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Abstract

We explore an equilibrium model of games where players’ choice behavior
is given by logit response functions, but their payoff responsiveness is het-
erogeneous. We extend the definition of quantal response equilibrium to
this setting, calling it heterogeneous quantal response equilibrium (HQRE),
and prove existence under weak conditions. We generalize HQRE to allow
for limited insight, in which players can only imagine others with low re-
sponsiveness. We identify a formal connection between this new equilibrium
concept, called truncated quantal response equilibrium (TQRE), and the
Cognitive Hierarchy (CH) model. We show that CH can be approximated
arbitrarily closely by TQRE. We report a series of experiments comparing
the performance of QRE, HQRE, TQRE and CH. A surprise is that the fit of
the models are quite close across a variety of matrix and dominance-solvable
asymmetric information betting games. The key link is that in the QRE
approaches, strategies with higher expected payoffs are chosen more often
than strategies with lower expected payoff. In CH this property is not built
into the model, but generally holds in the experimental data,
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Key words: experimental economics, game theory, cognitive hierarchy, quan-
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1 Introduction

Finding a disciplined, empirically accurate way to incorporate limits on ra-
tionality has been a central challenge in game theory. One approach,’ “quan-
tal response equilibrium” (QRE) maintains the assumption of equilibrium,
in that beliefs are statistically accurate, but relaxes the assumption that
players choose best responses.? A different approach, based on “cognitive
hierarchy” (CH) theories, relaxes the equilibrium assumption, by assuming
that some players do not correctly anticipate what others will do, but retains
the assumption of best responding to beliefs (in some versions). QRE and
CH approaches both generate statistical predictions in which every strategy
is played with some probability (which obviates the need for perfection re-
finements), and have been used successfully to explain deviations from Nash
equilibrium in many types of experiments. This paper introduces a hetero-
geneous form of QRE, called HQRE, and shows that special forms of HQRE
are closely related to some forms of CH, thus establishing a link between the
two theories.

This paper makes a theoretical contribution and an empirical contribu-
tion. The theoretical contribution is the introduction of HQRE and estab-
lishing the link between QRE and CH. In HQRE, players may have different
sensitivities \; to expected payoff differences across actions, parameterized
by a distribution across players, f(A). One possibility is that f(\) is com-
mon knowledge. A more general possibility, called subjective HQRE, allows
players with different values of A; to have different beliefs, f(A|);), about the
distribution of others’ parameters. An important special case of subjective
HQRE is Truncated HQRE (TQRE), in which a player ¢ with a parameter
A; truncates the distribution f(\) at an upper bound of #\; (where 6 reflects
the amount of “imagination”). When 6 = 1, players all think that nobody
is more responsive than they are, whatever their actual responsiveness. This
truncated HQRE theory corresponds quite closely to some types of cogni-
tive hierarchy theories. In particular, a limiting case of a discretized form of
truncated HQRE closely approximates the CH theory of Camerer, Ho, and
Chong (2004).

!Learning models explore a different kind of rationality limit than the static models
considered here (see Camerer (2004), chapter 6).

2A purer interpretation is that players do best respond, but that their expected pay-
offs include a disturbance term which is unobserved by the econometrician, but whose
distribution is commonly known.



The empirical contribution is new experimental data from a variety of
games to analyze the differential predictions of QRE, HQRE, TQRE, and
CH, comparing their ability to explain our data. Surprisingly, there is very
little empirical difference in fit of these approaches across the games we study.
We trace this similarity to a property which is built directly into QRE, that
strategies which lead to more costly deviations from optimal play are chosen
less frequently. This property is not guaranteed by the CH approach but it
appears to often hold in these data. Thus, there is a surprising similarity
in what the QRE and CH approaches predict about the relation between
strategy frequency and expected costs, even though their structures are quite
different (indeed, they are opposite in a certain sense).

While the paper is nominally about two particular limited-rationality
theories, the basic questions that are addressed are fundamental. In some
areas of game theory it has proved useful to introduce special preference
“types’ (e.g., Kreps et al, 1982; Fudenberg and Maskin, 1986). The QRE
and CH approaches are similar except the heterogeneity in types comes from
either imperfect response or limited strategic thinking. Expanding the QRE
approach to include heterogeneity creates a unified framework in which to
compare these approaches and see their differences and similarity. Further-
more, introducing heterogeneity into QRE allows a concept of ‘’gamesman-
ship’ or skill which is absent in equilibrium analysis (since, in equilibrium, all
players are equally accurate and rational). Allowing variation in skill opens
up new questions: Why are some people more skilled? Can skill be taught?
Do skills develop with experience? These questions are not the focus of our
analysis, but are naturally raised by introducing heterogeneity.

The paper proceeds as follows. Section 2 defines HQRE. Section 3 gener-
alizes HQRE to allow for subjectivity and truncation in the beliefs of others’
types. We also introduce the CH approach, highlight its essential features,
and formally describe the link between CH and TQRE. Section 4 begins by
describing the experimental design. Further subsections report the experi-
mental data and contain an empirical analysis of the fit of the models across
various games. Finally, Section 5 concludes.

2 HQRE

We explore a logit QRE model where players’ choice behavior follows logit
quantal response functions but there is heterogeneity with respect to the



responsiveness parameter.®> We now present the model for games in strategic
form, following the approach of McKelvey and Palfrey (1995).

Let I' = [N, {A;}7,, {wi}l,] be a game in strategic form, where N =
{1,...,n} is the set of players, A; = {an,...,a;;,} is i’s action set and w; :
A — R is i’s payoff function, where A = A; x --- x A,. Let AA; denote
the set of probability distributions over A; and let AA = AA; x ---x AA,
denote the product set of probability distributions over A;, i = 1,...,n. If
a € AA, then player ¢’s expected payoff is denoted by:

U(e) =) (I anan)) wila).

ac€A

and we denote the expected payoff to player ¢ from using action a;; € A; by:

Ug(@) = > (Myzar(ar)) wilag, a ).

a_;€EA_;

Each player is independently assigned by nature a response sensitivity, \;,
drawn from a fixed distribution, F;();), with smooth density function, f;, full
support on [0,00) and finite moments — for example, f; could be the density
function for an exponential or log normal distribution. We call \; i’s type.
Quantal response functions are logit transformations of expected payoffs, so
if 7 has type A; and the actions have expected payoffs U; = (Uy, ..., Uiy,),
then the probability of choosing action j is:

pii(Ni) = =5
W)=

(1)
We call any measurable function p; : [0,00) — AA; a strategy for player i.

The assumption in HQRE is that F;();) is common knowledge, but i’s
type, \;, is private information known only to ¢. Given some fixed pro-
file of expected payoffs to i, U; = (U,...,Us,), equation (1) implies a
choice probability function that depends on \;, which we denote by p;(\;) =
[pir(No), - -, pis,(N\;)]. Therefore, given i’s profile of choice probability func-
tions, p;(-), the ex ante probability i chooses action j (i.e., before \; is drawn)
is:

o (p) = / " a VAV 2)

30ur approach and main theoretical results would extend to the general framework of
regular quantal response equilibrium studied by Goeree, Holt and Palfrey (2005).
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Following Harsanyi (1973), we call 0; = (041, . .., 0:y,) i’s induced mized strat-
egy. Given o_;, the induced mixed strategy profile of all players other than
i, i’s expected payoffs, U;(o_;) = (Us, ..., U;y,), can be expressed as:

Uj(o) = > (M} 0on(ar)) wilay,a ). (3)

a_;EA_;

In a heterogeneous quantal response equilibrium with logit response func-
tions, equations (1),(2), and (3) must all be satisfied simultaneously. This
leads to the following

Definition 1 p* is a Heterogeneous Logit Equilibrium if:

i erilij(o(p™))
pij<)‘i) = =7
k=1

U foralli=1,...,n,j=1,..,J" and \; € [0,00).

This captures the idea that in HQRE players have rational expectations
about the distribution of mixed strategies, and these will then be self-fulfilling
given the commonly known distribution of profiles of quantal response func-
tions. Therefore, like Nash equilibrium, the solution to the problem is a
fixed point of a mapping from choice probabilities to choice probabilities.
The Appendix proves existence of HQRE for the logit case, using a fixed
point theorem. Note that if each Fj()\;) has a common single mass point,*
then HQRE is the same as QRE with a common response parameter A for
all players.

Theorem 1. In finite games, a Heterogeneous Logit Equilibrium exists.
Proof: See appendix.

3 Subjective HQRE

In this section, we consider a more general model which allows expectations
about choice probabilities to be inconsistent with the actual choice frequen-
cies of the other players. Models with this property could prove useful in
explaining behavior in one-shot games, or complex games in which learning

4While the assumptions of the F; above preclude this case, it can be approximated
arbitrarily closely by F; that do satisfy the assumptions.



or other forces have not enabled beliefs to fully equilibrate to actual choices.
However, the particular form of inconsistencies allowed in subjective HQRE
still permit it to be thought of as an equilibrium model: choice probabil-
ities conditional on type are common knowledge; it is only the perceived
distribution of types that varies across players.

We replace the rational expectation assumptions by an assumption of
subjective expectations. According to this model, the equilibrium strategies®
of all players are common knowledge in equilibrium, but players have differ-
ent beliefs about the type distributions. Denote the conditional subjective
beliefs of player ¢ about the type of player k by F}(\i|\;). Note that beliefs
generally depend on a player’s own type.® As we show later in the sec-
tion, this provides a framework for linking HQRE approaches with cognitive
hierarchy approaches, which share a similar feature of belief heterogeneity.
This difference in beliefs results in equilibrium strategies (and induced mixed
strategies) that in general are different from those in a heterogeneous logit
equilibrium.

The notation is similar to that used earlier but the induced mixed strate-
gies are more complicated. Recall that the role of induced mixed strategies
is to compute U. That is, induced mixed strategies represent the beliefs
players other than ¢ have about ’s action choice, without knowing i’s type.
Under subjective HQRE, players do not share a common prior about F' and
therefore do not share identical beliefs about action choices.

As before, for any subjective belief about action profiles, ¢ € AA, player
1’s expected payoff is given by:

Ui(@) = Y (I_,an(ar)) uila).

acA

and the (subjective) expected payoff to player ¢ from using action a;; € A,

‘ Uij(0) = Z (piok(ar)) wilaij, a—s).

a_;€EA_;

With logit response functions, if ¢ has type \; and the actions by ¢ have
expected payoffs U; = (Ujy, ..., U;y,), then the probability of ¢ choosing action

5Reca_mll that strategies map types into choice probabilities.
OTf Fi(Ak|\i) = Fr(\x) for all i, k, \;, Ay then subjective HQRE is the same as HQRE.



7 as a function of \; is:
Ui
pii(\i; Ui) = m
We call any measurable function p; : [0,00) — AA; a strategy for player i.
Hence given some fixed vector of expected payoffs to i, U; = (Ui, ..., Uis,),
equation (4) implies an induced mixed strategy for ¢ that depends on \;:
pi(Ai) = [pir(Ni)s o pigi (N
We next turn to the induced mixed strategies. Because of the different
subjective beliefs about the distribution of A, players k and k&’ can have
different beliefs about the induced mixed strategy of player ¢. However, we
assume that any differences in their beliefs about i’s mixed strategy are due
to differences in beliefs about the distribution of A;. That is, the strategy
profile, p, is assumed to be common knowledge (hence we refer to this as
an equilibrium model). We denote type Ay of player k’s belief about player
i’s induced mixed strategy by oF(p;). Therefore, given i’s strategy, p;(-), the
belief of player k that player i will choose action j (i.e., before \; is drawn)

1S:

(4)

ok () = /0 s O A (5)

Given o, (p_;|\;), the beliefs of type A; of player ¢ about the induced mixed
strategy profile of all players other than i, type \; of player i’s expected
payoffs, UM (0" ,) = (U}, ..., U{}}i), are simply:

Uji(oh,;) = Z (T sior(ak| M) wiag, as). (6)
a_;€EA_;

In a subjective HQRE with logit response functions, equations (4), (5), and
(6) must all be satisfied simultaneously. This leads to the following

Definition 2 p* is a Subjective Heterogeneous Logit Equilibrium if:

g i *
MU (L7 A)

pij(Ni) : foralli=1,...n, j=1,..,J; and \; € [0,00).

I )

This definition reflects the idea that in subjective HQRE players have
rational expectations about strategies (that is, a player’s behavior conditional
on his type A), but may have different beliefs about the distribution of mixed
strategies, which are induced by different beliefs about the distribution of
types A.



3.1 Truncated expectations and bounded imagination

Since subjective HQRE is quite general, precision in applying it must come
from additional restrictions on heterogeneity and subjective beliefs (prefer-
ably empirically-plausible ones).” We do this by introducing “truncated ex-
pectations:” Players act as if they are not aware of the existence of types
who are more rational than some maximum upper bound, and this upper
bound may depend on their own type. Given their truncated beliefs, they
form expectations by integrating over their perceived type distribution, just
as in HQRE.

One way to operationalize subjective HQRE is to assume that there is
an upper bound on player i’s imagined types of 6;()\;), where 6;(\;) is com-
monly known. We assume that 6;();) is uniformly continuous in \; and
for each i there exists 6; such that 0i(Ni) < 0;)\; for all \;.8 We assume a
modified form of rational expectations, which we call truncated rational ex-
pectations. The beliefs of type \; of player ¢ about A_; are rooted in the
“true” distribution, but normalized to reflect the missing density: That is,
for A; > 0, the subjective beliefs of ¢ about the type of player k is given
by Fi(A\) = Fr(Ax)/Fe(0:(\)) for A\, € [0,60;(N\;)] and F}(Ag|\;) = 1 for
Ak > 0;(N\;). This is truncated HQRE, or TQRE. Note that as 6; — oo for
all 4, the upper bound on A\ is lifted and the model converges to the standard
HQRE model.

The truncation, 6;()\;) can be interpreted as player i’s imagination. Since
6;()\;) is finite, this is a model of bounded imagination, in the sense that for
any type A; of player ¢, all A\_; — types beyond a certain threshold, 6;();), are
unimaginable in the sense that ¢ assigns zero probability to all those higher
types. Notice that if 6;()\;) is increasing, then players who are “better” in
the sense of payoff responsiveness (i.e. higher \;) necessarily also have more
accurate expectations, in the sense that their beliefs are closer to the true
distribution F'. Types for which 60;();) ~ 0 are almost completely unimag-
inative in the sense that they believe all other players are nearly random.
Hence these very low types will act approximately as if they are applying the

"Earlier papers have considered variations of subjective HQRE. McKelvey, Palfrey, and
Weber (2000) consider an HQRE model of self-centered subjective beliefs where players
have different A;’s and believe every one else is exactly like them. Weizsacker (2003)
considers a more general model, where the players still have point beliefs, but these beliefs
are not necessarily self-centered.

8This can be generalized. For example, player i could have private information about
6;, or there could be lower as well as upper bounds.
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principle of insufficient reason to form expectations about the other players’
strategy choices (as do the level-1 types in the cognitive hierarchy model),
and then quantal respond to these beliefs. If 6;(\;) < A;, then we say that
players are self-limited, because they cannot imagine types with higher A\
than their own. Proving existence of TQRE requires a slightly different
proof than HQRE because different A-types have different beliefs about the
other players.

Theorem 2. In finite games, a Truncated Heterogeneous Logit Equilibrium
er1sts.
Proof: See appendix.

There are a number of reasons why truncated beliefs represent a rea-
sonable manner of introducing belief heterogeneity. One rationale is that
players with a low value of A who can imagine players with higher A\, and
compute what those other players will do, will generally want to switch to
the higher-type behavior. Another rationale is the large body of evidence
showing that people are often overconfident about their relative skill and
prospects, compared to other people.? A third rationale is computational
complexity: If there are cognitive costs to computing expected payoffs, those
costs increase as players have more other types to consider. The benefits from
more imagination—the expected payoff differential from imagining what a
wider range of types will do—are likely to fall as A rises, so the truncated
expectations assumption can be seen as a reduced-form model of cost-benefit
calculations which lead players to ignore information that is hard to process
and not too costly to ignore.

3.2 Discretized TQRE: The connection between QRE
and CH

In this section we establish a formal equivalence between a version of TQRE
and CH.

9Kahneman and Tversky (1972) first studied overconfidence, and much work has fol-
lowed, e.g. Camerer and Lovallo (1999) and Santos-Pinto and Sobel (2005).




3.2.1 Truncation and Heterogeneity in CH

CH introduces heterogeneity of player types of a much different kind than
HQRE. In CH there is a discrete distribution f(k) of players who do k steps
of thinking, so k indexes strategic sophistication. The choice probabilities for
a k-step player ¢ choosing strategy j are p;;(k). A O-step player randomizes
over her (finite) number of strategies J;, so p;j(k) = 1/J;Vj. Note that these
players do not form beliefs or even attend to their payoffs; their presence is
just assumed to get a hierarchical process started in a simple way.
Truncation of beliefs in a similar way to TQRE (albeit relative to beliefs
about the distribution of a much different parameter) is the central feature of
the cognitive hierarchy (CH) model of Camerer, Ho and Chong (2004). Play-
ers who do k£ > 1 steps of thinking form truncated beliefs about the fraction
of h—step types according to gr(h) = f(h)/S'_, f(n)Vh < k and gi(h) =
OVh > k. In this specification, players do not imagine that any others are at
their level (or higher), so, in the notation of the TQRE, they effectively have
0 < 1. All postive-step thinkers best respond given their beliefs, so in a two-

player game,'® pij(k) = 1iff a;; = argmaz, Zi;(l) gr(h) Z;{;l Pim(h)ui(a,a_iy)).

The expected choice probabilities for player ¢ implied by the CH model are
given by pi; = 3207 pij (k) f (k).

For precision, Camerer, Ho and Chong (2004) assume f(k) is Poisson and
estimate the mean of the distribution using data from more than 100 normal-
form games. Other types of hierarchical models have been explored as well.
Nagel (1995) and Stahl and Wilson (1994) were the first to use strategic
hierarchies to study dominance-solvable “beauty contest” games and matrix
games, respectively. In Nagel’s approach k—step players think all others do
k — 1 steps of reasoning (i.e., gi(h) = I(h,k — 1) where I(x,y) is an identity
function equalling one if = y and zero otherwise). Stahl and Wilson’s
limited-step types have the same one-step-below beliefs as in Nagel, but they
also permit equilibrium types and “worldly” types who maximize against the
empirical distribution of play. Players in these models are typically modelled

10The expressions are more cumbersome to write out with n-player games because the
probabilities of other players’ types have a multinomial distribution with many terms.
Roughly speaking, CH models become hard to compute as the number of players increases,
while QRE models, which require finding a fixed point, become more difficult to compute
as the number of strategies increases.

HTf more than one action is a best response they are assumed to randomize equally
across all best responses.
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as using quantal responses instead of best responses.!?

3.2.2 Differences and Similarities between CH and TQRE

The general form of TQRE is different from CH in three distinct ways. First,
the maximum “imagined” type of other players could be equal to, greater
than, or less than a player’s actual type (depending on 6;), and this could be a
second source of heterogeneity, whereas in all the CH and related approaches
the imagination parameter for all players is strictly less than 1.1 Second,
levels of rationality are indexed by A in TQRE, rather than k, so that types
correspond to increasing payoff responsiveness rather than strategic sophis-
tication. Third, in TQRE, all types exhibit some degree of randomness in
response, reflecting the stochastic choice modelling. In CH all players with
k > 1 best-respond, so the only source of stochastic choice behavior is buried
in the 0—level types.

In spite of these major differences between the two approaches, there are
a number of important similarities between the TQRE and CH approaches.
First, both models have heterogeneity of types. Second both models incor-
porate stochastic behavior. Third, they share an important type in common:
the bottom of the food chain (k =0 or A = 0); and these lowest types are in
the support of the beliefs of all types. Fourth, both models assume there is
a limit to the rationality of the other players, and this limit is monotonically
increasing in type. Fifth, in both approaches, there is heterogeneity of be-
liefs as well as heterogeneity of types, and these are correlated: higher types
have more accurate beliefs, and these converge to rational expectations about
fX) (or f(k)) as A (or k) increases. Finally, all players are overconfident in
the sense that they underestimate the gamesmanship (be it sophistication or
responsiveness) of the other players.

12Recent applications of this approach include Costa-Gomes and Crawford (2005) and
Crawford and Irribiri (2004, 2005).

13The Stahl-Wilson (1995) and Costa-Gomes and Crawford (2005) specifications include
other types that do not correspond to levels in the thinking hierarchy. If the maximum
imagined type is always less that one’s own type, then the model’s solution can be com-
puted recursively, as in CH. However, if 8 = 1, so that players are aware that others share
their level of thinking, the model must be solved using fixed point methods.
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3.2.3 The formal connection between TQRE and CH

In this section we show that by placing two parametric restrictions on TQRE,
for any CH model there exist distributions of types in TQRE that lead to
behavioral predictions that are essentially equivalent to CH. By essentially
equivalent, we mean two things. First we mean that the the equivalence is
in terms of approximations that can be made arbitrarily close; second, the
approximating equilibria in TQRE are unique.

To make this approximation, we first consider distributions such that the
set of A values is discrete, L, = {0,7,2,...,kv,...}, with grid size 7. Dis-
cretizing the distribution is a small step in practice, because it is usually done
in applications to make numerical computations. A player of type k, is called
a level k player, and has response parameter A = k. We fix the distribution
over k, so that the probabilities of types are f = {f(0), f(1),...f(k),...}. This
is simply a discretized HQRE. The HQRE is defined exactly as before, except
for the discrete, distribution of valuations, and existence is easily established.

The first parametric restriction we place on TQRE is that 6;(\) = ﬁ)\
for all i,A € L,. That is, as in CH, players only recognize lower types, but
otherwise have correct beliefs about the distribution, that is, they correctly
estimate the relative proportions of lower type players. In this version of
TQRE, level 0 players randomize uniformly, for any value of v. Level 1 play-
ers quantal respond using A = 7 - 1, assuming all other players are type 0.
Level 2 players quantal respond (using A = - 2), assuming all other players

are type 0 or type 1, with perceived probabilities f(oj)cf}(l) and %, re-

spectively. Higher-level types are defined iteratively in the obvious way. This
specification is also only slightly different from a discrete heterogeneous ver-
sion of QRE — the only difference being truncated vs. untruncated rational
expectations.

In contrast, however, as the grid size v grows (y — 00), then players
doing one or more steps of thinking have unboundedly large values of A, so
their choices approach best responses, even for low-level (other than zero)
players. This special form of discretized TQRE converges to a generalized
form of CH in which the type probabilities have the probabilitiy distribution
{f(0), f(1),...f(k),...}. A second parametric assumption makes this form
of TQRE identical to CH as it is generally implemented with a Poisson
distribution of types. That is, assume f(k) follows a Poisson distribution,
that is f(k) = 2—’:6*7. The important link is that TQRE with 6 5 1 retains
the continuous types, stochastic choice, and equilibrium elements of HQRFE,

11



but it borrows the downward-looking and Poisson elements of C'H.

The formal connection between TQRE and CH is asymptotic in 7. In
particular, for almost all games and almost all values of 7, the aggregate
choice probabilties implied by the vy—T'() RE model converge to the aggregate
choice probablilities of CH. This can be stated more formally, as follows.

Fix 7. Denote the CH choice probability that level k of player ¢ chooses
action j by py,, and denote the v — TQRE choice probability (and f dis-
tributed Poisson with parameter 7) that type A = vk of player i chooses
action j by pjjk Denote the expected CH choice probability of player i
choosing action j by pj; = > ;= pi;,.f (k) and the expected v —TQRE choice
probability of player i choosing action j by p;; = > 7.2, p};.f(k). Denote

J? _
AT = Z?:l Zj:l (]_7;; - ij)2'

Theorem 3: Fix 7. For almost all finite games I' and for any € > 0, there
exists 7 such that A™ < e for all v > 7.
Proof: See appendix.

Hence the limiting discretized TQRE shares the features of best response,
and hierarchichal beliefs that characterize CH.

Thus, we have created a “family tree” surrounding HQRE, illustrated in
Figure 1. The most general model is subjective HQRE. When all subjectivity
takes the form of truncation at a player’s );, we have TQRE. From TQRE
there are two branches to follow. If we send 6 — oo, then the subjectivity
vanishes, and we have HQRE. From there, a limiting distribution that places
all mass at one value of lambda corresponds to standard QRE. Following the
other branch from TQRE corresponds to discretizing TQRE so that \ takes
on a countable set of values, L, = {0, 7,27, ..., kv, ...}. Sending v — oo, and
assuming a Poisson distribution on F'(k) then yields the standard CH model.

Another interesting special case of TQRE is when # = 1 and v — oo. The
restriction # = 1 means that 1-step (k = 1) players are best-responding to a
mixture of choices by their own types and some random (0-step, A = 0) types.
Under these restrictions, in games with strict Nash equilibria, if F'(0) is small
enough (there are too few random types to induce the QRE types away from
the Nash strategies), and v — oo (the QRE types best respond), the model
is a “noisy Nash” model which has been used in previous applications as a
benchmark that illuminates the empirical importance of quantal response.*

14See, for example, McKelvey and Palfrey (1992), El-Gamal, McKelvey and Palfrey
(1993), and Fey, McKelvey and Palfrey (1996)
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Subjective

HQRE

Fi(A | ) = F,(\VFB(N)
for A < 8(A) )

B> =, so0
FIATA) = F,(A)

A=0,y,2y,...
Discretized HQRE
TQRE
y>« and Each F,(A) has a
f(k) is Poisson mass point at A*
CH QRE

Figure 1. All of the models considered are special or limiting cases of
subjective HQRE. The relationships among the models are depicted.
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4 Experimental evidence

4.1 Games and design

We explored the fit of different HQRE and CH models in 17 complete-
information normal form games, and one game with information asymmetry
(discussed in Section 4.4 below). Table A1 in Appendix 2 presents the payoff
matrices of all 17 games and the relative choice frequencies from our data.
The data from the row and column roles are combined in the symmetric
games.

One game is an “unprofitable” game (Morgan and Sefton, 2002) in which
maximin strategies do not form an equilibrium, yet guarantee the same pay-
offs as equilibrium strategies. Twelve games are affine transformations of
games created by Stahl and Wilson (1995) (SW) to fit models of iterated
strategic thinking (which are precursors to CH that include more types). We
changed some design details about how the games were presented, to see how
robust the patterns of play were to such details, and to avoid focal points.'®

These games were chosen because there is a high proportion of Nash play
in some of the games in the original SW sample, but the CH model cannot fit
those data because the Nash strategy is not reached by iterations of thinking
steps with best response (see Camerer, Ho and Chong, 2004). These games
are interesting to study since one of our goals is to identify strategic aspects
in which some models make better predictions than others. Game 8 from
SW is a good example.

Table 1 shows the payoff matrix of our game based on SW 8. The three
columns following the payoff matrix list the empirical choice frequencies, and
the predictions of QRE and CH, based on their fitted parameter values. We
find an optimal \* = 1.05, which generates predictions that are close to the
observed play. In contrast, the best fitting parameter for CH is 7* = 0.0, with
corresponding uniformly random behavior. That is, no other parameteriza-

15The main difference is the payoff transformation. This was done to eliminate possible
focal payoffs, such as 0 and 100, that appear in the original SW games. Instead, our payoffs
are scaled so that all entries are two-digit numbers. We also included 4 games that were
neither symmetric nor 3x3. Another difference is the matching protocol. We implemented
a standard random matching procedure, whereas SW match each choice against the empir-
ical distribution of others’ choices. Also, we paid subjects exactly according to the payoff
tables instead of using the lottery procedure of SW. Finally, our games were presented
sequentially, without the possibility of changing choices in previous games, whereas SW
allowed subjects to revise all decisions before submitting their choices.
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tion of CH fits better than random choice, and the model is not consistent
with the relative choice frequencies in our data in this sense. As stated,
the reason for this relates to the fact that equilibrium strategies can not be
reached through a process of iterated thinking, whereas the empirical choice
probabilities show a strong tendency towards equilibrium, as evidenced by
the relatively large value of A that we estimate in QRE. Recall that QRE con-
verges to a Nash equilibrium as A increases and players become completely
payoff responsive.

Four games involve “cloning”—presenting the same pure strategy more
than once. These games are included because QRE and CH models can
respond differently to the addition of cloned strategies. It is well-known that
in stochastic choice models, splitting a single strategy into two equivalent
strategies increases the predicted probability of play (the two split strategy
frequencies are generally higher than the single strategy frequency) unless
some hierarchical structure is imposed.'® This property can lead to different
predictions in QRE and CH approaches, since a cloned strategy does not
necessarily receive more weight in CH (except for O-level players) as players
best respond, rather than quantal respond, in CH.

One of our games with cloned strategies is asymmetric matching pennies,
where “down” is cloned for the row player and “right” is cloned for the col-
umn player, creating a 3 x 3 game. The payoff matrix is given in Table 2,
along with observed choice frequencies, and the predictions from QRE and
CH calculated at the best fitting parameter values. Notice the reversal in
prediction quality of the two models relative to SW 8. QRE consistently
overestimates the frequency of cloned strategy play.!” In addition, the data
show too much “up” and “left” play relative to Nash equilibrium, a phenom-
enon that the CH model does a better job of accounting for, due party to
the fact that these strategies are best responses to the uniform play of level

16Tn multinomial logit modelling this property is called the “red bus, blue bus” problem.
This term comes from early transportation applications predicting whether commuters
would drive or take a bus to work. The choice between {drive,bus} and {drive,red bus,
blue bus} can be different if choice is stochastic. For example, if people choose randomly
then there is a % probability they will take the bus in the first choice set and a % of taking
the bus in the second choice set. A large literature on hierarchical models with nesting
has emerged to take care of this problem, by treating the choice between {drive,bus} as a
top-level choice and the choice between {red bus, blue bus}, conditional on choosing bus,
as a second-level choice (where P(bus) = P(redbus) + P(bluebus)).

17Tn this game, CH also overestimates the amount of cloned play, but it is not significant,
and it is a much smaller magnitude than the error of QRE.
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B C
Al 11,11 59, 91 51, 51
Bl 91,59 27,27 51,43
Cl 51,51 43, 51 53, 53

Data
0.17
0.20
0.63

QRE
0.11
0.25
0.64

A=1.05

CH
0.33
0.33
0.33

1=0.0

Table 1. Game 8 from SW, along with empirical choice frequencies and the

optimal predictions of QRE and CH.

Cloned Matching Pennies

Data
QRE
CH

L R R
50, 10 10, 20 10, 20
10, 20 20,10 20,10
10, 20 20,10 20,10
0.71 0.22 0.07
0.33 0.34 0.34
0.50 0.25 0.25

Data
0.78
0.10
0.12

QRE CH
0.51 0.73
0.24 0.14
0.24 0.14

A=0.12
T=0.90

Table 2. The matching pennies game where “bottom” is cloned for the row
player and “right” is cloned for the column player, along with empirical
choice frequencies and the optimal predictions of QRE and CH.
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0’s.

Another game with cloned strategies is the “Joker game” of O’Neill
(1987), which was originally designed to allow a clean test of minimax play.
The payoff matrix is depicted in the lower right of Table A1, where the
first strategy (the joker card) has been cloned for the row player. Notice
that the row player’s frequency of the joker strategy is 14%, and the column
player’s choice frequency of the joker strategy is 38%, both below the Nash
equilibrium probability of 40%, which is predicted by QRE. The predicted
change from Nash to CH depends on the value of 7. At the pooled maximum
likelihood estimate, these probabilities are 23% and 32%, respectively. The
empirical frequencies are also lower than what was observed in the original
un-cloned O’Neill experiment (36% and 43%, respectively), where both QRE
and CH correctly predict the column player’s choice frequency to be above
the Nash equilibrium level of 40%.

Before proceeding to a more comprehensive analysis of our data, we briefly
summarize the design features. The experimental sessions took place at
Caltech and UCLA in April, 2004. There were four sessions, each consisting
of 25 rounds of the betting game and one shot each of the 17 matrix games,
with each ordering of the two parts done twice. The sessions had 16, 18, 20,
and 20 subjects each, resulting in a total of 1210 observations in the matrix
games'® and 1850 observations of the betting game. Subjects consisted of
undergraduate students in the two institutions, and were randomly selected
to participate in the experiments. Upon arrival, students were seated at
random locations in the lab. Once in the lab, instructions were read aloud for
everyone to hear, and all subsequent interactions took place only through the
computers. During the phase of 17 matrix games, subjects were randomly
and anonymously rematched after each decision, and the same procedure
was used during the 25 repetitions of the betting game in order to minimize
possible repeated game effects. Average payoffs were $7.50 for the matrix
games and $8.95 for the betting game, resulting in an average total payoff of
$21.45 after including a $5.00 showup fee. Sessions lasted approximately 2
hours.

18Due to technical problems, one session is missing data from games 3, 4 and 17, resulting
in a reduction of 3 - 16 = 48 observations.
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4.2 Complete information games

The first focus of our analysis is on estimation of the QRE, HQRE (assuming
an exponential f(\)), discretized TQRE (assuming a Poisson distribution of
levels), and Poisson-CH models for the complete-information games. All
four models are estimated separately for each normal-form game, as well as
pooling data across games and estimating a single set of parameters for all
games.

Table 3 summarizes the estimation results for the complete-information
games. Each column lists the best-fitting parameter value and negative log
likelihood for a particular model. The parameterizations are as follows: QRE
has a single A* (i.e., this is HQRE with a single mass point at \*); Poisson-
CH has a mean number of thinking steps 7; HQRE has an exponential
distribution of response sensitivities with cumulative distribution function
F(X\) = 1—exp(—a)), so it has a single parameter « to estimate; and TQRE
is discretized with grid size v and Poisson parameter 7 (i.e., the probability
that \; = kv is f(k) = Tk;r ~ and a level k player has beliefs truncated at
kﬁ’}/).lg

We use maximum likelihood to estimate the parameters of the models and
assess their qualities of fit. Each model makes a unique statistical prediction
in each game as a function of its parameter(s). At the aggregate level, our
data consists of group-level choice counts for each strategy of each game.
Denote the empirical choice count of strategy j for player ¢ in game g by c;jq,
and denote model M’s prediction of the frequency at parameter value p by

M (p). We can express the log likelihood of model M as a function of p by

ijg

() = 3 303 e FA(0) )

g=1icN9 j=1

Maximizing L (p) allows us to estimate the parameter(s) for each model.
The results from this exercise appear near the bottom of Tabe 3, in the row
marked “Pooled,” to indicate that a single parameter is estimated across all
games. In addition, we estimate the parameters separately for each of the 17

YWe also tried an HQRE model with a lognormal distribution of f(k), parameterized
by Gaussian mean p and variance o2, so that the mean and variance of the distribution are
controlled by separate variables. This model fit slightly better than exponential-HQRE
in SW games 5-6, 9-10, 13-14, and 16, (perhaps because it has two free parameters rather
than one), but the numerical computation did not converge for the other games.
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games, simply by taking the likelihood function to consist only of the terms
corresponding to strategies from a particular game. That is,

i 2(p.9) = 32 3 eI 725 o) )

iENY j=1

These results occupy the bulk of the table.

The first two columns of Table 3 are important for assessing the fits of
the models. The “random” log likelihood is the the likelihood that results
from a model that assumes every player randomizes uniformly in every game,
so that the choice frequency for player 7 in game g are simply 1/J7. This
number represents a lower bound on the quality of fit (recall all models
include uniformly random behavior as a special case). The “empirical” log
likelihood results from a (hindsight) model that assigns to every strategy its

empirical frequency, that is, [ = F’c% This is the model that results
i'<Jd Cis'e

in the best possible fit, and is therefore an upper bound on the quality of
fit for the models we consider. Thus, the random and empirical likelihoods
bracket the fitted likelihoods for all the models we consider.

In Camerer, Ho and Chong (2002) a more general form of f(k) is esti-
mated which allows each f(k), for 0 < k < 6, to be a free parameter. For
identification purposes, they impose the condition that the density f(k) must
be single-peaked. This more general form fits only very slightly better than
the Poisson distribution in the many games they estimate, suggesting that
a single-peaked distribution f(k) such as Poisson—which is parsimoniously
characterized by only one parameter, the mean and variance 7—is a good
reduced-form placeholder for more general single-peaked distributions, in fit-
ting experimental data. We adopt this approach in our estimation of CH, as
well as HQRE and TQRE.?°

There are two central features of Table 3. First, while the parameter val-
ues for each model are reasonably similar across games, all models have one or
more games with outlying values. For example, two QRE X estimates are in-
finite (Nash equilibrium) and four CH 7 values are either zero (corresponding
to random choice) or implausibly high (above 10).2! At the same time, the fit

20For HQRE, we use an exponential distribution.

21Because the CH model has best response (except for O-step types), the likelihood
surface is potentially discontinuous and very jagged. Small changes in 7 will change
the pattern of choices for many step-k types which produces large changes in predicted
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Matrix Game Estimates

Random Empirical QRE CH HQRE TQRE
Game # Game neg Log L neg Log L A neg Log L T neg Log L a neg Log L Y T neg Log L
1 Unprofitable 81.30 73.12 0.06 75.97 10.19 73.65 0.07 75.93 0.35 3.73 73.12
2 Cloned MP 81.30 52.34 0.12 71.72 0.90 58.39 0.13 71.76 0 0.90 58.39
3 Cloned SH (Low)  51.96 46.50 0.15 46.74 0.44 46.72 0.15 46.73 0.50 0.62 46.67
4 Cloned SH (Hi) 51.96 40.18 0.18 41.88 1.00 41.91 0.20 41.88 0.89 1.40 40.65
5 SW 1 81.30 39.55 0.13 41.51 3.10 40.92 0.36 39.56 0.17 2.66 39.93
6 SW 2 81.30 46.00 0.13 46.75 5.59 46.03 0.25 47.04 0 5.59 46.03
7 SW 3 81.30 53.26 0.07 73.94 0.72 63.26 0.10 73.03 0 0.72 63.26
8 SW 4 81.30 55.02 b 56.40 1.96 56.11 0 56.40 0 1.96 56.11
9 SW 5 81.30 79.27 0.14 80.50 0.00 81.30 0.17 80.25 0.00 0.00 81.30
10 SW 6 81.30 79.54 0.05 80.86 1.27 79.69 0.06 80.83 0.11 2.81 79.54
11 SW7 81.30 73.69 b 73.73 0.67 73.73 0 73.73 o 0.67 73.73
12 SW 8 81.30 70.76 0.98 73.25 0.00 81.30 1.38 73.04 0.02 51.30 78.30
13 SW9 81.30 54.30 0.08 66.56 1.01 60.94 0.10 66.61 0 1.01 60.94
14 SW 10 81.30 73.12 0.42 73.17 13.90 77.35 0.52 73.14 0.15 7.13 73.31
15 SW 11 81.30 73.81 0.17 74.55 0.83 73.82 0.22 74.47 0.17 0.93 73.81
16 SW 12 81.30 66.81 0.03 72.94 0.94 67.02 0.05 72.19 0.16 0.87 66.81
17 Cloned Joker 86.88 77.28 0.16 83.62 0.83 81.08 0.20 83.65 0 0.82 81.07
Sum 1329.00 1054.55 — 1134.08 — 1103.21 — 1130.24 — — 1092.96
Pooled — — 0.10 1192.00 0.53 1239.26 0.15 1180.25 0.11 1.57 1164.41

Table 3. Maximum likelihood estimates for the matrix games. The

“Random” and “Empirical” scores represent upper and lower bounds on the
negative log likelihoods achievable by the four models.

20



for all models degrades significantly when a single parameter configuration is
estimated for all games pooled, compared to estimating separate parameters
game-by-game. This can be seen in the table by comparing the likelihoods
in the last two rows, marked “Sum” and “Pooled.” The decline in fit is
least bad for HQRE, and substantially worse for CH relative to QRE (and
HQRE). For HQRE, the likelihood ratio versus the random model declines
from 199 to 149. This decline is greatest for CH, where it falls from 226 to
90. Thus, while CH provides the best fit when game-specific parameters are
estimated, it provides the worst fit if the parameters are constrained to be
constant across games.

The second conclusion is that despite their important structural differ-
ences, game-by-game and overall fits of the different models are surprisingly
close. The QRE and CH fits differ by five or more likelihood points in only
five of 17 games. Not surprisingly, TQRE also fits about as well as both
QRE and CH, and slightly better in many cases, since it contains structural
elements of both models. Our prior expectation was that the models would
be widely separated in many of these games, but they are generally not. The
surprise here is not that the models differ, but that they differ by so little in
most of these games.

A final observation concerns the discretized TQRE estimates. In 7 of the
17 games we estimate v = oco, in which case the TQRE model collapses to
Cognitive Hierarchy. This is interesting because TQRE incorporates both
QRE and CH features, and in some cases the estimates show that there is no
positive effect (as far as likelihoods) to adding a quantal response element to
the standard CH model. For 3 of these 7 games, there is also no improvement
over QRE, but in the remaining 4, CH is clearly the better fitting model.

Also notice that HQRE and QRE offer nearly identical fits in many cases.
Under a general distributional assumption for HQRE, it nests QRE (at least
asymptotically, as with a log-normal distribution), and so the HQRE fit
would necessarily be better. However, under the exponential distribution we
estimate here, the models are not nested because there is necessarily het-
erogeneity in HQRE. As the parameter describing the mean responsiveness
increases, the variance in responsiveness necessarily increases as well. Thus
the two models are indeed substantially different. Our results indicate that
this heterogeneity neither improves nor degrades the fit.

aggregate frequencies, and hence in log likelihood for any particular set of data. As a
result, values of T that are quite far apart can produce similar log likelihoods.
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Table 3 makes clear that QRE and CH have surprisingly small differences
in their qualities of fit for the game-by-game estimates. To see this relation-
ship in another way, consider Figure 2. Each point corresponds to a single
strategy from one of the 17 matrix games. The horizontal axis plots empirical
choice frequencies for the strategies, and the vertical axis plots the predicted
choice frequencies from the models at the pooled parameter estimate. QRE
predictions are shown in black and CH in gray. For a perfect fitting model,
like the “empirical” model shown in Table 3, all points would fall on the 45°
line, shown in heavy black. Of course, both QRE and CH show substantial
deviations from this line. Both models are also “biased” in the direction
of underpredicting extreme frequencies. That is, the models put too much
weight on strategies that are empirically played the least often, and too little
weight on strategies that are played the most often. This can be seen by
looking at the solid and dashed lines, which show the best fitting lines to
the scatter plots from tho models. Both lines have positive intercept and
slope less than unity. Perhaps most interestingly, the fitted lines are almost
identical, and can barely be distinguished in the figure.

4.3 The negative frequency-payoff deviation relation

This surprising similarity in fit of models led us to think about whether
the models might share some deeper structural properties. Note that in
QRE, by construction, strategies with larger, more costly, deviations from
optimal response (measured by expected payoffs) are played less often. To
illustrate this property, start with the best-fitting QRE parameter \* for a
game. Then calculate both the predicted frequency of play of each strategy,
and the expected payoff difference from each strategy according to the model,
relative to the optimal strategy. That is, calculate the expected loss assuming
that other players’ choice frequencies are given by the model. Figure 3 plots
these predicted frequencies, on the y-axis, against expected payoff deviations
(in pennies), for all strategies in all 14 symmetric games.?? The scatter plot
shows a clear downward slope, which means that bigger mistakes are made
less frequently.?

Figure 4 shows the same frequency-deviation plot, constructed instead

22We restrict attention to the symmetric games because in our data they are exactly
the games that are 3 x 3. Thus the frequencies are more comparable across games.

23Note that if we made a separate plot for each game, the points would necessarily move
monotonically downward by construction.
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Figure 2. Each point represents one strateqy from one of the complete
information games. Empirical choice frequencies are plotted on the
horizontal axis, and predicted frequencies from pooled estimates of the
models are on the vertical azis. QRFE is shown in red, and CH in blue. The
black line is the 45°, which corresponds to a perfect fit, and the red and blue
lines are the fits to the QRE and CH scatters. The fits are almost identical,
and in both cases are flatter than the 45°.
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using the actual data from each game. That is, given a particular data set,
one can compute expected payoffs from each strategy assuming that others
use the empirical choice frequencies, and then compute expected costs of
deviations from the strategy that is ex post empirically optimal. To make this
precise, denote empirical choice frequencies of player i by h; = {h;1,...,hij, }.
The collection h = {h;} of choice frequencies for each player then defines ex
post expected payoffs Uf;(h) = >, 4  (Hkzihp(ar))ui(aij, a—;). Denote
i’s optimal strategy by j*(i) = argmax;<j, Uf;. Then the expected cost of
playing strategy j is Uf. O Uj;. Of course, the empirically-optimal strategy
produces a zero deviation and is played frequently. The basic pattern that is
seen in the QRE plot—small mistakes (or zero mistakes) are common, and
large mistakes are rare—is also evident in the empirical frequency plot.

As an example consider game 16, which is SW 12. Table 3 gives a QRE
estimate of \* = 0.03. At the QRE estimate the predicted choice frequencies
are (37%,19%,44%). These result in expected payoffs of (56.7,36.9,61.4).
Thus the expected deviation costs are 4.7, 24.5, and 0, respectively. The three
points that game 16 contributes to Figure 1 are therefore (0,0.44), (4.7,0.37),
and (24.5,0.19). On the other hand the empirical choice frequencies are
(22%, 15%, 63%), which generate expected utilities of (62.3,31.4,63.0) for the
3 actions. The corresponding expected costs of deviation are (0.07,31.6,0).
Notice that while there are substantial differences between the empirical num-
bers and the QRE predictions (recall that the QRE estimate is fairly small
for this game), the ordering is preserved both in terms of choice frequen-
cies and expected payoffs. Thus the points contributed to Figure 2 are in a
qualitatively similar pattern to those for Figure 1.

Now consider the CH model. A negative relationship between the fre-
quency of strategy choices and their payoff deviations is not a structural
component of the CH model. The reason is that mistakes in CH which lead to
payoff deviations result from mistaken beliefs about the distribution of play,
not from quantal response. As the number of thinking steps k increases, the
accuracy of conditional beliefs improves, but there is no guarantee that the
strategy choices for k-step thinkers will have expected payoffs that always
increase with k. However, Figure 5 plots the frequency-deviation plot for
the CH model, using best-fitting 7* values (as in the QRE plot). The down-
ward slope evident in the QRE (Figure 3) and empirical frequency (Figure
4) graphs is also evident in the CH graph (Figure 5), which looks remarkably
like the QRE graph, even though the frequency-deviation decline is not built
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Figure 3. QRFE predicted choice frequencies computed at best fitting A
(vertical axis) for each strategqy of each symmetric game, versus expected
payoff cost in pennies, according to the model (horizontal azis).
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Figure 4. Empirical choice frequencies for each strategy of each symmetric
game (vertical axis), versus expected payoff cost in pennies, computed from
the empirical distribution of play (horizontal axis).
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into CH as it is in QRE.

One way to understand the surprising frequency-deviation link in CH
is to think about the extreme thinking-step types. Zero-step thinkers will
randomize across strategies, so their predicted frequencies will be the same for
all deviations (i.e., their frequency-deviation profile does not slope downward,
but it does not slope upward either). If the model is correct, the highest-step
thinkers are playing the optimal strategy, because they have correct beliefs
(their truncated beliefs about lower-type frequencies approximate the true
distribution closely enough to generate the optimal strategy); those higher-
step players will play only optimal strategies with zero deviation. Combining
only these two extreme types together will produce a frequency-deviation
plot that is weakly downward-sloping. Although there is no mathematical
guarantee that adding in intermediate types will generate a strictly declining
profile (as is true for QRE), Figure 5 nonetheless suggests that in practice
the relation between frequency and deviation is usually negative.

Summarizing, the empirical frequencies of strategy play are typically
declining in the deviation between a strategy’s expected payoff (given the
data) and the payoff of the empirically-optimal strategy. QRE reproduces
this property by construction. CH also reproduces this property empirically,
although it does not generally hold for all games. This gives one intuitive
reason why CH and QRE approaches fit data about equally well, despite their
structural difference. Also recall Figure 2, which shows that at an aggregate
level, the two models make extremely similar predictions across our games.

We remark that the negative frequency-deviation relationship does not
always hold for CH in our data. An example where it is violated is game 14,
SW 10. We find an estimate of 7% = 13.9 for CH. Based on the corresponding
choice predictions, level zero players, who randomize, earn an expected payoff
of 38.1. This is better than level one players, who best respond to the uniform
mixture. This results in playing strategy 3, which earns an expected payoff
of 36.9 against the true (according to the model) distribution of play. In fact,
there are multiple instances where a level j player does better than a level
J + 1 player in this example, because there are many cases where adjacent
level players choose different actions.

4.4 The betting game and learning

We also studied a zero-sum betting game with asymmetric information over
four states used by Sonsino, Erev and Gilat (2001) and replicated by Sovik
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(2004). The game is shown in Table 4. Player 1 has two information parti-
tions, {A, B} and {C, D}. Player 2 has three partitions, {A}, {B,C}, and
{D}. Note that if the state is A or D, player 2 knows the state with certainty.
The prior on the states is uniform. Players choose whether to “bet” or “not
bet”. If both players bet, their payoffs are determined as in the top panel
of Table 4. If at least one player opts out, then a paper-rock-scissors (PRS)
game was played, with payoffs of 49, 23, and 36, for win, lose, and draw, re-
spectively. This game has a unique equilibrium in which players randomize
uniformly and have an expected payoff of 36. The reason for including the
game is to avoid bias in presenting the betting game. The worry is that if the
outside option consisted of a certain amount, then subjects may be tempted
to over-bet, either because it is “more interesting,” or out of belief that the
experiment would not make sense if they were meant to repeatedly not bet.

This game tests the ”Groucho Marx Theorem” (Milgrom and Stokey,
1982)—the idea that privately-informed players should never agree to a zero-
sum bet in equilibrium. With these payoffs, player 2 loses by betting on A,
and wins by betting on D. As a result, although a CH 1-step risk-neutral
player 1 will bet if her information is {A, B} (thinking she is equally likely
to win 31 or lose 29, relative to the expectation of PRS), in equilibrium she
will never win since a rational player 2 will know the state if it is A, and
won’t bet. Hence if player 1 guesses that player 2 is rational, she won’t bet
if her information is {A, B} because she deduces that she will never win the
31 and might lose 29. By similar logic, if player 2 is rational, thinks player
1 is rational, and thinks that player 2 thinks she (player 1) is rational, she
can deduce that player 1 won’t bet if player 1’s information is { A, B}; player
2 therefore will not bet if her information is {B, C'}, since she can only lose
by so doing. One more step of iterated reasoning leads player 1 to not bet
if her information is {C, D}. So there will be no state in which both players
agree to bet, if players are sufficiently confident about rationality of others,
and about others’ perceptions of rationality.

However, Sonsino et al (2001) and Sovik (2004) find that players do bet,
even after many periods of experience. In most of the Sonsino treatments,
however, the marginal incentive is quite low; because they ran many periods,
they used a low per-period conversion rate from experimental currency to
Israeli Shekels (at stake was roughly 2.4 US cents per observation). In early
periods a surprising fraction of player 2’s bet when they are sure to lose in
{A} (around 20%) or don’t bet in {D} when they are sure to win (around
20% do not bet). This game was therefore included with some design changes
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to test the robustness of betting to higher incentives and other changes.

The main design change is that players who choose not to bet play a
mixed-equilibrium game with expected value of 36 instead. This helped
control for possible demand effects favoring betting, and also approximates
the psychological value of betting with playing a mixed-equilibrium game in
which the outcome is also uncertain.?* One anomaly in our data is that in
the betting game, one of four states is to be drawn for each match, with equal
probability. In our data the counts for the four states are (183,242, 255, 245).
The number of times state A is drawn is significantly smaller than 1.

In the betting game, CH and QRE both predict positive amounts of
betting in all information partitions. Table 4 (bottom two panels) shows
predicted betting rates for both models, using parameters estimated from
our data across all periods (A\* = 0.64,7" = 3.09). Both models predict
substantial betting when the information partitions contain two states, but
the predictions are not sufficiently different that the data could point to one
theory over the other. We played the game in 25 repeated rounds per session
to see how quickly learning occurs (as do Sonsino et al (2001) and Sovik
(2004)).

Figure 6 shows betting rates across time for both players in a four-period
moving average. As with the Sonsino et al. (2001) and Sovik (2004) results,
our data show that betting is common and is slow to be extinguished by
learning. However, our initial betting rates are significantly lower than Son-
sion et al (2001), showing more levels of sophisticated reasoning, a difference
due perhaps to our attempt to balance the design. Aggregating across peri-
ods, as shown in Table 4, the fit of the QRE and CH models as measured by
negative log likelihood scores are 1085.4 for QRE and 1074.2 for CH. As in
the complete-information normal-form games reported earlier, the two mod-
els are about equally accurate. We also fit models in which the parameters
A and 7 drift up over time, as a reduced-form way of characterizing learning.
In QRE we estimate an initial A\° = 0.55 with a time trend of 0.012, which
results in a negative log likelihood of 1083.5, an improvement of less than two
points. Allowing for the time trend generates a larger improvement in CH.
We estimate 7° = 2.5 with a time trend of 0.017, which has a correspond-
ing negative log likelihood of 1061.6, an improvement of over twelve points.

24SQonsino et al. (2001) also included one treatment in which there was a small fixed
payment for not betting, which did not reduce betting rates. A fixed payment treatment is
a step in the right direction but does not control for a taste for gambling or risk-preference.
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These results reinforce the central conclusion above, that despite their struc-
tural difference the QRE and CH approaches fit about equally well. Allowing
reduced-form learning in either model improves fit about equally well.

5 Conclusion

The quantal response equilibrium (QRE) approach in games assumes that
players “better-respond”—choosing strategies with higher expected payoffs
more often—but do not necessarily best-respond by choosing the highest
expected-payoff strategy all the time. (It is a fusion of Nash equilibrium with
Luce’s (1959) stochastic utility model.) Cognitive hierarchy (CH) models go
in a different direction; in the Poisson-CH form of Camerer, Ho and Chong
(2004), players iterate reasoning in discrete steps but players doing one or
more steps of iterated reasoning choose best responses given their beliefs.
Both models have been shown to explain deviations from Nash equilibrium
in many experimental datasets, and also explain why the Nash model fits
well in some experiments (Goeree and Holt, 2001; Camerer, Ho and Chong,
2004).

We introduce a heterogeneous form of QRE, called HQRE, which creates
a family of models that include QRE and CH as special cases. In HQRE,
there is a distribution of response sensitivities, f(A); players know this distri-
bution and optimize (given their A values) accordingly. If f(\) is a degenerate
distribution around one value of A then HQRE is equivalent to QRE. If a
player ¢ with \; has subjective beliefs about the distribution g(A|);), the re-
sulting model is subjective HQRE. When the beliefs g(A|\;) are truncated
at A; (i.e., g(A|A;) = OVA > );)) then TQRE results. The clear link to a
stochastic form of CH comes from allowing a discrete distribution of TQRE
with A\ values {0,7,2v,---}. When the increment v goes to infinity, the
hierarchical structure is retained and all players (except 0-step types) ap-
proximately best-respond. We prove that the discrete TQRE model with
large v approximates CH arbitrarily closely.

These models were estimated on new data from a variety of matrix games,
and a zero-sum incomplete information betting game. Surprisingly, the
HQRE approach adds very little to QRE, and QRE and CH approaches fit
about equally well. Both approaches can explain why there are substantial
betting rates in the zero-sum game, contrary to the “Groucho Marx The-
orem;” a learning model which allows QRE and CH parameters to change
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over time explains the modest amount of learning in a reduced-form way.

The essence of the QRE model is that larger deviations from best response
are made less frequently. The CH model also tends to exhibit this property
though it is not guaranteed and it is not built into the model specification
as in QRE. The fact that both models exhibit this property in practice is an
important clue about why they fit comparably well, despite their different
surface structures.

Two challenges for future research are to find more games in which the
models make sharply different predictions, and to explore further why their
predictions are often so similar.

Another important area for research is extension of these ideas to exten-
sive form games. QRE has been applied to extensive form games, typically
in an “agent normal form” in which the response function at each informa-
tion set is controlled by a separate agent (e.g., McKelvey and Palfrey, 1998).
Extending hierarchical approaches to extensive form games is less straight-
forward, since it is natural to assume that agents low in the hierarchy are not
responding as thoughtfully, and are also acting more myopically in a game
with many stages (Camerer, et al. 2002b). Linking hierarchical reasoning
as in HQRE with differences in look-ahead could generate valuable insights
and could provide a disciplined way to think about ‘’chain store paradox”-
type anomalies in which players do not appear to backward induct, even in
relatively simple games (e.g., Johnson et al, 2002).

Finally, the preliminary understanding of these models by comparing
them on experimental data is just meant to get a sense of where the models
fit well and badly, and to see which restrictions are most plausible. The even-
tual hope is that these behavioral theories can be applied to the economic
analysis of naturally-occurring games, just as conventional equilibrium con-
cepts are now applied. The finding that these models can reliably explain
behavioral departures from Nash equilibrium in one-shot games offers some
promise that they can be useful in explaining anomalies in field data. A re-
cent example is Crawford and Iriberri (2005), which applies level-k models to
auctions. Models like these can also be used for economic design. Proposed
institutions in which behavior predicted by models of limited rationality is far
from what the designer intends (even if equilibrium behavior is ideal) might
be bad designs in practice. Thus, applying these models is one approach to
talk in a disciplined way about the robustness of mechanisms.
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6 Appendix

6.1 Proof of existence of HQRE

Theorem 1: In finite games, a Heterogeneous Logit Equilibrium exists.

Proof: To define the fixed point mapping, we take a slightly different ap-
proach from the standard one. Rather than identify a mapping, the fixed
points of which are equilibria, we consider a fixed point in the induced mixed
strategies, and then an equilibrium is constructed from the induced mixed
strategies using (1). This simplifies the existence theorem because we are
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finding a fixed point in AA, a compact convex subset of R rather than in
a function space.

Let « € AA. We construct the mapping > : AA — AA in the following
way. Using (3), U : AA — R™ maps « into U(«a), where m = >_7" | J-
Using (1), for each i, P, : ®7" x [0,00) — AA; maps U; into AA; for each
Ai € [0,00). Finally, using (2), for each i, o; maps P;(U;(«)) into AA; by
taking expectations over \; according to the distribution F;. We define ¥ =
Y1 X ... X X, by the composed mapping >; = 0; 0 P, o U; o a. To see that
this has a fixed point, observe that U; is a single-valued, bounded continuous
function on AA. Furthermore, P, is single valued, continuous and uniformly
bounded and hence fooo P;(\;; Uy)dF;(\;) exists for all U;. Therefore, o;(P;) is
well defined, and continuous by Lebegue’s dominated convergence theorem.
Hence X is a continuous function from AA into itself and has a fixed point
o* € ¥. For each i and each \; € [0, 00), let:

. eAiUij(o'*)
Dij (/\l) R—
k=1

eAilix(o%) ‘

so p  is a Heterogeneous Logit Equilibrium. QED

Theorem 2: In finite games, a TQRE exists.

Proof: To define the fixed point mapping, we take a slightly different ap-
proach than above, because player i’s beliefs about other players strategies
depends on );. Rather than finding a fixed point in AA, a compact con-
vex subset of ™, we find a fixed point in distributional strategies, where a
distributional strategy for i, o;, is a probability measure on the subsets of
[0,00) x A;, the type-action product space, since in our approach i’s type is
Ai € [0,00). The proof is a straightforward adaptation of Milgrom and Weber
(1982). The only two differences are: (1) players have truncated expectations
rather than rational expectations; and (2) players quantal respond according
to the logit rule instead of best responding.

Payoffs are equicontinuous because each A; is finite. Because of the trun-
cated distribution of beliefs, the (ex ante) expected payoff to player i is then
defined slightly differently from Milgrom and Weber (p. 624), the differ-
ence being that the integral with respect to the distribution of other player
types (A_;) is truncated at 6;()\;) for each type ;. Since our distribution
of types is independent and a density function exists for each f;, and be-
cause 6;()\;) varies continously in J;, absolute continuity is satisfied, so we
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can express expected payoffs almost exactly as in Milgrom and Weber (1982,
p. 625, expression 3.1), except for the well-behaved dependence of the up-
per bound for types A_; on \;. Consequently, using the topology of weak
convergence for the distributional strategies, strategy sets are convex com-
pact metric spaces and payoff functions are continuous and linear, so a fixed
point exists by Glicksberg’s theorem (1952). The fact that we are considering
quantal responses rather than best responses is of no consequence. It simply
means that the fixed-point correspondence is single-valued and continuous
rather than being multi-valued and upper hemicontinuous. QFED

Theorem 3: Fixz 7. For almost all finite games I and for any € > 0, there
exists 4 such that A™ < e for all v > 7.

Proof: Fix 7 and let I'" denote the set of finite games with the property
that in the CH model with parameter 7 there is a unique best reply for all
levels £ > 1. It is straightforward to show that for each n and for each
J, where J is the maximum size of any of the n players’ strategy sets, the
set of games without these properties has Lebesgue measure 0. Since the
countable union of measure 0 sets has measure 0, this implies that I'" consists
of almost all finite games, in the generic sense. Let g € I'7. Denote the
unique maximizing action of a level k type of player ¢ by a,, and let o]
be the smallest difference in expected utility for a level k type of player ¢
between choosing a, and any other pure strategy Fix e > 0 and let L
be an mteger sufficiently large such that p L —e‘T < 377- Denote pi,; =

317"
Zk o k,e and p;; = Zk o Dijk k,e We immediately obtain that
LiL p1]| < 377 for all 4,j. Hence ) 1" 12] \(P5; — Pi;)? < §. Simlarly,
Yo ZJ 1(p1] Pi;)? < § for any v.Note that for each i and k, pf;;, = 0
except if j is the index corresponding to action a],. Next, we wish to examine
ﬁZj, for large . First, we show that there exists a number 7(L) such that for
all v > ¥(L), af, is the unique maximizing action for all types 1 < k < L
and pZa;kL > 1 — 5775 for all k& < L. That is, if v > §(L) then for all types
L or lower types of player i, |pf;;, — pijL| < 377 for all j € S;. The proof
is recursive. It is true for level 1 types because they have the same beliefs
about other players that the CH-level-1 players have, and therefore have the
same unique maximizing strategy a]. Therefore, by choosing a large enough
~ we can make the probability a level 1 type of player ¢ chooses a];, as close
to 1 as we Wish In particular, we can find some J(1) so that it is greater
than v > 7(1). Level 2 (and higher) types are only slightly

—T —T

BILJ
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more complicated. For the level 2 types, their optimal strategy will be aj
as long as the probability level 1’s of the players other than 7 play a”; is
sufficiently close to 1. This will be true for all v greater than some number,
call it 4(1). Hence, we can find a 4(2) such that the probability a level 1 type
of player i chooses al, is greater than 1 — -—5— for all v > 4(2). Proceeding

31LJ
recursively, we can do the same for level 3 and higher types, and so forth all

the way to level L types. By construction, Y ., Z;ﬂzl( Py — Pyyp)? < § for
all ¥ > 4(L). Finally, by the triangle inequality:

n J
AT = D B - By
i=1 j=1
n Jt n Jt n Jt
< DD B =m0 Y B — B+ Y Y (B — )
i=1 j=1 i=1 j=1 i=1 j=1
§+§—I—§ for all v > (L)
< €
QED
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Betting Game

A B C D
Payoffs Player 1| 67 7 | 55 19
Player2| 3 [ 63 15 | 51
Empirical A B C D
Betting Player 1 28.5% | 41.2%
Frequencies  Player2| 5.5% | 44.7% | 96.7%
QRE A B C D
Betting Player 1 25.1% | 37.1% A =0.64
Frequencies  Player 2| 20.1% | 46.0% | 70.9% | negLoglL =1085.4
CH A B C D
Betting Player 1 16.3% | 60.4% 7=3.09
Frequencies  Player2| 2.3% | 38.0% | 97.7% | negLogL =1074.2

Table 4. The betting game payoffs (top), the empirical percentage of the
time players chose “bet” by information set (second panel), and the QRE
and CH predictions at their mazimum likelihood estimates (third and fourth
panels, respectively).
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Bet Frequency
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Figure 6. Betting percentages for the different information sets of the two

roles in the betting game. Fach point represents a 4-period moving average.
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Unprofitable

40, 40 60, 10
10, 60 10, 10
40, 10 40, 60

10, 40
60, 40
40, 40

Cloned Matching Pennies

50, 10 10, 20 10, 20
10, 20 20,10 20,10
10, 20 20, 10 20, 10
0.71 0.22 0.07
Cloned Stag Hunt (Low)
21,21 10, 20 0.24
21, 21 10, 20 0.17
20, 10 20, 20 0.59
0.34 0.66
Cloned Stag Hunt (Hi)
31, 31 10, 20 0.45
31, 31 10, 20 0.34
20, 10 20, 20 0.21
0.90 0.10
S-W 1
35,35 39, 47 95, 40
47, 39 51, 51 67, 15
40, 95 15, 67 47,47
S-W 2
79,79 51, 59 55, 59
59, 51 31,31 99, 67
59, 55 67,99 19, 19
S-W 3
73,73 13,77 49, 93
77,13 41, 41 49, 41
93, 49 41,49 46, 46
S-W 4
42,42 58, 50 98, 46
50, 58 54, 54 26, 66
46, 98 66, 26 18, 18
S-W5
21, 21 93, 13 45, 29
13,93 69, 69 53, 53
29, 45 53, 53 61, 61

S-W 6
0.33 35, 35 39, 63 95, 91 0.44
0.24 63, 39 40, 40 56, 39 0.26
0.43 91, 95 39, 56 15, 15 0.30
S-W7
0.78 37,37 93, 45 53, 53 0.59
0.10 45,93 13,13 85,73 0.13
0.12 53, 53 73, 85 36, 36 0.28
S-W 8
1, 11 59, 91 51, 51 0.17
91, 59 27,27 51,43 0.20
51, 51 43, 51 53, 53 0.63
S-W9
50, 50 98, 44 70, 82 0.65
44, 98 38, 38 70,18 0.04
82, 70 18, 70 70, 70 0.31
S-W 10
0.1 47, 47 51,44 28,43 0.52
0.81 44, 51 11, 11 43, 91 0.19
0.07 43, 28 91, 43 11, 11 0.30
S-W 11
0.80 41, 41 97, 45 35, 58 0.50
0.15 45, 97 17,17 53, 57 0.17
0.06 58, 35 57, 53 33, 33 0.33
S-W 12
0.15 50, 50 30, 36 74, 42 0.24
0.17 36, 30 82, 82 18, 98 0.17
0.69 42,74 98, 18 62, 62 0.59
Cloned Joker
0.61 30, 10 10, 30 10, 30 10, 30
0.35 30, 10 10, 30 10, 30 10, 30
0.04 10, 30 10, 30 30, 10 30, 10
10, 30 30, 10 10, 30 30, 10
10, 30 30, 10 30, 10 10, 30
0.38 0.34 0.17 0.10
0.33 40
0.28
0.39

Table A1l. Payoff matrices for the 17 normal form games, along with
empirical choice frequencies (the row and column roles are combined in

symmetric games).

0.07
0.07
0.17
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