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Abstract 

We conduct laboratory experiments on sender-receiver games with 

an incentive for biased transmission (such as security analysts painting a rosy 

picture about earnings prospects).  Our results confirm earlier experimental 

findings of “overcommunication”—messages are more informative of the 

true state than they should be, in equilibrium theory.  Furthermore, we used 

eyetracking to show that senders look much less at receiver payoffs 

compared to their own payoffs.  At the same time, the senders’ pupils dilate 

when they send deceptive messages, and dilate more when the deception is 

larger in magnitude.  Together, these data are consistent with the hypothesis 

that figuring out how much to deceive another player is cognitively difficult.  

Using a combination of sender messages, lookup patterns, and pupil dilation, 

we can predict the true state about twice as often as predicted by equilibrium. 

Using these measures would enable receiver subjects to earn 6-8 percent 

more than they actually do.    

 

                                                 
* April 26, 2006.  Wang: Division of Humanities and Social Sciences, California Institute of Technology, MC228-77, 
1200 E California Blvd, Pasadena, CA 91125 (e-mail: josephw@hss.caltech.edu); Spezio: Division of Humanities and 
Social Sciences, California Institute of Technology, MC228-77, 1200 E California Blvd, Pasadena, CA 91125 (e-mail: 
mlspezio@hss.caltech.edu); Camerer: Division of Humanities and Social Sciences, California Institute of Technology, 
MC228-77, 1200 E California Blvd, Pasadena, CA 91125 (e-mail: camerer@hss.caltech.edu). Research support was 
provided by an internal Provost grant, and a Human Frontiers of Society Program (HFSP) grant coordinated by Angela 
Sirigu, to the third author.  Thanks to comments from Robert Ostling and Moran Surf, and the audience of the ESA 
2005 North American Regional Meeting, Tucson, AZ. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7280494?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 1 

 In the inferior and middling stations of life… The good old proverb, therefore, that honesty 

 is the best policy, holds, in such situations, almost always perfectly true.  …In the superior 

 stations of life the case is unhappily not always the same.  In the courts of princes... flattery 

 and falsehood too often prevail over merit and abilities.   

~ Adam Smith, Theory of Moral Sentiments, III.5 

I. Introduction 

During the tech-stock bubble, Wall Street security analysts were alleged to inflate 

recommendations about the future earnings prospects of firms, in order to win investment banking 

relationships with those firms.1  Specifically, analysts in Merrill Lynch used a five-point rating 

system (1=Buy to 5=Sell) to predict how the stock would perform.  They usually gave two separate 

1-5 ratings for short run (0-12 months) and long run (more than 12 months) performance.  Henry 

Blodget, Merrill Lynch’s famously optimistic analyst, “did not rate any Internet stock a 4 or 5” 

during the bubble period (1999 to 2001).2  In one case, the online direct marketing firm LifeMinders, 

Inc. (LFMN), Blodget first reported a rating of 2-1 (short run “accumulate”—long run “buy”) just 

before Merrill Lynch got investment banking business from LFMN.  Then, the stock price gradually 

fell from $22.69 to the $3-$5 range.  While publicly maintaining his initial 2-1 rating, Blodget 

privately emailed fellow analysts that “LFMN is at $4.  I can’t believe what a POS [piece of shit] 

that thing is.”3  He was later banned from the security industry for life4 and fined $4 million.5   

                                                 
1 For a detailed description of the tech-stock bubble and how it happened, see Michael J. Brennan (2004).  For evidence 
regarding analyst recommendations affected by conflicts of interest, see Lin and McNichols (1998) and Roni Michaely 
and Kent L. Womack (1999).  Also note experimental results reported in Hunton and McEwen (1997), which gave real 
firm data to financial analysts under hypothetical incentive schemes and show that both eyetracked cognitive 
information search strategies and the incentive structure correlated with forecasting accuracy.   
2 See Complaint in Securities and Exchange Commission v. Henry M. Blodget, 03 CV 2947 (WHP) (S.D.N.Y.) (2003), 
paragraph 11-12. 
3 See Complaint in Securities and Exchange Commission v. Henry M. Blodget, 03 CV 2947 (WHP) (S.D.N.Y.) (2003),  
paragraph 70-72. 
4 See Securities and Exchange Commission Order Against Henry M. Blodget (2003).  
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This case is an example of a biased transmission game. Biased transmission games are 

simple models of economic situations in which one agent has an incentive to exaggerate the truth to 

another agent.  The central issues in these games are how well uninformed players infer the private 

information from the actions of players who are better-informed, and what informed players do, 

anticipating the inference of the uninformed players. Given these behavioral patterns, mechanisms 

can be designed to encourage telling the truth given likely behavior.6 

Incentives for biased transmission are common.  Besides the Blodget case mentioned above, 

similar dramatic accounting frauds in the last few years, such as Enron, Worldcom, and Tyco, might 

have been caused by the incentives of managers (and perhaps their accounting firms) to inflate 

earnings prospects.7  For instance, Enron executives told shareholders at meetings that earnings 

prospects were rosy, at the same time as the executives were selling their own shares, leading to 

indictments and trials in 2006.8  In universities, grade inflation and well-polished recommendation 

letters help schools promote their graduates.9  Other examples of incentives for biased transmission 

include government-expert relationships in policy making, doctor-patient relationships in health 

care choices, teacher cheating on student tests10 and the floor-committee relationship in Congress. 

 This paper reports experiments on a biased transmission game (sometimes called a “cheap 

talk” or strategic information transmission game; see Vincent P. Crawford and Joel Sobel, 1982).  

In the game, a sender learns the true state (a number S) and sends a message M to a receiver who 

                                                                                                                                                                  
5 See United States District Court Final Judgement on Securities and Exchange Commission v. Henry M. Blodget 03 
Civ. 2947 (WHP) (S.D.N.Y.) (2003).  
6 See Theodore Groves (1973), Jerry Green and Jean-Jacques Laffont (1977) and Roger B. Myerson (1979). 
7 See Brennan (2004), pp. 8-9, and Brian J. Hall and Kevin J. Murphy (2003), pp. 60-61. 
8 In fact, according to an SEC complaint filed in court, Kenneth Lay, Enron’s then chairman and CEO, said “We will hit 
our numbers” and “My personal belief is that Enron stock is an incredible bargain at current prices” in an employee 
online forum on September 26, 2001, while in the prior two months he actually making net sales of over $20 million in 
Enron stock (back to Enron).  See Second Amended Complaint in Securities and Exchange Commission v. Richard A. 
Causey, Jeffrey K. Skilling and Kenneth L. Lay, Civil Action No. H-04-0284 (Harmon) (S.D. Tx.) (2004), paragraph 
81-82. 
9 See, for example, Henry Rosovsky and Matthew Hartley (2002). 
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then chooses an action A.  The receiver prefers to choose an action which matches the state, but the 

sender wants the receiver to choose an action closer to S+b, where b is a bias parameter. The value 

of b is varied across rounds. When b=0 senders prefer to just announce S (i.e., M=S) and they 

almost always do. When b>0 senders would prefer to exaggerate and announce M>S if they thought 

receivers would believe them.  Since subjects choose 1-5, the numbers in our game are 

coincidentally the same  as those used by Merrill Lynch.  Indeed, when b>0, we find that our 

subjects hardly ever report the number 1 (in only 8 percent of  208 rounds), just as Blodget never 

rated a stock 4 or 5 (the equivalent of 1-2 in our game).  

An advantage of the biased transmission game for studying deception is game theory makes 

precise equilibrium predictions about how much informed agents will exaggerate what they know, 

when they know that other agents are fully-informed about the game’s structure and the incentives 

to exaggerate.  And while in most other deception studies11,  subjects are instructed to lie or give 

weak or poorly controlled incentives,12 subjects in experiments like ours choose voluntarily whether 

to deceive others or not (see also John Dickhaut et al., 1995, Andreas Blume et al., 1998, 2001 and 

Hongbin Cai and Joseph T. Wang, 2005).13  Senders and receivers also have clear measurable 

economic incentives to deceive and to detect deception.14 

                                                                                                                                                                  
10 For example, Jacob and Levitt (2003) show how public school teachers cheat on student standardized tests in 
response to high-power incentive systems based on these test scores.   
11 For a survey of studies on (skin-conductance) polygraph, see Theodore R. Bashore and Paul E. Rapp (1993).  For lie-
detection studies in psychology, see the reviews of Robert E. Kraut (1980) and Aldert Vrij (2000).  For a comprehensive 
discussion of different cues used to detect lies, see Bella M. DePaulo et al. (2003).  For individual differences in lie-
detection (Secret Service, CIA and sheriffs do better), see Paul Ekman and Maureen O’Sullivan (1991) and Paul Ekman 
et al. (1999).  More recently studies in neuroscience using functional magnetic resonance imaging (fMRI) include Sean 
A. Spence et al. (2001), D. D. Langleben et al. (2002) and F. Andrew Kozel et al. (2004).   
12 One exception is Samantha Mann et al. (2005) which used footage of real world suspect interrogation to test lie-
detecting abilities of ordinary police.  However, a lot of experimental control is lost in this setting.  One interesting 
findings in this study is that counter to conventional wisdom, the more subjects relied on stereotypical cues such as gaze 
aversion to detect lies, the less accurate they were. 
13 Most lie-detection studies have three drawbacks: (1) They do not use naturally-occurring lies (because it is then 
difficult to know whether people are actually lying or not).  Instead, most studies create artificial lies by giving subjects 
true and false statements (or creating a “crime scenario”) and instructing them to either lie or tell the truth, sometimes to 
fool a lie-detecting algorithm or subject.  However, instructed deception can be different than naturally-occurring 
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Besides measuring choices in these games, our experiment uses “eyetracking” to measure 

what payoffs or game parameters sender subjects are looking at (see Appendix: Methods).  

Eyetracking software records where players are looking on a computer screen every 4 

milliseconds.15  This is a useful supplement to econometric analysis of choices, when decision rules 

which produce similar choices make distinctive predictions about what information is needed to 

execute the rules.16  

 The eyetracking apparatus also measures how much subjects’ pupils “dilate” (expand in 

width and area due to arousal).  Pupils dilate under stress,17 cognitive difficulty,18 arousal and 

pain.19   Pupillary responses have also been measured in the lie-detection literature for several 

                                                                                                                                                                  
voluntary deception, and the ability to detect instructed deception might be different than detecting voluntary deception.  
(2) The incentives to deceive in these studies are typically weak or poorly controlled (e.g., in Spence et al. (2001) all 
subjects were told that they successfully fooled the investigators who tried to detect them; in Mark G. Frank and Paul 
Ekman (1997), subjects were threatened a of “sitting on a cold, metal chair inside a cramped, darkened room labeled 
ominously XXX, where they would have to endure anywhere from 10 to 40 randomly sequenced, 110-decibel startling 
blasts of white noise over the course of 1 hr” but never actually enforcing it.).  (3) Subjects are typically not 
economically motivated to detect deception.  Experiments using the biased-transmission paradigm from game theory 
address all these drawbacks. 
14 Most lie-detection studies have three drawbacks: (1) They do not use naturally-occurring lies (because it is then 
difficult to know whether people are actually lying or not).  Instead, most studies create artificial lies by giving subjects 
true and false statements (or creating a “crime scenario”) and instructing them to either lie or tell the truth, sometimes to 
fool a lie-detecting algorithm or subject.  However, instructed deception can be different than naturally-occurring 
voluntary deception, and the ability to detect instructed deception might be different than detecting voluntary deception.  
(2) The incentives to deceive in these studies are typically weak or poorly controlled (e.g., in Spence et al. (2001) all 
subjects were told that they successfully fooled the investigators who tried to detect them; in Mark G. Frank and Paul 
Ekman (1997), subjects were threatened a of “sitting on a cold, metal chair inside a cramped, darkened room labeled 
ominously XXX, where they would have to endure anywhere from 10 to 40 randomly sequenced, 110-decibel startling 
blasts of white noise over the course of 1 hr” but never actually enforcing it.).  (3) Subjects are typically not 
economically motivated to detect deception.  Experiments using the biased-transmission paradigm from game theory 
address all these drawbacks. 
15 Previous studies (see footnote 13) used a “Mouselab” system in which moving a cursor into a box opens the box’s 
contents.  One small handicap of this system is that the experimenter cannot be certain the subject is actually looking at 
(and processing) the contents of the open box.  Our system measures the eye fixation so we can tell if the subject’s eye 
is wandering, and pupil dilation is measured at the same time (which Mouselab cannot do).  Nevertheless, Mouselab 
systems can be installed cheaply in many computers to measure lookups of many agents at the same time, which could 
prove useful in running efficient subjects and studying attention simultaneously in complex markets with many agents.   
16 See Camerer et al. (1993); Costa-Gomes et al. (2001); Johnson et al. (2002); Costa-Gomes and Crawford (2005); and 
the recent Gabaix et al. (2006).   
17 See R. A. Hicks et al. (1967), R. Bull and G. Shead (1979), and Darren C. Aboyoun and James N. Dabbs (1998). 
18 See Jackson Beatty (1982) and B. C. Goldwater (1972).   
19 See C. Richard Chapman et al. (1999) and Shunichi Oka et al. (2000).   
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decades (that’s why poker players often wear sunglasses if they are allowed to).20  These studies 

suggest that pupil dilation might be used to infer deceptive behavior because senders find deception 

stressful or cognitively difficult.  

 The experimental choices, eyetracking, and pupil dilation measures generate three basic 

findings:  

1. We replicate the results of Cai and Wang’s (2005) original experimental study using 

a different matching protocol (partner rather than stranger) and a more obtrusive 

measurement technique. That is, the correlation of messages M and actions A with 

the actual state S, and players’ payoffs, decline with the bias b.  At the same time, 

when b>0 the correlations between states and messages and actions are much larger 

than predicted by theory, which means senders are being more truthful than they 

should be, a phenomenon we call “overcommunication”. 

2. The lookup data suggests informed players are not very strategically sophisticated: 

They mostly look at their own payoffs, and at payoffs for the true state S.  Which 

payoffs they look at most often is a modest predictor of their later choices, and a 

better predictor than equilibrium predictions. 

3. Senders’ pupils dilate more widely when they are misrepresenting by a larger 

amount. Using pupil dilation as indicators, we can predict the propensity to 

misrepresent the state, and the degree of misrepresentation, with some accuracy.  The 

true state can also be predicted with some accuracy from a combination of messages, 

lookup patterns, and pupil dilation.  

                                                 
20 See for example, F. K. Berrien and G. H. Huntington (1942), I. Heilveil (1976), Michel P. Janisse (1973), M. T. 
Bradley and Michel P. Janisse (1979, 1981), Michel P. Janisse and M. T. Bradley (1980), R. E. Lubow and Ofer Fein 
(1996), and Daphne P. Dionisio et al. (2001). 
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Since economists are used to judging theories only by whether they predict choices 

accurately, it is useful to ask what direct measurement of eye fixations and pupil dilation can add. 

The inferential strategy from eyetracking in our study is similar to previous studies of offers and 

lookups in three-period alternating-offer bargaining (Colin F. Camerer et al., 1993; Eric J. Johnson 

et al., 2002) which adopt a mouse-tracking technology (Mouselab).  In those experiments, opening 

offers typically fell between an equal split of the first-period surplus and the subgame perfect 

equilibrium prediction (assuming self-interest).  These offers could be caused by limited strategic 

thinking (i.e., players do not always look ahead to the second and third round payoffs of the game), 

or by computing an equilibrium by looking ahead, adjusting for fairness concerns of other players.  

Offers alone cannot distinguish between these two theories, but lookups can.  The failure to look at 

payoffs in future periods showed that the deviation of offers from equilibrium was (at least partly) 

due to limited strategic thinking, rather than entirely due to equilibrium adjustment for fairness.21   

Miguel Costa-Gomes et al. (2001) use the same mouse-tracking technology in a different 

way that is also powerful.  In the dominance-solvable games they study, two natural decision rules 

are those in which players optimize against perceived random play (L1) or optimize against 

perceived random play excluding dominated strategies (D1).  But L1 and D1 choices are the same 

in most games.  However, D1 players have to look at the payoffs of other players (and detect 

dominance relations in others’ payoffs) and L1 players don’t.  When they classify players into L1 or 

D1 using choices alone, they find a roughly equal mixture of the two rules.  But when they use 

                                                 
21 Furthermore, comparing across rounds, when players do look ahead at future round payoffs their resulting offer are 
closer to the self-interested equilibrium prediction (see Eric J. Johnson and Colin F. Camerer, 2004). Thus, the lookup 
data can actually be used to predict choices, to some degree. 
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lookup patterns, they find mostly L1’s and few D1’s.  Thus, if their study had used only choices, 

and not lookups, they would have reached the wrong conclusion.22  

In the accounting literature, James E. Hunton and Ruth A. McEwen (1997) asked analysts 

under hypothetical incentive schemes to make earnings forecast based on real firm data, and 

investigated factors that affect the accuracy of these forecasts.  Using an eye-movement computer 

technology (Integrated Retinal Imaging System, IRIS), they find that analysts who employ a 

“directive information search strategy” make more accurate forecasts, both in the lab and in the 

field, even after controlling for years of experience.  This indicates that eyetracking may provide an 

alternative measure of experience or expertise that is not simply captured by seniority.  Had they not 

observed the eye movements, they could not have measured the difference in information search 

which are linked to accuracy. 

 These three studies just illustrate the potential for using cognitive data, besides choices, for 

distinguishing between competing theories or inspiring new theory. In the biased-transmission 

games, the overcommunication of the true state that we observe is consistent with two rough 

accounts, strategizing and guilt, or cognitive difficulty.  Senders may feel guilty about deceiving the 

receivers and potentially costing the receivers money.  According to this theory, senders will look at 

the receiver payoffs (since seeing those payoffs is the basis of guilt) and their pupils will dilate 

when they misrepresent the state (i.e., choose M different from S) due to emotional arousal from 

guilt.  In this story, the guilt springs from the senders’ realization that their actions are costing the 

receivers money, which requires them to look at the receiver payoffs.23   

                                                 
22 One might wonder why we should care whether subjects were following L1 or D1 rules if they gave the same 
predictions in choices.  However, there are other games that the two rules predict very differently, and the point is to see 
if the same identified rule can explain behavior in more games.   
23 There is little doubt that guilt sometimes exists and affects strategic behavior.  For example, Uri Gneezy (2005) find 
that changing the costs to others affects deception by subjects.  Eyetracking helps us explore this insight further using 
data on whether potential deceivers actually know those costs. 
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  A different story is that senders do not feel guilty, but find it cognitively difficult to figure 

out how much to misrepresent the state.  For example, senders might believe that some other 

senders always tell the truth, and receivers might therefore believe messages are truthful. Then 

strategic senders have to think hard about how much to misrepresent the state to take advantage of 

the receivers’ naïveté (as in Vincent P. Crawford, 2003 and Macro Ottaviani and Francesco 

Squintani, 2004). In this story, senders do not have to pay much attention to receiver payoffs but 

their pupils will dilate because of the cognitive difficulty of misrepresentation.   

 Taken together, the choices, eye fixations, and pupil dilation can roughly adjudicate between 

these two stories.  Senders spend little time looking at the receiver payoffs but their pupils are 

dilated when they misrepresent the state (when b>0).  Moreover, the time spent looking at the 

receiver payoffs increases as bias increases, but remains around half the lookup time of the sender 

payoffs.  These facts point in the direction of the cognitive difficulty story rather than strategizing 

plus guilt.24   

 This is the first study in experimental economics to use a combination of eyetracking and 

pupil dilation, and is, of course, hardly conclusive.  But the pupil dilation results by themselves 

suggest that the implicit assumption in theories of “cheap talk” in games with communication— 

namely, that deception has no cost— is not completely right.  Mark Twain famously quipped, “If 

you tell the truth, you don't have to remember anything.”25  The corollary principle is that if subjects 

want to misrepresent the state to fool receivers, they have to figure out precisely how to do so (and 

whether receivers will be fooled).  This process is not simple and seems to leave a psychological 

signature in the form of looking patterns and pupil dilation.  Future theories could build in an 

                                                 
24 In fact, when the senders were asked after the experiment whether they considered sending a number different from 
the true state deception, 9 of the subjects said yes, while another 3 said no, but gave excuses such as “it’s part of the 
game” or “the other player knows my preference difference.”  Only 1 subject said no without any explanation.  These 
debriefing results also suggest that guilt has played little role in the experiment.   
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implicit cost to lying (which might also vary across subjects and with experience) and construct 

richer economic theories about when deception is expected to be widespread or rare.   

 

II. The Biased-Transmission Game 

 In each round of the experiments, subjects play a game of strategic information transmission, 

involving “cheap talk.”  One player always acts as the sender, and the other as the receiver. (The 

sender’s eye movements and pupil dilation are measured with a head-mounted Eyelink II eyetracker, 

as described in more detail in Appendix: Methods.)  At the beginning of the round, the sender is 

informed about the true state of the world, which is described as a “secret” number S uniformly 

drawn from the state space S = {1, 2, 3, 4, 5}, and is informed about the bias b, which is either 0, 1, 

or 2 with equal probability.  The receiver knows the bias b, but not the realization of the state S.  

Both players commonly know the basic structure of the game.   

 The sender then sends a message to the receiver, from the set of messages M = {1, 2, 3, 4, 

5}.26  After receiving a message from the sender, the receiver chooses an action from the action 

space A = {1, 2, 3, 4, 5}.  The true state and the receiver’s action determine the two players’ payoffs 

in points according to uR = 110 − 10 · |S −A|1.4, and uS = 110 − 10 · |S + b −A|1.4, where uR and uS 

are the payoffs for the receiver and the sender, respectively.  Note that the receiver earns the most 

money if her action matches the true state (since her payoff falls with the absolute difference 

between A and S).  The sender prefers the receiver to choose an action equal to the true state plus 

the bias b.  Figure 1 shows the screen display for b=1 and S=4.   

                                                                                                                                                                  
25 Quotation taken from Mark Twain’s Notebook, 1894. 
26 Following Cai and Wang (2005), we use the specific message, “The number I received is X” to eliminate possible 
misinterpretation of the message (which contributes to the multiple equilibria problem typical in these types of games). 
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As in Cai and Wang (2005), the most informative equilibrium for b=2 is “babbling”, in 

which the sender sends an uninformative message, while the receiver ignores the message and 

chooses A=3 based on her prior beliefs.  When b=1, the most informative equilibrium requires the 

senders to send messages {1,2} (i.e., randomize between saying 1 or 2) when the S is 1 or 2, and 

send {3,4,5} when S is 3-5. When b=1 the receivers should choose action A=1 or 2 when seeing 

M={1,2}, and A=4 when seeing M={3,4,5}.  When b=0, truth-telling by choosing M=S (and 

receivers choosing A=M) is the most informative equilibrium   

To be sure subjects learn, and to collect a lot of trials to pool across, the same game is 

played 45 times among the two paired players with random choices of bias b (and random states) in 

each round.27  Because we could only eyetrack one subject at a time, we used a partner protocol in 

which a pair of subjects played repeatedly in a fixed-role protocol.  Only the senders were hooked 

up to the mobile Eyelink eyetracker.  The results reported below focus entirely on the eye fixations 

and pupil dilation of senders, and the message choices of senders and action choices of receivers.  

We record subject choices and focus on the most informative equilibrium in the one-shot 

game.28 Informativeness is measured by the correlation between actions and the true states, and by 

sender and receiver payoffs (more informative equilibria have higher expected payoffs).  In addition, 

if we assume a natural language interpretation of the message, we can also measure the 

“informativeness” of senders’ messages by the correlation between the true states of the world and 

                                                 
27 Cai and Wang (2005) used a random matching scheme that guarantee two subjects never see each other again. 
However, due to the eyetracking nature of this experiment, we have subjects paired against the same opponent 
throughout the 45 rounds they play.   
28  We do not consider possible dynamic equilibrium that might sustain higher information transmission level.  
Nonetheless, this is not a problem for bias = 0 or 2.  When bias = 2, babbling is the only equilibrium in the one shot 
game and backward induction yields the babbling equilibrium for all finitely repeated games; when bias = 0, the one 
shot game equilibrium already has full information transmission and there is no room for improvement.  Also note that 
overcommunication is the most striking when bias = 2.   



 11 

the messages they sends.  How “trusting” the receivers are can be measured by the correlation 

between the messages they receive and the actions they take.29   

Subjects were 24 Caltech undergraduates (12 pairs) recruited from the Social Science 

Experimental Laboratory subject pool.  They earned between $12 and $24 in addition to a $5 show-

up fee.  To compare across pairs, we use the same set of randomly drawn biases and states for 9 of 

the 12 pairs, and use two other sets of parameters for the remaining 3 pairs to see if there were any 

effects for using the same parameters.30   

 Note that 24 subjects might appear to be a small sample size.31  But most experimental 

studies with larger samples have fewer choices per subject. Our eyetracked subjects play 45 games, 

and make a very large number of eye fixations; so we have a lot of data for each subject and can 

often draw confident statistical conclusions from these sample sizes.32   

 

III. Results 

III.A Comparative Statics and Behavior 

What are the comparative static results?  Looking at subjects’ choices (M and A), we 

find that the key comparative static prediction of Crawford and Sobel (1982) holds in the data.  In 

other words, as the bias b increases, the information transmitted decreases, measured either by the 

                                                 
29 Such a natural language interpretation is justified by Blume et al. (2001) findings that equilibrium messages tend to 
be consistent with their natural language meanings, and is used in Cai and Wang (2005).  Moreover, many behavioral 
theories of lying, such as Crawford (2003) and Ottaviani and Squintani (2004), also lead to this sort of natural language 
interpretation since naïve receivers would take the message at face value.   
30 We did not see any effect in both the main results and the split-sample test.   
31 Ironically, a subject size of 24 is perceived as a large sample size for psychophysical studies.   
32 As we note below, for a primary analysis predicting pupil dilation from observables, a split-sample test comparing 
two groups of six subjects yields comparable results in the two sub-samples.   
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correlation between State S and Action A, or by receiver payoffs, confirming the findings of Cai 

and Wang (2005).   

Table 1 shows that the actual information transmitted, measured by the correlation between 

states S, actions A, and messages M, decreases as b increases from 0 to 1 to 2.  Note that even when 

the bias is so large (b=2) that theory predicts babbling (i.e., no correlation between S, A and M), the 

correlations are still around 0.5.   

Since poor information transmission harms both players’ payoffs, the decline in their 

payoffs as the bias increases is an economic measure of how deception affects payoffs.  Across the 

values of b, the average receiver payoffs decreased from a near perfect 109.14 to 94.01 to 85.52; the 

sender payoffs decreased from 109.14 to 93.35, and then to 41.52.  

 Importantly, when the bias is positive, information transmission is higher (measured by 

correlations among S, M and A) and payoffs are higher than predicted by standard economic theory.  

These data replicate the “overcommunication” (too much truth-telling) reported in Cai and Wang 

(2005).33   

What does the raw data look like?  Figure 2-4 display the three dimensions of the raw 

choice data-- states, messages and actions--for b = 0, 1 and 2, respectively.  Each Figure is a 5-by-5 

display where the true states 1-5 correspond to the five rows and the sender messages 1-5 

correspond to the five columns. Within each cell, the average receiver action is given in numbers, 

with a pie chart that gives the breakdown of actions chosen by the receiver.  Actions in the pie-chart 

are represented by a gray-scale, ranging from white (action 1) to black (action 5), indicating 

receivers’ response to the senders’ messages.  The area of the pie-chart in each cell is scaled by the 

number of occurrences for the corresponding state and message.  Hence, the rows indicate senders’ 
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behavior with respect to different states and the columns represents the “informativeness” of each 

message, determined by the distribution of states conditional on each particular message.  

For example, when b=0, and there is no conflict of interest, large pie-charts are concentrated 

on the diagonal, a visual way of showing that the senders almost always send a message 

corresponding to the true state.  Moreover, these pie-charts mostly contain the same color ranging 

from light (lower actions) to dark (higher actions) as the true state increases, meaning that the 

receivers follow senders’ recommendation when choosing their actions.  Thirdly, the distribution of 

state frequencies conditional on each message (i.e., each column)  almost degenerates into mass 

points of the true states, indicating nearly full information transmission.  This corresponds to the 

(most informative) truth-telling equilibrium predicted by standard theory.   

When b=1, and there is an incentive to bias the message upward, the results are different.  

There is a large tendency for deception, which is evident from having large pie charts off the 

diagonal.  Consistent with the findings in Cai and Wang (2005), this departure is lopsided—only the 

upper diagonal of Figure 3 is populated with large pie charts.34  That is, for a given state, the most 

common messages are the state itself or higher messages.  Furthermore, the largest pie charts of 

each row are mainly on the line to the right of the diagonal (i.e., the state S+1), consistent with the 

L1 sender behavior discussed in Cai and Wang (2005).  Within the upper diagonal, the pie-chart 

gets darker and darker going down and right, showing how the receivers “correctly” respond to the 

messages and increase their actions as the state and message increase.  Since the conditional 

distribution of states (columns in Figure 3) shift from a mass point on the true state (as in Figure 2) 

to a distribution skewed toward state 3 to 5, some information is transmitted.  However, this 

                                                                                                                                                                  
33 Note that the correlations and receiver’s payoffs here are higher than that in Cai and Wang (2005), which is what one 
would expect given the partner protocol in this experiment.  In Cai and Wang (2005), they allow subjects to match with 
the same person only once during the entire experiment.   
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distribution is not consistent with the {1, 2}-{3, 4, 5} partition equilibrium predicted by standard 

theory which requires states within each partition to have the same conditional distribution of 

states.35   

Finally, when b=2, standard theory predicts a babbling equilibrium.  If they were playing 

this equilibrium, the pie-charts in each cell would be roughly the same size (up to random sampling 

error of state frequencies) and the shading distributions on each pie-chart would be the same.) In 

fact, there is still a substantial amount of information transmitted, since the columns in Figure 4 do 

not all show the same uniform distribution of state frequencies.36  However, many senders still sent 

message 5, especially for states 2 to 5. And a substantial amount of receivers did chose action 3, as 

predicted in the babbling equilibrium. Therefore, Figure 4 seems to be a mixture of truth-telling and 

babbling. 

III.B Lookup Patterns 

What numbers do senders look at?  Table 3 shows the number of separate fixations (the 

fixation threshold is 50msec) and average lookup time for various parameters of the game.  Senders 

clearly are thinking carefully about the game because they look up the state and the bias parameter 

2-6 times per round, for about 1 second.  (The low time per lookup is a reminder that the eye 

glances around very rapidly, making frequent quick fixations, as is typical of other tasks including 

reading.) Senders also look at their own payoffs about twice as often, and for twice as long, 

compared to receiver payoffs.  Interestingly enough, the ratio of lookup time for sender and receiver 

                                                                                                                                                                  
34 Note that this one-sided deception can potentially backfire since if seeing a message 1 indicates the true state is 1, the 
state is less likely to be 1 when other messages were sent.   
35  If subjects were playing according to the partition equilibrium, column 1 and 2 should both have equal (1/2) 
probability on state 1 and 2, and zero probability elsewhere, indicating the state being in partition {1,2}, while column 3 
to 5 should all have equal probability (1/3) on states 3 through 5, and zero elsewhere (indicating the state being in 
partition {3,4,5}).   
36 For instance, if the message is 1, the true state will never be above 3.   
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payoffs are always close to 2 as the bias increases (more guilt involved), and is not consistent with 

the strategizing and guilt story of deception.  Moreover, for b=2, which has the most guilt involved, 

if we use the median of the lookup time for receiver payoffs to split the sample into two groups, the 

high (receiver payoffs) lookup time group actually has more deception than the low group, also 

inconsistent with a guilt story predicting that the more one cares about other’s payoffs, the less one 

should “cheat” them.37   

Do lookup times shrink over time?  A natural concern with lookup data is whether 

subjects are simply memorizing the payoff tables, which would undermine the value of eyetracking. 

While memorization is unlikely because the states S and bias b vary randomly across the 45 rounds, 

and looking at the screen is so effortless (memorizing is harder than looking), it is useful to see 

whether response times drop sharply across rounds.  Considering the average response times across 

three blocks of 15 rounds, response times do drop substantially when the bias is b=0 (from around 5 

seconds to 2 seconds) but drop much less in the b=1 and b=2 rounds (only about 20 percent from 

the first 15 rounds to the last 15 rounds).  This indicates substantial learning for b=0, but not much 

for b=1 and 2, and is also consistent with a cognitive difficult story of deception.   

What state payoffs do senders look at?  Table 4 shows that subjects have about five times 

more fixations (5.9 lookups per round) and lookup time (1.71 seconds per round) on the payoff 

rows corresponding to the true state than on rows corresponding to each of the four other states.  

When the bias is 0 this fixation on the actual state is understandable (and subjects typically choose 

message M=S), but the disproportionate attention to actual state payoffs is comparable when there is 

a bias of 1 or 2.38 

                                                 
37 For the high group, the correlation between states and messages is 0.545, and the average LIE_SIZE is 0.875; for the 
low group, the correlation is 0.688, and the average LIE_SIZE is 0.705. 
38 Note that the Table 5 indicates significant statistical power to detect the actual state (i.e., to detect lies in which the 
message M deviates from the true state S).  That is, a receiver who had online sender looking statistics could predict 
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An efficient way to convey information about fixations and lookup time visually is with an 

icon graph (developed by Eric Johnson, cf. Johnson et al., 2002), as in Figure 5.  Each box in Figure 

5 represents the attention paid to the payoff corresponding to each state-action combination.  Figure 

5a represents attention to the sender payoff boxes and Figure 5b represents attention to the receiver 

payoff boxes.  The width of the box is a linear function of the average number of fixations on that 

box, and the height is a linear function of the average total looking time in that box.  Boxes which 

are wide and long were looked at repeatedly and for a longer time.  The bars in the first columns 

represent the sum of looking time across each row.  Longer bars represent longer time (for that 

state).   

Figure 5 shows the icon graph for the rows corresponding to the true states when the bias is 

1.39  The first thing to notice is that subjects spend much more time looking at their own payoffs 

(Figure 5a) than the payoffs of receivers (Figure 5b), as the Table 4 statistics show.  Subjects’ 

lookups are also more frequent and longer for actions that are equal to the actual state or the state 

plus one.  The looking patterns can be supportive of a quantal response equilibrium,40  which 

predicts actions concentrated around A=4 (when actual states are 3, 4, or 5) and mixing A=1 and 2 

(when states are 1 or 2).  However, state 2 has the longest lookups on A=3, which is at odds with 

the QRE prediction of choosing mainly A=1 and 2.  Furthermore, state 5 also does not fit the pattern: 

Senders look frequently at payoffs corresponding to actions 1, 3 and 4, and also look relatively 

often at the receiver payoff boxes in this state. (Both informative equilibrium and QRE predict that 

                                                                                                                                                                  
what the actual state was rather reliably.  Of course, it is not clear how the senders would behave had they known that 
their lookup patterns were monitored by the receivers.   
39  When the bias b=0 the looking data are very clear: Subjects look almost exclusively at their own payoffs 
corresponding to the actual state S and corresponding receiver action A, and they look at the receiver payoffs from the 
same S-A pair about a quarter as often as they look at their own payoffs. 
40 Quantal response equilibrium in extensive form games was introduced by Richard D. McKelvey and Thomas R. 
Palfrey (1998), and Cai and Wang (2005) applied it to biased transmission games to explain their experimental findings.   
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state 5 should be treated similarly to states 3-4.)  The looking patterns may reflect the fact that this 

state 5 is the only state in which both subjects prefer the same action choice (action 5).41   

Figure 6 shows the lookup icon graphs for bias b=2.  Senders again look at their own 

payoffs more often than their opponents’ payoffs. When the state S is 1-3 they tend to look at their 

payoffs from actions corresponding to S, S+1 and S+2. Since these are states they typically choose, 

it appears that they are using a one-step rule in which they anticipate that receivers will naively 

respond to their own message choices M by choosing action A=M (see Crawford, 2003).  However, 

when the state is 4 or 5 this pattern crumbles and they spread attention across more actions. When 

state = 5 and nothing is better than telling the truth, there is generally less lookup activity.   

After examining subjects’ lookup patterns, we turn to their pupil dilation responses and see 

whether we can improve upon prediction of subject behavior.    

III.C Pupil Dilation 

To correlate pupil dilation with senders’ messages, we calculate average pupil sizes for 

various time periods before and after the sender’s message decision, and see if we can predict pupil 

dilation using the bias b and the amount of deception (measured by the absolute distance between 

states and messages, |M-S|).    

To record their message M, senders are instructed to look at a series of decision boxes on the 

right side of the screen, which contain the numbers 1 to 5 (corresponding to the possible numerical 

messages). The software is calibrated to record a decision after the subject has fixated on a single 

decision box for 0.8 seconds—that is, the subjects choose by using their eyes, not their hands.42  

                                                 
41 Interestingly enough, due to discreteness, this is the only state that has perfectly aligned preferences.   
42 Allowing eye fixations to determine choices is widely used in research with monkeys.  For humans, making choice 
hands-free is an advantage if psychophysiological measurements are being recorded simultaneously (e.g., galvanic skin 
conductance on the palms, heart rate) since even small hand movements add noise to those measurements.  
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Since there is a time lag of at least 0.8 second between the instant subjects “made up their 

minds” and the recording of this decision,43 we define the decision time as the first time subjects 

view any of the boxes in the decision boxes area, provided they continue to look at the decision box 

area for more than 95 percent of the time until the software records a decision.44   

Average pupil sizes are regressed on the amount of deception for different biases, or the 

sizes of the lie (LIE_SIZE = |M-S|), as well as bias and state dummies, controlling for individual 

fixed effects and individual learning trends (picked up by round number and squared round number 

variables interacted with individual fixed effects.  The specification is: 
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where 

PUPILi = Average pupil (area) size45 at time frame i: 1.2 to 0.8 seconds, 0.8 to 0.4 seconds, 0.4 to 0 

seconds before, and 0 to 0.4 seconds, 0.4 to 0.8 seconds after the decision time.46  Here, 

we normalize each individual’s average pupil size to 100.47   

                                                 
43This time lag can be longer if the subject is not perfectly calibrated, and hence, needs extra time to perform the 
required fixation.  Another possible situation is when the subject “changed her mind” and looked at different decision 
boxes.   
44 Running similar regressions (with raw pupil size) shows that using a criterion of 98 percent or 99 percent would yield 
stronger results than that of 95 percent.  Moreover, even a noisy 90 percent would still produce the same qualitative 
results, though some results are less significant.  Last but not the least, simply using the exact time the software records 
the decision (after the 0.8 second time lag) would also give us stronger results.   
45 Note that we are aggregating 100 observations into 1 data point when averaging for each 400 milliseconds interval.   
46 Rounds with very short response time are discarded if the corresponding PUPILi cannot be calculated. 
47 Pupil sizes are measured by area, in relative terms.  Absolute pixel counts have little meaning since it varies by 
camera positions, contrast cutoffs, etc., which depend on individual calibrations.  Hence, the eyetracker scales it to a 
pupil size measurement between 800-2000.  Here, we normalize all observations by the average pupil size of each 
subject throughout the entire experiment, and present all results in percentage terms.  (To avoid potential bias created by 
eyetracker adjustments, all between-round adjustment stages were excluded when performing this normalization.)  
Therefore, 100 means 100 percent of an individual subject’s typical pupil size.   
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LIE_SIZE = The “size” of the lie or the amount of deception, measured by the absolute distance 

between states and messages, (|M-S|). 

BIASb = Dummy variable for the bias between the sender and the receiver. 

STATEs = Dummy variable for the true state. 

SUBJk = Dummy variable for subject k. 

ROUND = Round number 

 The parameter � is the average pupil size, the �1 coefficients give us the effect of deviating 

from reporting the true state (deceiving more) under different bias levels, the coefficients �2b and �3s 

give us the other effects of different biases b (relative to b=2) and states (relative to S=3), while 

coefficients �k capture individual differences (relative to subject 6), and �k,1 ,�k,2 capture (individual) 

linear and quadratic learning effects.   

 Look first at the coefficients on the amount of deception in Table 5, interacted with bias 

(denoted �1b where b is the bias parameter).  Right before the decision is made (-0.4 seconds to 0 

seconds, where 0 seconds is the decision time), the coefficient on the amount of deception is 2.69 

percent higher when b=1 and 3.13 percent when b=2.  These effects are significant in all 400 

millisecond intervals from 800 milliseconds before the decision, to 800 milliseconds after the 

decision.  Sending more deceptive messages is therefore correlated with pupil dilation when b=1 or 

b=2.  

Note that the bias condition by itself does not generate pupil dilation (the coefficients �2s are 

insignificant).  That is, it is not bias, per se, which creates arousal or cognitive difficulty; it is 

sending more deceptive messages in the bias conditions.  Furthermore, the �3s coefficients show that 

state S=1 tends to undilate pupils (relative to the benchmark state S=3), but the states 4 and 5 dilate 

pupils. These coefficients show that some states create more cognitive difficulty, but the important 
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interaction between the amount of deception and bias (coefficients �1b) occurs even after controlling 

for the bias b and the state S.  Furthermore, these basic patterns are reproduced when the sample is 

divided in half, which provides some assurance of statistical reliability even though the absolute 

sample size is modest.48  

As noted, the goal of measuring eyetracking and pupil dilation is to see whether these 

behavioral measures enable us to improve upon predictions of theory.  Below we use lookup data 

and pupil dilation to try to predict states.  

 

IV. Lie-detection and Prediction 

IV.A Predicting Deception 

 We have shown in Table 5 the result of predicting pupil dilation from states, bias, and the 

interaction between bias and deception.  From a practical point of view, it is useful to know what 

happens when we run the regression in reverse—can the amount of deception be predicted using 

pupil dilation?  

 Table 6 summarizes some results using logit and ordered logit estimation to predict whether 

subjects deceive or not, and the amount of deception, using bias and state dummies, and the 

difference in pupil size between the beginning and the end of the decision process (also controlling 

for individual fixed effects and individual learning effects).  Since b=0 leads to truth-telling almost 

                                                 
48 Because we measured eyetracking and pupil dilation from 12 senders (a small sample compared to other studies in 
which measurements per subject are less frequent or much easier), it is useful to check how reliable these results are in 
two subsamples of six subjects each. The 400-msec interval from +0.4 to +0.8 secs after decision time gives the highest 
R2’s so we compare those. The �3s coefficients on states give similar patterns—states S=1-2 are negative and S=4-5 are 
positive (-9.11**, -1.90, 3.92*, 5.18* for first six; -8.73***, -4.25*, 4.10*, 6.84*** for second six, where asterisk (*) 
notation follows Table 6.) The �1b coefficients across bias levels (b=0, 1, 2) are the most important. They are 4.79, 
3.44**, 2.42* for the first six subjects and 12.94*, 4.63***, and 4.47*** for the second six subjects.  For other intervals, 
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all the time, there is little variation in the dependent variables so we exclude b=0 and focus solely 

on the periods in which b=1 or b=2.  Specifically, for the binary dependent variable LIE (=0 if M=S, 

=1 otherwise), we estimate the logit regression: 
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     With the discrete dependent variable LIE_SIZE= |M–S|, ranging from 0 through J = 4, we run 

the ordered logit regression, for j = 0, 1, 2, 3, 4 (= J), 
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where the Controls include individual fixed effects and individual learning effects as in the pupil 

dilation regressions of the previous section, and  

PUPILini  =  Average pupil size (area) size in the first 0.4 seconds of the decision process starting as 

soon as the decision-making screen is displayed. 

PUPILend  =  Average pupil size (area) size in the last 0.4 seconds before the decision time 

 

 The parameter �1 represents the effect of having bias 1 instead of 2, �2s represents the effects 

of the true state (other than 3), and �3d represents the effect of the difference between the final and 

initial pupil size, and �j (or �) are the constants.  The “all” regressions use all observations.  The 

“part” regressions perform a (2/3, 1/3) coin toss for each observation to determine whether to use it 

in estimation or not.  Hence, the “part” regression typically uses two-thirds of the data to estimate 

the regression, and then use those estimated coefficients to predict whether there is a LIE or not and 

the LIE_SIZE of the lie (both predictions are rounded to the nearest integer) for the holdout data 

                                                                                                                                                                  
as predictive power (R2) falls the reliability across the two subsamples falls but the coefficient signs are almost always 
the same in the two subsamples and magnitudes are typically reasonably close. 
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(those not used in estimation).49  This partial estimation-prediction procedure is repeated 100 times.  

The coefficients and standard errors reported below are the mean and standard deviation of 

estimates across these 100 repetitions (a bootstrap procedure).   

 As shown in Table 6, �1 is negative and significant for the size of the lie (LIE_SIZE), but 

not for whether one lies or not (LIE), indicating that different bias conditions influence the amount 

of deception (LIE_SIZE) but not whether deception occurs at all (LIE).  The effect of the true state 

is only robustly significant for state S=5, when people deceive less often and to a smaller extent 

(indicating a “ceiling” effect at the top of the state space).  The change in pupil dilation times b=2 

interaction (�32) is positive and significant (though the �31 coefficients are not).  Thus, pupil dilation 

can be used to predict whether a person is being deceptive, and how deceptive they are, when the 

bias condition encourages deception most (b=2).  The bottom rows of the “(part)” columns of the 

table show that when part of the sample is used to forecast the rest of the data, the forecasts are 

wrong about 20 percent of the time for lying or not (LIE) and 34 percent of the time for the size of 

the deception (LIE_SIZE), but the errors of deception size tend to be small (around 80 percent are 

only off by one).  Keep in mind that if senders were playing the most informative equilibria, 

deceptions could only be accurately predicted 40 percent and 20 percent of the time for b = 1 and 2, 

respectively.  So the hit rates of 80 percent and 66 percent (100 percent minus the error rates 

reported in the table) are a substantial improvement over the simplest prediction of equilibrium 

game theory.  

                                                 
49 Here we use the estimated probabilities to calculate the expected outcome (lie/not lie or size of the lie) and round to 
the nearest integer.  Using the most likely outcome (choose the highest probability) yield almost identical results.   
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IV.B Predicting the True State from Lookups and Pupil Dilation   

Although the previous section shows how we may predict deception to a modest degree, one 

might still wonder how much the receivers can gain by seeing senders’ pupil dilation or even the 

lookup patterns.  Hence, now we ask how well a combination of lookup patterns and pupil dilation 

can predict the true state.  For the dependent variable STATE j, ranging from 1 to 5, model 1 is an 

ordered logit regression  
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where lookups are consolidated into two integer variables: 

ROWself  =  The state of the own-payoff row which has the longest total lookup time of all own-

payoff state rows 

ROWother =  The state of the opponent-payoff row which has the longest total lookup time of all 

opponent-payoff state rows 

The coefficients  �1 represent the effect of having bias b=1 instead of b=2, �2b represents the 

information about the state contained in the message, �3b represents the effects of the “most viewed 

row” of one’s own payoffs, and �4b represents the effects of the “most viewed row” of the 

opponent’s payoffs.  The �j are state-specific constants.   

In alternative specifications (models 2), we include pupil size effects (�5 and �6), as in the 

previous section.  To do this we estimate the ordered logit regression 
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As in the partial-sample results in Table 6, we estimate these three models using roughly 2/3 

of the data, then forecast the actual state using the estimated coefficients for the remaining 1/3 of 

the data.  This procedure is performed 100 times; average �s and (bootstrap) standard errors across 

the 100 resamplings are reported in Table 7.   

Table 7 shows that �1 is negative (and almost significant) for both specifications, indicating 

possible differences between small and large biases.  The significance of �2b indicates that the 

messages are informative about the states.50  The smaller the message, the smaller is the true state, 

even though standard game theory predicts that little information should be transmitted in the 

message (none should be transmitted, when b=2).   

 The lookup data are significantly correlated with states as well.  The coefficients �3b, on the 

most-viewed own row variables, are positive and significant in both models. The coefficients �4b, on 

the most-viewed other row variables, are positive but are smaller than own-row coefficients, and are 

only significant in model 1 when b=2.  The important point here is that lookup data improve 

predictability even when controlling for the message.  In fact, if the message is 4, but the lookup 

data indicate the subject was looking most often at the payoffs in row corresponding to state 2, then 

the model might predict that the true state is 2, not 4.   

 Pupil size effects are evident too.  The coefficient �5 on the change in pupil size (i.e., pupil 

dilation) is significantly positive, which means higher states generally produce more dilation (as 

shown in Table 5).  Interacting pupil dilation with the message sent has a negative estimated �6. 

That means that when the pupil is more dilated, the weight placed on the message falls—i.e., 

messages are less informative about the true state because a deception is more likely.   

                                                 
50 We also tried yet another model, which included message dummies instead of MESSAGE, but the results are almost 
the same.   
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      To predict the true state, we again use the estimated logit probabilities to calculate the 

expected state, and round it to the nearest integer.  The error rates in predicting states in the holdout 

sample are still substantial.  Table 7 shows that the state is predicted incorrectly about 30 percent 

and 60 percent of the time when b=1 and b=2, respectively.  This is better than the actual 

performance of the receiver subjects, however: They “missed” (A�S) 56.2 percent of the time for 

b=1, and 70.9 percent for b=2. (Nevertheless, keep in mind that the error rates in equilibrium would 

be 60 percent and 80 percent which are even worse).   

Around 75 percent of these erroneous predictions from the logit model only miss the state by 

one, for both specifications and both bias levels b.  This is comparable with the actual performance 

of the receiver subjects, whose “misses” were only off by one unit 80 percent and 67 percent of the 

time, when b=1 and b=2. This means that including lookup data and pupil dilation can improve 

accuracy even for incorrect prediction, especially for b=2.  Also note that the “misses” of the 

subjects and the logit model in Table 7 are both inconsistent with equilibrium, which predicts that 

100 percent of the “misses” will be off by exactly one unit when b=1, and 50 percent of the misses 

will be one unit off when b=2.   

 An interesting calculation is how much these predictions might add to the receiver 

payoffs (cf. “economic value” in Colin F. Camerer et al., 2004).  For biases b=1 and b=2, the 

average actual payoffs for receivers were 93.4 and 86.2 (which are higher than predicted by theory, 

87.4 and 71.6, because of the empirical bias toward truth-telling which helps receivers).  If receivers 

had based their predictions on the models estimated in Table 7, and chose the same action as the 

predicted state (for the holdout sample), their expected payoffs would be around 100 for b=1 and 92 
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for b=2, which is a modest economic value of 6-8 percent. 51   These average payoffs are all 

significantly higher than both what subjects actually earn in the experiments and that predicted by 

equilibrium theory.   

 

V. Conclusion 

 This paper reports experiments on sender-receiver games with an incentive for biased 

transmission (such as managers or security analysts painting a rosy picture about a corporation’s 

earnings prospects).  Senders observe a state S, an integer 1-5, and choose a message M.  Receivers 

observe M (but not S) and choose an action A.  The sender prefers that the receiver choose an action 

A=S+b, which is b units higher than the true state, where b=0 (truth-telling is optimal), or b=1 or 

b=2.  But receivers know the payoff structure, so they should be suspicious of inflated messages M.  

 Equilibrium analysis predicts that when b=1 there will be some partial pooling of the truth; 

when b=2 the only equilibrium is “babbling” in which messages reveal nothing about the true states.  

Our experimental results confirm earlier experimental findings of “overcommunication”—messages 

are more informative of the state than they should be, in equilibrium theory.  To explore the 

cognitive foundations of overcommunication, we used eyetracking to record what payoffs the 

sender subjects are looking at, and how widely their pupils dilate (expand) when they send 

messages.  The biased transmission paradigm also expands the quality of research on lie-detection 

in general: Deception in these games is spontaneous and voluntary (most studies use instructed 

lying); and both players have a clear and measurable financial incentive to deceive, and to detect 

deception (most studies lack one or both types of incentives).  

                                                 
51 Of course, this calculation assumes the receivers could measures lookups and pupil dilation without senders altering 
their lookup patterns because they knew they were being watched and studied. Whether such techniques actually add 
value is beyond the scope of this paper.   
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 The lookup data show that senders do not look at receiver payoffs as frequently or as long as 

that of their own payoffs, so they do not appear to be thinking very strategically.  Nor does it seem 

that guilt plays an important role.  At the same time, the senders’ pupils dilate when they send 

deceptive messages (M�S), and dilate more when the deception |M-S| is larger in magnitude.  

Together, these data are consistent with the hypothesis that figuring out how much to deceive 

another player is cognitively difficult.  The cognitive measures are reliable enough that deception is 

correlated with pupil dilation, and reversing the regression enables us to predict whether a subject is 

deceiving mildly well from the dilation response (when the bias parameter b=2 is largest).  

Furthermore, using a combination of sender messages, lookup patterns, and pupil dilation, one can 

predict the true state about twice as often as predicted by equilibrium, and increase receiver payoffs 

by 6-8 percent compared to what subjects actually earn in the experiment.   

 There are many directions for future research. We see our unique contribution as bringing a 

combination of eyetracking (used in just three types of games so far) and pupil dilation, a measure 

of cognitive difficulty, to bear on the kind of simple game that lies in the heart of many economic 

and social questions.  Economists often talk loosely about the costs of decision making or difficulty 

of tradeoffs; pupil dilation gives us one way to start measuring these costs. Given the novelty of 

using these two methods in studying games, the results should be considered exploratory and simply 

show that such studies can be done and can yield surprises (e.g., the predictive power of pupil 

dilation). 

 In the realm of deception, two obvious questions for future research are whether there are 

substantial individual differences in the capacity or willingness to deceive others for a benefit, and 

whether experience can teach people to be better at deception, and at detecting deception. Both are 

important for extrapolating these results to domains in which there is self-selection and possibly 
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large effects of experience (e.g., politics). In other domains of economic interest, the combination of 

eyetracking and pupil dilation could be used to study any situation in which the search for 

information and cognitive difficulty are both useful to measure, such as “directed cognition” 

(Xavier Gabaix et al., 2006), perceptions of advertising and resulting choices, and attention to 

trading screens with multiple markets (e.g., with possible arbitrage relationships).   
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Appendix: Methods 

 Eyetracking data and button responses were recorded using the mobile Eyelink II head-

mounted eyetracking system (SR Research, Osgoode, Ontario).  Eyetracking data were recorded at 

250 Hz. The mobile Eyelink II is a pair of tiny cameras mounted on a lightweight rack facing 

toward the subjects’ eyes, and supported by comfortable head straps. Subjects can move their heads 

and a period of calibration adjusts for head movement to infer accurately where the subject is 

looking. New nine-point calibrations and validations were performed prior to the start of each 

experiment in a participant’s session.  Accuracy in the validations typically was better than 0.5º of 

visual angle.  Experiments were run under Windows XP (Microsoft, Inc.) in Matlab (Mathworks, 

Inc., Natick, MA) using the Psychophysics Toolbox (David H. Brainard, 1997; Denis G. Pelli, 1997) 

and the Eyelink Toolbox (Frans W. Cornelissen et al., 2002).   

     Eyetracking data were analyzed for fixations using the Eyelink Data Viewer (SR Research, 

Hamilton, Ontario).  In discriminating fixations, we set saccade velocity, acceleration, and motion 

thresholds to 30º/sec, 9500º/sec2, and 0.15º, respectively.  Regions of interest (ROIs), or the boxes 

subject look up, were drawn on each task image using the drawing functions within the Data Viewer. 

Measures of gaze included Fixation Number (i.e., the total number of fixations within an ROI) and 

Fractional Dwell Time (i.e., the time during a given round spent fixating a given ROI divided by the 

total time between image onset and response).  Only those fixations beginning between 50ms 

following the onset of a task image and offset of the task image were considered for analysis. 

     All task images were presented on a CRT monitor (15.9 in x 11.9 in) operating at 85 or 100 Hz 

vertical refresh rate with a resolution of 1600 pixels x 1200 pixels, and at an eye-to-screen distance 

of approximately 24 inches, thus subtending ~36 degrees of visual angle. 
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Table 1: Actual Information Transmission 

BIAS Corr(S, M) Corr(M, A) Corr(S, A) Predicted Corr(S, A) 

0 0.990 0.998 0.988 1.000 

1 0.725 0.738 0.721 0.707 

2 0.630 0.571 0.497 0.000 

 

 

 

 

 

 

Table 2: Sender and Receiver’s Payoffs 

BIAS uS (std) uR (std) Predicted uR (std) 

0 109.14 (4.07) a   109.14 (4.07) a   110.00 (0.00) 

1 93. 35 (20.75)    94.01 (19.86)    87.38 (18.88) 

2 41.52 (49.98)    85.52 (25.60)    71.59 (27.26) 

Note: a Payoffs are exactly the same for senders and receivers due to the symmetry of the payoffs when b=0.  
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Table 3: Average Sender Fixation Counts and Lookup Time across Game Parameters 

State Bias Sender Payoffs Receiver Payoffs 

BIAS 

 Res-

ponse 

time 

(sec.) 

Fixation  

(count) 

Lookup 

(sec.)  

Fixation 

(count) 

Lookup  

(sec.)  

Fixation 

 (count) 

Lookup 

(sec.)  

Fixation 

 (count) 

Lookup 

 (sec.) 

0 2.99 2.6 0.65 2.1 0.41 3.0 0.73 1.4 0.27 

1 6.10 5.0 1.47 3.9 0.99 8.1 2.29 3.9 1.05 

2 8.62 6.2 1.72 5.5 1.52 10.6 3.03 5.4 1.50 

overall 6.16 4.7 1.34 4.0 1.02 7.6 2.14 3.7 1.00 

   

 

 

 

Table 4: Average Fixation Counts and Lookup Time per Row 

True State Rows Other Rows 

BIAS Fixation Counts  

(counts per row) 

Lookup Time  

(sec. per row)  

Fixation Counts  

(counts per row) 

Lookup Time  

(sec. per row)  

0 2.2 0.54 0.5 0.11 

1 6.8 2.06 1.3 0.32 

2 7.8 2.24 2.0 0.57 

overall 5.9 1.71 1.3 0.36 
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Table 5: Pupil Size Regressions for 400 milliseconds Intervals (standard errors in parentheses) 

Y PUPILi 
-1.2~ 

-0.8sec 

-0.8~ 

-0.4sec 

-0.4~ 

0.0sec 

0.0~ 

0.4sec 

0.4~ 

0.8sec 

constant � 99.56*** 99.53** 103.78*** 103.12*** 102.90*** 

  (4.90) (4.54) (4.15) (4.00) (4.04) 

LIE_SIZE * BIAS �10 -1.51 -9.84 -1.08 -2.18 8.16 

interactions  (5.52) (5.09) (5.34) (4.05) (4.64) 

 �11 0.94 2.19* 2.69*** 4.30*** 3.89*** 

  (0.94) (0.88) (0.80) (0.76) (0.77) 

 �12 3.08*** 3.15*** 3.13*** 2.77*** 3.18*** 

  (0.91) (0.85) (0.78) (0.74) (0.76) 

BIAS effects �20 1.96 1.01 -1.60 -0.38 1.94 

(b=2 benchmark)  (1.57) (1.46) (1.34) (1.28) (1.30) 

 �21 2.99 1.86 1.23 -0.42 1.46 

  (1.71) (1.59) (1.45) (1.39) (1.41) 

STATE effects �31 -1.58 -0.69 -1.34 -7.52*** -8.88*** 

(S=3 benchmark)  (1.39) (1.27) (1.16) (1.11) (1.12) 

 �32 -1.37 -1.08 -1.40 -2.17 -2.87* 

  (1.51) (1.41) (1.29) (1.21) (1.23) 

 �34 1.26 3.53* 1.89 4.94*** 3.97** 

  (1.50) (1.40) (1.27) (1.21) (1.23) 

 �35 1.49 1.89 2.09 6.20*** 5.69*** 

  (1.67) (1.55) (1.42) (1.35) (1.38) 

 N 497 495 497 510 505 

 F 5.63 8.72 13.71 14.33 16.43 

 R2 0.291 0.407 0.530 0.535 0.574 
Note: t-Test p-values lower than *5 percent, ** 1 percent, and *** 0.1 percent. 
Note: Regarding individual differences (using subject 6 as benchmark), before the decision time, only two or 

three of the �k are significant, mainly for subject 2 and 7.  After the decision is made, individual 
differences increase slightly and have 3-5 significant �k. 
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Table 6: Order Logit Results of Deception and Size of Deception (standard errors in parentheses) 

Note:  * Denotes p<0.05 (t-test). 
a 20 observations without the needed pupil size measures are excluded.  

X Y LIE (all) LIE (part) LIE_SIZE (all) LIE_SIZE (part) 

BIAS=1 �1 -0.57 -0.64 -0.65* -0.69* 

  (0.44) (0.55) (0.27) (0.22) 

STATE=1 �21 -0.68 -0.75 -0.03 -0.04 

  (0.53) (0.46) (0.35) (0.28) 

STATE=2 �22 0.09 0.20 0.19 0.18 

  (0.57) (0.52) (0.34) (0.27) 

STATE=4 �24 -0.17 -0.04 -1.05* -1.11* 

  (0.62) (0.51) (0.40) (0.34) 

STATE=5 �25 -5.72* -6.20* -5.10* -5.42* 

  (0.76) (1.25) (0.55) (0.64) 

(PUPILend-PUPILini) 

* BIAS=1 
�31 -0.12 -0.10 0.12 0.14 

  (0.23) (0.21) (0.15) (0.13) 

(PUPILend-PUPILini) 

* BIAS=2 
�32 1.22* 1.37* 0.97* 0.96* 

  (0.33) (0.54) (0.22) (0.25) 

total observations Na 366 366 366 366 

N used in estimation 366 242.0 366 243.8 

N used to predict 366 124.0 366 122.2 

Percent of wrong prediction 
(b=1) 7.0 16.6 26.5 34.3 

Percent of wrong prediction 
(b=2) 11.1 21.3 26.0 34.2 

Percent of errors of size  

(1,2,3+) (b=1) 
N/A   N/A (94,4,2) (87,11,3) 

Percent of errors of size  

(1,2,3+) (b=2) 
N/A   N/A (79,15,6) (78,15,7) 
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Table 7: Predicting True States (Resampling 100 times) (standard errors in parentheses)  

Note:  * and ** Denotes p<0.05 and p<0.001 (t-test)   
a Observation with less than 0.5 seconds lookup time and without the needed pupil size measures are excluded. 
b Two sample t-test conducted against the actual payoffs of receiver subjects in the experiment. 

X Y Actual  STATE (model 1) STATE (model 2) 

BIAS=1 �1 - -1.50 -1.72 
  - (0.83) (0.88) 

MESSAGE * BIAS = 1 �21 - 0.81** 1.15** 
  - (0.24) (0.28) 

MESSAGE * BIAS = 2 �22 - 0.77** 0.96** 
  - (0.23) (0.27) 

ROW self * BIAS=1 �31 - 0.97** 0.94* 
  - (0.23) (0.29) 

ROW self * BIAS=2 �32 - 0.96* 1.02* 
  - (0.29) (0.33) 

ROW other * BIAS=1 �41 - 0.23 0.19 
  - (0.17) (0.19) 

ROW other * BIAS=2 �42 - 0.34* 0.28 
  - (0.16) (0.17) 

(PUPILend-PUPILini) �5 - - 1.17** 
  - - (0.27) 

(PUPILend-PUPILini)  �6 - - -0.25** 
* MESSAGE  - - (0.07) 

total observations N a  208 208 201 

N used in estimation - 138.4 134.3 

N used to predict - 69.6 66.7 

Percent of wrong prediction (b=1) 56.2 29.4 33.5 

Percent of errors of size (1,2,3+) (b=1) (80, 15, 5) (73, 21, 6)  (74, 20, 6) 

Average predicted payoff (b=1) b  93.4 (22.3) 100.7* (2.8) 99.3* (3.3) 

Percent of wrong prediction (b=2) 70.9 60.2 58.7 

Percent of errors of size (1,2,3+) (b=2) (67, 26, 7) (74, 21, 5)  (79, 16, 5) 

Average predicted payoff (b=2) b 86.2 (23.8) 91.8* (3.3) 93.1* (3.4) 
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Figure 1: Sender Screen for b=1 and S=4 
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Figure 2: Raw Data Pie Charts (b=0) 

 
 
The true states are in rows, and senders’ messages are in columns.  Each cell contains the average 
action taken by the receivers and a pie chart break down of the actions.  Actions are presented 
in a gray scale, ranging from white (action 1) to black (action 5).  The size of the pie chart is 
proportional to the number of occurrences for the corresponding state and message.  
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Figure 3: Raw Data Pie Chart (b=1) 

 
The true states are in rows, and senders’ messages are in columns.  Each cell contains the average 
action taken by the receivers and a pie chart break down of the actions.  Actions are presented 
in a gray scale, ranging from white (action 1) to black (action 5).  The size of the pie chart is 
proportional to the number of occurrences for the corresponding state and message.   
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Figure 4: Raw Data Pie Chart (b=2) 

 

The true states are in rows, and senders’ messages are in columns.  Each cell contains the average 
action taken by the receivers and a pie chart break down of the actions.  Actions are presented 
in a gray scale, ranging from white (action 1) to black (action 5).  The size of the pie chart is 
proportional to the number of occurrences for the corresponding state and message.   
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Figure 5: Lookup Icon Graph for b=1 

Part (a): Sender Payoffs 

 
Part (b): Receiver Payoffs 

 
Each row reports the lookup counts and time for the “true state row” corresponding to the given true 
state.  The width of each box is scaled by the number of lookups and the height by the length of 
lookups (scaled by the little “ruler” in the upper right corner). The vertical bar on the first column 
icon represents the total lookup time summed across each row.   
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Figure 6: Lookup Icon Graph for b=2 

Part (a): Sender Payoffs 

 
Part (b): Receiver Payoffs 

 

Each row reports the lookup counts and time for the “true state row” corresponding to the given true 
state.  The width of each box is scaled by the number of lookups and the height by the length of 
lookups (scaled by the little “ruler” in the upper right corner).  The vertical bar on the first column 
icon represents the total lookup time summed across each row.   
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Appendix for Referees [NOT INTENDED FOR PUBLICATION] 

Appendix: Experiment Instructions 
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Appendix Figure 1: Icon graph of lookups (rectangle width) and looking time (shaded area) for b=0 

 

 

 

 

Appendix Table 1: Average response time change for different biases 

Bias N  
Average for  

first 15 rounds 
N  

Average for  

middle 15 rounds 
N  

Average for  

last 15 rounds 

0 38 4.69 47 2.79 55 1.99 

1 73 7.74 60 4.83 59 5.36 

2 67 9.02 68 8.78 51 7.90 

overall 178 7.57 175 5.81 165 5.02 

* The numbers of observations are slightly different because we exclude 10 rounds where subjects had to used the 
keyboard to make their decision.  Also, subject #4 had severe pain and the experimenter was forced to stop the 
experiment at the end of round 33.   

Note: Since the bias was randomly determined each round, and subject #4 stopped at round 33 (due to excess pain 
wearing the eyetracker), numbers of observations are not equal.  Dropping subject #4 does not change the results. 

 

 

 


