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Abstract

This paper reports findings from a series of laboratory asset mar-
kets. Although stakes in the experiment are modest, the data display
clear evidence of substantial risk aversion. Most obviously, asset prices
imply a substantial equity premium: risky assets are priced substan-
tially below their expected payoffs. Moreover, the differences between
expected asset payoffs and asset prices are in the direction predicted
by standard asset-pricing theory: assets with higher beta have higher
returns. The data yield estimatse of the Sharpe ratio of the market in
the range 0.2−1.7 (the Sharpe ratio of the New York Stock Exchange
is approximately .43), and CAPM yields estimates of the market abso-
lute risk aversion on the order of 10−3. This work suggests useful ways
to separate the effects of risk aversion from competing explanations in
other experimental environments.



1 Introduction

Forty years of econometric tests have provided only weak support for the

predictions of asset pricing models. (See Davis, Fama & French (2000) for

instance.) However, it is difficult to know where the problems in such models

lie, or how to improve them, because basic parameters of the theories —

including the market portfolio, the true distribution of asset returns, the

information available to investors — cannot be observed in the historical

record. Laboratory tests of these theories are appealing because these basic

parameters (and others) can be observed accurately — or even controlled.

However, most asset pricing theories rest on the assumption that individuals

are risk averse.1 Because risks and rewards in laboratory experiments are

(almost of necessity) small (in comparison to subjects’ lifetime wealth, or

even current wealth), the degree of risk aversion observable in the laboratory

might be so small as to be undetectable in the unavoidable noise, which

would present an insurmountable problem.

This paper reports findings from a series of laboratory asset markets that

bely this concern: despite relatively small risks and rewards, the effects of risk

aversion are detectable and significant. Most obviously, asset prices imply

a significant equity premium: risky assets are priced significant below their

expected payoffs. Moreover, the differences between expected asset payoffs

and returns (payoffs per unit of investment) are in the direction predicted by

standard asset-pricing theory: assets with higher beta have higher returns.

As a quantitative expression of the degree of risk aversion, we obtain esti-

mates of Sharpe ratios of the market in the range 0.2−1.7 (the Sharpe ratio of

the NYSE is approximately 0.43), and, using CAPM, we estimate the market

absolute risk aversion to be approximately 10−3. Our work suggests useful

ways to distinguish the effects of risk aversion from subject errors, quantal

response equilibrium, etc. in a number of experimental environments.

1Here we refer to theories such as the Capital Asset Pricing Model of Sharpe (1964)
that predict the prices of fundamental assets, rather than to theories such as the pricing
formula of Black & Scholes (1973) that predict the prices of options or other derivative
assets. The latter theories do not rest on assumptions about investor risk attitudes, but
rather on the absence of arbitrage.
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In our laboratory markets, 30 - 60 subjects trade one riskless and two risky

securities (whose dividends depend on the state of nature) and cash. Each

experiment is divided into 6-9 periods. At the beginning of each period,

subjects are endowed with a portfolio of securities and cash. During the

period, subjects trade through a continuous, web-based open-book system

(a form of double auction that keeps track of infra-marginal bids and offers).

After a pre-specified time, trading halts, the state of nature is drawn, and

subjects are paid according to their terminal holdings. The entire situation

is repeated in each period but the state of nature is drawn anew at the

end of each period. Subjects know the dividend structure (the payoff of each

security in each state of nature) and the probability that each state will occur,

and of course they know their own holdings and their own attitudes toward

wealth and risk. They also have access to the history of orders and trades.

Subjects do not know the number of participants in any given experiment,

nor the holdings of other participants, nor the market portfolio.

Typical earnings in a single experiment (lasting 2+ hours) are $50-100

per subject. Although this is a substantial wage for some subjects, it is

small in comparison to lifetime wealth, or indeed to current wealth (the pool

of subjects consists of undergraduates and MBA students). Small rewards

suggest approximately risk neutral behavior, asset prices nearly coincident

with expected payoffs, little incentive to trade, and hence little trade at all.

However, our experimental data are inconsistent with these implications

of risk neutrality; rather the data suggest significant risk aversion. Most obvi-

ously, market prices are below expected returns, and substantial trade takes

place. Moreover, assets with higher beta have higher returns (lower prices), as

suggested by standard asset pricing theories. Quantitative measures of risk

aversion are provided by the Sharpe ratios of the market portfolio, which

are in the range 0.2 − 1.7 — on the same order as the Sharpe ratio of the

New York Stock Exchange (computed on the basis of yearly data), which is

0.43 — and the imputed market risk aversion derived from CAPM, which is

approximately 10−3.

Following this Introduction, Section 2 describes our experimental asset

markets, Section 3 presents the data generated by these experiments and
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the relationship of these data to standard asset pricing theories. Section 4

suggests implications of our experiments for the design and interpretation of

other experiments where risk aversion may play a role, and concludes.
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2 Experimental Design

In our laboratory markets the objects of trade are assets (state-dependent

claims to wealth at the terminal time) A, B, N (Notes) and Cash. Notes are

riskless and can be held in positive or negative amounts (can be sold short);

assets A, B are risky and can only be held in non-negative amounts (cannot

be sold short).

Each experimental session of approximately 2 hours is divided into 6-9

periods, lasting 15-20 minutes. At the beginning of a period, each subject

(investor) is endowed with a portfolio of assets and Cash; the endowment of

risky assets and Cash are non-negative, the endowment of Notes is negative

(representing a loan that must be repaid). During the period, the market

is open and assets may be traded for Cash. Trades are executed through

an electronic open book system (a continuous double auction). During the

period, while the market is open, no information about the state of nature is

revealed, and no credits are made to subject accounts; in effect, consumption

takes place only at the close of the market. At the end of each period, the

market closes, the state of nature is drawn, payments on assets are made, and

dividends are credited to subject accounts. (In some experiments, subjects

were also given a bonus upon completion of the experiment.) Accounting in

these experiments is in a fictitious currency called francs, to be exchanged

for dollars at the end of the experiment at a pre-announced exchange rate.

Subjects whose cumulative earnings at the end of a period are not sufficient

to repay their loan are bankrupt; subjects who are bankrupt for two consec-

utive trading periods are barred from trading in future periods.2 In effect,

therefore, consumption in a given period can be negative.

Subjects know their own endowments, and are informed about asset pay-

offs in each of the 3 states of nature X, Y, Z, and of the objective probability

distribution over states of nature. We use two treatments of uncertainty. In

the first treatment, states of nature for each period are drawn independently

with probabilities 1/3, 1/3, 1/3; randomization is achieved by using a random

number generator or by drawing with replacement from an urn containing

2However, the bankruptcy rule was seldom triggered.
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equal numbers of balls representing each state. In the second treatment,

balls, marked with the state, are drawn without replacement from an urn

initially containing 18 balls, 6 for each state. (Subjects are informed of the

procedure.) Asset payoffs are shown in Table 1 (1 unit of Cash is 1 franc in

each state of nature), and the remaining parameters for each experiment are

shown in Table 2. (Experiments are identified by year-month-day.)

In all experiments, subjects were given complete instructions, including

descriptions of some portfolio strategies (but no suggestions as to which

strategies to choose). Complete instructions and other details are available

at http//eeps3.caltech.edu/market-011126; use anonymous login, ID 1, pass-

word a.

Table 1: Asset Payoffs

State X Y Z

A 170 370 150

B 160 190 250

N 100 100 100

Subjects are not informed of the endowments of others, or of the market

portfolio (the social endowment of all assets), or the number of subjects, or

whether these are the same from one period to the next. The information

provided to subjects parallels the information available to participants in

stock markets such as the New York Stock Exchange and the Paris Bourse.

We are especially careful not to provide information about the market port-

folio, so that subjects cannot easily deduce the nature of aggregate risk —

lest they attempt to use a standard model (such as CAPM) to predict prices,

rather than to take observed prices as given. Keep in mind that neither

general equilibrium theory nor asset pricing theory require that participants

have any more information than is provided in these experiments. Indeed,

much of the power of these theories comes precisely from the fact that agents

know only market prices and their own preferences and endowments.

Keep in mind that the social endowment (the market portfolio), the dis-

tribution of endowments, and the set of subjects and hence preferences differ
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Table 2: Experimental Parameters

Date Draw Subject Bonus Endowments Cash Exchange
Type a Category Reward A B Notesb Rate

(Number) (franc) (franc) $/franc
981007 I 30 0 4 4 -19 400 0.03
981116 I 23 0 5 4 -20 400 0.03

21 0 2 7 -20 400 0.03
990211 I 8 0 5 4 -20 400 0.03

11 0 2 7 -20 400 0.03
990407 I 22 175 9 1 -25 400 0.03

22 175 1 9 -24 400 0.04
991110 I 33 175 5 4 -22 400 0.04

30 175 2 8 -23.1 400 0.04
991111 I 22 175 5 4 -22 400 0.04

23 175 2 8 -23.1 400 0.04
011114 D 21 125 5 4 -22 400 0.04

12 125 2 8 -23.1 400 0.04
011126 D 18 125 5 4 -22 400 0.04

18 125 2 8 -23.1 400 0.04
011205 D 17 125 5 4 -22 400 0.04

17 125 2 8 -23.1 400 0.04

aI: states are drawn independently across periods; D: states are drawn without replacement, starting
from a population of 18 balls, six of each type (state).

bAs discussed in the text, endowment of Notes includes loans to be repaid at the end of the period.
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across experiments. Indeed, because preferences may be affected by earnings

during the experiment, the possibility of bankruptcy, and the time to the

end of the experiment, preferences may even be different across periods in

the same experiment. Because equilibrium prices and choices depend on all

of these, and because of the inevitable noise present in every experiment,

there is every reason to expect equilibrium prices and choices to be different

across experiments or even across different periods in a given experiment.

Most of the subjects in these experiments had some knowledge of eco-

nomics in general and of financial economics in particular: Caltech under-

graduates had taken a course in introductory finance, Claremont and Occi-

dental undergraduates were taking economics and/or econometrics classes,

and MBA students are exposed to various courses in finance. In one ex-

periment (011126), subjects were undergraduates at the University of Sofia

(Bulgaria), and were perhaps less knowledgeable about economics and fi-

nance.
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3 Findings

Because all trading is done through a computerized continuous double auc-

tion, we can observe and record every transaction — indeed, every offer —

but we focus on end-of-period prices: that is, the prices of the last transac-

tion in each period.3 Because no uncertainty is resolved while the market is

open, it is natural to organize the data using a static model of asset trading:

investors trade assets before the state of nature is known, assets yield divi-

dends and consumption takes place after the state of nature is revealed (see

Arrow & Hahn (1971) or Radner (1972)).4

Because Notes and Cash are both riskless, we simplify slightly and treat

them as redundant assets.5 We therefore model our environment as involving

trade in risky assets A, B and a one riskless asset N (notes). Assets are claims

to consumption in each of the three possible states of nature X, Y, Z. Write

div A for the state-dependent dividends of asset A, div A(s) for dividends in

state s, and so forth. If θ = (θA, θB, θN) ∈ IR3 is a portfolio of assets, we

write

div θ = θA(div A) + θB(div B) + θN(div N)

for the state-dependent dividends on the portfolio θ.

There are I investors, each characterized by an endowment portfolio ωi =

(ωi
A, ωi

B, ωi
N) ∈ IR2

+ × IR of risky and riskless assets, and a strictly concave,

strictly monotone utility function U i : IR3 → IR defined over state-dependent

terminal consumptions. (To be consistent with our experimental design, we

allow consumption to be negative but we require holdings of A, B to be non-

negative.) Investors care only about consumption, so given asset prices q,

investor i chooses a portfolio θi to maximize div θi subject to the budget

3See Asparouhova, Bossaerts & Plott (2003) and Bossaerts & Plott (2004) for discussion
of the evolution of prices during the experiment.

4Because there is only one good, there is no trade in commodities, hence no trade after
the state of nature is revealed.

5In fact, Cash and Notes are not quite perfect substitutes because all transactions must
take place through Cash, so that there is a transaction value to Cash. As Table 3 shows,
however, Cash and Notes are nearly perfect substitutes at the ends of most periods in
most experiments.
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constraint q · θi ≤ q · ωi.

An equilibrium consists of asset prices q ∈ IR3
++ and portfolio choices

θi ∈ IR2
+ × IR for each investor such that

• choices are budget feasible: for each i

q · θi ≤ q · ωi

• choices are budget optimal: for each i

ϕ ∈ IR2
+ × IR, U i(div ϕ) > U i(div θi) ⇒ q · ϕ > q · ωi

• asset markets clear:
I∑

i=1

θi =
I∑

i=1

ωi

In the following subsections, we show first, that observed prices are gen-

erally below risk neutral prices, which implies risk aversion; second, that risk

aversion is systematic; third that the effects of risk aversion can be quantified;

and fourth, that risk aversion can be estimated.

3.1 Risk Neutral Pricing and Observed Pricing

Risk neutrality for investor i means that U i(x) = E(x) (where the ex-

pectation is taken with respect to the true probabilities. If all investors

are risk neutral then (normalizing so that the price of Cash is 1 and the

price of Notes is 100), the unique equilibrium price is the risk-neutral price

q = (E(A), E(B), E(N)) = (E(A), E(B), 100).

Table 3 displays end-of-period prices in 72 periods across 9 experiments:

the end-of-period price of asset A is below its expectation in 64 periods,

equal to its expectation in 5 periods, above its expectation in 3 periods; the

end-of-period price of asset B is below its expectation in 64 periods, equal

to its expectation in 3 periods, above its expectation in 5 periods.

9



Table 3: End-Of-Period Transaction Prices

Date Seca Period

1 2 3 4 5 6 7 8 9

981007 A 220/230b 216/230 215/230 218/230 208/230 205/230

B 194/200 197/200 192/200 192/200 193/200 195/200

Nc 95d 98 99 97 99 99

981116 A 215e 203 210 211 185 201

B 187 194 195 193 190 185

N 99 100 98 100 100 99

990211 A 219 230 220 201 219 230 240

B 190 183 187 175 190 180 200

N 96 95 95 98 96 99 97

990407 A 224 210 205 200 201 213 201 208

B 195 198 203 209 215 200 204 220

N 99 99 100 99 99 99 99 99

991110 A 203 212 214 214 210 204

B 166 172 180 190 192 189

N 96 97 97 99 98 101

991111 A 225 217 225 224 230 233 215 209

B 196 200 181 184 187 188 188 190

N 99 99 99 99 99 99 99 99

011114 A 230/230 207/225 200/215 210/219 223/223 226/228 233/234 246/242 209/228

B 189/200 197/203 197/204 200/207 189/204 203/208 211/212 198/208 203/210

N 99 99 99 99 99 99 99 98 99

011126 A 180/230 175/222 195/226 183/217 200/220 189/225 177/213 190/219

B 144/200 190/201 178/198 178/198 190/201 184/197 188/198 175/193

N 93 110 99 100 98 99 102 99

011205 A 213/230 212/235 228/240 205/231 207/237 232/242 242/248 255/257 229/246

B 195/200 180/197 177/194 180/194 172/190 180/192 190/195 185/190 185/190

N 99 100 99 99 99 99 99 99 100

aSecurity.
bEnd-of-period transaction price/expected payoff.
cNotes.
dFor Notes, end-of-period transaction prices only are displayed. Payoff equals 100.
eEnd-of-period transaction prices only are displayed. Expected payoffs are as in 981007. Same for

990211, 990407, 991110 and 991111.
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Indeed, in many experiments, all or nearly all transactions take place at a

price below the asset expectation. For example, Figure 1 records all the pur-

chases/sales of assets throughout the 8 periods of an experiment conducted

on November 26, 2001: all of the more than 500 trades of the risky assets

take place at a price below the assets’ expected payoffs.

3.2 Prices and Betas

Subsection 3.1 shows that asset prices are below risk neutral prices, which

implies risk aversion on the part of subjects. To see that the effect of risk

aversion is systematic, we examine expected returns and asset betas.

Recall that the market portfolio is the social endowment of all assets

M =
∞∑
i=1

ωi

The beta of a portfolio θ is the ratio of the covariance of θ with the market

portfolio to the variance of the market portfolio

β(θ) =
cov (div θ, div M)

var (div M)

Given prices q, the expected rate of return of a portfolio θ is E(div θ/q · θ).

Most asset pricing theories predict that assets with higher betas should

have higher expected rates of return. (For example, the Capital Asset Pric-

ing Model predicts E(div θ/q · θ) − 1 = β(θ) [E(div M/q ·M)− 1].) In our

laboratory markets, asset A always has higher beta than asset B so should

have higher expected rated of return. Figure 2 plots the difference in ex-

pected rates of return (expected rate of return of A minus expected rate of

return of B) against the difference in betas (beta of A minus beta of B) for

all 67 observations (all periods of all experiments). As the reader can see,

the difference in expected rate of return is positive roughly 75% of the time.

Applying a binomial test to the data yields a z-score of 8, so the correlation

is very unlikely to be accidental.
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13



3.3 Sharpe Ratios

The data discussed above show that asset prices in our laboratory asset

markets reflect significant risk aversion; Sharpe ratios provide a useful way

to quantify the effect of this risk aversion. Given asset prices q, the excess

rate of return is the difference between the rate of return on θ and the rate of

return on the riskless asset. In our context, the rate of return on the riskless

asset is 1, so the excess rate of return on the portfolio θ is E[div θ/q · θ]− 1.

By definition, the Sharpe ratio of θ is the ratio of its excess return to its

volatility:

Sh (θ) =
E[div θ/q · θ]− 1√

var(div θ/q · θ)

In particular, the Sharpe ratio of the market portfolio M is

Sh (M) =
E[div M/q ·M]− 1√

var(div M/q ·M)

If investors were risk neutral, asset prices would equal expected dividends,

so the numerator would be 0, and the Sharpe ratio of the market portfolio

(indeed of every portfolio) would be 0. Roughly speaking, increasing risk

aversion leads to lower equilibrium prices and hence to a higher Sharpe ratio

(as we see below, CAPM leads to a precise statement), so the Sharpe ratio

is a quantitative — although indirect — measure of market risk aversion.

As Figure 3 shows, except for one outlier, Sharpe ratios in our laboratory

markets are in the range 0.2 − 1.7, clustering in the range 0.4 − 0.6. For

comparison, recall that the Sharpe ratio of the market portfolio of stocks

traded on the New York Stock Exchange (computed on yearly data) is about

.43. (Keep in mind that risks and rewards on the NYSE are enormously

greater than in our experiments, so similar Sharpe ratios do not translate

precisely into similar risk attitudes.)
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3.4 CAPM

An alternative approach to quantifying the risk aversion in our laboratory

markets is to use a particular asset pricing model to impute the market risk

aversion. The Capital Asset Pricing Model (CAPM) of Sharpe (1964) is

particularly well-suited to this exercise.

CAPM can be derived from various sets of assumptions on primitives. For

our purposes, assume that each investor’s utility for risky consumption de-

pends only on the mean and variance; specifically, investor i’s utility function

for state-dependent wealth x is

U i(x) = E(x)− bi

2
var (x)

where expectations and variances are computed with respect to the true prob-

abilities, and bi is absolute risk aversion. We assume throughout that risk

aversion is sufficiently small that the utility functions U i are strictly mono-

tone in the range of feasible consumptions, or at least observed consumptions.

Because we allow consumption to be negative, and individual endowments

are portfolios of assets, this is enough to imply that CAPM holds.6

To formulate the pricing conclusion of CAPM, write m =
∑

(ωi
A, ωi

B) for

the market portfolio of risky assets, and m = m/I for the per capital portfolio

of risky assets. Write µ = (E(A), E(B)) for the vector of expected dividends

of risky assets,

∆ =

(
cov [A, A]} cov [A, B]}
cov [B, A]} cov [B, B]}

)
for the covariance matrix of risky assets, and

Γ =

(
1

I

I∑
i=1

1

bi

)−1

6In the usual CAPM, all assets can be sold short, while in our framework the risky
assets A,B cannot be sold short. However, in Appendix A of ? we show that, given
the particular asset structure here, the restriction on short sales does not change the
conclusions.
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for the market risk aversion. Write p = (pA, pB) for the vector of prices of

risky assets. The pricing conclusion of CAPM is that the equilibrium price

of risky assets is given by the formula

p̃ = µ− Γ ∆ m

In our setting, we know equilibrium prices, expected dividends, asset

dividends and true probabilities, hence the covariance matrix, and the per

capita market portfolio but not individual risk aversiions. If CAPM pricing

held exactly, we could impute the market risk aversion by solving the pric-

ing formula for Γ. In our experiments, CAPM pricing does not hold exactly

(see Bossaerts, Plott & Zame (2005) for discussion of the distance of actual

pricing to CAPM pricing), but we can impute market risk aversion as the

best-fitting Γ. Several possible notions of “best-fitting” might be natural; we

use Generalized Least Squares, where weights are based on the dispersion of

individual holdings from the market portfolio; this is an economic measure

of distance used and discussed in more detail in Bossaerts, Plott & Zame

(2005). Figure 4 shows the imputed market risk aversion for all periods in all

experiments. Note that there is considerable variation across experiments,

and even within a given experiment; as we have noted earlier, subject pref-

erences certainly vary across experiments and may even vary within a given

experiment.
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4 Conclusion

We have argued here that the effects of risk aversion in laboratory asset

markets are observable and significant, that the observed effects are in the

direction predicted by theory, and that these effects are quantifiable.

A crucial feature of our experimental design is that there are two risky

assets, so that the realization of uncertainty has two separate, but correlated,

effects, and it is this correlation that makes it possible to make quantitative

inferences about the effects of risk aversion. This feature suggests an ap-

proach to understanding the findings of other laboratory environments in

which risk aversion may play a role. For example, in laboratory tests of auc-

tion theory, some deviations of observed behavior from theoretical predictions

may be interpreted failures of the theory — and hence may point to other

theories — or as effects of risk aversion. Our work suggests that these com-

peting explanations might be disentangled by auctioning two objects whose

values are risky but correlated.
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