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1 Introduction

It is well known that the English auction has many desirable properties when a single object is

to be sold. For example, with private values it implements the efficient allocation uniquely in

weakly dominant strategies, and maximizes the seller’s expected revenue within a large class of

“simple” selling procedures (Lopomo [30]). However, the properties of generalized versions of

the English auction, in situations in which many objects are to be sold, and the buyers have use

for more than one object, are yet to be fully understood.

Current research on auctions with multiple objects can be organized into a normative and

a positive approach. The first approach consists essentially in looking for mechanisms with

equilibria which satisfy some desirable properties, e.g. efficiency (Ausubel and Cramton [5],

Dasgupta and Maskin [18], Perry and Reny [38], and Esó and Maskin [22]), or seller’s revenue

maximization (Armstrong [3], Avery and Hendershott [8], Menicucci [33]). The positive approach

instead considers given auction formats, writes them down as games of incomplete information

and aims at characterizing their equilibrium sets.

This paper contributes to the second line of research. We study a multi-object version of

the English auction, henceforth named “simultaneous ascending bid auction”, similar to the

one recently used by the Federal Communications Commission (FCC) for the sale of spectrum

licences (see McAfee and McMillan [36]). We focus on the claim that this generalization of the

one-object English auction is more vulnerable to collusion in the multiple objects case than in

the single object case. Concerns about collusive behavior of bidders in the FCC auction have

emerged, for example, in an article published in The Economist [19]. More recently, Cramton

and Schwartz [16] have indicated evidence of collusive behavior in the FCC spectrum auctions,

and discussed the effectiveness of various modifications of the auction rules in hindering bidders’

collusion.

Our analysis will provide elements to test the veracity of the following conjectures which

naturally arise on auctions with multiple objects:

• The presence of multiple objects facilitates collusion by allowing the bidders to signal
their willingness to abstain from competing over certain objects, provided they are not

challenged on others. In this way, the bidders can allocate the objects among themselves

without paying much.

• As the ratio between the number of bidders and the number of objects increases, the room
for collusive schemes such as the ones indicated in the previous conjecture becomes smaller.
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• Large complementarities in the bidders’ utility functions tend to hinder collusion. This is
because each bidder is less satisfied with owning only a subset of the objects on sale; she

has therefore an incentive to break the collusion and compete for all the objects in order

to fully realize the synergies.

In a model with two objects, we show that bidders with private information about their own

willingness to pay for each subset of objects can indeed take advantage of the signalling opportu-

nities provided by the sequential nature of open ascending bid auctions with multiple objects, by

coordinating on equilibria which generate a high level of expected surplus for them, a low level

of revenue for the seller, and socially inefficient allocations of the objects. (Propositions 1 and

2). This kind of coordination however becomes more difficult as the number of bidders increases

while the number of objects remains fixed at two. (Propositions 4 and 5). Thus our analysis

lends support to the first two conjectures listed above.

With regard to the third conjecture, we show that the sole presence of large complementarities

is not sufficient to eliminate the opportunity for the bidders to collude. In fact, in the extreme

case in which the levels of synergies are commonly known, and not too different across the bidders,

the incentive structure is essentially identical to the case with no complementarities. However,

when the complementarities are not only large but also variable, the possibility of collusion is

seriously reduced. These results suggest that what is crucial in determining the likelihood of

collusion is not whether the complementarities are (on average) ‘large’, but how variable they

are.

It is important to note that the type of collusion considered in this paper requires no side

contracts among the bidders. Instead, collusive behavior emerges as a noncooperative equilibrium

phenomenon. This is a major difference with the single-object case, in which side contracts, or

future interaction, are in general necessary to sustain bidders’ collusion1.

The positive literature on multi-unit auctions has focused mainly on the case of identical

objects and non-increasing marginal willingness to pay in the bidders’ utility functions. One

of the earliest papers on coordination in multiple unit auctions is on procurement auctions, by

Anton and Yao [1]. They show that, under a condition which in the monopoly case corresponds

1Collusion in the single object case sustained by side contracts has been studied, among others by Campbell

[13], Graham and Marshall [23], Mailath and Zemsky [31], McAfee and McMillan [35] and Pesendorfer [39]. An

exception to the use of contracts to sustain collusion is in McAfee and McMillan [35]. They show that the bidders

can collude in first-price auction in which ties are resolved with equal uniform probabilities. Caillaud and Jéhiel

[12] have shown that the presence of negative externalities among the buyers may hinder the effectiveness of

collusion. Collusive behavior in repeated single-object auctions has been studied by Hopenhayn and Skrzypacz

[25].
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to decreasing marginal willingness to pay, sellers who can bid for the entire production as well as

for single parts, can coordinate on ‘split award’ equilibria which generate a low level of surplus for

the monopsonist. Viswanathan, Wang and Witelski [42] have characterized equilibrium strategies

in sealed-bid discriminatory auctions for the case of two bidders.

The papers which are most closely related to the present paper in terms of the auction rules,

are Milgrom [34] and Engelbrecht-Wiggans and Kahn [21]. Milgrom [34] analyzes the simulta-

neous ascending bid auction, mostly under the assumption that the bidders’ utility functions

are common knowledge. He discusses issues surrounding the auction’s performance in terms of

its ability of generating efficient outcomes and its potential for maximizing the seller’s expected

revenue. In particular, for the case of two bidders, two objects and no private information,

Milgrom describes an equilibrium which is similar to the one described in Proposition 1 of this

paper: each bidder can buy one object for the minimum price allowed by the rules of the auction.

Engelbrecht-Wiggans and Kahn [21] have independently established a result which is essentially

identical to our Proposition 1, namely that ‘low revenue’ equilibria exist under mild conditions

on the bidders’ information structure. They also show that, without these mild conditions, more

limited forms of collusion can be sustained in equilibrium. In the present paper we also show

that the bidders can improve upon the equilibrium of Proposition 1 (Proposition 2), and that

collusion can also be sustained when complementarities are present (Proposition 7).

Another branch of the literature has analyzed the issue of the so-called ‘demand reduction’

in auctions with many identical objects. Ausubel and Cramton [4] study sealed-bid auctions of

shares of a single divisible asset, under the assumption that each buyer’s marginal willingness

to pay is non-increasing, and is determined by a privately known one-dimensional parameter.

They show that, in the sealed-bid uniform price auction, the buyers have an incentive to bid

less than their marginal willingness to pay for each unit, hence no equilibrium can induce an

ex-post efficient allocation of the asset. A similar point is made by Engelbrecht-Wiggans and

Kahn [20]. When multiple identical objects are sold, it is not an equilibrium that bidders bid

‘straightforwardly’ for each object, i.e. up to the price that equals their valuations. Instead,

the bidders want to reduce their demand in order to keep the prices low. This behavior is

quite similar to what happens in oligopsonistic markets, the source of inefficiency being the

traditional one found in textbook monopoly models: by trying to buy (sell) a marginal unit,

the price on inframarginal units increases (decreases). In our paper, the objects for sale are

generally perceived as different by each bidder; and the auction rules allow a different price for

each object; which eliminates the main rationale for demand reduction. (This is akin to price

discrimination in the textbook monopoly model). As a result, ‘straightforward’ equilibria in
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which the bidders bid for each object up to their valuation do exist. However, as we show in

this paper, these straightforward equilibria are can be used as punishment to form other, more

collusive, equilibria.

Our equilibria have features in common with the sub-game perfect equilibria of a multi-

market repeated oligopoly model studied by Bernhaim and Winston [10]. They show that two

firms with relative cost advantages in producing different goods can collude by creating “spheres

of influence”: that is, each firm monopolizes the market for the good that it produces most

efficiently and withdraws from the other market.

Pesendorfer [39] discusses a “ranking mechanism” which allows bidders to collude in multi-

unit auctions. While Pesendorfer analyzes a monopsony situation2, his ranking mechanism is

equivalent to the following mechanism in the monopoly case: each bidder announces a ranking

of the objects according to his values, and each object is bought for the minimum price by one

of the bidders who rank it the highest, with ties resolved uniformly. This mechanism induces a

uniform matching between objects and bidders: for example, with two objects and two bidders,

each bidder always buys exactly one object. The allocation induced by the equilibrium described

in our Proposition 2 also has this feature, but in Proposition 2, if the bidders rank the two

objects in the same way then the preferred object is assigned to the bidder with the highest

difference of values, and this bidder pays a price equal to her opponent’s difference in values. We

show that both the ranking mechanism and the outcome of Proposition 2 are interim-efficient

for the bidders among all incentive compatible outcome functions such that each buyer always

buy exactly one object.

Benoı̂t and Krishna [9] analyze a model with complete information, common values, and

budget constrained bidders. They show that, with significant complementarities, or with suffi-

ciently different objects’ values, a sequence of single-object open ascending auctions yields more

revenue than the simultaneous ascending auction. Under different auction rules, but still assum-

ing complete information, Ausubel and Schwartz [6] show that in fact a ‘collusive’ equilibrium is

the unique Nash equilibrium that satisfies backward induction. Finally, under a condition which

rules out complementarities in the buyers’ utility functions, Gül and Stacchetti [24] have studied

a generalized version of the English auction akin to a tatonnement process, with emphasis on the

relation between its equilibria and the Walrasian equilibria of the underlying economy.

Environments in which the bidders have increasing marginal valuations have been considered

in Chakraborty [14], who has studied properties of various sealed-bid auctions formats. His paper

2Pesendorfer’s paper studies collusion in auctions for school milk contracts in Florida and Texas during the

1980s.
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also contains a good survey of existing work on multiple object auctions.

On the experimental side, recent work by Kwasnica and Sherstyuk [28] reports findings which

are consistent with the theoretical predictions of the present paper. In particular, collusion occurs

in auctions with two bidders and two objects, while it tends to disappear with five bidders.3

The present paper proceeds as follows. Section 2 describes the model. In Section 3 we begin

the analysis with the benchmark case of purely additive values, i.e. we assume that each bidder

obtains no synergies from owning multiple objects, hence her willingness to pay for one object is

independent of whether she is also buying other objects. The analysis of this case provides a useful

benchmark for the more realistic case in which complementarities are present. In particular, it

sheds light on the role played by multiple objects in facilitating collusion among the bidders. We

present conditions under which collusion-via-signaling can be sustained in equilibrium. Equilibria

in this class can be described for the simple case with only two bidders as follows. Each bidder

starts by placing the smallest possible bid on her most valued object, and no bid on the other

object. If only one bid is placed on each object, it becomes common knowledge that the objects

are ranked differently by the two bidders. In this case the bidders let the auction end in the

second round by remaining silent. Each bidder is thus awarded one object for the minimum

price. If, instead, the initial bids reveal that both bidders have a higher value for the same

object, then the bidding continues according to some equilibrium strategy, which can entail, for

example, a reversion to “bidding straightforwardly,” i.e. each bidder raising the bid on each

object if her value is higher than the current highest bid and she is not assigned the object. (See

Proposition 1 below.) Alternatively, the bidders may adopt some other continuation strategy in

which they proceed to signal more detailed information about their values in order to try again

to coordinate with each other and buy one object each for a relatively low price (Proposition 2).

In all equilibria of this kind, the outcome entails socially inefficient allocations in some cases –

i.e. the objects are not always assigned in a way that maximizes the sum of the bidders’ values

– but the bidders end up paying less than they would by bidding straightforwardly throughout

the entire auction. The reduced payments make up for the loss of efficiency in assigning the

objects, hence each bidder’s interim expected surplus is higher.

For these equilibria, however, the probability that the bidders can collude via signaling de-

creases as the number of bidders increases. More precisely, the probability of assigning each

object to the bidder with the highest value increases as the number of bidders increases. These

results (Propositions 4 and 5 below) corroborate the conjecture that collusion in multiple unit

3Kwasnica [27] has also done experimental work on collusion in multiple object sealed-bid auctions, with

additive utility functions.
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auctions is a ‘low numbers’ phenomenon.

In section 4 we consider the case in which the bidders’ utility functions exhibit large com-

plementarities, i.e. their willingness to pay for the two objects together is much greater than

the sum of the two objects’s “stand alone” values. The presence of significant complementar-

ities makes the simultaneous ascending bid auction a natural candidate for allocating multiple

objects efficiently, essentially because a bidder’s willingness to pay for any given object depends

on the probability of winning other complementary objects. As stated in the third conjecture

above, immediate intuition may lead one to think that large complementarities hinder collusion

by providing each bidder with a strong incentive to buy both objects rather than just one.

We show however that the sole presence of complementarities does not hinder collusion: the

bidders can still manage to buy one object each, at low prices. In fact, in the extreme case

in which the synergies are commonly known, and not too different across the bidders, the in-

centive structure for the bidders is essentially identical to the case with no complementarities.

The efficiency loss however is much larger in this case because it includes the unrealized com-

plementarities. When the complementarities are not only large but also variable the possibility

of collusion is seriously reduced. The final insight is then that not just the presence of large

complementarities but also their variability is important in deterring the bidders from colluding.

Section 5 contains some concluding remarks, and an appendix collects all the proofs.

2 The Model

Let N = {1, ..., n} denote the set of bidders, and M = {1, ...,m} the set of objects. Each bidder
i ∈ N has a quasi-linear utility function, with willingness to pay for each bundle J ⊂ M given

by ui (J) . All values {ui (J)}J∈2M are privately known to bidder i. It is common knowledge that
such values are drawn according to a probability measure with support on a compact subset of

<2m+ .
The objects are sold with a “simultaneous ascending bid auction”, which is a natural extension

of the standard one-object English auction to environments with multiple objects. The auction

proceeds in rounds. In each round t = 1, 2, ... , and for each object j ∈ M, each bidder i ∈ N
can either remain silent or raise the highest bid of the previous round by at least a minimum

amount. Formally, i’s bid on object j in round t, denoted bji (t) , can either be set equal to −∞,
which is to be interpreted as “no bid”, or must be a real number at least as large as bj (t− 1)+ε,

where ε > 0 is the minimum bid increment, and bj (t− 1) is the “current outstanding bid” from
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the previous round, defined recursively by

bj (0) = 0 and bj (t) := max
©
bj (t− 1) , bji (t) ; i ∈ N

ª
.

If at least one bidder places a new bid on some objects, i.e. if bji (t) 6= −∞ for some i ∈ N and

j ∈ M , then for each of these objects j the new highest bid bj (t) is identified, and a potential
winner is selected among the bidders who have made the new highest bid; and the auction moves

to the next round, with the potential winners of all other objects unchanged. If instead all

bidders remain silent on all objects, i.e. if bji (t) = −∞ for all i ∈ N and j ∈M , then the auction
ends, with each object j ∈ M assigned to the winner selected at the end of round t − 1, who

pays his last bid bj (t− 1).

We analyze equilibria of this auction when the minimum increment is negligible, i.e. for ε→ 0.

We do not verify explicitly that the equilibria that we find assuming a negligible minimum bid

are actually equilibria for ε close enough to zero. This can be done (see Engelbrecht-Wiggans

and Kahn [21] for an explicit analysis), but we have decided to omit the formal convergence

proofs in order to avoid lengthening the paper.

Furthermore, to keep the analysis as simple as possible, we establish our results for m = 2,

i.e. with only two objects on sale. To simplify the notation, we define

vi := ui ({1}) , and wi := ui ({2}) ;

and use interchangeably the terms ‘object v’ (object w) and ‘object 1’ (object 2).

Also, to model the presence of complementarities in a parsimonious way, we assume that the

size of the complementarity is independent of the two objects’ ‘stand-alone’ values. That is, the

value to bidder i of having both objects is

ui ({1, 2}) = vi + wi + ki.

We assume that the vectors (vi, wi, ki) are drawn independently across bidders from the same

probability distribution with support [0, 1]2×K, where K is either {0} (no complementarities) or
the interval

£
k, k

¤
with k > 1 (large complementarities.) The variables vi and wi have identical

marginal distributions, with density and c.d.f. denoted by f and F respectively. For later use, we

also define the variable ai := vi −wi, whose support is the interval [−1, 1]. The density function
and the c.d.f. of each ai will be denoted g and G respectively.

We start the analysis in the next section with the case of no complementarities, i.e. ki = 0

for all i ∈ N. Section 4 will be devoted to the case with positive complementarities.
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3 Collusive Equilibria with No Complementarities

In this section we assume that the bidders have purely additive values:

ui ({1, 2}) = vi + wi, i ∈ N,

or no complementarities, ki = 0 for each i. The analysis of the bidders’ equilibrium behavior in

this case provides a useful benchmark for the more realistic case in which complementarities are

present. In particular, it becomes clear that the presence of multiple objects facilitates collusion

among the bidders.

With additive values, the problem of allocating the objects efficiently is simple: for example

a sequence of one unit objects would assign each object to a buyer with the highest willingness

to pay. Work by Armstrong and Avery and Hendershott shows that the efficient allocation may

or may not be optimal for a risk neutral revenue maximizing seller.4 We focus here on the

equilibrium set of the simultaneous ascending bid auction.

We begin with a set of three elementary, but important observations. First, with no comple-

mentarities, the following ‘Separated English Auctions’ (SEA) strategy, together with a suitable

belief system, forms a perfect Bayesian equilibrium: for bidder i, raise the bid on each object j

if the value ui ({j}) is higher than the current highest bid, and bidder i is not assigned object
j. Clearly, if all other bidders use the SEA strategy, player i’s best reply is to do the same. We

state this result as Proposition 0, for an arbitrary number of objects and players.

Proposition 0 With no complementarities, for any n and m, the separated English auctions

(SEA) strategy profile forms a perfect Bayesian equilibrium (with some consistent belief system)

after any history in the simultaneous ascending bid auction.

The second observation is that the SEA strategy can be used to form a continuation equilibrium

profile after any partial history of the auction. It may then be used as a threat to deter aggres-

sive bidding, and thus sustain collusive outcomes, much like Pareto inferior sub-game perfect

equilibria are used to support collusive outcomes in repeated games.

The third observation follows immediately from an extension the well-known Revenue Equiv-

alence Theorem (Myerson [37]), which holds here because the bidders’ types are drawn from

4Both papers study models in which the values of a buyer who has use for more then one object are drawn from

binary distributions. Armstrong [2] analyzes the symmetric case and finds that revenue maximizing auctions are

also socially efficient. He also shows however that this result may not hold with more general value distributions.

Avery and Hendershott [8] study a model with one identifiable buyer willing to buy two objects and many other

buyers with one-unit demands. They find that the revenue maximizing auctions in this case are often inefficient.
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independent and continuous probability distributions:5 given any objects’ allocation rule, the in-

centive compatibility constraints uniquely determine, up to a constant, both the interim expected

payment function and the interim expected surplus function of each bidder, in any equilibrium

of any auction game. Thus in particular, any perfect Bayesian equilibrium of the simultaneous

ascending bid auction in which each bidder with type (0, 0) expects zero surplus, and all other

types are better off than in the SEA equilibrium, must entail a socially inefficient allocation of

the objects.6

3.1 Two Bidders

We begin with the two bidder case. The next Proposition establishes the existence of a symmet-

ric perfect Bayesian equilibrium which dominates the SEA in terms bidders’ interim expected

surplus7. Recall that F denotes the common marginal c.d.f. of vi and wi.

Proposition 1 Assume that E (x) :=
R 1
0
x dF (x) ≥ 1

2
. Then the following strategy, together

with some consistent belief system, forms a symmetric perfect Bayesian equilibrium:

• types (vi, wi) such that vi ≥ wi open with {b1i (1) , b2i (1)} = {0,−∞};

• types (vi, wi) such that vi < wi open with {b1i (1) , b2i (1)} = {−∞, 0} ;

• if the initial bids are different, all types remain silent in round 2, i.e. bji (1) = −∞, for all
i and j;

• if the initial bids are equal, or if, at any round, any bids differs from the instructions given
above, then all types revert to the SEA strategy.

The equilibrium of Proposition 1 can be described as follows. Each bidder opens by making the

minimum bid (zero) only on her most preferred object. If, at the end of the first round, the

bidders discover that they rank the objects differently, then they stop bidding, and each bidder

is able to buy the preferred object at the lowest possible price. If instead they discover that they

rank the two objects in the same way, then they revert to the SEA strategies.

5A generalization of Myerson’s result which includes our setting has been established, among others, by Krishna

and Maenner [26].

6Jehiél and Moldovanu [29] use in a similar way the Revenue Equivalence Theorem to point out that with

multiple objects the efficient allocation is not in general revenue-maximizing.

7The existence of this equilibrium has been established independently by Engelbrecht-Wiggans and Kahn [21].
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Why is the condition E (x) ≥ 1
2
needed? Consider any type of bidder 1 with v1 ≥ w1, and

suppose that the two bidders have followed the equilibrium strategy and opened with different

bids in the first round. Bidder 1 can now obtain v1 for the minimum price (zero), or compete for

both objects, thus obtaining an expected surplus of

S (v1, w1 |L) =
Z v1

0

(v1 − v2) dFV (v2 |L) +
Z w1

0

(w1 − w2) dFW (w2 |L) ,

where FV (v2 |L) and FW (w2 |L) denote the c.d.f. of v2 and w2 respectively, both conditional on
the set L :=

©
(v2, w2) ∈ [0, 1]2 | 0 ≤ v2 ≤ w2

ª
.

Since for any fixed v1, S (v1, · |L) is increasing, it is enough to check that all types (v1, v1) –
i.e., all types on the diagonal of the type space – are willing to accept collusion, i.e. that

v1 ≥ S (v1, v1 |L) for each v1 ∈ [0, 1] .

Clearly, this inequality holds for v1 = 0; and it is easy to see that the function S (v1, v1 |L)
is convex in v1. Therefore it is enough to check that the inequality holds for the highest type

(1, 1). This type gets both objects with probability 1 whenever competition is triggered, paying

a price equal to the expected value of the two objects for bidder 2, that is E (v2 |L)+E (w2 |L).
Given the symmetry assumption, the expected payment for type (1, 1) is therefore E (v2 |L) +
E
¡
v2 | [0, 1]2 \L

¢
= 2E (x). Acceptance of collusion gives a utility of 1. Therefore, the relevant

condition becomes:

1 ≥ 2− 2E (x) i.e. E (x) ≥ 1

2
.

Intuitively, the condition E (x) ≥ 1
2
can be interpreted as requiring that each bidder has to

expect a sufficiently high degree of competition from her opponent, should the SEA strategies

be triggered. Otherwise there is no point in colluding, since both objects can be obtained at a

low expected price.

This point can actually be made even in a simple, complete information framework. Consider

the case with two bidders, two objects, and commonly known values (v1, w1) = (h, h), and

(v2, w2) = (l, l), with 0 < l < h. There is an equilibrium in which the bidders use strategies that

are similar to the SEA: bidder 2 bids on both objects up to l, and bidder 1 wins both objects

paying l, and receiving a total surplus of 2 (h− l). However, for some values of l and h there is
another equilibrium, similar to the equilibrium characterized by Proposition 1, in which bidder

1 opens offering 0 on object v and nothing on w, bidder 2 opens offering nothing on v and 0 on

w, and in the next round the bidders remain silent. If any bidder deviates, each bidder bids on

each object up to her valuation. Clearly, bidder 2 has no profitable deviations from this strategy.

Bidder 1 will not deviate if h ≥ 2 (h− l), i.e. if the surplus obtained under collusion is higher
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than the surplus obtained triggering price competition. This is equivalent to l ≥ h
2
, a condition

very similar to the one described for the incomplete information case, which can be interpreted

in the same way: in order to accept collusion a bidder with high values has to expect enough

competition by the other bidder.

With complete information however the auction can also end with each object sold for the

minimum bid, because it is clear at the beginning of the auction that each object will go to the

bidder with the highest value. For all other bidders is then optimal to let the first bidder buy

the object for the minimum bid (as well as pushing up the price to their values). Thus, in the

example above, there is a third equilibrium in which bidder 2 lets bidder 1 buy both objects

for the minimum bid (zero). This type of ‘collusion’ can take place even in the one object case.

Instead, the equilibrium similar to the one of Proposition 1 can only exist in the presence of

multiple objects.

Remark 1. The equilibrium outcome of Proposition 1 is inefficient whenever the bidders

rank the objects differently, and one bidder has higher values for both objects.

Remark 2. In Proposition 1 the SEA strategy is used to support collusion. The SEA strategy

is the worst punishment that a bidder can impose to an opponent if we rule out the possibility

that a buyer bids above her value on any object. If we allow for bidding above the values, then

worse punishments are possible, and the conditions for the existence of collusion become weaker.

For example, the following is a possible modification of the strategies and the beliefs described

in Proposition 1: if at any point a bidder deviates from the equilibrium path, then the other

bidder believes that the deviator’s type is (1, 1) and raises the bids on both objects up to 1. In

this case, a bidder who deviates from the equilibrium strategy receives a payoff equal to 0; hence

collusion can be sustained without any condition on the probability distribution. However, this

equilibrium relies on the fact that the bidder who observes a deviation is willing to place bids

that are above her valuations, confident that she will lose with probability one.

Remark 3. The presence of ex ante asymmetries in the valuation of the two objects makes

it more difficult to sustain collusion, but not impossible. Consider the same framework as before,

but assume that for each i the value wi is distributed according to a c.d.f. FW with support on

[0, β], with β ∈ (0, 1). In particular, assume that FW (x) = FV
¡
x
β

¢
, so that E (wi) = βE (vi).

The type space is now a rectangle with base 1 and height β. We can divide the type space along

the diagonal (the line given by the equation w = βv) and check whether a collusive equilibrium

of the type described in Proposition 1 exists. In particular, we now want types such that w > βv

to open with {−∞, 0}, types w ≤ βv to open with {0,−∞} and the bidding to stop if initial bids
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are different. Under what conditions on the distribution can collusion be sustained? As in the

symmetric case, it is enough to check incentives for types on the diagonal, and it can again be

shown that it is enough to make sure that type (1,β), that is the type on the upper-right corner

of the type space, is willing to collude. Considering first the types in the lower triangle, i.e. with

βvi ≥ wi, the condition can be written as 1 ≥ 1−E (v) + β −E (w) , or , since E (w) = βE (v),

as

E (x) ≥ β

1+ β
,

which is weaker than E (x) ≥ 1
2
. It is intuitively clear however that it is harder to convince

the types who accept the less valuable object to go along with the collusive strategy instead of

triggering the SEA strategies. In order to make sure that all types (v, w) with w > βv are willing

to accept collusion we have to check that types arbitrarily close to (1, β) prefer having w for free

to competing for both objects. The condition is therefore β ≥ 1−E (v)+β−E (w) , which leads
to:

E (x) ≥ 1

1+ β
.

This condition is stronger than E (x) ≥ 1
2
. This confirms the intuition that asymmetries tend to

hinder collusion. As expected, the difficulty comes from the need to guarantee that the bidder

who is assigned the less valuable object is not willing to fight for both objects. The expected

payment that this bidder has to make if competition is triggered must now be higher than in the

case in which objects are ex-ante symmetric. Using the distance between β and 1 as a measure of

the asymmetry, it is also clear that the condition for collusion to be possible becomes increasingly

stronger as the asymmetry increases, another intuitive result. As β approaches 1, 1
1+β

tends to 1
2
;

hence small deviations from symmetry do not really jeopardize the possibility of collusion. As β

approaches zero (strong asymmetry) collusion becomes nearly impossible: no bidder is satisfied

with having only the less valuable object.

In the next subsection, we show that the set of perfect Bayesian equilibria of the simultaneous

ascending bid auction contains other, “more collusive” equilibria, i.e. equilibria in which each

type of both bidders end up with a higher (interim) expected surplus.

3.1.1 Getting More out of Collusion

The equilibrium strategy described in Proposition 1 prescribes that the bidders revert to the

SEA strategies when they open with the same bids, i.e. when it becomes common knowledge

that their preferred object is the same. It is natural to ask whether, even after learning that they

rank the objects in the same way, the bidders can do better than reverting to the SEA strategy,
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by trying again to coordinate themselves and buy one object each at relatively low prices. The

next Proposition establishes that this is indeed possible, if the values’ distribution satisfies the

following

Condition A Let F be a c.d.f. satisfying F (0) = 1−F (1) = 0, and let x, y be two independent
random variables, each with c.d.f. F . We say that F satisfies Condition A if, for each α ∈ [0, 1] ,
the following inequalities hold:

E [x | α ≤ x] + E [y | y ≤ 1− α] ≥ 1, (1)

E [x | x− y ≥ α] + E [y | x− y ≥ α] ≥ 1. (2)

Setting α = 0 yields E (x) ≥ 1
2
both in (1) and in (2), because by symmetry

E [x | x ≥ y] + E [x | y ≥ x] = 2
µ
1

2
E [x | x ≥ y] + 2E [x | y ≥ x]

¶
= 2E [x] .

Thus Condition A is stronger than the condition used to sustain the collusive equilibrium of

Proposition 1. Condition A is satisfied, for example, by the following family of densities8

f (x) = 1+ s

µ
x− 1

2

¶
, s ∈ [0, 2] .

Proposition 2 Under condition A the following strategy, together with some consistent belief

system, forms a symmetric perfect Bayesian equilibrium:

First round:

• All types (vi, wi) such that vi ≥ wi open with {b1i (1) , b2i (1)} = {0,−∞};
• types (vi, wi) such that vi < wi open with {b1i (1) , b2i (1)} = {−∞, 0}.

Subsequent rounds:

8With the linear density f (x) = 1+ s
¡
x− 1

2

¢
, we have

E [x | α ≤ x] +E [y | y ≤ 1− α]− 1 = 2s (1− α)2

3 (4− s2α2) ,

and

E [x + y| x− y ≥ α]− 1 = 2 (1− α)2 s

12− s2α2 − 2s2α .

Both expressions are positive for α ∈ [0, 1) and s ∈ [0, 2].
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• If the initial bids are either {{0,−∞} , {−∞, 0}} or {{−∞, 0} , {0,−∞}} , all types
remain silent;

• If the initial bids are {{0,−∞} , {0,−∞}} , then all types (vi, wi) such that vi−wi = ai
keep raising their bid on object v while refraining from bidding on w until either i) the

opponent stops, or ii) the bids reach the value ai. In case i), these types remain silent

for the next two rounds; and in case ii) they bid {−∞, 0} for two consecutive rounds,
thus moving the outstanding bid on w from −∞ to 0.

• If the initial bids are {{−∞, 0} , {−∞, 0}} , the strategy is symmetric, with the roles
of v and w switched.

Out—of—equilibrium paths:

• If at any round a bid not in accordance to the above described strategy is observed,
then each type reverts to the SEA strategy.

The behavior implied by the equilibrium of Proposition 2 can be described as follows. The

bidders open by signalling which object they prefer. If they prefer different objects, the auction

ends in the first round, as in the equilibrium of Proposition 1. If instead they prefer the same

object, say v, then they keep raising the price on v while abstaining from competing on w, with

bidder i prepared to bid up to the difference between her two values ai = vi − wi. Therefore,
if ai > a3−i, bidder i ends up buying object v at a price equal to the difference between her

opponent’s values, i.e. a3−i. Her opponent stops competing on v when the price reaches a3−i,

and buys w for the minimum bid.

In this equilibrium, the type set of each bidder [0, 1]2 is partitioned into lines with slope 1:

types on the same line – i.e. with the same difference between the two objects’ values – behave

identically, hence remain indistinguishable, until the end of the auction.

The role of Condition A is to guarantee that, given the residual pooling of low and high types

at any stage, each bidder has no incentive to trigger the SEA strategies, because she assigns a

sufficiently high conditional probability to her opponent having high values. To see this, suppose

that both bidders have opened signalling that they prefer v to w. Then the equilibrium strategy

prescribes that all types (v1, w1) such that v1−w1 = a bid on v until the price reaches a and then
yield, obtaining w for free and letting the opponent buy v at price a. When is this an optimal

strategy for all types?

It is easy to see that, just as in the case in which the bidders open with different bids,

the gain from triggering the SEA strategies is higher for types with higher values of v1 (and
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consequently w1). In particular, suppose that the price for v has reached a, and that bidder 1’s

type is (1, 1− a) , the highest on her iso-difference line. She knows that her opponents’ type lies
in the set

L (a) :=
©
(v2, w2) ∈ [0, 1]2 | v2 − w2 ≥ a

ª
.

Therefore she also knows that she will win both objects if the SEA strategies are triggered. Thus

she is prepared to buy only object w for free if the following inequality is satisfied:

1− a ≥ 1− E [v2 | L (a)] + (1− a)− E [w2 | L (a)]

or, equivalently, if:

E [w2 | L (a)] + E [v2 | L (a)] ≥ 1.

With the appropriate changes in notation, this is exactly inequality (2) in Condition A.

Inequality (1) guarantees, when the price for v has reached a, bidder 2 is willing to buy object

v at a = v − w, giving up the fight for w. Suppose that bidder 2 observes that bidder 1 stops
bidding on v at the price a0. Then it becomes common knowledge that bidder 1’s type lies on the

line v = w+ a0. Therefore, conditional on this information, bidder 2 must be better off paying a0

for v rather than triggering the SEA strategies. In this case it can be shown again that in order

to convince all types on the line v1 = w1+ a it is enough to convince the highest type, (1, 1− a).
Furthermore, it is enough to show that this type is willing to pay the price a, since at any price

a0 < a she is better off. After some manipulations, this is shown to be equivalent to inequality

(1) in Condition A.

It is worth noting that the bidders’ behavior is robust to perturbations in their beliefs about

their opponents’ values. That is, if the postulated types’ distribution F is such that conditions

(1) and (2) hold as strict inequalities, then each bidder has no incentive to deviate at any round,

even if her beliefs are only approximately described by F.

It is crucial however that no object is assigned before the end of the auction, so that each

object can still be bought after any number of rounds in which its outstanding bid has not moved.

Thus, in the equilibrium of Proposition 2, for many rounds bidding occurs only on one object,

while no activity takes place on the other. It is natural to conjecture then that this equilibrium

can be destroyed by introducing some “activity rules”, i.e. conditions specifying that if the

outstanding bid on an object does not increase by at least a certain amount every given number

of rounds, then the object be assigned to a bidder who has made the highest bid.9 To be effective,

these active rules would have to specify sufficiently large minimum bid increments, otherwise it

9See for example, Cramton [15].
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is easy to circumvent them by raising the bids only slightly, from time to time, on the non-active

object. Large minimum bid increments however also work against allocative efficiency: they may

prevent a buyer from getting an object when she has the highest value and her opponent’s value

is not much smaller.10

Moreover, even severe activity rules may not be sufficient to eliminate all collusive equilibria.

In particular, if “jump bidding”11 is allowed, equilibrium outcomes that are close to the one of

Proposition 2 can be obtained in fewer periods by compressing the competition on the object

that they both rank higher (say v), by bidding at each round more than the minimum increment

on v and remaining silent (or raising the bid just the minimum increment, if necessary to bypass

the activity rules) on w. For a complete analysis of the issue however, it is necessary to specify

exactly the activity rules introduced and look at the equilibrium set of the resulting game form,

a task beyond the scope of this paper.

The three equilibria that we have identified so far, i.e. the SEA equilibrium and the equi-

libria described in Propositions 1 and 2, can be ranked both in terms of expected social surplus

and bidders’ interim expected surplus. The SEA equilibrium outcome is socially efficient, but

generates the lowest bidders’ surplus. The expected social surplus decreases, while the expected

surplus of each bidder, conditional on any realization of her type, increases, as we move to the

equilibria of Propositions 1 and then 2. This is because the equilibrium of Proposition 1 entails

a lower degree of collusion: if the bidders happen to prefer the same object, they open with

the same bids, thus triggering the SEA strategies, which generate efficient allocations. In the

equilibrium of Proposition 2 the bidders refrain from using the SEA strategies even after learning

that the objects are ranked in the same way. Instead, they continue searching for a way of buying

one object each, while keeping the prices as low as possible.

3.1.2 Maximizing Bidders’ Surplus.

In this section we provide a partial characterization of the bidder’s interim-efficient frontier within

the set of all allocations in which each buyer is always awarded exactly one object, and buyers

with type (0, 0) receive zero surplus. We interpret the first feature as a ‘no regret condition’,

which may arise when the buyers are trying to implement a collusive scheme in multi-object

auction environments: only if a buyer obtains at least one object will she be willing to follow a

10For example, suppose that an object is value 0.5 by the first bidder and 0.6 by the second bidder. Suppose

also that the minimum increment is 0.15. If the first bidder is currently winning the object with a bid of 0.46,

then the second bidder gives up, causing an inefficient allocation.

11Jump bidding in one-object English auctions has been studied by Avery [7] and Daniel and Hirshleifer [17].
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collusive strategy, and refrain from triggering competition on both objects.

We show that both Pesendorfer’s ranking mechanism and the allocation implied by the equi-

librium of Proposition 2 can maximize a weighted sum of the expected surplus of all bidder’s

types among the allocations that satisfy incentive compatibility and the ‘no regret’ condition

requiring that each buyer always obtains one object.

We point out that the question we are tackling in this section is not whether the equilibrium

described in Proposition 2 is ‘the best’ for the bidders within the equilibrium set of the particular

simultaneous ascending bid auction that we analyze in this paper. Rather, in this section we

provide results that can be used to address the following question: If the bidders were free to

design the trading procedure so to implement an incentive compatible, and no regret allocation

of the two objects, what allocation would they choose?

It is convenient at this point to reparametrize the model so that buyer i’s type becomes the

pair (ai, wi) , where ai := vi − wi. The joint density ξ (ai, wi), obtained from the joint density of

(vi, wi) , has support

Θ = Θ+ ∪Θ−

where the sets

Θ+ :=
©
(a,w) ∈ [0, 1]2 | w ≤ 1− aª

and

Θ− := {(a, w) ∈ [−1, 0]× [0, 1] | − a ≤ w}
correspond to the triangles below and above the diagonal respectively in the (v,w) space.

A direct mechanism consists of three functions for each buyer i = 1, 2, specifying the prob-

ability qiV (a1, w1, a2, w2) of obtaining object v, the probability q
i
W (a1, w1, a2, w2) of obtaining

object w and her payment to the seller mi (a1, w1, a2, w2), for any type realization (a1, w1, a2, w2)

in Θ2.

The resulting expected surplus for buyer i conditional on having type (ai, wi) , and reporting

her true type, can be written as

U i (ai, wi) ≡ ai Q
i
V (ai, wi) + wi X

i (ai, wi) − M i (ai, wi)

where

QiV (ai, wi) ≡
Z Z

Θ

qiV (ai, wi, a3−i, w3−i) ξ (a3−i, w3−i) dw3−i da3−i,

X i (ai, wi) ≡
Z Z

Θ

£
qiV (ai, wi, a3−i, w3−i) + q

i
W (ai, wi, a3−i, w3−i)

¤
ξ (a3−i, w3−i) dw3−i da3−i,

M i (ai, wi) ≡
Z Z

Θ

mi (ai, wi, a3−i, w3−i) ξ (a3−i, w3−i) dw3−i da3−i.
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Restricting attention to allocations in which each buyer is always awarded exactly one object

yields the constraint

qiV (ai, wi, a3−i, w3−i) + q
i
W (ai, wi, a3−i, w3−i) = 1, all (ai, wi, a3−i, w3−i) ∈ Θ2,

hence

X i (ai, wi) = 1, all (ai, wi) ,

for each i, and the buyer’s expected surplus becomes

U i (ai, wi) = aiQ
i
V (ai, wi) + wi −M i (ai, wi) .

Finally, since the buyers are ex ante symmetric, we can focus without additional loss of generality

on symmetric mechanisms, hence drop all subscripts and superscripts “i” in the expression for

each buyer’s expected surplus.

An allocation is interim efficient within a given feasible set if it maximizes a weighted sum of

all types’ expected surplus; i.e. Z Z
Θ

ψ (a, w) U (a, w) da dw, (3)

for some function ψ : Θ → R+. In particular, if ψ (a, w) = ξ (a, w), the joint density of (a, w) ,

the objective function becomes the ex ante expected surplus.

Let ψA (a) ≡
R 1−a
0

ψ (a, w) dw, and ΨA (a) ≡
R a
0
ψA (t) dt, and without loss of generality

normalize the function ψ so that ΨA (1) = 1. Recall that g denotes the density of a.

Proposition 3 Consider the class of all incentive compatible allocation such that each buyer

always receives one object, and U (0, 0) = 0. The weighted sum in (3) is maximized within this

class by the equilibrium of Proposition 2 if the ratio

1−ΨA (a)

g (a)
is increasing for a ≥ 0,

and by the ranking mechanism ifR a
0
[1−ΨA (t)] dt

2
R 1
0
[1−ΨA (t)] dt

≥
Z a

0

g (t) dt.

Proof. See Appendix.

To illustrate, suppose that f is uniform, hence g (a) = 1 − a for a ≥ 0, and the weighting
function is such that ψA (a) = 1+s

¡
a− 1

2

¢
, with s ∈ [−2, 2]. Then the equilibrium of Proposition

2 is optimal for s > 0, and the ranking mechanism is optimal if s < 0.12

12Proposition 3 is similar to Theorem 1 in McAfee and McMillan [35]. Their result however applies to the

maximization of ex-ante expected bidders’ surplus, for the single object case.
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3.2 More than Two Bidders

The equilibria described in Propositions 1 and 2 may seem to rely heavily on the fact that the

number of bidders is equal to the number of objects. However, some degree of collusion is still

possible even when there are more bidders than objects. The basic idea is that the bidders can

follow the SEA strategy until only 2 players are left, and then adopt the strategies described in

Propositions 1 or 2 to divide the objects.

Proposition 4 If there are n > 2 bidders and the c.d.f. F (x) satisfies E [x |x ≥ z ] ≥ 1+z
2
for

each z ∈ [0, 1] , then the following strategy, together with some consistent belief system, forms a
(symmetric) perfect Bayesian equilibrium:

• Round 1: If vi ≥ wi, open with {0,−∞}, otherwise open with {−∞, 0};

• Round t: if more than two bidders were active at round t−1, all types use the SEA strategy.
If instead at round t− 1 only i and j 6= i were active, and bidder j opened with {−∞, 0} ,
then types (vi, wi) such that vi ≥ wi raise the bid on v. Types (vi, wi) such that vi ≤ wi use
a symmetric strategy if j opened with {0,−∞}.

• If the observed history of bids is not obtained according to the strategies previously described,
then all types revert to the SEA strategy.

A family of c.d.f.’s which satisfies the condition E [x |x ≥ z ] ≥ 1
2
(1+ z) for each z ∈ [0, 1] is

F (x) = xα, with α ≥ 1. In this case we have

E (x |x ≥ z ) = α

α+ 1

1− zα+1
1− zα

and the inequality can be written as:

α

α+ 1

1− zα+1
(1− zα) (1+ z) ≥

1

2
i.e.

α− 1

2α
≥ (z − zα)

1− zα+1 + z − zα .

It can be checked that the RHS is increasing in z, for z ∈ [0, 1] , and converging to the LHS as
z → 1.

The equilibrium of Proposition 4 works as follows. Each bidder opens signaling how she ranks

the two objects. After that, the prices of the two objects start increasing in parallel. If at some

point, say when the price of both objects is z, only two players are still active, and they rank the

objects differently, then they stop bidding and each buys the preferred object at z. Collusion in

this equilibrium becomes less effective as the number of bidders increases, for two reasons. First,
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the probability of collusion is lower. Second, even if collusion occurs, the price paid is in general

higher.

To have an idea of the impact of the number of players on the possibility of collusion, we

compute the probability that collusion occurs as a function of the number of bidders. With only

two bidders, collusion occurs when the rankings are different, that is:

Pr [collusion] = Pr [v1 < w1, v2 > w2] + Pr [v1 > w1, v2 < w2] =
1

2

With n bidders, collusion occurs when two bidders have the highest two valuations for each

objects and they rank the objects differently. For example, the probability that bidders 1 and 2

are able to collude is:

Pr [1,2 collude] = Pr [max {v3, . . . , vn} < min {v1, v2}] · Pr [max {w3, . . . , wn} < min {w1, w2}] · 1
2

=
1

2
Pr [max {v3, . . . , vn} < min {v1, v2}]2 ,

where we have exploited the assumptions of independence and identical distribution among

players and objects.

Since the density of min {v1, v2} is 2f (y) [1− F (y)] and the c.d.f. of max {v3, . . . , vn} is
F n−2 (y) , we have:

Pr (max {v3, . . . , vn} < min {v1, v2}) =

Z 1

0

F n−2 (y) 2f (y) [1− F (y)] dy

= 2

·Z 1

0

Fn−2 (y) f (y) dy −
Z 1

0

F n−1 (y) f (y) dy
¸

= 2

"
1

n− 1
F n−1 (y)− 1

n
Fn (y)

¯̄̄̄1
0

#
=

2

n (n− 1)
,

which implies

Pr [1,2 collude] =
2

n2 (n− 1)2
.

There are
¡
n
2

¢
possible combinations of 2 bidders, hence with n bidders we have:

Pr [collusion] =

µ
n

2

¶
2

n2 (n− 1)2
=

1

n (n− 1)
.

With n = 2, we obtain 1
2
, the same result as before. The probability of collusion decreases

rapidly, reaching 5% when n = 5. It is worth noting that collusion essentially disappears when

there are 5 players in the experiments carried on by Kwasnica and Sherstyuk [28].

The equilibrium of Proposition 2 can also be extended to the case of n > 2 bidders.
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Proposition 5 Suppose that there are n > 2 bidders and the c.d.f. F is such that for each pair

(a, z) such that z ∈ [0, 1] and a ∈ [0, 1− z] the two following conditions are satisfied:

E (x |z ≤ x ≤ 1− a) + E (y |z + a ≤ y ≤ 1) ≥ 1+ z (4)

E (x | x− y ≥ a, y ≥ z) + E (y | x− y ≥ a ≥ z, x ≥ a+ z) ≥ 1+ z. (5)

Then the following strategy is part of a symmetric perfect Bayesian equilibrium: Behave as in

Proposition 4 except at the following point:

• If at round t− 1 only you and another bidder were active then:

• If vi ≥ wi and you opened with {0,−∞} while the other bidder opened with {−∞, 0} then
increase the bid on v and not on w, then stop.

• If vi < wi and you opened with {−∞, 0} while the other bidder opened with {0,−∞} then
increase the bid on w and not on v, then stop.

• If both players opened with {0,−∞} and z was the last offer for both objects then increase
the bid on v up to z+ ai, while keeping the offer for w at z. If the other bidder offers more

than z + ai then get w for z. Otherwise, get v at the price at which competition ends, and

leave w to the other bidder.

Conditions (4) and (5) are also satisfied by the uniform distribution. This equilibrium works

as the one of Proposition 4: the bidders start signalling which object they prefer and then push

up both prices until only two players are left. The difference is that at that point the same

strategies as in Proposition 2 are used: if bidders have opened showing that they rank the two

objects in the same way, then they compete only on the top ranked object. The stopping point

for each player is z + ai, that is the last bid plus the difference between the two values.

As a final comment to this section, we observe that the equilibria described in Propositions 4

and 5 may be vulnerable to the imposition of anonymity rules. For example, the auction format

may specify that at each round only the two best bids are announced, and it is not revealed who

made the bid. This obviously reduces the signaling possibilities for the bidders. However, even

if anonymity rules are applied it may be possible to find ways to signal the relevant information.

Consider the following variant of the equilibrium established in Proposition 4. In the first stage

only bidder 1 makes an offer. In the second stage only bidder 2 makes an offer, and so on up

to stage n. In this way, in the first n rounds the ranking of the objects of each bidder is made

public. At stage n + 1 bidder 1 moves again, either increasing the bid on both objects or on a
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single object. In the first case the bidder signals that she is still available for collusion, while in

the second case the signal is that she is dropping out of the race for the other object and is no

longer available for collusions. At stage n + 2 bidder two moves and so on. In this equilibria

anonymity rules are completing ineffective in hindering collusion, and the same allocation as in

Proposition 4 can be implemented as a perfect Bayesian equilibrium. A similar reasoning applies

to the equilibrium of Proposition 5.

4 Collusive Equilibria with Large Complementarities

In this section we consider the case of complementarities, and we restrict the attention to the

case of two bidders.13 When complementarities are present, the value of the bundle is greater

than the sum of the ‘stand alone’ values. As mentioned in Section 2, we define ui (1) = vi,

ui (2) = wi and ui ({1, 2}) = vi+wi+ki, i = 1, 2, and we maintain the assumption that vi and wi

are drawn from a symmetric distribution with support [0, 1]2, marginal density f , and marginal

c.d.f. F . We also assume that for each player i = 1, 2, the value of the complementarity ki is

drawn from a distribution with continuous density fk and support over an interval
£
k, k

¤
. Each

random variable ki is independent of (vj , wj, kj) for each j 6= i.
Finding equilibria in the presence of complementarities is complicated by the fact that, at

any given round of the auction, a bidder’s willingness to pay for a given object depends on

the probability of winning the other object. This destroys the ‘belief-free’ nature of the SEA

equilibrium described in Proposition 0. We can show however that, if the complementarities are

commonly known to be ‘large’, in a sense to be made precise, then a “competitive” equilibrium

similar to the one found in Proposition 0 can be obtained. Define θi := vi + wi + ki, the total

value of the bundle for bidder i.

Proposition 6 With n players, 2 objects, and k > 1, there exists a perfect Bayesian equilibrium

in which the two objects are allocated to the bidder with the highest θi, at a price equal to the

second highest valuation (i.e. maxj 6=i θj).

The basic intuition here is as follows. Under the assumptions of Proposition 6, if the buyers

compete on both objects, then the auction cannot end with each bidder buying just one object.

The reason is that if a bidder has won one object then the value of the other object is at least

13Menicucci [33] has characterized revenue maximizing auctions in an extension of Armstrong’s model which

allows for complemetarities in the buyers’ utility functions. He finds that in general optimal auctions are not

efficient.
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k > 1. This is more than the stand-alone value of any bidder. Therefore, all bidders behave as

if they were bidding for a single object, the bundle {v,w}.
This of course is not true if there are moderate complementarities, i.e. ki ∈ (0, 1) . In this case

it is difficult to characterize even the “competitive” equilibria, similar to the ones of Propositions

0 and 6, which could be used as threat to sustain more collusive outcomes.14

The equilibrium of Proposition 6 can be used as a threat to sustain collusive equilibria when

large complementarities are present. The next Proposition establishes the existence of an equi-

librium which yields a higher expected surplus for both bidders. Define:

Θv :=
©
(v, w, k) ∈ [0, 1]2 × £k, k¤ ¯̄ v > wª

and

Θw :=
©
(v, w, k) ∈ [0, 1]2 × £k, k¤ ¯̄ v ≤ wª .

Proposition 7 There exist two sets Av ⊂ Θv and Aw ⊂ Θw such that the following strategy,

together with some belief system, forms a (symmetric) PBE:

• Types (vi, wi, k) ∈
©
[0, 1]2 × £k, k¤ª \ {Av ∪Aw} open with {0, 0} and compete for both

objects;

• Types (vi, wi) ∈ Aw open with {−∞, 0}

• Types (vi, wi) ∈ Av open with {0,−∞} .

• If the initial bids are {{0,−∞} , {−∞, 0}} or {{−∞, 0} , {0,−∞}} then bidders do not
place any further bid. For all other opening bids having positive probability in accordance

to the strategy described above, the bidders play the equilibrium described in Proposition 6.

• If, at any stage, a bidder makes a bid which cannot be observed if the strategy above described
is followed, then the bidders play the equilibrium described in Proposition 6.

The sets Av and Aw are symmetric in the sense that (v, w, k) ∈ Av if and only if (w, v, k) ∈
Aw.

14To the best of our knowledge, the only results available so far in the moderate complemetatiries case are due

to Sherstyuk (2000), who has shown that, for any common complemetarity term k ≥ 0, there exists a competitive
equilibrium, i.e. an allocation of the objects and a price pair (pv, pw) such that demand equals supply.
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The equilibrium of Proposition 7 is a natural generalization of the equilibrium described in

Proposition 1. The set of types of each bidder is partitioned into three subsets. The first subset

consists of those types who cannot be induced to collude. These are the types who have very

low stand-alone values for each object; hence they are only interested in having the two objects

together, and are not interested in having a single object, even at a very low price. To illustrate,

suppose that bidder 1’s type is (0, 0, k1), and recall that θi := vi+wi+ki, for i = 1, 2. If bidder 1

accepts to buy only one object at price zero, her utility is zero. On the other hand, the expected

surplus from competing for both objects is (k1 − E [θ2 | θ2 ≤ k1 ]) Pr (θ2 ≤ k1), which is positive,
although possibly small. It is clear that types like (ε1, ε2, k), for ε1 and ε2 sufficiently small, will

also be unwilling to collude.

However, types with a stand-alone value for v sufficiently high are in fact willing to collude.

In particular, assume that bidder 1 has type (v1, w1, k1) ∈ Θv, i.e. with v1 > w1, and suppose

that at the first round bidder 1 learns that her opponent’s type lies in some subset Aw ⊂ Θw.

Then collusion is better than competition if:

v1 ≥
Z θ1

k

(θ1 − θ2) dH (θ2 |(v2, w2, k2) ∈ Aw ) (6)

where H denotes the conditional c.d.f. of θ2. In equilibrium, the set Av will be exactly the set

of those types for whom the inequality in (6) is satisfied. A similar inequality will define Aw.

In equilibrium the two sets Av and Aw have to be defined simultaneously. It is intuitive from

inequality (6) that the two sets will be symmetric.

The shape of the set Av is roughly as follows. Suppose that bidder 1 has v1 ≥ w1. Let us
summarize the type of bidder 1 by the pair (v1, θ1), with v1 ∈ [0, 1] and θ1 ∈

£
k, 2 + k

¤
. It is clear

that if the pair (v∗1, θ
∗
1) satisfies inequality (6) then all pairs (v

∗
1, θ1) with θ1 < θ∗1 will also satisfy

the inequality. The inequality is also satisfied by the types characterized by the pair (0, k). This

type has no use for a single object, but is also sure to lose the competition for the two objects.

Thus, (6) holds with equality. It is also clear that all types characterized by pairs like (v1, v1 + k)

are willing to collude. These are types for whom w1 = 0 and have the lowest possible value for

the synergy. If they compete for both objects they pay at least k (the lowest possible value for

θ2), and receive less utility than v1, which is what they would get accepting collusion. In general,

for a given v1 there will be a corresponding value θ1 (v1) such that types with θ1 < θ1 (v1) are

willing to accept collusion and types with θ1 > θ1 (v1) prefer to compete for both objects rather

than to accept collusion. The shape of the set Av is thus similar to the one showed in figure 1.

INSERT FIGURE 1 HERE
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One important question that Proposition 7 does not answer is how likely is the occurrence of

collusion. In the proposed equilibrium, collusion occurs whenever the types belong to the sets

Av and Aw. Figure 1 suggest the shape of these sets, but it is hard to say how large is the area

that they represent. In fact, we are only able to prove that the sets Av and Aw are non-empty,

but not they their measure is different from zero15.

It is clear however that, at least in some cases, the sets Av and Aw are significant ones, so that

collusion is actually a relevant phenomenon even with large complementarities. One particularly

simple and striking case is the one in which the extent of the complementarity is known and

identical across bidders, i.e. the distribution of ki is degenerate on some value k
∗ ≥ 1. In this

case, provided that the condition E (x) ≥ 1
2
holds, the strategies proposed in Proposition 1 are

still equilibrium strategies. In other words, the set Av and Aw described in Proposition 7 can

be taken to be Θv and Θw respectively, when the complementarities ki are known and identical

across bidders. The intuition is straightforward. If ki is the same for each bidder, then it will be

entirely competed away whenever the equilibrium of Proposition 6 is triggered. This makes any

attempt to get both objects unattractive, hence even types with very low ‘stand-alone’ values

can be induced to collude.

We conclude this section by reconsidering the conjecture according to which collusion de-

creases when complementarities are present. We have shown that the presence of complemen-

tarities does not destroy collusion. In fact, we have seen that large complementarities which are

known and common among the players do not reduce the possibility of collusion at all. What

really matters in hindering collusion is the variability of the extent of complementarities, rather

than their absolute values.

5 Conclusions

When dynamic auctions are used to sell multiple objects, buyers can collude in order to reduce

their payments to the seller. A general feature of collusive equilibria in open ascending bid

auctions is that each bidder signals to the others which object has the highest value to her. After

the signaling rounds, the bidders implicitly promise each other not to compete on the objects

that they value less, provided they are not challenged on the objects they value more. We have

provided conditions under which this behavior can be made a perfect Bayesian equilibrium. We

have also shown that some degree of collusion may still be present when the ratio of bidders to

objects is high, and when the bidders’ utility functions exhibit high complementarities.

15We thank the associate editor for pointing this out.
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As a more general point, the set of equilibria in auctions with multiple objects appears to be

much richer than in the single object case. In this paper, we have shown some of these equilibria.

It is worth pointing out that in all equilibria in which collusion-via-signalling occurs it must be

the case that not too much information is revealed by the equilibrium bidding strategy. To see

this, suppose, for example, that the bidding strategy were to reveal that one bidder has very

low values for both objects. Then the other bidder will decide to compete for both objects, i.e.

to revert to the SEA strategies, since her expected payments on both objects will be low. A

bidder with high values will accept a collusive outcome only if the information revealed is such

that her expected payment in open competition is sufficiently high. But this must imply that

there is always some pooling among low and high values. This in turn implies that in general

collusion-via-signalling not only reduces the revenue to the seller, but also reduces the efficiency

of the final allocation.
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Appendix

Propositions 1 and 2 are special cases, with z = 0, of Propositions 4 and 5 respectively. The

proof is given below, after the proof of Proposition 3.

Proof of Proposition 3.

Since each buyer is ex-ante symmetric, we can restrict attention to symmetric mechanisms,

looking only at the ‘lower triangle’:

L :=
©
(v,w) ∈ [0, 1]2 | w ≤ vª .

In the (a, w) space this corresponds to the set Θ+.

The following result in mechanism design theory, which we record here as Lemma 0, provides

a useful characterization of the (IC) constraints.

Lemma 0 The functions QV , X and M satisfy (IC) if and only if:

1. the surplus functions U (a, w) is convex, hence differentiable almost everywhere, and con-

tinuous;

2. ∂U(a,w)
∂a

= QV (a, w) and ∂U(a,w)
∂w

= X (a,w), almost everywhere.

Proof. See Armstrong [2], and Rochet and Choné [40].

The key simplifying step follows from the restriction that each buyer always gets exactly one

object.

Lemma 1 In any mechanism in which each buyer always gets exactly one object the interim

assignment function QV (a, w) must satisfy:

QV (a, w) = QV (a, 0)

for almost all (a,w).

Proof. By Lemma 0, the difference between the surplus of type (a, w) with a > 0 and the

surplus of type (0, 0) can be written in two alternative ways:

• the integral along the “backward L” shape path: first from (0, 0) to (a, 0) , and then from

(a, 0) to (a, w);
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• the integral along the path “inverse L” shape: first from (0, 0) to (0, w) , and then from

(0, w) to (a,w)16.

Integrating along the first path yields

U (a,w)− U (0, 0) =

Z a

0

QV (α, 0) dα+

Z w

0

X (a, y) dy

=

Z a

0

QV (α, 0) dα+ w,

while using the second path we obtain

U (a, w)− U (0, 0) =

Z w

0

X (0, y) dy +

Z a

0

QV (α, w) dα

= w +

Z a

0

QV (α, w) dα.

From these equalities we haveZ a

0

QV (α, 0) dα =

Z a

0

QV (α, w) dα,

which in turn immediately implies the result, since the point (a,w) was arbitrary.

Writing the surplus function as

U (a,w) =

Z a

0

Q (α) dα + w + U (0, 0) , all (a, w) ,

where Q (α) ≡ QV (α, 0), and substituting into the objective function yieldsZ 1

0

Z 1−a

0

ψ (a,w) U (a, w) dw da =

Z 1

0

Z 1−a

0

ψ (a,w)

µZ a

0

Q (α) dα

¶
dw da

+

Z 1

0

Z 1−a

0

ψ (a, w) w dw da

+U (0, 0)

µZ 1

0

Z 1−a

0

ψ (a,w) dw da

¶
.

The first term can be written as:Z 1

0

Z 1−a

0

ψ (a,w)

µZ a

0

Q (α) dα

¶
dw da =

Z 1

0

ψA (a)

µZ a

0

Q (α) dα

¶
da

=

Z 1

0

[1−ΨA (a)] Q (a) da.

16In the (v,w) space, the first path goes horizontally from (0, 0) to (a, 0) , and then from (a, 0) to (v,w) , along

a 450 line. The second path goes from (0, 0) to (w,w) along the 450 line, and then horizontally from (w,w) to

(v,w).
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(recall that ψA (a) ≡
R 1−a
0

ψ (a, w) dw and ΨA (a) ≡
R a
0
ψA (α) dα, and the weighting function is

normalized so that ΨA (1) =
R 1
0
ψA (α) dα = 1).

Setting U (0, 0) = 0 and ignoring the term
R 1
0

R 1−a
0

ψ (a, w) w dw da, which does not depend

on the control variable, we can focus our attention on the following “relaxed” program:

Maximize

Z 1

0

[1−ΨA (a)] Q (a) da

subject to

Q (a) is nondecreasing, (7)

and Z 1

a

Q (α) g (α) dα ≤
Z 1

a

G (α) g (α) dα, each a ∈ [0, 1] . (8)

The constraint in (7) is implied by Lemma 0, i.e. by the convexity of any incentive compatible

surplus function. The constraints in (8) come from the fact that there is only one unit of object

v, hence the probability of selling the object to a buyer whose values’ difference is above any

given threshold a cannot exceed the probability that at least one buyer has difference above a.17

The following two steps will conclude the proof. First, we show that the assignment function

Q∗∗ (a) ≡ 3
4
induced by the ranking mechanism solves the above program for some positive

weighting function. Then we establish that the assignment function Q∗ (a) ≡ G (a) induced by
the equilibrium of Proposition 2 is optimal, if the ratio 1−Ψ(a)

g(a)
is increasing.

Optimality of the ranking mechanism. For a = 0, the inequality in (8) isZ 1

0

Q (a) g (a) da ≤ 3
8
,

since, by symmetry, G (0) = 1
2
and

R 1
0
G (α) g (α) dα =

£
1
2
(G (a))2

¤1
0
= 1

2
− 1

2
[G (0)]2 = 3

8
. For

any differentiable function µ : [0, 1]→ R+, this inequality and the constraints in (7) imply

−
Z 1

0

µ (a) dQ (a) +

Z 1

0

Q (a) g (a) da ≤ 3
8

or, equivalently

µ (1)Q (1)− µ (0)Q (0) +
Z 1

0

[µ0 (a) + g (a)] Q (a) da ≤ 3
8
.

17See Border [11].

29



In particular, by the condition stated in Proposition 3, we can choose:

µ (a) =

R a
0
[1−ΨA (t)] dt

2
R 1
0
[1−ΨA (a)] da

−
Z a

0

g (t) dt, a ∈ [0, 1] , (9)

and the previous inequality becomesZ 1

0

[1−ΨA (a)] Q (a) da ≤
Z 1

0

3

4
[1−ΨA (a)] da. (10)

The function Q∗∗ (a) = 3
4
is optimal because it maximizes the objective function among all

functions which satisfy the weaker condition (10).

Optimality of the equilibrium in Proposition 2. Multiplying each inequality in (8) by a

positive weight φ (a) and integrating over [0, 1] yieldsZ 1

0

φ (a)

µZ 1

a

Q (α) g (α) dα

¶
da ≤

Z 1

0

φ (a)

µZ 1

a

G (α) g (α) dα

¶
da,

or, exchanging the order of integration,Z 1

0

Φ (a) Q (a) g (a) da ≤
Z 1

0

Φ (a) G (a) g (a) da,

where Φ (a) :=
R a
0
φ (α) dα. Since 1−ΨA(a)

g(a)
is increasing, we can choose the weighting function φ

to be both positive and such that Φ (a) = 1−ΨA(a)
g(a)

; hence the previous inequality becomesZ 1

0

[1−ΨA (a)] Q (a) da ≤
Z 1

0

[1−ΨA (a)] G (a) da. (11)

It is now immediate to see that Q (a) ≡ G (a) satisfies the feasibility constraints in (8), and

maximizes the objective function among all functions which satisfy the weaker condition in (11).

Hence it is an optimal solution in the original program.

Proof of Proposition 4. Given the symmetry of the problem, it is enough to check the

optimality of the strategy for types having v ≥ w. We will do this proceeding backward.
Consider the first round, t, at which only two bidders remain, say 1 and 2. Suppose that

bidder 1 has v1 ≥ w1 and has opened at round zero with {0,−∞} , while bidder 2 has opened
with {−∞, 0}. Suppose also that the outstanding pair of bids at round t − 1 is (z, z) . Let

FV (v2 |Tz) and FW (w2 |Tz) denote the c.d.f.. of v2 and w2 respectively, both conditional on the
set Tz :=

©
(v2, w2) ∈ [0, 1]2 | z ≤ v2 ≤ w2

ª
.
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If bidder 1 changes her bids, then the SEA strategies are triggered, and her expected utility

is:

S (v1, w1 |Tz) =
Z v1

z

(v1 − v2) dFV (v2 |Tz) +
Z w1

z

(w1 − w2) dFW (w2 |Tz) .

To check that the deviation is unprofitable, we have to verify that

v1 − z ≥ S (v1, w1 |Tz)

for each pair (v1, w1) such that v1 ≥ w1. Since S (v1, · |Tz) is increasing, it suffices to check the
inequality for the types on the diagonal, i.e. types such that v1 = w1. Defining:

γz (v1) ≡ S (v1, v1 |Tz) , v1 ∈ [z, 1] ,

the inequalities to be checked are:

v1 − z ≥ γz (v1) , for each v1 ∈ [z, 1] .

We start by noting that this holds at v1 = z, since both sides are zero; and then observe that

the derivative of the LHS with respect to v1 is 1, while the RHS derivative

γ0z (v1) =
Z v1

z

dFV (v2 |Tz) +
Z v1

z

dFW (w2 |Tz) ,

is zero at v1 = z, and both positive and increasing for each v1 ∈ (z, 1] . Thus the function γz (v1)

is increasing and convex, hence we are done if we can prove that

1− z ≥ γz (1) .

This can be rewritten as:

1− z ≥ E [1− v2 |Tz] + E [1− w2 |Tz] = 2− E [v2 |Tz]− E [w2 |Tz] ,

or, using the symmetry of the joint distribution of v2 and w2, as

E [v2 |Tz] + E [v2 |Lz] ≥ 1+ z, (12)

where Lz :=
©
(v2, w2) ∈ [0, 1]2 | z ≤ w2 ≤ v2

ª
. By symmetry, we have

1

2
= Pr (Tz | z ≤ v2, z ≤ w2) = Pr (Lz | z ≤ v2, z ≤ w2) ,

hence

E [v2 |Tz] + E [v2 |Lz] = 2E [v2 | z ≤ v2, z ≤ w2] ;
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and, since v2 and w2 are independent, we have E [v2 | z ≤ v2, z ≤ w2] = E [v2 | z ≤ v2], so that
the inequality in (12) can be written as:

E (v2 |z ≤ v2, z ≤ w2 ) ≥ 1

2
(1+ z) .

This is the condition stated in the Proposition, and we can therefore conclude that the bidders

will collude when the opportunity arises.

The optimality of the strategies when more than two bidders are left follows from the fact

that any other strategy simply destroys the opportunity of collusion should it arise, and does

not improve the outcome otherwise.

The only thing which is left to show is that in the first round each bidder is willing to signal

truthfully the triangle in which her type is. This is going to matter for bidder i only if she is

still bidding after n − 2 other bidders have dropped out and the only other bidder who is still
bidding is competing for both objects. We show that for any given z at which this may happen

it is better to have announced the correct triangle at date 0.

If bidder 1 announces the correct triangle, then the expected payoff conditional on being one

of the two last bidders, and on z being the last bid for both bidders, is:

1

2
(v1 − z) + 1

2
S (v1, w1 |Tz) (13)

This is because, given the symmetry in the distributions of v and w for each i, with probability
1
2
the opponent is of type w2 ≥ v2, so that her initial bid is {−∞, 0}, and with probability 1

2
the

opponent is of type v2 ≥ w2. In the first case the auction ends immediately, yielding a payoff
v1 − z, while in the second case bidders go on playing the SEA equilibrium.
If the bidder opens with {−∞, 0} then the expected payoff conditional on being one of the

two last players and both having valuation at least z for both objects is:

1

2
(w1 − z) + 1

2
S (v1, w1 |Lz) (14)

(notice that now S is conditional to v2 ≥ w2 rather than to v2 ≤ w2). The expression in (14)
does not exceed the one in (13) if

v1 + S (v1, w1 |Tz) ≥ w1 + S (v1, w1 |Lz) ,

which holds with equality if v1 = w1. Moreover, the derivatives with respect to v1 are

1+ FV (v1 |Tz)

for the LHS, and

FV (v1 |Lz)
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for the RHS. Hence the LHS grows faster than the RHS as v1 is increased, thus implying that

the inequality holds for each v1 > w1.

Proof of Proposition 5. Again, because of symmetry it suffices to check the optimality of

the strategy along the equilibrium path for a bidder whose type is in the ‘lower triangle.’ We

proceed backward.

Suppose first that only two players are left, say 1 and 2. If 1 opened with {0,−∞} and 2
opened with {−∞, 0} , then the analysis of Proposition 4 applies, since condition (4) implies
E (x |z ≤ x ≤ 1) ≥ (1+ z) /2 for a = 0, hence deviating to the SEA strategy is not profitable.
If instead both bidders have opened with {0,−∞} , then we have to show that bidder 1 with

type v1 − w1 = a1 is willing to raise the bid on the first object only if she is not assigned object
v and the outstanding bids are (p, z) with p < a1 + z. There are two possible deviations from

the equilibrium path:

1) Stop bidding on v, and raise the bid on w by a small amount if necessary, i.e. if 1 is not

currently assigned w. This deviation yields at most w1 − z. Define

Lz (p− z) =
©
(v2, w2) ∈ [z, 1]2 | p− z ≤ v2 − w2, z ≤ w2

ª
.

The set Lz (p) is the support of bidder 1’s beliefs about 2’s values conditional on the last round’s

bids being (p, z) for each bidder. The expected utility from following the equilibrium strategy is:

U∗ (v1, w1|Lz (p− z)) = Pr {a2 ≤ a1 |Lz (p− z)} (v1 −E [a2 | a2 ≤ a1, Lz (p− z)])
+Pr {a2 ≥ a1 |Lz (p− z)} (w1 − z) ,

which can be written as:

U∗ (v1, w1|Lz (p− z)) = w1 − z + Pr {a2 ≤ a1 |Lz (p− z)} (a1 − E [a2 | a2 ≤ a1, Lz (p− z)] + z) .

It is clear that the last expression is higher than w1 − z.
2) Raise the bid on w, without stopping the bidding on v. In this case, the SEA equilibrium is

triggered and we have to verify that:

U∗ (v1, w1|Lz (p− z)) ≥ S (v1, w1|Lz (p− z))

It is enough to check the inequality at p = a1 + z. Triggering the SEA equilibrium before p

reaches that level can only do worse.

Using v1 = w1 + a1, the relevant inequality to be checked is therefore:

w1 − z ≥
Z w1+a1

a1+z

(w1 + a1 − v2) dFV (v2|Lz (a1 + z)) +
Z w1

z

(w1 − w2) dFW (w2|Lz (a1 + z))
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The inequality is satisfied at w1 = z and the RHS is increasing and convex. Applying the same

reasoning as in Proposition 4 we conclude that it is enough to check the inequality:

1− a1 − z ≥
Z 1

a1+z

(1− v2) dFV (v2|Lz (a1 + z)) +
Z 1−a1

z

(1− a1 − w2) dFW (w2|Lz (a1 + z))

where use is made of the fact that the highest possible value for w1 when v1−w1 ≥ a1 is 1− a1.
The inequality is equivalent to:

E [v2| v2 ≥ a1 + w2, 1− a1 ≥ w2 ≥ z] + E [w2| v2 − a1 ≥ w2 ≥ z, v2 ≥ a1 + z] ≥ 1+ z

or:

E [x | x ≥ a+ y, y ≥ z] + E [y | x− y ≥ a ≥ z, x ≥ a+ z] ≥ 1+ z

which is inequality 5 stated in the Proposition.

Finally, we check that a bidder wants to stop after the other bidder has stopped the bidding,

rather than competing for both objects. Suppose that the bidder has v1 −w1 = a and the other
bidder stopped at z + a0 with a0 ≤ a. In this case define:

Ωa0,z =
©
(v2, w2) ∈ [z, 1]2 | v2 − w2 = a0

ª
.

Then the inequality becomes:

v1 − a0 − z ≥
Z v1

a0+z
(v1 − v2) dFV

¡
v2|Ωa0,z

¢
+

Z w1

z

(w1 − w2) dFW
¡
w2|Ωa0,z

¢
Using w1 = v1 − a we can rewrite the inequality as:

v1 − a0 − z ≥
Z v1

a0+z
(v1 − v2) dFV

¡
v2|Ωa0,z

¢
+

Z v1−a

z

(v1 − a− w2) dFW
¡
w2|Ωa0,z

¢
Again, the inequality is satisfied at v1 = z + a, the RHS is increasing and convex and we have

only to check:

1− a0 − z ≥
Z 1

a0+z
(1− v2) dFV

¡
v2|Ωa0,z

¢
+

Z 1−a

z

(v1 − a− w2) dFW
¡
w2|Ωa0,z

¢
In order to compute the integrals observe:

Pr (v2 ≤ x |v2 = w2 + a0, v2 ≥ z,w2 ≥ z ) = Pr (w2 ≤ x− a0 |1− a0 ≥ w2 ≥ z )

=
Pr (x− a0 ≥ w2 ≥ z)
Pr (1− a0 ≥ w2 ≥ z) =

(
F (x−a0)−F (z)
F (1−a0)−F (z) if x ≥ z + a0

0 otherwise
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Therefore:

f (v2 |v2 = w2 + a0, v2 ≥ z, w2 ≥ z ) =
(

f(v2−a0)
F (1−a0)−F (z) if v2 ≥ z + a0

0 otherwise

Similar computations lead to:

f (w2 |v2 = w2 + a0, v2 ≥ z, w2 ≥ z ) =
(

f(w2+a0)
1−F (z+a0) if 1− a0 ≥ w2 ≥ z

0 otherwise

We therefore have: Z 1

a0+z
(1− v2) dFV

¡
v2|Ωa0,z

¢
= 1−

R 1
a0+z v2f (v2 − a0) dv2
F (1− a0)− F (z)

and R 1
a0+z v2f (v2 − a0) dv2
F (1− a0)− F (z) =

R 1−a0
z

(y + a0) f (y) dy
F (1− a0)− F (z) = E (x |z ≤ x ≤ 1− a0 ) + a0

Similarly, we have:Z 1−a

z

(1− a− w2) dFW
¡
w2|Ωa0,z

¢
=

R 1−a
z

(1− a− w2) f (w2 + a0) dw2
1− F (z + a0)

= (1− a) F (1− (a− a
0))− F (a0 + z)

1− F (a0 + z) −
R 1−a
z

w2f (w2 + a
0) dw2

1− F (z + a0)
and R 1−a

z
w2f (w2 + a

0) dw2
1− F (z + a0) =

R 1−(a−a0)
z+a0 (y − a0) f (y) dy

1− F (z + a0)R 1−(a−a0)
z+a0 (y − a0) f (y) dy

1− F (z + a0) =

R 1
z+a0 yf (y) dy

1− F (z + a) − a

Combining these results we obtain the following condition:

1− a0 − z ≥ 1−E (x |z ≤ x ≤ 1− a0 )− a0

+(1− a) F (1− (a− a
0))− F (a0 + z)

1− F (a0 + z) −
R 1−a
z

w2f (w2 + a
0) dw2

1− F (z + a0)
The inequality has to hold for each a ≥ a0. Noticing that the RHS is decreasing in a, the relevant
condition is obtained setting a = a0. This yields:

E [x | x− y ≥ a, y ≥ z] + E [y | x− y ≥ a ≥ z, x ≥ a+ z] ≥ 1+ z

which is inequality 4 stated in the Proposition.
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The argument for optimality when more than three bidders are active is identical to the one

of Proposition 4: there is no point in triggering the SEA strategies at the opening, since the

decision can always be taken later.

The only thing that remain to be proved is that it is convenient to open in the ‘true’ triangle.

Possible deviations in this case are opening in the ‘wrong’ triangle or opening bidding on both

objects, thus triggering the SEA equilibrium. The initial bid is only relevant if the bidder ends

up among the two last bidders. We will show that for every z, and conditional on being one

of the two last bidders, opening in the ‘true’ triangle gives a higher expected utility than any

deviation.

The expected utility conditional on being one of the two remaining bidders at z for a type

(v1, w1) such that v1 − w1 = a1 ≥ 0 is:
U{0,−∞} =

1

2
v1 +

1

2
(w1 + Pr (a2 ≤ a1) (a1 − E (a2 |a2 ≤ a1 )))− z (15)

where a2 = v2 − w2 and the probability distribution is conditional to v2 ≥ z, w2 ≥ z. This is
because with probability 1

2
the other bidder has opened in the upper triangle, so that the auction

ends and 1 obtains v1 at price z, while with probability
1
2
the other bidder opens in the lower

triangle. In the latter case the bidder pays at least z and obtains at least w1 It additionally

obtains a1 minus the price when the auction is won. Triggering the SEA equilibrium with an

opening other than {−∞, 0} or {0,−∞} is obviously dominated, since the SEA equilibrium can
be triggered later at no cost. We have therefore only to check that it is not convenient to open

in the wrong triangle.

Suppose 1 opens bidding {−∞, 0}, i.e. signaling the ‘wrong’ triangle. If the other bidder also
opens with {−∞, 0} then the best strategy is to pretend to have a1 = 0 and get v for z. This

is clearly better than getting w for a price greater than z. The other possibility is to trigger the

SEA strategies: To show that this cannot be optimal we have to check the inequality:

v1 − z ≥ S (v1, w1|Lz)
Under the assumptions stated in the Proposition the inequality is satisfied (the analysis is the

same as before).

If the other bidder opens with {0,−∞} then any attempt to compete on good v triggers the
SEA equilibrium. The payoff in this case is therefore whatever is best between obtaining w1 at z

and triggering the SEA equilibrium, that is max {w1 − z, S (v1, w1|Lz)}. We therefore conclude
that the expected payoff, conditional on being one of the two players left at z, when the opening

is in the wrong triangle is:

U{−∞,0} =
1

2
(v1 − z) + 1

2
max {w1 − z, S (v1, w1|Lz)} (16)
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If w1 − z ≥ S (v1, w1|Lz) then this is clearly less that the utility obtained in equilibrium. If
w1 − z < S (v1, w1|Lz) the condition that the deviation be not profitable, that is (15) is greater
than (16), can be written as:

w1 + Pr (a2 ≤ a1) (a1 − E (a2 |a2 ≤ a1 ))− z ≥ S (v1, w1|Lz)

which is satisfied under the conditions stated in the Proposition because it is equivalent to the

condition that it is optimal to follow the equilibrium strategy after opening in the ‘true’ triangle.

Proof of Proposition 6. Recall that θi := vi + wi + ki, i = 1, 2, and let the bids of each

bidder be represented as a pair, with the first element referring to object v and the second to

object w. Also, let bv and bw denote the highest bids on v and w respectively, and b
i
v and b

i
w the

highest bids by bidder i on v and w respectively. The following is a symmetric perfect Bayesian

equilibrium yielding the desired outcome:

• Open with the minimum bid on each object. In the following rounds, if you are bidder i,

behave as follows:

• If all bidders but you have been silent on v, and at least two bidders have increased the
bid on w in the previous round, then stay silent on v, and increase the bid on w by the

minimum amount if bw < wi + ki; otherwise stay silent;

• If all bidders but you have been silent on w, and at least two bidders have increased the
bid on v in the previous round, then stay silent on w, and increase the bid on v by the

minimum amount if bv < vi + ki;otherwise stay silent;

• In all other cases raise the bid on both v and w by the minimum amount if bv + bw <

vi+wi+ ki and there is a positive probability that vi+wi+ ki > vj +wj + kj for all j 6= i.
Stay silent otherwise.

Beliefs are as follows.

Case 1. The outstanding bid is bv = bw. The probability distribution on (vj, wj, kj) is defined

as follows:

• If (bjv, bjw) = (bv, bw) (that is, bidder j is among the winners of both objects) then it is the
conditional probability on (vj , wj , kj) subject to vj + wj + kj ≥ 2bv.

• If (bjv, bjw) 6= (bv, bw) then:
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— If bjv = b
j
w and 2b

j
v > k then it is the conditional probability on (vj , wj , kj) subject to

vj + wj + kj < 2b
j
v.

— In all other cases, it is an arbitrary probability distribution with support on [0,min {bjv, 1}]×
[0,min {bjw, 1}]× {k}.

Case 2. The outstanding bid is bv 6= bw. This can only occur if all players have taken an out
of equilibrium action. When this happens, we specify that beliefs about any bidder who made

an offer (bv, bw) with bv 6= bw have support on [0,min {bjv, 1}] × [0,min {bjw, 1}] × {k}, while the
probability distribution on bidders such that bjv = b

j
w is the conditional probability on (vj, wj, kj)

subject to vj + wj + kj < 2b
j
v.

The outcome of this strategy profile is that each bidder i increases the bids by the minimum

amount on both objects up to the point at which the sum of the bids reaches θi, and stops

bidding afterwards. Therefore, the bidder with the highest θi wins the objects paying a price

equal to maxj 6=i θj.

We now check that there are no profitable deviations. Suppose first that in the previous

round all bidders but i have been silent on v but some has increased the bid on w. This can

only happen out of equilibrium. Any bidders j who stayed on the equilibrium path must have

θj < bv + bw, so the equilibrium strategy prescribes that she will not bid further. Any bidder j0

who was out of the equilibrium is not expected to increase the bid any further, since (given the

specified beliefs) with probability 1 their type θj0 is not the highest. Therefore, bidder i expects

no further bids on v. Once v is taken for granted, it is rational to bid on w up to wi + ki. A

symmetric reasoning applies when i is the sole active bidder on w and not on v. Finally, it is

obvious that staying silent is i’s optimal strategy if all her opponents have been silent on both

objects.

Consider now the other cases. By following the equilibrium strategy, bidder i obtains utility

max {θi −maxj 6=i θj , 0}. A deviation can lead to getting both objects, getting a single object
and getting no object. In the first case, given the equilibrium strategy of the other bidders, the

price paid for the two objects must be at least maxj 6=i θj, hence the deviation is not profitable.

In the second case, the price paid for the single object is at least k, thus again the deviation is

not profitable. Finally, a deviation is obviously not profitable if it leads to losing both objects.

Proof of Proposition 7. Using the arguments of Proposition 6 we have that the strategies

described in the last point of the Proposition constitute a perfect Bayesian equilibrium at any

given stage. We are left with the task of finding the appropriate sets Av, Aw, show that the
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prescribed strategy is optimal for all types at stage 0, and that for types in Av, Aw it is optimal

to stop bidding when the initial bids are ({0,−∞} , {−∞, 0}) or ({0,−∞} , {−∞, 0}).
Let

Θv =
©
(v, w, k)| v ∈ [0, 1] , w ∈ [0, v] , k ∈ £k, k¤ª

and

Θw =
©
(v, w, k)| v ∈ [0, w] , w ∈ [0, 1] , k ∈ £k, k¤ª .

Define s ≡ v + w + k, and let H (s) be the c.d.f. on s, that is:

H (x) = Pr {v + w + k ≤ x}

Given our assumption on the support of v,w and k it is clear that H (k) = 0 and H
¡
2 + k

¢
= 1.

Furthermore, given the symmetry of (v,w) and the independence of the distributions of v, w, k

we have that H (s|Θv) = H (s|Θw). Define the sets A
0
v = Θv, A

0
w = Θw, and define:

A1v =

½
(v,w, k) ∈ Θv| v ≥

Z v+w+k

k

(v + w + k − s) dH (s|Θw)

¾

A1w =

½
(v,w, k) ∈ Θw|w ≥

Z v+w+k

k

(v + w + k − s) dH (s|Θv)

¾
Thus, A1v is the set of types in Θv who prefer to have v for free rather than competing for the

bundle when it is known that the type of the other bidder lies in Θw. A symmetric interpretation

holds for A1w. Observe that the sets A
1
v and A

1
w are compact and connected.

It is clear that the two sets are symmetric, meaning that if (a, b, c) ∈ A1v then (b, c, a) ∈ A1w
Furthermore, it is also clear that H (s|A1w) = H (s|A1v). Now, given two symmetric sets Anv and
Anw with the property that H (s|Anw) = H (s|Anv ) define the sets:

An+1v =

½
(v, w, k) ∈ Θv| v ≥

Z v+w+k

k

(v + w + k − s) dH (s|Anw)
¾

An+1w =

½
(v,w, k) ∈ Θw|w ≥

Z v+w+k

k

(v + w + k − s) dH (s|Anv )
¾

If Anv and A
n
w are compact and connected then A

n+1
v and An+1w are also compact and connected.

We claim that the sequence {Anv} has a converging subsequence, and that the set Av to which
the subsequence converges is the set we are looking for.

Let H (Θv) be the set of non-empty compact subsets of Θv. For a given set X ∈ H (Θv)

define the set:

Bε (X) = {y ∈ Θv ||y − x| < ε for some x ∈ X }
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The space H (Θv) is a metric space when endowed with the Hausdorff distance:

ρ (X,Y ) = min {ε > 0 |X ⊂ Bε (Y ) and Y ⊂ Bε (X)}

Since the set Θv is compact, the set H (Θv) is also compact (see e.g. Mas Colell (1985), Proposi-
tion A.5.1). The sequence {Anv} is a sequence of elements in H (Θv), and since the set is compact
there exists a converging subsequence. Let Av be the non-empty, compact subset of Θv to which

the subsequence converge, and observe that since all elements in {Anv} are connected then Av is
connected too (Mas Colell (1985), Proposition A.5.1). The set Aw can be obtained using exactly

the same procedure.

The sets Av and Aw satisfy the equilibrium conditions. Observe first that for each s and n

we have H (s|Anv )−H (s|Anw) = 0 This implies that for each s:

lim
n→∞

H (s|Anv )−H (s|Anw) = H (s|Av)−H (s|Aw) = 0 (17)

Consider now that a type (v, w, k) ∈ Av. The equilibrium strategy prescribes:

1. Open with {0,−∞}.

2. If the other bidder opens with {−∞, 0} then stop bidding. In all other cases, use the SEA
strategy.

Let us first check that the strategy after opening with {0,−∞} and observing {−∞, 0} is
optimal. The only possible deviation is to trigger the SEA equilibrium, which yields:

S (v1, w1, k|Aw) =
Z v1+w1+k

k

(v1 + w1 + k − s) dH (s|Aw)

Using (17) and the fact that (v1, w1, k) ∈ Av we obtain:

v ≥ S (v1, w1, k|Aw)

We now check optimality at stage 0. It clearly makes no sense to trigger the SEA strategy.

The only other possible deviation is to bid {−∞, 0}, thus signalling that the type belongs to
Aw. It is not profitable to use the SEA equilibrium after the other type signals Av, since this is

equivalent to triggering directly the SEA equilibrium with probability 1, which we know not to

be profitable. Suppose now that collusion is accepted. Then we compare the expected utility of

the deviation:

Pr (Av)w1 + (1− Pr (Av))S (v1, w1, k1|qAv)
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with the expected utility of the equilibrium strategy:

Pr (Aw) v1 + (1− Pr (Aw))S (v1, w1, k1|qAw)

But now observe that the symmetry of Av and Aw implies Pr (Av) = Pr (Aw) and:

S (v1, w1, k1|qAv) = S (v1, w1, k1|qAw)

Since v1 ≥ w1 we conclude that the deviation is not profitable.
A symmetric reasoning shows that types (v1, w1, k1) /∈ Av ∪ Aw are not better off opening

with {0,−∞} or {−∞, 0}. In this case the bidder is going to trigger the SEA strategy no matter
what the opening bid of the other bidder is, so that announcing {0, 0} and triggering the SEA
equilibrium from the very beginning is optimal.
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