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Abstract

We study how subjects in an experiment use different forms of pub-
lic information about their opponents’ past behaviour. In the absence
of public information, subjects appear to use rather detailed statistics
summarizing their private experiences. If they have additional public
information, they make use of this information even if it is less precise
than their own private statistics–except for very high stakes. Mak-
ing public information more precise has two consequences: It is also
used when the stakes are very high and it reduces the number of sub-
jects who ignore any information–public and private. That is, precise
public information crowds in the use of own information. Finally, our
results shed some light on unravelling in centipede games.
JEL codes:
Keywords: backward induction, analogy-based equilibrium, ex-

periment

1 Introduction

Any form of belief-based learning requires that agents receive some informa-
tion about their opponents’ play. The information might be precise or noisy,
gained through own experience or through other channels, regard all parts
of opponents’ strategies or only certain aspects thereof. In this paper we
study how the provision of different forms of public information about oth-
ers’ behaviour affects subjects’ play in a specific and highly stylized strategic
interaction.

Specifically, we consider a variant of the so-called centipede game in-
troduced by Rosenthal (1981). This game has the attractive feature that
opponents have to take many similar decisions. At each decision node a
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player must decide between Take or Pass. This allows us to vary the pre-
cision of information about others in a very natural way. Jehiel (2003) has
proposed that boundedly rational agents who think about others who have to
take similar decisions repeatedly might actually use coarse aggregate statics
when forming their beliefs. In a centipede-like game a very coarse statistic
would, for example, tell you that your opponent passed, on average across
all decision nodes, x% of the time whereas a fine statistic would tell you the
pass rate of your opponent at every decision node. The framework intro-
duced in Jehiel (2003) permits the description of the interaction of players
who base their beliefs on any such statistics, and the corresponding equi-
librium called Analogy-Based Expectation Equilibrium is parameterized by
the coarseness of the statistics used by the players.1

In our experiment, groups of subjects play several times a centipede-like
game, and we provide subjects with public information about past behavior
of their opponents. This information varies in its precision. It can either be
based on averages across all nodes or it can be node-specific. Furthermore,
the provided statistics are either averaged across the entire history of play
or based on moving averages from the last five periods. This gives rise to
a 2x2 design. In addition, we have a treatment without public information
where agents have only their own experience.

When analysing the data from the treatment without public information
we compute private statistics that are equivalent to the four different public
statistics we provide in the other treatments. Analysing the decision data
we find that subjects’ behaviour is best explained by use of the most precise
private statistic. That is, at any given node a subject’s behavior is best
explained as a reaction to what they learned from their own recent experience
about what happens at the following node. The higher the pass rate that
they experienced at the following node, the more likely they are to pass at
the present node.

Surprisingly, we find that subjects’ behavior is not much affected by
their own past performance as measured, for example, by their payoff so
far or the frequency with which they won games. Overall, this suggests
that subjects who have just their own experience use their experience in a
rather sophisticated manner. Their behaviour is much better described by
a model with node-specific memory than by a model with a coarser memory
structure where they just remember one average across all nodes or by a
model in which they solely remember their past average performance.

1The statistic used by a player is referred to as an analogy class and defined as a
partition of the decision nodes of the other player.
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Using this result as a benchmark we can then analyse behaviour in the
treatments with public information and we can study to what extent sub-
jects use public information and private experience. We find that most of
the time subjects who do make use of information make use of both types of
information. However, the number of subjects who disregard any informa-
tion (public as well as own) is considerably larger if the public information
lacks precision. Thus, high-quality public information triggers the general
use of information, private and public.

Our experiment also sheds new light on the issue of unravelling in take-or-
pass games. From a theory viewpoint, more unravelling should be expected
with the node-specific statistics than with the coarse statistics. With node-
specific statistics, this is the classical insight: players can detect the exact
node at which their opponent takes and as a consequence players should
take earlier and earlier. With coarse statistics like average pass rates across
all nodes players fail to identify when exactly their opponent takes. As a
consequence a few pass decisions can stabilize play and prevent unravelling
(see Jehiel 2003 for details on this).

As we have seen that subjects tend to rely on rather precise node-specific
statistics when they have only their own experiences, one would, therefore,
expect a lot of unravelling in the treatment without public information.
However, as it turns out unravelling in that treatment is far from complete,
which is due to the fact that without good public information there are a lot
of “non-learners”, i.e., subjects who always do the same regardless of what
happens in the game. In fact, these non-learners pass so often that they
help to stabilize play in the treatment without public information quite a
bit above the Nash equilibrium. We also observe that there is much more
pronounced unravelling in the presence of a precise public statistic than in
the other treatments. This is because (1) a precise public statistic reduces
the number of non-learners as we have stated before and non-learners appear
to pass a lot; and (2) the pass rate at a given node falls dramatically when
both, the private and public information about the pass rate at the next
decision node are very low.2 Since such a scenario can only occur in the
treatment with node-specific statistics, it provides a further explanation for
the more pronounced unravelling attached to this treatment.

Compared to other centipede games we find a much higher degree of
unravelling, which is in part due to the payoff structure that we employ and
that removes incentives for cooperation (we assume that the player who does

2Such an attitude toward extreme information is per se sufficient to generate unravel-
ling.
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end node 1 2 3 4 5
winner’s payoff £0.30 £0.60 £1.20 £2.40 £4.80

end node 6 7 8 9 10
winner’s payoff £9.60 £19.20 £38.40 £76.80 £153.60

Table 1: Winner’s payoff in the TOL game.

not take gets invariably the same payoff irrespective of when the opponent
takes). Thus, the non-unravelling observed in earlier centipede games (for
example, McKelvey and Palfrey 1992 or Nagel and Tang 1998) is at least
partly due to subjects’ willingness to cooperate, perhaps, induced through
“social preferences” (see, for example, Bolton and Ockenfels 2000).

The remainder of the paper is organized as follows. In Section 2 we
introduce the game that we study in the experiment and offer a brief the-
oretical discussion. In Section 3 we introduce the experimental design and
procedures. Section 4 contains the data and data analysis and Section 5
concludes.

2 The game

We study a version of Rosenthal’s (1982) centipede game, a simple game of
take-or-pass.3 There are two players, called Even and Odd. The game has
nine decision nodes. At each node one of the two players decides between
Take or Pass. Odd decides at odd nodes 1, 3, 5, 7, and 9; Even at even
nodes 2, 4, 6, and 8. If a player takes, the game is over. The game also ends
if Odd passes at node 9. To make our terminology as simple as possible
we will say that, if odd passes at node 9, node 10 is reached where Even
automatically takes. Let the player who ends the game by taking be called
the “winner” and the other player the “loser”. This helps us to define the
payoffs in a simple manner. The loser earns £0.10 regardless of what was
the last decision node. The winner’s payoff, on the other hand, depends on
the last decision node. At node 1 it is £0.30. After that it doubles from node
to node, reaching £153.60 at node 10. Table 1 shows the winner’s payoff for
all possible last decision nodes. Slightly abusing standard terminology we
will refer to these in the following as end nodes.

The game has a number of Nash equilibria in pure strategies and infi-
nitely many in mixed strategies. But all these equilibria induce the same

3Reny (1993) calls the same game Take-it-or-leave-it.
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equilibrium path where Odd takes immediately at node 1. The unique sub-
game perfect equilibrium prescribes for both players to take at every node.
Our game shares all these properties with Rosenthal’s original game. How-
ever, there is one major difference: the payoff of the player who does not take
is the same irrespective of when take occurs.4 That is, one of the players is
unambiguously the loser and the decision to pass cannot be interpreted as
a cooperative move. Despite the pass move not being reducible to a coop-
erative move, there are still several reasons for why a player might wish to
pass in our game. Intuitively, a player in a gambling mood (gambling here
is about the behavior of the other player) may be thought of as being ready
to pass at least in the early nodes of the game.

Several approaches have been proposed to explain why players may pass
in the centipede game. A discussion of these approaches appears in Rubin-
stein (1998) and Jehiel (2003). Of particular relevance to this paper is the
analogy-based expectation equilibrium approach introduced in Jehiel (2003):
This approach assumes that players base their choice of strategy on the sole
information about the average behavior of their opponent over bundles of
nodes referred to as analogy classes. To illustrate the approach, assume that
players use the coarsest analogy partition. That is, each player bundles all
the nodes of the other player into a single analogy class and bases his choice
of strategy on the sole information about the average pass rate of the other
player throughout the game. A strategy profile in which the Even player
passes in all nodes and the Odd player passes in all nodes except node 9
is an equilibrium under this assumed analogy grouping (see Jehiel 2003).
Let us review the reasoning of the Even player. This player knows that the
Odd player passes on average with probability 4/5 (this is the statistic that
would emerge from the assumed strategy profile). Extrapolating that this is
the Odd player’s behaviors at each of his decision nodes 1-3-5-7-9, the Even
player finds passing attractive even at decision node 8 (4/5× 2 > 1).

More generally, most coarse analogy grouping would allow players to
pass for a few number of times. This is because such behaviors give rise
to high pass rates, and, based on such an information, players would find
it optimal to pass except toward reaching the end of the game. The logic
of backward induction breaks down in this approach because players fail to
identify exactly when their opponent stops passing.

4Such a specification is considered by Reny (1993).
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3 Experimental design and procedures

In the experiment we vary the amount and type of public information play-
ers receive about other players whenever they have to make a decision. But
before going into the details of the treatments, let us briefly describe those
aspects of the design and procedures which were kept constant across treat-
ments.

Each session had an even number of subjects who were recruited via
Email. (Actual numbers varied from 12 to 18.) Roles were randomly as-
signed before the first round of the experiment and kept fixed during the
entire course of a session. Sessions lasted 50 rounds. In each round sub-
jects were randomly paired to play the extensive-form take-or-pass game.5

Once the game ended they could infer their payoffs and a new round was
started. Interaction took place via computer terminals using Tomlinson’s
(2003) package but instructions were handed out on paper (see Appendix
A).

For actual monetary payoffs, we selected two rounds, one from the first
25, one from the second 25, which was, of course, known by subjects. On
top of their game payoff, subjects received a £8 as a show-up fee. They were
paid immediately after each session and no subject participated more than
once.

The various treatments we considered are listed below. In the first four
treatments, after the first round, subjects received some information about
the past play of others whenever they had to make a decision. More specifi-
cally, odd subjects were informed about past pass rates of even subjects, i.e.,
some relative frequency with which the group of even subjects had passed
in the past (and vice versa). In the last treatment labelled NO, no public
information was available to subjects.

• In treatment AN pass rates were aggregated over all nodes and all
previous rounds. Whenever Odd had to make a decision, a message
was displayed saying that Even subjects had previously passed in x
% of all instances. As average pass rates were only updated between
rounds, the number x would not change in the course of a single game.

• In treatment NS pass rates were node-specific but still aggregated
over all previous periods. Whenever Odd had to make a decision
at node k, a message was displayed saying that Even subjects had

5Randomizations were done on the spot, i.e., the matching did not follow any prede-
termined pattern.
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AN NS AN-MA NS-MA NO
12 + 14
= 26

12 + 18
= 30

18 + 18 + 12
= 48

12 + 14 + 14
= 40

14 + 12 + 16
= 42

Table 2: Subjects participating in treatments and sessions.

previously passed at node k + 1 in x % of all instances where node
k+1 was reached. If k+1 had not been reached before, subjects were
told so. Again, pass rates were updated after each round.

• Treatment AN-MA was identical to treatment AN with the excep-
tion that pass rates were calculated as moving averages from the last
5 rounds.

• Treatment NS-MA was identical to treatment NS with the excep-
tion that pass rates were calculated as moving averages from the last
5 rounds.

• Finally, in treatment NO subjects did not receive any information
about average pass rates other than their experience from own past
play.

In all, 186 subjects participated. Table 2 shows how the total of subjects
was allocated to treatments and sessions.

4 Experimental results

4.1 Evolution of end nodes

A first approach to how subjects played the take-or-pass games is obtained
by looking at the end nodes they reached. Figures 1, 2, and 3 show aver-
age end nodes for all sessions. Casual inspection of the figures reveals that
without feedback information there is some rather light unravelling in the
beginning but rather stable play over the last 30 or so rounds. In the AN
treatments there seems to be some unravelling during the first half, followed
by rather stable play towards the end. Only in session AN-MA 2 unravelling
appears to continue until the very end. In general, there is not much dif-
ference between AN and AN-MA. Finally, in the NS treatments we observe
more consistent downward trends in all sessions. In NS-MA 3 the unrav-
elling is almost complete after the first half of the experiment after which
average end nodes fluctuate between 1 and a little over 2. Again, there is no
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Figure 1: Evolution of mean end nodes in NO.

perceptible difference between information that is aggregated over all rounds
and moving averages.

The differences in the degrees of unravelling that appear to be obvious
from looking at the three figures can be validated statistically. We estimated
random-effect panel regressions of the type

nit = α+ βt+ vi + εit

where n is the end node reached by player i, t is time, vi is the subject-specific
error term and εit the residual. We estimated this model separately for all
treatments (either for odd or for even players to avoid double counting)
and for different spans of time. In particular, we analyzed the last 10, 20,
30, and more periods. For the last 30 (or more) periods β is significantly
negative for all treatments. In treatment NO the time coefficient β becomes
small and loses its high significance in the last 20 periods. And it becomes
insignificant on all levels in the last 10 periods. In both, AN and AN-MA,
β is significantly negative for the last 20 (or more) periods but loses its
significance in the last 10 periods. In contrast, in both, NS and NS-MA, β
is always–including the last 10 periods–significantly negative. Tables 3, 4,
and 5 show the results of regressions for the first 30, the last 20, and the last
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Figure 2: Evolution of end nodes in AN & AN-MA.
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Figure 3: Evolution of end nodes in NS & NS-MA.
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NO
first 30 last 20 last 10

Const α
5.367∗∗∗

(.161)

4.735∗∗∗

(.418)

4.858∗∗∗

(1.142)

Time β
−.031∗∗∗
(.006)

−.016∗
(.009)

−.019
(.025)

R2 .03 .004 .002
N 630 420 210

Table 3: Estimated time trends in NO. Three stars indicate 1 percent sig-
nificance level, two stars 5 percent, and one star 10 percent.

10, where we pool AN with AN-MA and NS with NS-MA.6 In case of the
latter two we do, however, exclude session NS-MA 1 when we estimate the
last 20 and the last 10 periods because there no further unravelling can be
expected. The tables show a clear pattern. Unravelling is strongest (in terms
of the size of the β coefficient) and longest lasting in the treatments with
node-specific information, a little weaker and finally fading in treatments
with information about aggregate nodes and still weaker in the treatment
where subjects can only rely on feedback about their own play.

We summarize our findings in

Result 1 Only when public information is very precise, i.e., both node-
specific and based only on the immediate history, we find continuous
unravelling until the very end of the experiment. In all other treat-
ments, i.e., when public information is less precise or absent, behaviour
eventually settles down and unravelling stops before the last period is
reached.

4.2 Individual behavior

To understand what is driving the above result and to gain insight into
how subjects use public and private information we shall now turn to the
analysis of individual strategies. First of all, we shall classify subjects into
four different categories:

1. Pure-strategy types (P) These are subjects whose behavior in all rounds
is consistent with a fixed pure strategy, i.e., they always take at the

6Again we take all odd subjects as the repeatedly measured units. Results with even
subjects are virtually identical.
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AN & AN-MA
first 30 last 20 last 10

Const α
5.647∗∗∗

(.098)

5.256∗∗∗

(.311)

3.529∗∗∗

(.932)

Time β
−.055∗∗∗
(.004)

−.031∗∗∗
(.007)

−.007
(.020)

R2 .09 .02 .0002
N 1690 740 370

Table 4: Estimated time trends in AN and AN-MA. Three stars indicate 1
percent significance level, two stars 5 percent, and one star 10 percent.

NS & NS-MA
first 30 last 20 last 10

Const α
5.802∗∗∗

(.134)

6.567∗∗∗

(.331)

5.656∗∗∗

(.951)

Time β
−.066∗∗∗
(.004)

−.056∗∗∗
(.007)

−.036∗
(.025)

R2 .06 .06 .01
N 1670 580 290

Table 5: Estimated time trends in NS and NS-MA. Three stars indicate 1
percent significance level, two stars 5 percent, and one star 10 percent.
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Types
Treatments P AP N A

NO
−
−

6
14.3%

2
4.8%

34
81%

AN
−
−

6
23.1%

−
−

20
76.9%

AN-MA
2

4.2%
6

12.5%
2

4.2%
38

79.2%

NS
1

3.3%
2

6.7%
−
−

27
90.0%

NS-MA
2

5.0%
1

2.5%
1

2.5%
36

90.0%

all
4

2.2%
21

11.3%
6

3.2%
155
83.3%

Table 6: Types of subjects in the different treatments. Absolute number in
first row, percentage in second row.

same node (or lose the game because their opponent takes at an earlier
node). Among those would also be subjects who follow the backward
induction solution and take at the earliest possible node. However,
there are no subjects who exhibit such behavior.

2. Almost pure-srategy types (AP) These are subjects whose behavior
is consistent with a fixed pure strategy in 90% of all rounds, i.e., we
allow for five deviations over 50 periods.

3. Non-rationalizable types (N) These are subjects (in the role of Even)
who sometimes pass at the very last node. We do not want to speculate
about what drives them.

4. Adaptive types (A) All other subjects, i.e., subjects who do different
things at different times, presumably because of different information
or experiences.

Table 6 shows the absolute and relative frequencies of all four types in
the different treatments.

A couple of observations are in order. While non-rationalizable types are
extremely rare, the vast majority of subjects are adaptive players. More-
over, the share of adaptive players is highest in the treatments with node-
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specific information which is statistically significant.7 More precise informa-
tion about different nodes makes experimentation and learning more attrac-
tive. This increase in adaptive behavior might be important for explaining
the differences in unravelling observed above (see also further insight on this
below). With fewer subjects reacting to information, behavior is more likely
to settle down in treatment when public information is rather imprecise or
absent. We summarize this in:

Result 2 The number of adaptive players, i.e. players who react to public
information and/or private experience is increasing in the quality of
the public information.

In the following we shall try to understand the behavior of adaptive
players. In particular, we want to analyze how adaptive types react to their
own experiences and the information provided. For that we can eliminate
subjects who always do the same–in particular as their presence would
cause a selection bias when we compare behavior at different nodes. (Those
who always take at node 4 are never present at node 6.) Moreover, we focus
on nodes 3, 4, 5, and 6. This is because there is very little variation at
the first two nodes (with pass rates above 90% in all treatments) and not
enough data for the last three nodes since they are reached too rarely.

To understand how own experiences enter subjects’ decision rules, we
first analyze treatment NO, where subjects have no additional information
they can base their decision on. In a first step we estimate decision rules
using random-effects linear probability models with just one independent
variable capturing subjects’ own experience. For reasons of parsimony we
only examine the explanatory power of private statistics that are constructed
in the same way as the statistics we provide in the other treatments, i.e.,
we examine models with private statistics for own experienced pass rates at
specific nodes for the last five periods; at specific nodes for the entire history;
averaged over all nodes and the last five periods; and, finally, averaged over
all nodes and the entire history.8

The estimation results draw an extremely clear picture. For each node
the R2 is, by far, highest for the model with the most precise statistic, the

7Pooling the treatments with node-specific information and pooling all others, we find
that the share of adaptive players compared to other types is significantly higher in the
NS treatments at a level of 5.8% (two-tailed Pearson).

8 In some cases the most detailed statistic that corresponds to the NS-MA treatment
might be missing, simply because the next node has not been reached in the last five peri-
ods. Since we have found that pass rates given the statistic is missing are indistinguishable
from pass rates when the statistic is zero we replaced missing values by zeros.
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Treatment NO
node 3 node 4 node 5 node 6

Const α
.486∗∗∗

(.040)

.400∗∗∗

(.027)

.282∗∗∗

(.027)

.193∗∗∗

(.034)

Private Stat β
.605∗∗∗

(.040)

.950∗∗∗

(.068)

1.377∗∗∗

(.144)

2.048∗∗∗

(.330)

R2 .37 .30 .20 .21
N 676 558 373 150

Table 7: Estimated decision rules at nodes 3, 4, 5, and 6 in treatment NO.
Three stars indicate 1 percent significance level.

one that corresponds to the NS-MA treatment.9 Thus, it appears that in
the absence of information provided by the experimenter subjects memorize
their own experiences in a rather subtle way. Table 7 shows estimation
results for the random-effects model

pit = α+ βSit + vi + εit (1)

where Sj
it is subject i’s private statistic for the average pass rate at node

j+1 in the last five periods previous to the decision period t, vji is a subject-
specific random effect and εjit the remaining error. We estimate this model
separately for nodes 3, 4, 5, and 6.

A few observations are immediate. Reflected by the increasing values
of β, pass rates become more information sensitive at later nodes; reflected
by the falling constants, unconditional passing becomes less pronounced at
later nodes. However, there is significant unconditional passing at all nodes
we estimated–even towards the end of the game.

Result 3 In the absence of public information players appear to store their
own experiences in a rather sophisticated way. They appear to mem-
orize node-specific information for the more recent past as opposed
to more aggregate information about the past behavior of their oppo-
nent(s). Furthermore, we find that subjects’ play becomes increasingly
information sensitive as one moves further down the game tree.

9The average R2 for models with the private NS-MA statistic for the first six nodes
(where we have more than 100 observations for each) is 25.6%. For the models with NS
statistics averaged over all periods the average R2 is 12.7%. Finally, we the two models
that examine private statistics averaged over all nodes the average R2 are 0.9% (AN-MA)
and 1.6% (AN).
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AN Treatments
node 3 node 4 node 5 node 6

Const α
−0.078
(.149)

−1.001∗∗
(.436)

−.555∗
(.332)

1.400
(.908)

Private Stat β
.703∗∗∗

(.031)

1.045∗∗∗

(.070)

1.559∗∗∗

(.126)

2.065∗∗∗

(.481)

Public Stat γ
.674∗∗∗

(.200)

1.689∗∗∗

(.549)

.952∗∗

(.423)

−1.542
(1.118)

R2 .38 .28 .23 .12
N 1332 858 637 169

Table 8: Estimated decision rules at nodes 3, 4, 5, and 6 in AN treatments.
One star indicates 10 percent significance level, two stars 5 percent, and
three stars 1 percent.

How robust is this result when one controls for other aspects of subjects’
learning? We have added variables for past performance to capture possible
effects of aspiration levels (see, for example, Selten 1998, or Oechssler 2002)
or learning direction theory (Selten and Buchta 1998) as well as a variable
counting the periods to check for unravelling induced by the vanishing time
horizon. The estimation results shown in Appendix B are unambigous.
None of the extra variables has a consistent significant effect and the R2’s
remain virtually unchanged. Moreover, the estimates for both, constant and
coefficient of the private statistic, remain almost identical when one includes
the other variables. Thus, any model selection criteria would select the most
parsimonious model in (1). We summarize this in

Result 4 Subjects’ behavior is not directly affected by their past perfor-
mance nor by the outcome of their last game nor by the passing of
time itself.

Let us now turn attention to estimating decision rules for the same nodes
in the treatments where a public statistic is available. We shall estimate the
following random-effects linear probability model

pit = α0 + β0Sit + γ0Pit + vi + εit

where P j
it is the public statistic and all other variables are defined as before.

We estimate this model separately for the AN and NS treatments and again
for nodes 3, 4, 5, and 6. The results are shown in Tables 8 and 9.
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NS Treatments
node 3 node 4 node 5 node 6

Const α
.455∗∗∗

(.039)

.188∗∗∗

(.043)

.115∗∗∗

(.048)

.093
(.060)

Private Stat β
.448∗∗∗

(.039)

.710∗∗∗

(.051)

1.138∗∗∗

(.077)

1.098∗∗∗

(.152)

Public Stat γ
.162∗∗∗

(.061)

.381∗∗∗

(.080)

.369∗∗∗

(.110)

.336∗∗∗

(.127)

R2 .33 .37 .35 .23
N 1180 1035 669 330

Table 9: Estimated decision rules at nodes 3, 4, 5, and 6 in NS treatments.
One star indicates 10 percent significance level, two stars 5 percent, and
three stars 1 percent.

Some observations can be made immediately. In general, subjects make
use of all available information, private experience and publicly provided
statistics. However, comparing the tables, it is apparent that the coefficients
on the information variables are much bigger in the AN treatments than
in the NS treatments. This may partly explain the comparatively limited
unravelling in the AN treatments. (The second reason for less unravelling is,
of course, as we have discussed above, the greater number of subjects who
do not change their behaviour at all and always pass at the same nodes.) On
the other hand, there appears to be some significant unconditional passing
in the NS treatments which also puts a bound on unravelling.

Furthermore, we see that the public statistic has a more systematic effect
when it is more precise. While it loses its significance in later rounds in the
AN treatments it remains highly significant throughout all nodes in the NS
treatments–even when the stakes are getting very high. On the other hand,
less precise public information is ignored when the stakes are high.

We summarize our findings on the treatments with public information
in

Result 5 In general, subjects use all types of information that is available.
However, when the stakes are high and the public statistic is imprecise
the public statistic is ignored.
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Treatments node 3 node 4 node 5 node 6
NO .965 .738 .419 .269
AN .862 .706 .306 .473
NS .978 .788 .610 .449

Table 10: Pass rates of non-adative subjects. (Computed for last 45 periods
to make them comparable with estimates for adaptive subjects.)

4.3 Unravelling

In the previous subsection we have offered two possible reasons for the dif-
ferent degrees of unravelling observed in our treatments. Here we want to
reexamine the issue of unravelling in a little more detail. From a theory
viewpoint, if players rely on the node-specific statistic, they should take as
soon as they can. That is, from a learning perspective, a lot of unravel-
ling should be expected. If players rely on a coarse statistic (average pass
rate across all nodes) then a few Passes may take place before the system
stabilizes (this is because players would fail to identify exactly when their
opponent takes, see Jehiel 2003). Thus, less unravelling should be expected
in this case.

Our finding in the no public information treatment that subjects mostly
rely on their own most precise node-specific information would suggest that a
lot of unravelling should appear in all treatments. But, as shown in Result 1
unravelling is much more pronounced if there is a precise public statistic (i.e.
in treatment NS-MA). To understand this differential degree of unravelling,
we introduce two additional slices of the data.

First, Table 10 shows the pass rates of the non-adaptive subjects for
nodes 3 to 7. The table reveals that non-adaptive subjects tend to pass a
lot which does put a bound on the possibilities for unravelling. Of course, in
the NS treatments there are only roughly half as many non-adaptive subjects
than in the two others (10% as compared to 19% in NO and 21.6% in the
AN treatments). This basically halves the impact of non-adaptive play in
the NS treatments and increases the room for unravelling. This is our first
explanation for why unravelling is more pronounced in the NS treatments.

Second, Table 11 shows how subjects in treatment NS-MA react to ex-
treme information, i.e., to very small observed and experienced pass rates.
In principle, the reaction to extreme information alone can explain (different
degrees of) unravelling. The table shows the pass rates of adaptive subjects
for those cases where either private or public statistic (or both) about the
next node were below 10%.
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information node 3 node 4 node 5 node 6
own < 0.1 .473 .324 .300 .239
public < 0.1 .208 .111 .207 .204
both < 0.1 .198 .000 .127 .089

Table 11: Pass rates of non-adative subjects. (Computed for last 45 periods
to make them comparable with estimates for adaptive subjects.)

The table illustrates that subjects are much more careful when the public
statistic is very bleak. If there own experience has been bad they are much
more optimistic and incidentally these numbers are basically the same in
all other treatments. However, if both statistics point to low pass rates of
others at the next node subjects do become very careful indeed and at node
4 we even observe that nobody passes (out of 31 cases). Hence, we should
expect that with very precise public information the adaptive subjects on
their own would converge very closely to Nash equilibrium play. With less
precise public information this is far less likely.

It is interesting to compare our data on unravelling with previous ex-
periments on centipede games in which also the loser’s payoff increases over
time. Both payoffs increasing over time generates, of course, strong incen-
tives for cooperation. McKelvey and Palfrey (1992) study such centipede
games with four and six decision nodes. The games are repeated over ten
rounds and while there is some unravelling it is very limited. In the games
with six decision node the average end node falls from 4.29 in the first half
of the experiment to 3.98 in the second half. Nagel and Tang (1998) study
a reduced normal-form version of a centipede game with 14 decision nodes.
Subjects play this game repeatedly for 100 periods and, quite amazingly,
there is no unravelling at all. In fact, in some sessions the average end node
even increases over time (see their Figure 4, p.362). Thus, a comparison with
our data suggests that the different payoff structure that we employ makes a
big difference even if it induces the same best reply correspondence. Taking
away the possibility for mutually beneficial cooperation, there is much more
unravelling.10

10There is also much more unravelling in high-stakes three-player centipede games as
studied by Rapoport, Stein, Parco, and Nicholas (2000). Remarkably, the same pattern
has also been observed in quite different games. Huck, Normann, and Oechssler (2004),
for example, report that subjects in Cournot markets only manage to collude if there are
no more than two competitors.
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5 Concluding remarks

Our experimental results can be summarised as follows. When faced with
their sole experience subjects seem to use their memory in a rather sophis-
ticated way: They do not rely much on their past performance, and rather
rely on some quite sophisticated estimate of their opponent’s behavior that
varies from one decision node to the other.

When public statistics are introduced subjects make use of both, their
own experience and the public statistic–even if the latter is rather impre-
cise. Only when the stakes are very high coarse public statistics are ignored.
Another effect of providing precise public information is that more subjects
start using information–public and private. That is, precise public infor-
mation crowds in the use of private information and reduces the number of
non-learners. This may have important consequences for a variety of games
and economic applications and deserves further study. In that sense we
advocate the methodoly of varying public information in experiments.
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A Instructions for treatment NS-MA

Welcome to our experiment!
Please read these instructions carefully! Do not speak to your neighbours

and keep quiet during the entire experiment! If you have a question, raise
your hand and the experimenter will see you.

In this experiment you will repeatedly make decisions. Doing this you
can earn real money. How much you earn depends on your decisions and
on the decisions of other participants. All participants receive the same
instructions. You will stay anonymous to us and to the other participants.

The experiment will have 50 rounds. In each round you will be randomly
matched with one other participant with whom you are going to interact.
Your payoff in one particular round depends solely on the decisions taken
by yourself and by the other participant that you were matched with. After
the experiment we will randomly select two rounds that will be paid off for
real. One payoff round will be selected randomly from rounds 1-25 and one
payoff round will be selected randomly from rounds 26-50.

There are two groups of participants in this experiment, Odd participants
and Even participants. In each round each Odd participant will be randomly
matched with an Even participant and vice versa.

Each round consist of up to 10 stages. Odd participants have to make
decisions in odd stages, Even participants have to make decisions in even
stages. In each stage, the decision is between TAKE and PASS. If a partici-
pant chooses PASS the round continues into its next stage. If a participant
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chooses TAKE the round is over. Finally, if the 10th stage is reached, PASS
is no longer an option and the participant has to TAKE.

The payoffs are as follows. The payoff of the participant who has chosen
TAKE depends on the stage in which he has done so. The payoff of the
other participant is 10p regardless of the stage in which TAKE has been
chosen.

The payoff for the participant who has chosen TAKE follows a simple
rule. In stage 1 it is 30p. After that it will doubled in each and every stage,
finally, reaching £153.60 in stage 10. The following table shows you all the
numbers. [Here they are shown a table similar Table 1.]

When making a decision you will have some information about the past.
More specifically, you will be told how often, on average, the other partic-
ipants have chosen to PASS at the next stage in the past five rounds. For
example, if you are an Even participant deciding at stage 4 you will be told
how often Odd participants passed in stage 5 in the past five rounds. Aver-
ages will be updated after each round and will be available to you whenever
you make a choice. If the next stage has not been reached in the past five
rounds, you will be told there is no data available. (During the first five
rounds, averages will be based on all previous decisions.)

These are the rules. Everything will happen exactly as specified by them.
Enjoy.

B Estimation results with further variables

Here we show further estimation results for treatment NO. next to own
experienced pass rates, we include a variable capturing the possible effect of
aspiration levels, πit, subject i’s total payoff up to period t − 1; a variable
capturing the possible effect of learbning direction theory, Lj

it = 1 if subject i
lost in period t on node j+1 (and 0 otherwise); and a variable capturing the
passing of time, t itself. Table 12 shows the estimates for the random-effects
model

pjit = αj + βjSj
it + γjπit + λjLj

it + κt+ vji + εjit. (2)

where j = 3, 4, 5, 6 is the decision node and all other variables are defined
as before. Conventional wisdom would let us expect a positive sign for γ (if
aspiration levels matter), a negative sign for λ (if subjects immediately react
to bad experiences in the way of moving towards better responses), and a
negative sign for κ (if there is unravelling because of a vanishing shadow of
the future). Strikingly, none of these expectations turns out to be true.
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Treatment NO
node 3 node 4 node 5 node 6

Const α
.418∗∗∗

(.050)

.428∗∗∗

(.058)

.288∗∗∗

(.070)

.057
(.091)

Private Stat β
.701∗∗∗

(.043)

.942∗∗∗

(.073)

1.283∗∗∗

(.156)

2.177∗∗∗

(.343)

Aspirations γ
−.006
(.007)

.003
(.006)

.013
(.009)

.000
(.008)

Learn dir λ
.093∗∗∗

(.027)

−.008
(.036)

−.036
(.055)

.085
(.102)

Period κ
.001
(.001)

−.001
(.001)

−.002
(.002)

.005
(.003)

R2 .39 .30 .20 .23
N 676 558 373 150

Table 12: Estimated decision rules at nodes 3, 4, 5, and 6 in treatment NO.
Stars inbdicate significance levels as before.
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