ‖ < ε/2}
ΓI = G1

I ∩H2
I ∩ F−1(G2

I ) ∩ F−1(H2
I)

Market demand is the expectation of individual demand, and the per capita

market portfolio is the expectation of individual endowment portfolios, so

applying the Strong Law of Large Numbers in the space of continuous func-

tions Φ : P → IR3 (see Ledoux and Talagrand (1991) for the appropriate

Banach space version) and in IR3 implies that there is an index I0 such that

if I > I0 then

τ I(Gi
I) > 1− ε

4

σI(Hi
I) > 1− ε

4

for i = 1, 2.

Let f be the function given in the definition of mean zero perturbation,

and write F = (πE, f). By assumption

τ
(
F−1(G2

I )
)

= σ
(
G2

I

)
and τ

(
F−1(H2

I)
)

= σ
(
H2

I

)
43



so if I > I0 then τ(ΓI) > 1− ε.

Finally, if γ ∈ GI then

‖(Dγ −Mγ)− (Zγ −Mγ)‖ < ε

‖(DF∗γ −MF∗γ)− (Zσ −Mσ)‖ < ε

Our construction guarantees that γ and F∗γ each admit at least one equi-

librium and that all these equilibria lie in B(pσ, ε0). Finally, because F∗γ is

a CAPM economy, it actually admits a unique equilibrium, so the proof is

complete.
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Appendix C: Estimation of W

We first specify our estimator ΞI of W . After that, we provide an asymp-

totically unbiased and uncorrelated estimator of individual risk tolerances,

to be used in the formulation of W . Third, we prove that the error of this

estimator does not affect the asymptotic properties of ΞI . As a result, we

substitute true risk tolerances for estimates of the risk tolerances in the for-

mula of ΞI , and we proceed to the fourth step, where we prove convergence

of ΞI to W .

In the sequel, we take the risk aversion coefficients as fixed. This is

consistent with the theory as long as perturbations are drawn independently

from risk aversion coefficients. The econometrics conditions on risk aversion.

Likewise, we assume that individual perturbations are independent across

periods within an experimental session. In fact, all we need is that they are

asymptotically orthogonal conditional on prices:

E{[εi
t]k[ε

i
τ ]j|pN

1 , ..., pI
t} → 0, (15)

all τ 6= t, as N →∞.

The Estimator ΞI

To understand our estimator ΞI of W , let βi
t denote agent i’s risk tolerance,

i.e., βi
t = 1/bi

t. Define the cross-sectional average holding: let

mI =
1

I

I∑
i=1

zi
t. (16)

Also, define:

W I = IE[hI
t (B

I
t )h

I
t (B

I
t )

t|pI
t ].

So, W is the limit of W I as I →∞. Now re-formulate W I :

W I = IE[hI
t (B

I
t )h

I
t (B

I
t )

t|pI
t ]
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= (BI
t )

2 1

I

I∑
i=1

E[εi
tε

i
t

t|pI
t ]

= (BI
t )

2 1

I

I∑
i=1

E[
(
εi
t + βi

t∆
−1(µ− pI

t )−mI
) (

εi
t + βi

t∆
−1(µ− pI

t )−mI
)t
|pI

t ]

− 1

2
(BI

t )
2 1

I

I∑
i=1

E[
(
εi
t + βi

t∆
−1(µ− pI

t )−mI
) (

E[zi
t|pI

t ]−mI
)t
|pI

t ]

− 1

2
(BI

t )
2 1

I

I∑
i=1

E[
(
βi

t∆
−1(µ− pI

t )−mI
) (

εi
t + βi

t∆
−1(µ− pI

t )−mI
)t
|pI

t ]

− 1

2
(BI

t )
2 1

I

I∑
i=1

E[εi
t

(
βi

t∆
−1(µ− pI

t )−mI
)t
|pI

t ]

− 1

2
(BI

t )
2 1

I

I∑
i=1

E[
(
βi

t∆
−1(µ− pI

t )−mI
)
εi
t

t|pI
t ]

= (BI
t )

2 1

I

I∑
i=1

E[
(
zi

t −mI
) (

zi
t −mI

)t
|pI

t ]

− 1

2
(BI

t )
2 1

I

I∑
i=1

E[
(
zi

t −mI
) (

βi
t∆

−1(µ− pI
t )−mI

)t
|pI

t ]

− 1

2
(BI

t )
2 1

I

I∑
i=1

E[
(
βi

t∆
−1(µ− pI

t )−mI
) (

zi
t −mI

)t
|pI

t ]

− 1

2
(BI

t )
2 1

I

I∑
i=1

E[εi
t

(
βi

t∆
−1(µ− pI

t )−mI
)t
|pI

t ]

− 1

2
(BI

t )
2 1

I

I∑
i=1

E[
(
βi

t∆
−1(µ− pI

t )−mI
)
εi
t

t|pI
t ],

where the last equality follows from

εi
t = zi

t − βi
t∆

−1(µ− pI
t ).

Now consider:

mI − 1

I

I∑
i=1

βi
t∆

−1(µ− pI
t ) =

1

I

I∑
i=1

(zi
t − βi

t∆
−1(µ− pI

t ))

=
1

I

I∑
i=1

εi
t,
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which converges to zero, by the law of large numbers. As a result, the second-

to-last term of the above expression becomes:

1

2
(BI

t )
2 1

I

I∑
i=1

E[εi
t

(
βi

t∆
−1(µ− pI

t )−mI
)t
|pI

t ]

=
1

2
(BI

t )
2 1

I

I∑
i=1

E[εi
t

(
βi

t∆
−1(µ− pI

t )−
1

I

I∑
ν=1

βν
t ∆−1(µ− pI

t )

)t

|pI
t ],

which converges to zero, because E[εi
t|pI

t ] → 0.12 The same applies to the

last term in the above expression.

We shall make the same substitution for mI in the second and third term.

Consequently, there is no difference asymptotically if we define W I as

follows:

W I = (BI
t )

2 1

I

I∑
i=1

E[
(
zi

t −mI
) (

zi
t −mI

)t
|pI

t ]

− 1

2
(BI

t )
2 1

I

I∑
i=1

E[
(
zi

t −mI
)(

[βi
t −

1

I

I∑
ν=1

βν
t ]∆−1(µ− pI

t )

)t

|pI
t ]

− 1

2
(BI

t )
2 1

I

I∑
i=1

E[

(
[βi

t −
1

I

I∑
ν=1

βν
t ]∆−1(µ− pI

t )

)(
zi

t −mI
)t
|pI

t ].

Note that this expression does not involve unobservables – except for the risk

tolerances βi
t which we will discuss below.

This suggests the following estimator. Define the cross-sectional covari-

ance of choices, cov(zi
t):

cov(zi
t) =

1

I

I∑
i=1

(
zi

t −mI
) (

zi
t −mI

)
t.

Then let

ΞI = (BI
t )

2cov(zi
t)

− 1

2
(BI

t )
2 1

I

I∑
i=1

(
zi

t −mI
)(

[βi
t −

1

I

I∑
ν=1

βν
t ]∆−1(µ− pI

t )

)t

12
√

NE[εi
t|pI

t ] → λ, so a fortiori, E[εi
t|pI

t ] → 0.
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− 1

2
(BI

t )
2 1

I

I∑
i=1

(
[βi

t −
1

I

I∑
ν=1

βν
t ]∆−1(µ− pI

t )

)(
zi

t −mI
)t

. (17)

Estimating Risk Tolerances

In oder to implement ΞI , we need an estimator for the risk tolerances βi
t .

A judicious choice will allow us to obtain consistency of ΞI as only I (the

number of subjects) increases, keeping T (the number of periods in an ex-

perimental session) fixed, and, if possible, small.

We obtain risk tolerances from OLS projections of holdings onto ∆−1(µ−
pI

t ). We use end-of-period holdings for all periods except period t (the period

on which we run our GMM test). Let β̂i
t denote our estimate of subject i’s

risk tolerance. Define:

β̂i
j,t =

cov([zi
τ ]j, [∆

−1(µ− pI
τ )]j)

var([∆−1(µ− pI
τ )]j)

,

where cov and var denote the sample covariance and variance, respectively,

over τ in 1, ..., T with τ 6= t. Also, j = 1, ..., J , with J denoting the number of

risky securities (length of the vector zi
τ ). [y]j denotes the jth element of the

vector y. With this notation, our estimator of the risk tolerance parameter

equals

β̂i
t =

1

J

∑
j

β̂i
j,t.

The estimation error, β̂i
t − βi

t , depends linearly on the perturbations εi
τ

for all periods τ except τ = t. To demonstrate this, consider the following:

β̂i
j,t − βi

t =
cov([εi

τ ]j, [∆
−1(µ− pI

τ )]j)

var([∆−1(µ− pI
τ )]j)

.

Therefore,

β̂i
t − βi

t =
1

J

∑
j

cov([εi
τ ]j, [∆

−1(µ− pI
τ )]j)

var([∆−1(µ− pI
τ )]j)

.

The sample covariances in the last expression are linear in the perturbations

[εi
τ ]j. It follows that the estimation error β̂i

t−βi
t is linear in the perturbations

[εi
τ ]j.
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Linearity implies that our estimator will be unbiased asymptotically be-

cause E[εi
t|pI

t ] → 0:13 E[β̂i
t − βi

t|pN
1 , ..., pI

t ] → 0.

Also, linearity, together with the assumed asymptotic conditional time

series orthogonality of individual perturbations implies that the estimation

error β̂i
t − βi

t is uncorrelated with εi
t:

E{[εi
t]k(β̂

i
t − βi

t)|pI
1, ..., p

I
T}

=
1

J

∑
j

cov(E{[εi
t]k[ε

i
τ ]j|pI

1, ..., p
I
T}, [∆−1(µ− pI

τ )]j)

var([∆−1(µ− pI
τ )]j)

→ 0,

for all k (k = 1, ..., J).

The Impact of Estimation Error in Risk Tolerances

To demonstrate that the errors in estimating risk tolerances have no effect

on ΞI asymptotically, first consider the leading factor in the definition of ΞI ,

namely, (BI
t )

2. Since individual risk tolerances are estimated in an unbiased

way,
1

I

I∑
i=1

βi
t −

1

I

I∑
i=1

1

bi
t

→ 0,

by the law of large numbers, so estimation error in the leading factor can be

ignored asymptotically.

Ignoring the leading factor, consider next the second term in the for-

mula for ΞI . (The argument for the third term is analogous and will not be

presented.) Rewrite it in terms of the true risk tolerances plus estimation

errors:

1

I

I∑
i=1

(
zi

t −mI
)(

[β̂i
t −

1

I

I∑
ν=1

β̂ν
t ]∆−1(µ− pI

t )

)t

=
1

I

I∑
i=1

(
zi

t −mI
)(

[βi
t −

1

I

I∑
ν=1

βν
t ]∆−1(µ− pI

t )

)t

13
√

NE[εi
t|pI

t ] → λ, so a fortiori, E[εi
t|pI

t ] → 0.
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+
1

I

I∑
i=1

(
zi

t −mI
)([

(β̂i
t − βi

t)−
1

I

I∑
ν=1

(β̂ν
t − βν

t )

]
∆−1(µ− pI

t )

)t

Consider the deviations of portfolio choices from the grand mean in the sec-

ond term of the last expression, zi
t −mI , i = 1, ..., I. These depend linearly

on the perturbations εi
t, i = 1, ..., I. In the same term, the estimation errors,

namely, β̂i
t − βi

t and β̂ν
t − βν

t are asymptotically are mean zero. They are

also asymptotically uncorrelated with the perturbations εi
t, because they de-

pend linearly on perturbations εi
τ for τ 6= t, as demonstrated earlier. Clearly,

the second term in the above expression is simply the sample covariance of

linear transformations of perturbations εi
τ for τ 6= t, on the one hand, and

linear transformations of the perturbations εi
t, on the other hand. Asymp-

totically, this sample covariance converges to zero in expectation. Because

perturbations εi
τ and εi

t are assumed independent across i, the law of large

numbers implies that the sample covariance will converge to its expectation.

Consequently, the second term in the above expression is zero asymptotically.

This leaves us only with the first term in curly brackets. The random be-

havior of the first term obviously does not depend on errors in the estimation

of the risk tolerances. We have the desired result: asymptotically, estimation

errors have no impact on ΞI .

Consistency of ΞI

Because their estimation errors have no effect asymptotically, we can write

ΞI as a function of the true risk tolerances. This is what we did in (17).

Convergence to W I , and hence, A, is immediate.
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