WEIGHTED SHARING AND UNIQUENESS OF MEROMORPHIC FUNCTIONS

HARINA P. WAGHAMORE AND TANUJA ADAVISWAMY

Abstract. In this paper, we study with a weighted sharing method the uniqueness problem of \(f^n P(f) \) and \(g^n P(g) \) sharing one value and obtain some results which extend and improve the results due to Hong-Yan Xu and Ting-Bin Cao.

1. Introduction

Let \(f \) be a non-constant meromorphic function in the whole complex plane. We shall use the following standard notations of the value distribution theory:

\[T(r, f), \ m(r, f), \ N(r, f), \ \overline{N}(r, f), \ldots \]

(See Hayman [3], Yang [6] and Yi and Yang [7]). We denote by \(S(r, f) \) any quantity satisfying \(S(r, f) = o(T(r, f)) \),

as \(r \to +\infty \), possibly outside of a set with finite measure. For any constant \('a' \), we define

\[\Theta(a, f) = 1 - \limsup_{r \to \infty} \frac{\overline{N}\left(r, \frac{1}{f-a}\right)}{T(r, f)}, \]

Let \('a' \) be a finite complex number and \(k \) a positive integer. We denote by \(N_k\left(r, \frac{1}{f-a}\right) \) the counting function for the zeros of \(f(z) - a \) with the multiplicity \(\leq k \), and by \(\overline{N}_k\left(r, \frac{1}{f-a}\right) \) the corresponding one for which the multiplicity is not counted. Let \(N_k\left(r, \frac{1}{f-a}\right) \) be the counting function for the zeros of \(f(z) - a \) with multiplicity at least \(k \), and \(\overline{N}_k\left(r, \frac{1}{f-a}\right) \) be the corresponding one for which the multiplicity is not counted. Set

\[\sum_{k=1}^{\infty} \overline{N}_k\left(r, \frac{1}{f-a}\right) \]

Received May 26, 2011, accepted September 11, 2013.
2010 Mathematics Subject Classification. Primary 30D35.
Key words and phrases. Weighted sharing, entire functions, meromorphic functions, differential polynomials, uniqueness.
Corresponding author: Harina P. Waghmare.
We define
\[\delta_k(a, f) = 1 - \limsup_{r \to \infty} \frac{N_k (r, \frac{1}{f-a})}{T(r, f)}. \]

Let \(g \) be a meromorphic function. If \(f(z) - a \) and \(g(z) - a \), assume the same zeros with the same multiplicities then we say that \(f(z) \) and \(g(z) \) share the value \('a' \) CM, where \('a' \) is a complex number. Similarly, we say that \(f \) and \(g \) share a IM, provided that \(f(z) - a \) and \(g(z) - a \) have same multiplicities.

In 1996, Fang proved the following result.

Theorem A([1]). Let \(f \) and \(g \) be two non-constant entire functions and let \(n, k \) be two positive integers with \(n > 2k + 4 \). If \([f^n]^{(k)}\) and \([g^n]^{(k)}\) share the value \(1 \) CM, then either \(f(z) = c_1 e^{cz} \) and \(g(z) = c_2 e^{-cz} \) where \(c_1, c_2 \) and \(c \) are three constants satisfying \((-1)^k (c_1 c_2)^n n c 2^k = 1 \) or \(f = t g \) for a constant \(t \) such that \(t^n = 1 \).

In 1997, Yang and Hua obtained a unicity theorem corresponding to above result.

Theorem B([8]). Let \(f \) and \(g \) be two nonconstant entire functions, \(n \geq 6 \) a positive integer. If \(f^n f' \) and \(g^n g' \) share \(1 \) CM, then either \(f(z) = c_1 e^{cz} \) and \(g(z) = c_2 e^{-cz} \) where \(c_1, c_2 \) and \(c \) are three constants satisfying \((c_1 c_2)^{n+1} c^2 = 1 \) or \(f = t g \) for a constant \(t \) such that \(t^{n+1} = 1 \).

In 2002, Fang proved the following result.

Theorem C([2]). Let \(f \) and \(g \) be two non-constant entire functions and let \(n, k \) be two positive integers with \(n > 2k + 8 \). If \([f^n (f-1)]^{(k)}\) and \([g^n (g-1)]^{(k)}\) share the value \(1 \) CM, then \(f \equiv g \).

In 2008, Zhang and Lin, Zhang, Chen and Lin extended Theorem C and obtain the following results.

Theorem D([10]). Let \(f \) and \(g \) be two non-constant entire functions and let \(n, m \) and \(k \) be three positive integers with \(n > 2k + m + 4 \), and \(\lambda, \mu \) be constants such that \(|\lambda| + |\mu| \neq 0 \). If \([f^n (\mu f^m + \lambda)]^{(k)}\) and \([g^n (\mu g^m + \lambda)]^{(k)}\) share \(1 \) CM, then

(i) when \(\lambda \mu \neq 0 \), \(f \equiv g \).

(ii) when \(\lambda \mu = 0 \), either \(f \equiv t g \), where \(t \) is a constant satisfying \(t^{n+m} = 1 \), or \(f(z) = c_1 e^{cz} \) and \(g(z) = c_2 e^{-cz} \) where \(c_1, c_2 \) and \(c \) are three constants satisfying \((-1)^k \lambda^2 (c_1 c_2)^{n+m} [(n + m) c]^{2k} = 1 \) or \((-1)^k \mu^2 (c_1 c_2)^{n+m} [(n + m) c]^{2k} = 1 \).

Theorem E([11]). Let \(f \) and \(g \) be two non-constant entire functions and let \(n, m \) and \(k \) be three positive integers with \(n > 2k + m + 4 \), and let \(P(z) = a_m z^m + a_{m-1} z^{m-1} + \cdots + a_1 z + a_0 \) or \(P(z) \equiv c_0 \), where \(a_0 \neq 0 \), \(a_1, \ldots, a_{m-1}, a_m \neq 0 \), \(c_0 \neq 0 \) are complex constants. If \([f^n P(f)]^{(k)}\) and \([g^n P(g)]^{(k)}\) share \(1 \) CM, then
Let f and g be two non-constant entire functions, whose zeros and poles are of multiplicities at least s, where s is a positive integer. Let $P(z) = a_m z^m + a_{m-1} z^{m-1} + \cdots + a_1 z + a_0$, either $f \equiv t g$ for a constant t such that $t^d = 1$, where $d = (n + m, \ldots, n + m - i, \ldots, n)$, $a_{m-i} \neq 0$ for some $i = 0, 1, \ldots, m$, or f and g satisfy the algebraic equation $R(f, g) = 0$, where $R(\omega_1, \omega_2) = \omega_1^n (a_m \omega_1^m + a_{m-1} \omega_1^{m-1} + \cdots + a_1 \omega_1 + a_0) - \omega_2^n (a_m \omega_2^m + a_{m-1} \omega_2^{m-1} + \cdots + a_1 \omega_2 + a_0)$.

(ii) when $P(z) = c$, either $f(z) = c_1 / \sqrt[n]{c}^n e^{cz}$, $g(z) = c_2 / \sqrt[n]{c}^n e^{-cz}$, where c_1, c_2 and c are three constants satisfying $(-1)^k (c_1 c_2)^n (nc)^{2k} = 1$, or $f = t g$ for a constant t such that $t^n = 1$.

In 2009, H.-Y. Xu and T.-B. Cao proved the following result.

Theorem F([5]). Let f and g be two nonconstant entire functions, and let n, m and k be three positive integers with $n \geq 5k + 5m + 8$. If $[f^n P(f)]^{(k)}$ and $[g^n P(g)]^{(k)}$ share $(1, 0)$, then the conclusion of Theorem E still holds.

Theorem G([5]). Let f and g be two nonconstant entire functions, and let n, m and k be three positive integers with $n > \frac{5}{2} m + 4k + \frac{9}{2}$. If $[f^n P(f)]^{(k)}$ and $[g^n P(g)]^{(k)}$ share $(1, 1)$, then the conclusion of Theorem E still holds.

Theorem H([5]). Let f and g be two nonconstant entire functions, and let n, m and k be three positive integers with $n \geq 3m + 3k + 5$. If $[f^n P(f)]^{(k)}$ and $[g^n P(g)]^{(k)}$ share $(1, 2)$, then the conclusion of Theorem E still holds.

In this paper, by introducing the notion of multiplicity, we reduce and improve Theorems F, G and H. Also we extend these theorems to meromorphic functions and obtain the following results.

Theorem 1.1. Let f and g be two non-constant meromorphic functions, whose zeros and poles are of multiplicities at least s, where s is a positive integer. Let $P(f) = a_m f^m + a_{m-1} f^{m-1} + \cdots + a_1 f + a_0$, $(a_m \neq 0)$, and $a_1(i = 0, 1, \ldots, m)$ is the first nonzero coefficient from the right, and let n, k, m be three positive integers. If $[f^n P(f)]^{(k)}$ and $[g^n P(g)]^{(k)}$ share $(1, 1)$ and one of the following conditions holds:

(i) $l \geq 2$ and $s(n + m) > 3k + 10$
(ii) $l = 1$ and $s(n + m) > 5k + 13$
(iii) $l = 0$ and $s(n + m) > 9k + 16$

then either $f = t g$ for a constant t such that $t^d = 1$, where $d = (n + m, \ldots, n + m - i, \ldots, n)$, $a_{m-i} \neq 0$ for some $i = 0, 1, \ldots, m$, or f and g satisfy the algebraic equation $R(f, g) = 0$, where $R(\omega_1, \omega_2) = \omega_1^n P(\omega_1) - \omega_2^n P(\omega_2)$.

Theorem 1.2. Let f and g be two non-constant entire functions, whose zeros and poles are of multiplicities at least s, where s is a positive integer. Let $P(f) = a_m f^m + a_{m-1} f^{m-1} + \cdots + a_1 f + a_0$, where
(\(a_m \neq 0\)), and \(a_i (i = 0, 1, \ldots, m)\) is the first nonzero coefficient from the right, and let \(n, k, m\) be three positive integers. If \([f^n P(f)]^{(k)}\) and \([g^n P(g)]^{(k)}\) share \((1, 1)\) and one of the following conditions holds:

(i) \(l \geq 2\) and \(s(n + m) > 3k + 5\)
(ii) \(l = 1\) and \(s(n + m) > 4k + 6\)
(iii) \(l = 0\) and \(s(n + m) > 5k + 8\)

then either \(f = t g\) for a constant \(t\) such that \(t d = 1\), where \(d = (n + m, \ldots, n + m - i, \ldots, n)\), \(a_{m-i} \neq 0\) for some \(i = 0, 1, \ldots, m\), or \(f\) and \(g\) satisfy the algebraic equation \(R(f, g) \equiv 0\), where

\[
R(\omega_1, \omega_2) = \omega_1^n P(\omega_1) - \omega_2^n P(\omega_2).
\]

Remark. In Theorem 1.2, giving specific values for \(s\), we get the following interesting cases:

(i) If \(s = 1\), then for \(l \geq 2\) we get \(n > 3k + 5 - m\), for \(l = 1\) we get \(n > 4k + 6 - m\) and for \(l = 0\) we get \(n > 5k + 8 - m\).

(ii) If \(s = 2\), then for \(l \geq 2\) we get \(n > \frac{3k + 5}{2} - m\), for \(l = 1\) we get \(n > 2k + 3 - m\) and for \(l = 0\) we get \(n > \frac{5k + 8}{2} - m\).

We conclude that if \(f\) and \(g\) have zeros and poles of higher order multiplicity, then we can reduce the value of \(n\).

2. Some Lemmas

Lemma 2.1 ([3]). Let \(f\) be a nonconstant meromorphic function, let \(k\) be a positive integer, and let \(c\) be a nonzero finite complex number. Then

\[
T(r, f) \leq \overline{N}(r, f) + N \left(r, \frac{1}{f} \right) + N \left(r, \frac{1}{f^{(k)} - c} \right) - N \left(r, \frac{1}{f^{(k+1)}} \right) + S(r, f)
\]

\[
\leq \overline{N}(r, f) + N_{k+1} \left(r, \frac{1}{f^{(k+1)}} \right) + N \left(r, \frac{1}{f^{(k)} - c} \right) - N_0 \left(r, \frac{1}{f^{(k+1)}} \right) + S(r, f).
\]

where \(N_0 \left(r, \frac{1}{f^{(k+1)}} \right)\) is the counting function which only counts those points such that \(f^{(k+1)} = 0\) but \(f^{(k)} - c \neq 0\).

Lemma 2.2 ([9]). Let \(f\) be a nonconstant meromorphic function and \(P(f) = a_0 + a_1 f + \cdots + a_n f^n\), where \(a_0, a_1, \ldots, a_n\) are constants and \(a_n \neq 0\). Then

\[
T(r, P(f)) = n T(r, f) + S(r, f).
\]
Lemma 2.3 ([4, 12]). Let \(f \) be a non-constant meromorphic function and \(k \) be a positive integer, then

\[
N_p \left(r, \frac{1}{f^{(k)}} \right) \leq N_{p+k} \left(r, \frac{1}{f} \right) + kN(r, f) + S(r, f)
\]

\[
\leq (p + k)N \left(r, \frac{1}{f} \right) + kN(r, f) + S(r, f).
\]

This Lemma can be obtained immediately from the proof of Lemma 2.3 in [4] which is the case \(p = 2 \).

Lemma 2.4 ([13]). Let \(F \) and \(G \) be two nonconstant meromorphic functions. If \(F \) and \(G \) share 1 IM, then \(N_L \left(r, \frac{1}{F} \right) \leq N \left(r, \frac{1}{F} \right) + N(r, F) + S(r, F) \).

Lemma 2.5 ([5]). Let \(f \) and \(g \) be two nonconstant entire functions, and let \(k \) be a positive integer. If \(f^{(k)} \) and \(g^{(k)} \) share \((1, l) \) \((l = 0, 1, 2) \). Then

(i) If \(l = 0 \),
\[
\Theta(0, f) + \delta_k(0, f) + \delta_{k+1}(0, f) + \Theta(0, g) + \delta_{k+2}(0, f) + \delta_{k+2}(0, g) > 5, \text{ then either } f^{(k)} g^{(k)} = 1 \text{ or } f \equiv g;
\]

(ii) If \(l = 1 \),
\[
\frac{1}{2} \left[\Theta(0, f) + \delta_k(0, f) + \delta_{k+2}(0, f) + \delta_{k+2}(0, f) + \Theta(0, g) + \delta_{k+1}(0, g) + \delta_{k+1}(0, g) > \frac{9}{2}, \text{ then either } f^{(k)} g^{(k)} = 1 \text{ or } f \equiv g;\]

(iii) If \(l = 2 \),
\[
\Theta(0, f) + \delta_k(0, f) + \delta_{k+1}(0, f) + \delta_{k+2}(0, g) > 3, \text{ then either } f^{(k)} g^{(k)} = 1 \text{ or } f \equiv g.
\]

Lemma 2.6. Let \(f \) and \(g \) be two nonconstant meromorphic functions, \(k \geq 1 \) and \(l \geq 0 \) be integers. If \(f^{(k)} \) and \(g^{(k)} \) share \((1, l) \) \((l = 0, 1, 2) \). Then

(i) If \(l \geq 2 \),
\[
(k + 2) \Theta(\infty, f) + 2 \Theta(\infty, g) + \Theta(0, f) + \Theta(0, g) + \delta_{k+1}(0, f) + \delta_{k+1}(0, g) > k + 7, \text{ then either } f^{(k)} g^{(k)} = 1 \text{ or } f \equiv g;
\]

(ii) If \(l = 1 \),
\[
(2k + 3) \Theta(\infty, f) + 2 \Theta(\infty, g) + \Theta(0, f) + \Theta(0, g) + \delta_{k+1}(0, f) + \delta_{k+1}(0, g) + \delta_{k+2}(0, f) > 2k + 9, \text{ then either } f^{(k)} g^{(k)} = 1 \text{ or } f \equiv g;
\]

(iii) If \(l = 0 \),
\[
(2k + 3) \Theta(\infty, f) + (2k + 4) \Theta(\infty, g) + \Theta(0, f) + \Theta(0, g) + 2 \delta_{k+1}(0, f) + 3 \delta_{k+1}(0, g) > 4k + 13, \text{ then either } f^{(k)} g^{(k)} = 1 \text{ or } f \equiv g.
\]

Proof. Let
\[
\Phi(z) = \left(\frac{f^{(k+2)}}{f^{(k+1)}} - 2 \frac{f^{(k+1)}}{f^{(k)} - 1} \right) - \left(\frac{g^{(k+2)}}{g^{(k+1)}} - 2 \frac{g^{(k+1)}}{g^{(k)} - 1} \right).
\]
Suppose that $\Phi(z) \neq 0$. If z_0 is a common simple 1-point of $f^{(k)}(z)$ and $g^{(k)}(z)$, substituting their Taylor series at z_0 into (2.1), we can get $\Phi(z_0) = 0$. Thus we have,

$$N_{E}^{(1)} \left(r, \frac{1}{f^{(k)} - 1} \right) = N_{E}^{(1)} \left(r, \frac{1}{g^{(k)} - 1} \right) \leq N \left(r, \frac{1}{\Phi} \right) \leq T(r, \Phi) + O(1)$$

$$\leq N(r, \Phi) + S(r, f) + S(r, g),$$

where $N_{E}^{(1)} \left(r, \frac{1}{f^{(k)} - 1} \right)$ denotes the counting function of common 1-points of $f^{(k)}$ and $g^{(k)}$.

According to our assumption, $\Phi(z)$ has simple poles only at zeros of $f^{(k+1)}$, $f^{(k)} - 1$ and $g^{(k+1)}$, $g^{(k)} - 1$ as well as poles of f and g.

From Lemma 2.1, we have

$$T(r, f) + T(r, g) \leq N(r, f) + N(r, g) + N_{k+1} \left(r, \frac{1}{f} \right) + N_{k+1} \left(r, \frac{1}{g} \right)$$

$$+ N \left(r, \frac{1}{f^{(k)} - 1} \right) + N \left(r, \frac{1}{g^{(k)} - 1} \right) - N \left(r, \frac{1}{f^{(k+1)}} \right)$$

$$- N_{0} \left(r, \frac{1}{g^{(k+1)}} \right) + S(r, f) + S(r, g).$$

(2.3)

Obviously,

$$N \left(r, \frac{1}{f^{(k)} - 1} \right) \leq T(r, f^{(k)}) + O(1) \leq T(r, f) + kN(r, f) + S(r, f).$$

(2.4)

If $l \geq 2$, we have

$$N(r, \Phi) \leq N(r, f) + N \left(r, \frac{1}{f} \right) + N(r, g) + N \left(r, \frac{1}{g} \right) + N_{l+1} \left(r, \frac{1}{f^{(k)} - 1} \right)$$

$$+ N_{0} \left(r, \frac{1}{f^{(k+1)}} \right) + N_{0} \left(r, \frac{1}{g^{(k+1)}} \right).$$

(2.5)

and

$$N_{l+1} \left(r, \frac{1}{f^{(k)} - 1} \right) + N \left(r, \frac{1}{f^{(k)} - 1} \right) + N \left(r, \frac{1}{g^{(k)} - 1} \right)$$

$$\leq N \left(r, \frac{1}{f^{(k)} - 1} \right) + N \left(r, \frac{1}{g^{(k)} - 1} \right).$$

(2.6)

From (2.2)–(2.6) we deduce that

$$T(r, g) \leq (k + 2)N(r, f) + 2N(r, g) + N \left(r, \frac{1}{f} \right) + N \left(r, \frac{1}{g} \right) + N_{k+1} \left(r, \frac{1}{f} \right)$$

$$+ N_{k+1} \left(r, \frac{1}{g} \right) + S(r, f) + S(r, g).$$

Without loss of generality, we suppose that there exists a set I with infinite linear measure such that $T(r, F) \leq T(r, G)$ for $r \in I$. Hence

$$T(r, g) \leq ([k + 2](1 - \Theta(\infty, f)) + 2(1 - \Theta(\infty, g)) + (1 - \Theta(0, f))$$
+ (1 − Θ(0, g)) + (1 − δ_{k+1}(0, f)) + (1 − δ_{k+1}(0, g)) + ε] T(r, g) + S(r, g),

for \(r \in I \) and \(0 < ε < Δ_1 - (k + 7) \), that is \[Δ_1 - (k + 7) - ε] T(r, g) \leq S(r, g).\]

ie.,

\[
Δ_1 \leq (k + 7),
\]

If \(l = 1 \), then

\[
N(r, Φ) \leq \overline{N}(r, f) + \overline{N}\left(r, \frac{1}{f} \right) + \overline{N}(r, g) + \overline{N}\left(r, \frac{1}{g} \right) + \overline{N}_{(2)}\left(r, \frac{1}{f(k) - 1} \right) + N_0\left(r, \frac{1}{f(k+1)} \right).
\]

Obviously,

\[
\overline{N}\left(r, \frac{1}{f(k) - 1} \right) + \overline{N}\left(r, \frac{1}{g(k) - 1} \right) \leq N^{(1)}_{1}\left(r, \frac{1}{f(k) - 1} \right) + \overline{N}\left(r, \frac{1}{f(k) - 1} \right).
\]

Thus, we deduce from (2.2)−(2.4), (2.8) and (2.9) that

\[
T(r, g) \leq (k + 2)\overline{N}(r, f) + 2\overline{N}(r, g) + \overline{N}\left(r, \frac{1}{f} \right) + \overline{N}\left(r, \frac{1}{g} \right) + N_{k+1}\left(r, \frac{1}{f} \right)
\]

\[
+ N_{k+1}\left(r, \frac{1}{g} \right) + \overline{N}_{(2)}\left(r, \frac{1}{f(k) - 1} \right) + S(r, f) + S(r, g).
\]

Note that \(l = 1 \), from Lemma 2.3, we have

\[
\overline{N}_{(2)}\left(r, \frac{1}{f(k) - 1} \right) \leq \overline{N}\left(r, \frac{1}{f(k+1)} \right) = N_{1}\left(r, \frac{1}{f(k+1)} \right)
\]

\[
\leq N_{k+2}\left(r, \frac{1}{f} \right) + (k + 1)\overline{N}(r, f) + S(r, f).
\]

The inequality (2.10) together with (2.11) yields

\[
T(r, g) \leq (2k + 3)\overline{N}(r, f) + 2\overline{N}(r, g) + \overline{N}\left(r, \frac{1}{f} \right) + \overline{N}\left(r, \frac{1}{g} \right) + N_{k+1}\left(r, \frac{1}{f} \right)
\]

\[
+ N_{k+1}\left(r, \frac{1}{g} \right) + N_{k+2}\left(r, \frac{1}{f} \right) + S(r, f) + S(r, g).
\]

Hence

\[
T(r, g) \leq [(2k + 3)(1 − Θ(∞, f)) + 2(1 − Θ(∞, g)) + (1 − Θ(0, f))
\]

\[
+(1 − Θ(0, g)) + (1 − δ_{k+1}(0, f)) + (1 − δ_{k+1}(0, g)) + (1 − δ_{k+2}(0, f))
\]

\[
+ ε] T(r, g) + S(r, g),
\]

for \(r \in I \) and \(0 < ε < Δ_2 - (2k + 9) \), that is \[Δ_2 - (2k + 9) - ε] T(r, g) \leq S(r, g),\]

ie.,

\[
Δ_2 \leq (2k + 9).
\]
If \(l = 0 \), i.e., \(f^{(k)} \) and \(g^{(k)} \) share 1 IM, at this circumstance, we have
\[
N(r, \Phi) \leq \overline{N}(r, f) + \overline{N} \left(r, \frac{1}{f} \right) + \overline{N}(r, g) + \overline{N} \left(r, \frac{1}{g} \right) + \overline{N}_L \left(r, \frac{1}{f^{(k)} - 1} \right) \\
+ \overline{N}_L \left(r, \frac{1}{g^{(k)} - 1} \right) + N_0 \left(r, \frac{1}{f^{(k+1)}} \right) + N_0 \left(r, \frac{1}{g^{(k+1)}} \right). \tag{2.13}
\]
From Lemma 2.4, we have
\[
\overline{N}_L \left(r, \frac{1}{f^{(k)} - 1} \right) + 2\overline{N}_L \left(r, \frac{1}{g^{(k)} - 1} \right) \leq \overline{N}(r, f) + 2\overline{N}(r, g) + \overline{N} \left(r, \frac{1}{f} \right) \\
+ 2\overline{N} \left(r, \frac{1}{g} \right) + S(r, f) + S(r, g). \tag{2.14}
\]
From Lemma 2.3, we can deduce that
\[
\overline{N} \left(r, \frac{1}{f^{(k)}} \right) + 2\overline{N} \left(r, \frac{1}{g^{(k)}} \right) = N_1 \left(r, \frac{1}{f^{(k)}} \right) + 2N_1 \left(r, \frac{1}{g^{(k)}} \right) \\
\leq N_{k+1} \left(r, \frac{1}{f} \right) + 2N_{k+1} \left(r, \frac{1}{g} \right) + k\overline{N}(r, f) + 2k\overline{N}(r, g) + S(r, f) + S(r, g). \tag{2.15}
\]
When \(l = 0 \), we can get
\[
\overline{N} \left(r, \frac{1}{f^{(k)} - 1} \right) + \overline{N} \left(r, \frac{1}{g^{(k)} - 1} \right) \leq N_{E}^{(1)} \left(r, \frac{1}{f^{(k)} - 1} \right) + \overline{N}_L \left(r, \frac{1}{g^{(k)} - 1} \right) + N \left(r, \frac{1}{f^{(k)} - 1} \right). \tag{2.16}
\]
From (2.2)–(2.4) and (2.13)–(2.15) and the above inequality, we can obtain
\[
T(r, g) \leq (2k + 3)\overline{N}(r, f) + (2k + 4)\overline{N}(r, g) \overline{N} \left(r, \frac{1}{f} \right) + \overline{N} \left(r, \frac{1}{g} \right) \\
+ 2N_{k+1} \left(r, \frac{1}{f} \right) + 3N_{k+1} \left(r, \frac{1}{g} \right) + S(r, f) + S(r, g). \tag{2.17}
\]
In the same way, we can also get
\[
T(r, g) \leq [(2k + 3)(1 - \Theta(\infty, f)) + (2k + 4)(1 - \Theta(\infty, g)) + (1 - \Theta(0, f)) \\
+ (1 - \Theta(0, g)) + 2(1 - \delta_{k+1}(0, f)) + 3(1 - \delta_{k+1}(0, g)) + \epsilon] T(r, g) + S(r, g),
\]
for \(r \in I \) and \(0 < \epsilon < \Delta_3 - (4k + 13) \), that is \(|\Delta_3 - (4k + 13) - \epsilon| T(r, g) \leq S(r, g) \), ie.,
\[
\Delta_3 \leq (4k + 13), \tag{2.17}
\]
Hence, we get \(\Phi(z) \equiv 0 \), i.e.,
\[
\frac{f^{(k+2)}}{f^{(k+1)}} - 2\frac{f^{(k+1)}}{f^{(k)} - 1} = \frac{g^{(k+2)}}{g^{(k+1)}} - 2\frac{g^{(k+1)}}{g^{(k)} - 1}.
\]
Integration yields
\[
\frac{1}{f^{(k)} - 1} \equiv \frac{b g^{(k)} + a - b}{g^{(k+1)} - 1},
\]
where \(a \) and \(b \) are two constants and \(a \neq 0 \). By using the same argument as in [13], we can obtain \(f^{(k)} g^{(k)} \equiv 1 \) or \(f \equiv g \), we here omit the detail. The proof of Lemma 2.6 is completed.
Lemma 2.7. Let f and g be two non-constant meromorphic functions, and let $n(\geq 1)$, $k(\geq 1)$ and $m(\geq 1)$ be integers. Then

$$[f^n P(f)]^{(k)}[g^n P(g)]^{(k)} \neq 1.$$

Proof. Let

$$[f^n P(f)]^{(k)}[g^n P(g)]^{(k)} \equiv 1. \tag{2.18}$$

Let z_0 be a zero of f of order p_0. From (2.18) we get z_0 is a pole of g. Suppose that z_0 is a pole of g of order q_0. Again by (2.18), we obtain $np_0 - k = nq_0 + mq_0 + k$,

i.e., $n(p_0 - q_0) = mq_0 + 2k.$

which implies that $q_0 \geq \frac{n - 2k}{m}$ and so we have $p_0 \geq \frac{n + m - 2k}{m}$.

Let z_1 be a zero of f of order p_1, then z_1 is a zero of $[f^n P(f)]^{(k)}$ of order $p_1 - k$. Therefore from (2.18) we obtain $p_1 - k = nq_1 + mq_1 + k$

i.e., $p_1 \geq (n + m)s + 2k.$

Let z_2 be a zero of f' of order p_2 that is not a zero of $fP(f)$, then from (2.18) z_2 is a pole of g of order q_2. Again by (2.18) we get $p_2 - (k - 1) = nq_2 + mq_2 + k$

i.e., $p_2 \geq (n + m)s + 2k - 1.$

In the same manner as above, we have similar results for the zeros of $[g^n P(g)]^{(k)}$.

On other hand, suppose that z_3 is a pole of f. From (2.18), we get that z_3 is the zero of $[g^n P(g)]^{(k)}$.

Thus

$$\overline{N}(r, f) \leq \overline{N}\left(r, \frac{1}{g}\right) + \overline{N}\left(r, \frac{1}{g - 1}\right) + \overline{N}\left(r, \frac{1}{g}\right)$$

$$\leq \frac{1}{p_0} N\left(r, \frac{1}{g}\right) + \frac{1}{p_1} N\left(r, \frac{1}{g - 1}\right) + \frac{1}{p_2} N\left(r, \frac{1}{g}\right)$$

$$\leq \left[\frac{m}{n + m - 2k} + \frac{1}{(n + m)s + 2k} + \frac{2}{(n + m)s + 2k - 1}\right] T(r, g) + S(r, g). \tag{2.19}$$

By second fundamental theorem and equation (2.19), we have

$$T(r, f) \leq \overline{N}\left(r, \frac{1}{f}\right) + \overline{N}\left(r, \frac{1}{f - 1}\right) + \overline{N}(r, f)$$

$$\leq \frac{m}{n + m - 2k} N\left(r, \frac{1}{f}\right) + \frac{1}{(n + m)s + 2k} N\left(r, \frac{1}{f - 1}\right)$$

$$+ \left[\frac{m}{n + m - 2k} + \frac{1}{(n + m)s + 2k} + \frac{2}{(n + m)s + 2k - 1}\right] T(r, g) + S(r, g) + S(r, f).$$

$$T(r, f) \leq \left[\frac{m}{n + m - 2k} + \frac{1}{(n + m)s + 2k}\right] T(r, f)$$
$$T(r, g) \leq \left[\frac{m}{n + m - 2k} + \frac{1}{(n + m)s + 2k} \right] T(r, g)$$

Similarly, we have

$$T(r, f) \leq \left[\frac{m}{n + m - 2k} + \frac{1}{(n + m)s + 2k} \right] T(r, f)$$

Adding (2.20) and (2.21) we get

$$T(r, f) + T(r, g) \leq \left[\frac{2m}{n + m - 2k} + \frac{2}{(n + m)s + 2k} + \frac{2}{(n + m)s + 2k - 1} \right] \{T(r, f) + T(r, g)\} + S(r, g) + S(r, f).$$

which is a contradiction. Thus Lemma proved.

3. Proofs of the Theorems

In this section we present the proofs of the main results.

Proof of Theorem 1.1. Let $F = f^n P(f)$ and $G = g^n P(g)$.

Consider

$$N_k(\frac{1}{F}) = N\left(r, \frac{1}{f^n P(f)} \right) \leq \frac{1}{s(n + m)} N\left(\frac{1}{F} \right) \leq \frac{2}{s(n + m)} [T(r, F) + O(1)].$$

$$\Theta(0, F) = 1 - \limsup_{r \to \infty} \frac{N\left(\frac{1}{F} \right)}{T(r, F)} \geq 1 - \frac{2}{s(n + m)}. \quad (3.1)$$

Similarly,

$$\Theta(0, G) \geq 1 - \frac{2}{s(n + m)}. \quad (3.2)$$

$$\Theta(\infty, F) = 1 - \limsup_{r \to \infty} \frac{N(r, F)}{T(r, F)} \geq 1 - \frac{1}{s(n + m)}. \quad (3.3)$$

Similarly,

$$\Theta(\infty, G) \geq 1 - \frac{1}{s(n + m)}. \quad (3.4)$$

Consider

$$N_{k+1}\left(\frac{1}{F} \right) = N_{k+1}\left(\frac{1}{f^n P(f)} \right) = (k + 1)\frac{1}{s(n + m)} \left[T(r, F) + O(1) \right].$$

Next, we have

$$\delta_{k+1}(0, F) = 1 - \limsup_{r \to \infty} \frac{N_{k+1}\left(\frac{1}{F} \right)}{T(r, F)} \geq 1 - \frac{(k + 1)}{s(n + m)}. \quad (3.5)$$
Similarly,
\[\delta_{k+1}(0, G) \geq 1 - \frac{(k+1)}{s(n + m)}. \] (3.6)

Case(i) If \(l \geq 2 \) and from (3.1) to (3.6) and also from Lemma 2.6, we get
\[\Delta_1 = (k+2)\Theta(\infty, f) + 2\Theta(\infty, g) + \Theta(0, f) + \Theta(0, g) + \delta_{k+1}(0, f) + \delta_{k+1}(0, g) \]
\[> (k+8) - \frac{3k+10}{s(n+m)} \]
Since \(s(n+m) > 3k+10 \), we get \(\Delta_1 > k+7 \).

Therefore, by Lemma 2.6, we deduce that either \(F^{(k)}G^{(k)} \equiv 1 \) or \(F \equiv G \).

If \(F^{(k)}G^{(k)} \equiv 1 \), that is
\[[f^n(a_m f^m + a_{m-1} f^{m-1} + \cdots + a_1 f + a_0)]^{(k)}[g^n(a_m g^m + a_{m-1} g^{m-1} + \cdots + a_1 g + a_0)]^{(k)} \equiv 1, \] (3.7)
then by Lemma 2.7 we can get a contradiction.

Hence, we deduce that \(F \equiv G \), that is
\[f^n(a_m f^m + a_{m-1} f^{m-1} + \cdots + a_1 f + a_0) = g^n(a_m g^m + a_{m-1} g^{m-1} + \cdots + a_1 g + a_0). \] (3.8)

Let \(h = \frac{f}{g} \). If \(h \) is a constant, then substituting \(f = gh \) in (3.8) we obtain
\[a_m g^{n+m}(h^{n+m} - 1) + a_{m-1} g^{n+m+1} - h^{n+m+1} - 1 + \cdots + a_0 g^n(h^n - 1) = 0, \]
which implies \(h^d = 1 \), where \(d = (n+m, \ldots, n+m-i, \ldots, n) \), \(a_{m-i} \neq 0 \) for some \(i = 0, 1, \ldots, m \).
Thus \(f \equiv tg \) for a constant \(t \) such that \(t^d = 1 \), where \(d = (n+m, \ldots, n+m-i, \ldots, n) \), \(a_{m-i} \neq 0 \) for some \(i = 0, 1, \ldots, m \).

If \(h \) is not a constant, then we know (3.8) that \(f \) and \(g \) satisfy the algebraic equation \(R(f, g) = 0 \), where \(R(\omega_1, \omega_2) = \omega_1^n P(\omega_1) - \omega_2^n P(\omega_2) \).

Case(ii) If \(l = 1 \) and from (3.1) to (3.6) and also from Lemma 2.6, we get
\[\Delta_2 = (2k+3)\Theta(\infty, f) + 2\Theta(\infty, g) + \Theta(0, f) + \Theta(0, g) + \delta_{k+1}(0, f) + \delta_{k+1}(0, g) \]
\[> (2k+10) - \frac{5k+13}{s(n+m)} \]
Since \(s(n+m) > 5k+13 \), we get \(\Delta_2 > 2k+9 \).

By continuing as in case(i), we get case(ii).

Case(iii) If \(l = 0 \) and from (3.1) to (3.6) and also from Lemma 2.6, we get
\[\Delta_3 = (2k+3)\Theta(\infty, f) + (2k+4)\Theta(\infty, g) + \Theta(0, f) + \Theta(0, g) + 2\delta_{k+1}(0, f) + 3\delta_{k+1}(0, g) \]
\[> (4k+14) - \frac{9k+16}{s(n+m)} \]
Since $s(n + m) > 9k + 16$, we get $\Delta_2 > 4k + 13$.

By continuing as in case(i), we get case(iii).

This completes the proof of Theorem 1.1.

Proof of Theorem 1.2. Since f and g are entire functions we have $N(r, f) = \overline{N}(r, g) = 0$. Proceeding as in the proof of Theorem 1.1 we can easily prove Theorem 1.2.

References

Department of Mathematics, Central College Campus, Bangalore University, Bangalore-560 001, India.

E-mail: pree.tam@rediffmail.com

Department of Mathematics, Central College Campus, Bangalore University, Bangalore-560 001, India.

E-mail: a.tanuja1@gmail.com