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Abstract

We introduce a class of strategies which generalizes examples constructed in two-player
games under imperfect private monitoring. A sequential equilibrium is belief-free if, after
every private history, each player’s continuation strategy is optimal independently of his
belief about his opponents’ private histories. We provide a simple and sharp characterization
of equilibrium payoffs using those strategies. While such strategies support a large set of
payoffs, they are not rich enough to generate a folk theorem in most games besides the
prisoner’s dilemma, even when noise vanishes.

1 Introduction

(Infinitely) repeated games have widespread application in economics as simple and tractable
models of ongoing strategic relationships between agents. The tractability of the repeated game
model is due to its recursive nature: the game that begins at date t is identical to the game that
was begun at date 0. A powerful set of analytical techniques have been developed to characterize
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behavior in repeated games. These methods exploit a recursive property of equilibrium made
possible by the recursive structure of the repeated game.

Abreu, Pearce, and Stachetti (1990), Fudenberg, Levine, and Maskin (1994) and others have
applied these techniques to a special class of equilibria, referred to as “public equilibria,” in
which the behavior of all players is contingent only on information that is publicly known. While
this restriction rules out some sequential equilibria, there is an important class of economic
environments in which the restriction entails little loss of generality. In particular, if all of the
information player i obtains about the behavior of his rivals is also public information (these are
games with public monitoring), then all pure-strategy sequential equilibria are observationally
equivalent to public equilibria, see Abreu, Pearce, and Stachetti (1990). Moreover, it is an
implication of Fudenberg, Levine, and Maskin (1994) that in games with public monitoring,
all (pure or mixed) sequential equilibrium payoffs can be obtained by public equilibria, provided
information is sufficiently rich and the players are sufficiently patient (this is the “folk theorem”.)

Still, the restriction to games with public monitoring leaves out many potential applications.1

A well-known example is a repeated oligopoly model in which firms compete in prices and neither
these prices nor the firms’ sales are public information. This is the “secret price-cut” model of
Stigler (1964). For these repeated games with “private monitoring,” public strategies accomplish
very little, and so to determine the equilibrium possibilities it is necessary to investigate strategies
in which continuation play can be contingent on information held privately by the players. The
difficulty appears to be that the recursive structure of equilibria is then lost, see Kandori (2002).

Recently however, some advances in the analysis of repeated games with private monitoring
have made this obstacle appear less severe than at first glance. In the context of a two-player
repeated prisoners’ dilemma, Piccione (2002) and Ely and Välimäki (2002) (hereafter VPE)
identified a new class of sequential equilibrium strategies that can be analyzed using recursive
techniques and showed that this class is sufficiently rich to establish a version of the folk theorem
for that game. The key characteristic of these strategies is that when they are used, the optimal
continuation strategy for a given player i is independent of the prior history of play. This means
that the history of the other player is a sufficient statistic for player i’s payoffs and can thus be
used as a state variable in a dynamic programming formulation of player i’s optimization.

In this paper, we look at two-player repeated games with private monitoring and consider
strategies with exactly this property. We call the property “belief-free” because it implies that a
player’s belief about his opponent’s history is not needed for computing a best-reply. Thus, the
daunting complexity of tracking a player’s beliefs over time to ensure that his strategy remains
a best-reply is avoided for equilibria involving belief-free strategies.

An important feature of belief-free equilibria is that in each period t there is a subset of

1Moreover, the above results leave open the possibility that for a fixed discount factor or for information
structures that are not sufficiently rich, some mixed-strategy sequential equilibrium may achieve more than any
public equilibrium. In fact this possibility has been demonstrated by Fudenberg and Tirole (1991) (exercise 5.10)
and Kandori and Obara (2003). See also Mailath, Matthews, and Sekiguchi (2002) for similar examples in finitely
repeated games.
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actions Ati for each player i such that regardless of the prior history of play the set of optimal
period t actions belongs to Ati. We refer to At = At1 × At2 as the regime prevailing at date t.
Belief-free equilibria can be classified according to their regime sequences {At}.

We fully characterize the set of payoffs that are achieved by belief-free equilibria in the
presence of a public randomization device. The public randomization device suggests the regime
At and the strategies ensure that all actions belonging to Ati are best-replies for player i. We
demonstrate that these equilibria can be analyzed using recursive techniques which build on a
variation of the concepts of self-generation and factorization due to Abreu, Pearce, and Stachetti
(1990). Suppose that p is the distribution of the public randomization device so that p(A) is
the probability of regime A. We say that a payoff vector (v1, v2) is strongly p-generated by a
set of vectors W1 × W2 if for each possible regime A, and for each player i there is a mixed
action profile αi from the stage game whose support is included in Ai, continuation values can
be selected from Wi so that αi is a best reply for player i and results in total p-expected payoff vi.
Let Bp(W ) be the set of all vectors strongly p-generated by W . We say that a set W for which
W ⊂ Bp(W ) is strongly self-generating and show that all members of a strongly self-generating
set are belief-free equilibrium payoffs using i.i.d. public randomization device p. Furthermore,
the set of all belief-free equilibrium payoffs of a given game using public randomization p is itself
a strongly self-generating set, indeed the largest such set.

Finally, we characterize the structure of this largest strongly self-generating set W ∗. In partic-
ular we show that iteratively applying the set-valued mapping Bp(·) beginning with the feasible
set of payoffs results in a shrinking sequence of sets whose intersection is W ∗. Furthermore,
we show a version of the bang-bang principle for belief-free equilibrium payoffs. Any strongly
self-generating set W of payoffs can be supported by belief-free strategies that are implementable
by 2 state automata whose only continuation payoffs are the extreme points of W , such as the
strategies used in Ely and Välimäki (2002).

Next we consider two limiting cases: increasing patience and increasing monitoring accuracy.
These are also the limits considered by VPE. For increasing patience (δ → 1), we show that
the limiting set of equilibria can be easily characterized by a family of linear programs. This
characterization is a version of the methods introduced by Fudenberg and Levine (1994) and
adapted by Kandori and Matsushima (1998) to characterize the limiting set of public equilibria.2

As an example of this method, the maximum payoff for player i can be found by considering an
auxiliary contracting problem where player −i chooses a mixed action profile and gives utility
penalties to player i as a function of observed signals in order to induce i to play a mixed action
that results in as high as possible a net utility for i. We use this characterization to discover the
boundaries of the belief-free equilibrium payoff set under the second limit, as the players monitor
one another with increasing accuracy. We find a simple formula that can easily be computed by

2Fudenberg and Levine (1994) analyzed public equilibria in games with long-run and short-run players, and
Kandori and Matsushima (1998) looked at equilibria of games with private monitoring in which all payoff-relevant
behavior was conditioned on public announcements made by the players.
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linear programming methods and apply it to a series of examples. These examples show that
belief-free equilibria can support a large set of payoffs, but the prisoner’s dilemma considered
by VPE is apparently exceptional: in general this set is not large enough to establish the folk
theorem.

All of the characterizations discussed above are derived assuming a fixed i.i.d. public ran-
domization device. In fact, we show (Proposition 5) that this is without loss of generality when
the discount factor is close to 1: every belief free equilibrium payoff using an arbitrary sequence
of public randomizations can be achieved using a fixed i.i.d. public randomization for discount
factors close enough to 1. Furthermore, in an online appendix Ely, Hörner, and Olzsweski (2004)
we show that public randomizations can be dispensed with altogether: for discount factors close
enough to 1, any equilibrium payoff obtained using an i.i.d. public randomization can also be
achieved in a belief-free equilibrium with a deterministic (cyclic) sequence of regimes. This ex-
tends the result of Fudenberg and Maskin (1991) to belief-free equilibria of repeated games with
private monitoring.

As a final application of our techniques, we consider the special case of games with indepen-
dent monitoring. These are games in which, conditional on the chosen action profile, the players
observe statistically independent signals. Whereas the folk theorem of VPE required signals to
be nearly perfectly informative, recently Matsushima (2002) demonstrated the folk theorem for
the prisoner’s dilemma with conditionally independent but only minimally informative signals.
This was accomplished by augmenting the strategies used by Ely and Välimäki (2002) with a
review phase. We apply our results to provide a sufficient condition for equilibrium payoffs in
arbitrary two action games with independent monitoring. The condition generalizes the result
of Matsushima (2002) and our techniques simplify the argument.

A closely related paper to ours is Kandori and Obara (2003). That paper considers repeated
games with public monitoring, but analyzes private strategies, i.e. strategies in which a player’s
continuation play depends on private history as well as public history. Analysis of equilibrium
involving private strategies shares many of the same complications typical of repeated games
with private monitoring, and the approach used by Kandori and Obara (2003) is similar to
ours. In particular they consider equilibria in “machine strategies” in which each player is made
indifferent across a fixed set of actions regardless of the state of the other’s machine. An important
difference is that they assume that the set of actions is fixed throughout. We show that allowing
for strategies that alternate among “regimes” greatly increases the set of payoffs that can be
supported in equilibrium. They obtain a linear inequality characterization of equilibrium which
closely resembles one of our characterizations of belief-free equilibria (see Section 4). They also
obtain some results for the case of near-perfect monitoring.

The remainder of this paper is organized as follows. In section 2 we introduce the notation
used in the paper, present the definition of belief-free strategies, and establish some preliminary
results. Section 3 introduces the concept of strong self-generation and uses it to characterize
the set of belief-free equilibrium payoffs. The bang-bang result appears here. In section 4
we present our characterization results for discount factors near 1 and near-perfect monitoring
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structures, and demonstrate their use with some examples. Finally, section 5 takes up the case
of independent monitoring and section 6 concludes.

2 Definitions and Preliminary Results

We analyze two-player repeated games with imperfect monitoring. Each player i = 1, 2 has a
finite action set Ai and a finite set of signals Σi. An action profile is an element of A := A1×A2.
We use 4W to represent the set of probability distributions over a finite set W , and P (W ) to
represent the collection of all non-empty subsets of W . The convex hull of W is denoted co(W ).
If W ⊂ R2, then W1 and W2 denote the projections of W . Let 4Ai and 4A := 4A1 × 4A2

represent respectively the set of mixed actions for player i and mixed action profiles.
For each possible action profile a ∈ A, the monitoring distribution m (· | a) specifies a joint

probability distribution over the set of signal profiles Σ := Σ1 × Σ2. When action profile a is
played and signal profile σ is realized, player i observes his corresponding signal σi. Let mi (· | a)
denote the marginal distribution of i’s signal. Letting ũi (ai, σi) denote the payoff to player i
from action ai and signal σi, we can represent stage payoffs as a function of mixed action profiles
alone:

ui (α) =
∑
a∈A

∑
σi∈Σi

α (a)mi (σi | a) ũi (ai, σi) .

Let V denote the convex hull of the set of feasible payoffs. Note that V is a compact subset of
R2. Repeated game payoffs are evaluated using the discounted average criterion. The players
share a common discount factor δ < 1.

A t-length (private) history for player i is an element of H t
i := (Ai × Σi)

t. A pair of t-length
histories (called simply a history) is denoted ht. Each player’s initial history is the null history,
denoted ∅. Let H t denote the set of all t-length histories, H t

i the set of i’s private t-length
histories, H = ∪tH t the set of all histories, and Hi = ∪tH t

i the set of all private histories for i. A
repeated-game (behavior) strategy for player i is a mapping si : Hi →4Ai. A strategy profile is
denoted s. Let Ui(s) denote the expected discounted average payoff to player i in the repeated
game when the players use strategy profile s. For history hti, let s|hti denote the continuation

strategy derived from s following history hti. Specifically, if hiĥi denotes the concatenation of the
two histories hi and ĥi, then s|hi is the strategy defined by s|hi(ĥi) = s(hiĥi). Given a strategy
profile s, for each t and ht−i ∈ H t

−i let Bi(s|ht−i) denote the set of continuation strategies for i
that are best replies to s−i|ht−i .

Definition 1 A strategy profile s is belief-free if for every ht, si|hti ∈ Bi(s|ht−i) for i = 1, 2.

It is immediate that every belief-free strategy profile is a sequential equilibrium. We will
therefore speak directly of belief-free equilibria. Observe that public strategies in games with
(perfect or imperfect) public monitoring are belief-free (because private histories are trivial).
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There always exists a belief-free equilibrium, since any history-independent sequence of static
equilibrium action profiles is belief-free.

In the literature on private monitoring, the strategies used by VPE are belief-free. On the
other hand, the strategies used by Sekiguchi (1997), Bhaskar and Obara (2002), Mailath and
Morris (2002) and Matsushima (2002) are not. Proposition 2 shows that the concept of belief-
free equilibrium is actually parallel to a generalization of Ely and Välimäki (2002) equilibrium
(strong self-generation). It is, however, conceptually convenient to introduce belief-free profiles
first; in particular, it is much easier to see that belief-free profiles are sequential equilibria.

2.1 Regimes

Suppose that s is an equilibrium belief-free strategy profile. It is convenient to describe belief-
free equilibria in terms of optimal actions in a given period t. A (continuation) strategy zi is a
belief-free sequential best-reply to s−i beginning from period t if

zi|heti ∈ Bi(s|het−i) for all t̃ ≥ t, and h
et ∈ Het;

the set of belief-free sequential best-replies beginning from period t is denoted by Bt
i(s). Let

Ati = {ai ∈ Ai : ∃zi ∈ Bt
i(s), ∃hti such that zi(h

t
i)[ai] > 0};

note that ∃hti can be replaced with ∀hti, because if zi is a belief-free sequential best-reply to s−i
and every continuation strategy zi|hti gets replaced with the strategy zi|ehti for a given h̃ti, then so

obtained strategy z̃i is also a belief-free sequential best-reply to s−i. We refer to At = Ati ×At−i
as the regime that prevails at date t. Denote the set of all regimes by J := P(A1) × P(A2).
Every belief-free equilibrium gives rise to a sequence of (non-empty) regimes {At}.

It will be convenient to distinguish belief-free equilibria such that Ati ⊃ Ai for each t and
i = 1, 2; we say that such a belief-free equilibrium is bounded by A = A1 ×A2.

2.2 Exchangeability

As we show in this section, belief-free equilibria satisfy an exchangeability property, similar to the
exchangeability of Nash equilibria in two-person zero sum games. In particular, given two distinct
belief-free equilibria, each governed by the same sequence of regimes, we obtain a new belief-free
equilibrium by pairing player 1’s strategy in the first equilibrium with player 2’s strategy in the
second. This property will be used to show that for any given sequence of regimes, the set of
belief-free equilibrium payoffs has a product structure.

Proposition 1 Let {At} be a sequence of regimes and let s, s̃ be two belief-free equilibria with
regime sequence {At}. Then the profiles (s1, s̃2) and (s̃1, s2) are also belief-free equilibria with
regime sequence {At}.
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Proof: We will show a stronger result. Any strategy z2 which adheres to the regime sequence
{At}, (i.e. z2(ht2) ∈ 4At2 for every ht2 ∈ H t

2) is a belief-free sequential best-reply to s1. It suffices
to consider pure strategies z2.

For each t = 0, 1, . . . there exists a belief-free sequential best-reply to s1 (beginning from
period t) which plays the pure action z2(ht2) with positive probability after history ht2. This is
because z2(ht2) ∈ At2 and At2 is the regime governing s in period t. We define a (continuation)
strategy z̃2|ht2 to be the strategy which begins by playing z2(ht2) and thereafter reverts to s2 |ht2 .
Note that

z̃2|het2 ∈ B2(s|het1) for all t̃ ≥ t, and h
et ∈ Het.

This is because s2|het2 ∈ B2(s|het1) and z̃2|ht2 differs from s2|ht2 only in the initial period in which it

plays one of the actions assigned positive probability by a belief-free sequential best-reply to s1.
Now we construct a sequence of strategies for player 2, zt2 for t = 0, 1, . . .. First we set

z0
2 = z2|∅. Next, we inductively define zt2 by zt2(hτ2) = zt−1

2 (hτ2) if τ < t and zt2|ht2 = z̃2|ht2 . Observe
that

zt2|ht2 = z̃2|ht2 ∈ B2(s|ht1) for all t, and ht ∈ H t.

Now, zt+1
2 |ht2 differs from zt2|ht2 only by replacing its continuation strategies with z̃2|ht+1

2
. Since

this cannot reduce the payoff, we have zt+1
2 |ht2 ∈ B2(s|ht1) and by induction

zt+k2 |ht2 ∈ B2(s|ht1) for all t ≥ 0, k ≥ 0, ht. (1)

By construction, for all k ≥ 0, zt+k2 (ht2) = z2(ht2) and thus for any fixed ht2, the sequence
of continuation strategies zt+k2 |ht2 converges, as k → ∞ to z2|ht2 , history-by-history, i.e. in the
product topology. Because discounted payoffs are continuous in the product topology, (1) implies

z2|ht2 ∈ B2(s|ht1) for all t, and ht ∈ H t.

which is what we set out to show.

As a corollary, we have that the set of all belief-free equilibrium payoffs for a given sequence
of regimes is a product set.

Corollary 1 Let W ∗({At}) be the set of all payoffs arising from belief-free equilibria using regime
sequence {At}. Then W ∗({At}) = W1 ×W2 for some subsets W1 ⊂ R and W2 ⊂ R.

2.3 Public Randomization

Characterizing belief-free equilibrium payoffs is considerably simplified when the players have
access to a public randomization device. We will henceforth suppose that in each period, all
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players observe a public signal y from a set of possible public signal realizations Y .3 Let ν(ŷ|yt) ∈
4Y be the probability in period t + 1 of realization ŷ ∈ Y conditional on the past sequence of
realizations yt ∈ Y t. The public randomization device is independent of any other (private)
history. Below we will give special attention to public randomizations which are i.i.d. draws
from the same distribution p ∈ 4Y . Abuse notation slightly and write ht = (ht1, h

t
2, y

t) for the
private/public history pair after time t.

A strategy now depends on private history as well as the sequence of realizations yt. The set
of histories for i is now Hi = ∪t(H t

i × Y t) and the set of histories is H = ∪t(H t
1 × H t

2 × Y t).
A strategy is now a mapping si : Hi × Y → 4Ai which specifies the mixed action to play for
each private/public history pair. Continuation strategies si|(hti,yt) and best-reply continuation
strategies Bi(s|(ht−i, yt)) are defined as before. The definition of belief-free equilibrium must also
be appropriately modified. In particular, the set of best-replies can depend on the regime, but
not on the private history.

Definition 2 In the presence of a public randomization device, a strategy profile s is belief-free
if for all t, yt ∈ Y t, and hti ∈ H t

i , si|(hti,yt) ∈ Bi(s|(ht−i, yt)) for every ht−i ∈ H t
−i.

A (continuation) strategy zi is a belief-free sequential best-reply to s−i beginning from period
t if

zi|heti,yet ∈ Bi(s|het−i, yet) for all t̃ ≥ t, and h
et ∈ Het.

In a belief-free equilibrium with a public randomization device, the regime in a given period
depends on the current realization ŷ:

Ati(ŷ) = {ai ∈ Ai : ∃zi ∈ Bt
i(s), ∃ (hti, y

t) such that zi(h
t
i, y

t, ŷ)[ai] > 0};
∃(hti, yt) can be replaced with ∀(hti, yt). A belief-free equilibrium is direct if Y = J and for each
t and Â, we have Ati(Â) = Âi. That is, in a direct equilibrium, the public randomization device
simply suggests a regime, and all actions in the suggested regime are best-responses. By the
revelation principle, we can restrict attention to direct belief-free equilibria.

We say that a belief-free equilibrium is bounded by p ∈ 4J if the public randomization is
i.i.d. according to p and Ati(Â) ⊃ Âi for each t, Â and i = 1, 2.

3 Strong Self-Generation

In this section we develop a generalization of the Abreu, Pearce, and Stachetti (1990) concept of
self-generation to characterize belief-free equilibrium payoffs.

3At first glance, it may seem that public randomization and private monitoring do not go together, but it will
be clear that public randomizations are used as a substitute for sequences of regimes in a manner similar to the
case of perfect monitoring where public randomizations substitute for transitions among mixed action profiles, see
Fudenbeg and Maskin (1990) and Fudenberg and Maskin (1991). We show this formally in our online appendix
Ely, Hörner, and Olzsweski (2004).
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Definition 3 Let p ∈ 4J be a public randomization over regimes and W ⊂ V a set of con-
tinuation payoffs. Say that vi is p-generated by Wi if for each regime A, there exist a mixture
αA−i ∈ 4A−i and continuation value function wAi : A−i × Σ−i → co(Wi) such that for each
ai : J → Ai

vi ≥
∑
A∈J

p(A)


(1− δ)ui(ai(A), αA−i) + δ

∑
a−i∈A−i

∑
σ−i∈Σ−i

αA−i(a−i)m−i(σ−i|ai(A), a−i)wAi (a−i, σ−i)




(2)
with equality if ai(A) ∈ Ai for each A.

We write vi ∈ Bp,i(Wi) if vi is p-generated by Wi, and let Bp(W ) = Bp,1(W1)×Bp,2(W2). We
will also say that the pair {αA−i}A∈J and {wAi }A∈J together enforce the public randomization
p and p-generate vi. The set W is strongly self-generating if W ⊂ Bp(W ) for some public
randomization p.

Proposition 2 If W is strongly self-generating using public randomization p ∈ 4J , then each
element of W is the payoff of a belief-free equilibrium bounded by the i.i.d public randomization
p. Conversely, the set of all payoffs in belief-free equilibria bounded by i.i.d public randomization
p is itself a strongly self-generating set.

Proof: Say that a strategy for player i in the repeated game conforms to the public random-
ization device if for each regime A, in any period when A is the realization of p, the strategy
plays a randomization over Ai. Let v = (vi, v−i) belong to W . We will show that player i has a
strategy which conforms to the public randomization such that player −i’s maximum payoff is
v−i, and this payoff is achieved by any strategy for −i which conforms to the public randomiza-
tion device. Since the symmetric argument implies the same conclusion with the roles reversed,
these strategies form a belief-free profile. Obviously, we have Âi ⊂ Ati(Â) for each i = 1, 2 and
Â.

Since W ⊂ Bp(W ), for each u ∈ W−i, for each regime A, there is a mixture, call it αA,ui ∈ 4Ai
and a continuation value function wA,u−i which satisfy (2). Construct a Markovian strategy for
player i as follows. The “state” of the strategy will be the continuation value for player −i. In
any stage in which the state is u and the realization of the public randomization is A, player i
will play mixed action αA,ui . Player i will then randomly determine the next state depending on
the realization of his own mixture and the observed private signal as follows. The continuation
value wu−i(ai, σi) is an element of co(W−i). Thus, there exists a pair of elements {u, ū} of W−i
such that for some s ∈ [0, 1], wu−i(ai, σi) = su + (1 − s)ū. Then, having played action ai, and
observed signal σi, player i will transit to state u with probability s and to ū with probability
(1− s).
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The initial state will be v−i. It now follows from equation (2) and the one-stage deviation
property that when the marginal distribution of i’s signal is given by mi, and the public ran-
domization is i.i.d with distribution p, any strategy for player −i which conforms to the public
randomization is a best-reply and achieves payoff v−i.

To prove the converse, consider any belief-free equilibrium s bounded by i.i.d public ran-
domization p. Write wi(h) = Ui(s|h) for the continuation payoff to player i after history h.
Let Wi be the set of all possible continuation values for i in the equilibrium s. Formally
Wi = {wi(h) : h ∈ H}; note that Wi consists of payoffs in belief-free equilibria bounded by
i.i.d public randomization p.

Let us first observe that in a belief-free equilibrium, wi(h
t) depends only on (ht−i, y

t). To

see why, suppose wi(h
t
i, h

t
−i, y

t) > wi(h̃
t
i, h

t
−i, y

t). Then si|h̃i,yt is not a best-reply to s−i|h−i,yt
implying s is not belief-free. We can thus write wi(h

t) = wi(h
t
−i, y

t).
Consider any date t + 1 and history ht. Because s conforms to the public randomization,

for each A, the mixed action αA−i := s−i(ht−i, y
t,A) played by i’s opponent in regime A belongs

to 4A−i. Let ai(A) ∈ Ai. Since Ati(A) ⊃ Ai, there is a belief-free sequential best-reply
continuation strategy ŝi for i which plays ai after history (hti, y

t,A); after each possible subsequent
history (ht+1

i , yt+1), ŝi is a best-reply at (ht+1
i , yt+1). Because the equilibrium is belief-free,

Ui(ŝi, s−i|ht+1
−i ,yt+1) = wi(h

t+1
−i , y

t+1) for every (ht+1
−i , y

t+1).

For fixed ht−i and yt, we can view wi(h
t+1
−i , y

t+1) as a continuation value function depending
on the realizations of (a−i, σ−i,A) and taking values in Wi. The payoff to i from using ŝi against
s−i(ht−i, y

t) when the realized regime in period t+ 1 is A can thus be written

(1− δ)ui(ai(A), αA−i) + δ


 ∑
σ−i∈Σ−i

∑
a−i∈A−i

αA−i(a−i)m−i(σ−i|ai(A), a−i)wAi (ht−i, y
t; a−i, σ−i)


 (3)

and the expected payoff before the realization of the regime in period t+ 1 is the expected value
of this expression with respect to p, i.e. the right-hand side of (2).

Since ŝi is a best-reply against s−i|het−i,yet , this is equal to wi(h
t, yt). Moreover, since we selected

i’s action from each Ai arbitrarily, this equality holds for any selection {ai(A)}A∈J . Finally since
s is direct and belief-free, player i cannot achieve a greater continuation value with a strategy that
does not conform to the regime. Thus, wi(h

t) must be greater than or equal to the p-expected
value of (3) when ai(A) /∈ Ai for some A.

This shows that the pair (s−i(ht−i, y
t; ·), wi(ht−i, yt; ·, ·)) enforce p and generate wi(h

t). Since
ht was arbitrary, every element of Wi can be so generated. Applying the same argument for
player −i shows that the set W =

∏2
i=1Wi is strongly self-generating.

Now let W ∗ be the union of all continuation values occurring along histories of all belief-free
equilibria bounded by the public randomization p. The set W ∗ is the union of strongly self-
generating sets and is therefore strongly self-generating.
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The preceding proposition shows that strong self-generation characterizes all belief-free equi-
libria bounded by an i.i.d public randomization. It is a consequence of our Proposition 5 below
that when characterizing the limit set of belief-free equilibria as the discount factor approaches 1,
it is without loss of generality to focus on belief-free equilibria bounded by i.i.d public random-
izations. The following proposition provides an algorithm which can be used for any discount
factor to compute the set of all strongly self-generating payoffs for a given i.i.d randomization p.

Proposition 3 For each p, there exists a maximal strongly self-generating set W ∗. W ∗ is the
product of closed intervals. Set W 0

i = Bp,i(Vi), and inductively W τ
i = Bp,i(W

τ−1
i ). Then W τ

i ⊂
W τ−1
i for each τ and

W ∗
i =

⋂
τ≥0

W τ
i

Proof: The following observation will be used repeatedly in the proof. For any two sets Wi,
W ′
i such that Wi ⊂ W ′

i , if vi is p-generated by Wi then vi is also p-generated by W ′
i . Thus Bp,i(·)

is monotonic in the sense that Bp,i(Wi) ⊂ Bp,i(W
′
i ) for Wi ⊂ W ′

i .
The union of strongly self-generating sets is itself strongly self-generating. This shows the

existence of a maximal set W ∗. Note that W ∗ = Bp(W
∗). This follows because by monotonicity

W ∗ ⊂ Bp(W
∗) implies Bp(W

∗) ⊂ Bp(Bp(W
∗)) so that Bp(W

∗) is strongly self-generating. By
the maximality of W ∗, we have Bp(W

∗) ⊂ W ∗ implying that these sets are equal.
We will first show that Bp,i(Wi) is convex. Let v, v′ be elements of Bp,i(Wi). By the definition

of Bp,i(Wi), for each A there are associated mixed actions αA−i(v), αA−i(v
′) and continuation

value functions wAi (v) and wAi (v′) used to generate vi and v′i respectively. By the linearity of
the inequalities in the definition of strong self-generation, any convex combination of vi and v′i
is generated by the corresponding convex combinations of αA−i(v) and αA−i(v

′) and wAi (v) and
wAi (v′).

Next we show that the operator Bp,i(·) preserves compactness. Obviously Bp,i(Wi) is bounded
whenever Wi is. To show that Bp,i(Wi) is closed for compact Wi, let vri be a sequence of elements
of Bp,i(Wi) with limr v

r
i = vi. Then for each regime A, there are corresponding sequences (αA−i)

r

and continuation value functions (wAi )r taking values in co(Wi) used to generate vri . By the
compactness of 4A−i and co(Wi) there is a subsequence of r’s such that (αA−i)

r → αA−i and
(wAi )r(a−i, σ−i) → wAi (a−i, σ−i) ∈ co(Wi) for each of the finitely many pairs (a−i, σ−i). By
continuity, αA−i and wAi generate vi, and therefore vi ∈ Bp,i(Wi).

Obviously W 0
i ⊂ Vi. Using monotonicity we conclude that W 1

i ⊂ W 0
i and inductively that

W τ
i ⊂ W τ−1

i . Since Vi is compact and Bp,i(·) preserves compactness, W 0
i and by induction each

W τ
i are compact. Moreover, for each τ ≥ 1, W τ

i is convex. Thus W τ
i is a nested sequence of

compact intervals and the set

W∞
i :=

⋂
τ≥0

W τ
i

is a closed interval.
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We now show that W∞ := W∞
1 ×W∞

2 is strongly self-generating. Let vi ∈ W∞
i . (If W∞

i = ∅,
then W∞ = ∅ and W∞ is trivially strongly self-generating.) Then for every τ there exist (αA−i)

τ

and (wAi )τ : A−i×Σ−i → co(W τ
i ) which generate vi. We claim that there exist limit continuation

values wAi (a−i, σ−i) ∈ W∞
i such that (passing to a subsequence if necessary) (wAi )τ (a−i, σ−i) →

wAi (a−i, σ−i) for each pair (a−i, σ−i). If not, then there exist a pair (a−i, σ−i) and an open
neighborhood U of W∞

i such that (wAi )τ (a−i, σ−i) /∈ U for infinitely many τ . This implies that
¬U ∩W τ

i 6= ∅ for these τ . But ¬U ∩W τ
i is an infinite family of nested, non-empty, compact sets

and hence,

∅ 6=
⋂
τ≥0

[¬U ∩W τ
i ] = ¬U ∩

⋂
τ≥0

W τ
i = ¬U ∩W∞

i

which is a contradiction.
Again, by continuity vi is generated by lim(αA−i)

τ (passing to a further subsequence if neces-
sary) and wAi . Thus vi ∈ Bp(W

∞
i ) and we have shown that W∞ is strongly self-generating. It

remains only to show that W∞ includes W ∗, which by the maximality of W ∗ would imply that
W∞ = W ∗ and conclude the proof. But W ∗ ⊂ V ∗, so we have W ∗ = Bp(W

∗) ⊂ W 0 and by
induction W ∗ ⊂ W τ for every τ . Thus W ∗ ⊂ W∞.

3.1 Bang-Bang

In this section we show that belief-free equilibrium payoffs can always be obtained by simple
strategies that can be represented by a two-state automaton. As a corollary we obtain a version
of the traditional “bang-bang” result that a set is strongly self-generating if and only if the set
generates its extreme points.

A machine strategy for player i is defined as follows. There is a set of states Θ, and for each
state θ ∈ Θ there is a behavior rule αθ : P(A)→4Ai and a transition rule φθ : P(A)×Ai×Σi →
4Θ. The interpretation is as follows. When in state θ, if the outcome of the public randomization
is regime A, the strategy plays αθ(A). Then, if the action ai is realized and the signal σi is
observed, a new state is drawn from the distribution φθ(A, ai, σi) and the strategy begins the
next period in that state.

Imagine that i were playing such a machine strategy and player −i was informed each period
of the state. Then we could compute the value v(θ) to player −i of being in state θ. Furthermore,
the transition rule would imply for each state the continuation value function wA−i as follows

wA−i(ai, σi) =
∑

θ′∈Θ

v(θ′) · φθ(A, ai, σi)[θ′]

Note that in the proof of Proposition 2 we construct such a machine strategy whose contin-
uation value functions replicate the continuation value functions used in the definition of strong

12



self-generation. In fact as we now show it is always possible to implement the payoff of a belief-
free equilibrium bounded by p using machine strategies which have only two states.4 The values
of the two states in i’s machine correspond to the maximum and minimum payoffs of player i in
belief-free equilibria bounded by p.

Proposition 4 Consider intervals Vi = [vi, v̄i] for i = 1, 2. Let p be a public randomization over
regimes. Suppose for each i that vi is p-generated by Vi using αA−i and wAi and similarly for v̄Ai
using ᾱA−i and w̄Ai . Then every element v of V1 × V2 is the payoff to a belief-free equilibrium in
which each i plays a machine strategy with two states {θ, θ̄} whose behavior rules are αAi , ᾱAi
respectively and whose derived continuation value functions are wA−i, w̄

A
−i, respectively.

Proof: Adapt the Markovian strategy used in the proof of Proposition 2 as follows. There
are only two states, corresponding to values v̄−i and v−i. Now, when then continuation value
should be w ∈ [v−i, v̄−i], player i will randomly transit to states v−i and v̄−i with probabilities q
and 1− q where w = qv−i + (1− q)v̄−i. Finally, player i determines his initial state by similarly
randomizing over the two states with probabilities calculated to provide initial value v−i.

The equilibria provided by proposition 4 satisfy a stronger property than belief-free alone.
To see this suppose that ᾱAi and αAi are pure actions for each regime. In the initial period i is
determining his state, and hence his initial action by randomizing. Regardless of the realization of
this randomization, player −i is indifferent over his actions in the regime. Thus, the equilibrium
strategy of player −i remains a best-reply even if before play −i could observe the outcome of
i’s private randomization.

4 Characterizing Belief-Free Equilibrium Payoffs for δ close

to 1

4.1 General Information Structure

The preceding results can be used to determine the set of belief-free equilibrium payoffs for any
given discount factor δ. Given a fixed distribution over regimes for which the set of belief-free
equilibrium payoffs has nonempty interior, it is possible to give a simple characterization of its
boundary as δ approaches 1. The key insight is that, when the discount factor is large, some
constraints on continuation values can be ignored, as small variations in the continuation values
are sufficient to generate appropriate incentives.

To get a feel for the techniques presented here, consider a fixed regime A, and for the moment
a given discount factor δ. Let W ∗(δ) be the set of belief-free equilibrium payoffs given δ, bounded

4In a related context, Kandori and Obara (2003) also examine conditions under which two-state automata are
sufficient.
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by regime A. From previous results, we know that W ∗(δ) is the product of closed intervals, so
W ∗(δ) = W ∗

1 (δ)×W ∗
2 (δ). Let us write W ∗

1 (δ) = [w1, w̄1].
Because W ∗(δ) is strongly self-generating (by Proposition 2), both w̄1 and w1 are generated

by W ∗
1 (δ). Furthermore, w̄1 is the maximum value w1 generated by the interval [w1, w1], for

if w1 > w̄1 were generated by [w1, w1], then by Proposition 4, the set [w1, w1] ×W ∗
2 (δ) would

be strongly self-generating, contradicting the definition of W ∗(δ). Thus, w̄1 solves the following
optimization problem

w̄1 = maxw1

such that for some α2 ∈ 4A2 and z1: A2 × Σ2 → R

w1 ≥ (1− δ)u1(a1, α2) + δ

[ ∑
σ2∈Σ2

∑
a2∈A2

α2(a2)m2(σ2|a1, a2)z1(a2, σ2)

]

for each a1 ∈ A1, with equality for each a1 ∈ A1.

w1(a2, σ2) ≤ w1 ∀ a2, σ2

w1(a2, σ2) ≥ w1 ∀ a2, σ2.

Similarly, w1 is the minimum value w1 generated by the interval [w1, w̄1], and is thus the
solution to the corresponding minimization problem. Conversely, the solutions to these problems
characterize the boundaries of W ∗

1 (δ) whenever it is non-empty.
Observe that for δ close to 1, the differences in continuation values required to satisfy the

incentive constraints in the above problem can be made arbitrarily small. Thus, when w̄1 > w1,
the last constraint can always be satisfied when δ is close enough to 1. As a further simplification,
let us define x1(a2, σ2) = δ

1−δ [z1(a2, σ2)− w1] ≤ 0, substitute out for z1(·, ·), and rewrite the
maximization as follows.

w̄1 = maxw1

such that for some α2 ∈ 4A2 and x1 : A2 × Σ2 → R−

w1 ≥ u1 (a1, α2) +
∑
a2∈A2

∑
σ2∈Σ2

α2 (a2)m2 (σ2 | a1, a2) x1 (a2, σ2) ,

with equality if a1 ∈ A1.

We can interpret this characterization as follows. Player 2 will select a mixed action α2 ∈ 4A2

and levy fines −x1(a2, σ2) on player 1 depending on the realized action and signal. The objective
is to induce player 1 to select any action in A1 and to provide the maximum total utility to
player 1 in the process. That maximum will turn out to be the maximum payoff of player 1
in a belief-free equilibrium using a sequence of regimes bounded by A when δ is close to 1. To
find the minimum, we analyze the corresponding minimization problem with the difference that
player 2 will offer bonuses rather than fines.
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In what follows, we formalize and extend this analysis to the case of an arbitrary public
randomization over regimes and use it to characterize the set of all belief-free equilibrium payoffs
for δ close to 1.

For given A = Ai ×A−i, define MA
i as follows:

MA
i = sup vi such that for some (4)

α−i ∈ 4A−i
xi : A−i × Σ−i → R−

vi ≥ ui (ai, α−i) +
∑

a−i∈A−i

∑
σ−i∈Σ−i

α−i (a−i)m−i (σ−i | ai, a−i) xi (a−i, σ−i) ,

for all ai with equality if ai ∈ Ai.
Similarly, define mAi as follows:

mAi = inf vi such that for some (5)

α−i ∈ 4A−i
xi : A−i × Σ−i → R+

vi ≥ ui (ai, α−i) +
∑

a−i∈A−i

∑
σ−i∈Σ−i

α−i (a−i)m−i (σ−i | ai, a−i) xi (a−i, σ−i) ,

for all ai with equality if ai ∈ Ai.
Here and in what follows, sup ∅ = −∞ and inf ∅ = +∞. The solutions to these linear

programs will be used to provide tight bounds on the sets of belief-free equilibrium payoffs.5

The set of payoffs inside the bounds will be shown to be strongly self-generating and therefore
belief-free. On the other hand, it will be shown that any belief-free equilibrium value will be in
the set. The following preliminary result is useful in the sequel.

Lemma 1 Every vi < MA
i is feasible for (4) and every vi > mAi is feasible for (5).

Let us order the regimes as J = {1, . . . , J}. For i = 1, 2, let Mi =
(
M1

i , . . . ,M
J
i

)
, and

mi =
(
m1
i , . . . ,m

J
i

)
. Let 4MA

i = MA
i −mAi and 4Mi = Mi −mi. If the same regime A is used

in every period, we can interpret MA
i as the largest value for player i that can be enforced by

player −i through an appropriate choice of an immediate action and a future punishment, and
mAi as the smallest value for player i that can be enforced by player −i through an appropriate
choice of an immediate action and a future reward. Clearly, it is then necessary that the difference
4MA

i be nonnegative for both players. Similarly, if instead of a fixed regime, a distribution p

5As formulated, these programs are not linear in (α−i, x−i); they are however linear in (α−i, y−i), where
y−i = α−ix−i : A−i × Σ−i → R− or R+.
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over regimes is determined by the randomization device, then the weighted average 4Mip must
be nonnegative, and intuition suggests that the corresponding equilibrium payoff set should be∏

i=1,2 [mip,Mip]. However, the case where 4Mip equals 0 for some player i requires special
attention. We therefore distinguish the following three cases.

1. (The positive case) There exists p ≥ 0 such that 4Mip > 0, i = 1, 2.

2. (The negative case) There exists no p ≥ 0 such that 4Mip ≥ 0, i = 1, 2, with at least one
strict inequality.

3. (The abnormal case) There exists no p ≥ 0 such that 4Mip > 0, i = 1, 2, but there exists
p ≥ 0 such that 4Mip ≥ 0, i = 1, 2, with one strict inequality.

Observe that which case obtains depends both on the stage game payoffs and on the moni-
toring structure. If there exists a regime A such that 4MA

i > 0 for both i = 1, 2, then the game
is positive (consider the distribution p that assigns probability 1 to regime A), but this is not a
necessary condition. Necessary and sufficient conditions are given at the end of this subsection,
using the theorem of the alternative. For a given stage game, let V be the limit of the set of
(belief-free) equilibrium payoffs when δ → 1.

We first concentrate on the positive and negative case. The following proposition confirms
the intuition sketched above.

Proposition 5 V is a convex polytope. In

1. the positive case,

V = ∪{p≥0:4Mip≥0,i=1,2,p1=1}
∏
i=1,2

[mip,Mip] ; (6)

2. the negative case, V is the convex hull of the Nash equilibria of the bimatrix game.

Proof: Consider the positive case. We first show that the right-hand side of (6) is included
in V . We pick for each A payoffs v̄A1 , v̄

A
2 , v

A
1 , v

A
2 and a public randomization p over regimes such

that
mAi < vAi MA

i > v̄Ai

and
p · (v̄i − vi) > 0 i = 1, 2 (7)

where e.g. vi = (vAi )A∈J . Existence is guaranteed by the positive case.
Define z̄i = p · v̄i, zi = p · vi. We will show that there exists δ̄ < 1 such that for all δ ∈ (δ̄, 1),

the set U defined by

U = co
∏
i=1,2

{zi, z̄i}
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is strongly self-generating. Because the right-hand side of (6) is the closure of the union of all
such sets U , this will prove its inclusion in V .

By Proposition 4, it is enough to show that each of the extreme values is generated by the
convex hull. Consider v̄Ai . Since MA

i > v̄Ai , by Lemma 1, v̄Ai is a feasible value for (4) and hence
there exists ᾱA−i ∈ 4A−i and x̄Ai : A−i × Σ−i → R− such that for every ai(A) ∈ Ai

v̄Ai ≥ ui
(
ai(A), ᾱA−i

)
+

∑
a−i∈A−i

∑
σ−i∈Σ−i

ᾱA−i(a−i)m−i (σ−i | ai(A), a−i) x̄Ai (a−i, σ−i) , (8)

with equality if ai(A) ∈ Ai. (9)

For each A we multiply the above inequality by p(A) and then sum across regimes A to find
that for all “strategies” {ai(A)}A∈J ,

z̄i ≥
∑
A∈J

p(A)


ui

(
ai(A), ᾱA−i

)
+

∑
a−i∈A−i

∑
σ−i∈Σ−i

ᾱA−i(a−i)m−i (σ−i | ai(A), a−i) x̄Ai (a−i, σ−i)


 ,

(10)

with equality if ai(A) ∈ Ai for each A.

Define

z̄Ai (a−i, σ−i) = z̄i +
1− δ
δ

x̄Ai (a−i, σ−i) (11)

substitute into (10), and re-arrange to obtain

z̄i ≥
∑
A∈J

p(A)


(1− δ)ui

(
ai(A), ᾱA−i

)
+ δ

∑
a−i∈A−i

∑
σ−i∈Σ−i

ᾱA−i(a−i)m−i (σ−i|ai(A), a−i) z̄Ai (a−i, σ−i)


 ,

with equality if ai(A) ∈ Ai for each A.

Because x̄Ai (·, ·) ≤ 0, it follows from (11) and (7) that for all δ exceeding some δ̄ < 1, z̄Ai (·, ·)
belongs to Ui. We have therefore shown that the extreme point z̄ = (z̄1, z̄2) is generated by U .
The symmetric derivation shows that z is generated by U . Let αAi and zAi be the corresponding
strategies and continuation value functions. Now it is easily verified that e.g. the value (zi, z̄−i)
is generated using αAi , zAi and ᾱA−i, z̄

A
−i.

Next we show that the right-hand side of (6) includes V . Observe that (1− δ)MA
i + δV̄
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solves

max
α−i∈A−i

Vi:A−i×Σ−i→R

(1− δ) ui (ai, α−i) + δ
∑

a−i∈A−i

∑
σ−i∈Σ−i

α−i (a−i)m−i (σ−i | ai, a−i)Vi (a−i, σ−i) (12)

subject to, for all ai ∈ Ai, a′i ∈ Ai (with equality if a′i ∈ Ai),
(1− δ)ui (ai, α−i) + δ

∑
a−i∈A−i

∑
σ−i∈Σ−i

α−i (a−i)m−i (σ−i | ai, a−i)Vi (a−i, σ−i)

≥ (1− δ)ui (a′i, α−i) + δ
∑

a−i∈A−i

∑
σ−i∈Σ−i

α−i (a−i)m−i (σ−i | a′i, a−i)Vi (a−i, σ−i)
(13)

Vi (a−i, σ−i) ≤ V̄ for all (a−i, σ−i) ∈ A−i × Σ−i

Similarly, (1− δ)mAi + δV solves

min
α−i∈A−i

Vi:A−i×Σ−i→R

(1− δ) ui (ai, α−i) + δ
∑

a−i∈A−i

∑
σ−i∈Σ−i

α−i (a−i)m−i (σ−i | ai, a−i)Vi (a−i, σ−i) (14)

subject to, for all ai ∈ Ai, a′i ∈ Ai (with equality if a′i ∈ Ai),
(1− δ)ui (ai, α−i) + δ

∑
a−i∈A−i

∑
σ−i∈Σ−i

α−i (a−i)m−i (σ−i | ai, a−i)Vi (a−i, σ−i)

≥ (1− δ)ui (a′i, α−i) + δ
∑

a−i∈A−i

∑
σ−i∈Σ−i

α−i (a−i)m−i (σ−i | a′i, a−i)Vi (a−i, σ−i)
(15)

Vi (a−i, σ−i) ≥ V for all (a−i, σ−i) ∈ A−i × Σ−i

This can be interpreted as follows: Suppose that regime A is played in period t, and V̄ and V
are the largest and smallest, respectively, continuation payoffs of player i following that regime.
Then the payoff of player i in terms of period t cannot exceed (1− δ)MA

i + δV̄ and cannot fall
below (1− δ)mAi + δV in any equilibrium such that regime A is played in period t.

Given a public randomization device, denote by νt′ (A; yt) the probability of regime A occur-
ring in period t′ ≥ t conditional on the public history yt. A necessary condition for the set of
belief-free equilibria using that randomization device to be non-empty is that, for i = 1, 2, and
for any t, any public history yt which has positive probability under the public randomization,
and any regime A such that νt (A; yt) > 0,

MA
i +

∞∑

t′=t+1

∑

A′
δt
′−tνt′ (A′; yt)MA′

i ≥ mAi +
∞∑

t′=t+1

∑

A′
δt
′−tνt′ (A′; yt)mA′i .

This follows from the repeated application of (12) and (14). For the initial period (before the
realization of the randomization device), this set of constraints becomes

(1− δ)
∞∑

t′=1

∑
A
δt
′−1νt′ (A; y0)

(
MA

i −mAi
) ≥ 0. (16)
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Note finally that the payoff of player i belongs to interval

[
(1− δ)

∞∑

t′=1

∑
A
δt
′−1νt′ (A; y0)mAi , (1− δ)

∞∑

t′=1

∑
A
δt
′−1νt′ (A; y0)MA

i

]
.

Define a probability distribution over regimes p by

p (A) := (1− δ)
∞∑

t′=1

δt
′−1νt′ (A; y0) ;

then, for i = 1, 2, ∑
A
p (A)

(
MA

i −mAi
) ≥ 0, (17)

and the equilibrium payoff of player i is an element of
[∑

A p (A)mAi ,
∑
A p (A)MA

i

]
.6

Consider now the negative case. Then there exists no p such that
∑
A p (A)

(
MA

i −mAi
) ≥ 0,

i = 1, 2, and at least one inequality holds strictly. By arguments similar to the positive case, there
is a belief-free equilibrium only for p satisfying the two inequalities. Since the two inequalities
must be then equalities, the continuation payoffs Vi (a−i, σ−i) is independent of a−i and σ−i.
Thus, each player’s action in period t is a best reply to his opponent’s (mixed) action, and so
the set of belief-free equilibrium payoffs is then the convex hull of the set of Nash equilibria in
the static game.

It is worth emphasizing two consequences of Proposition 5. First, there are games such that,
for two regimes A1 and A2, there exists p ∈ (0, 1) such that p4MA1

i +(1− p)4MA2
i > 0 for both

i = 1, 2, yet it is neither the case that4MA1
i > 0 for both i, nor that4MA2

i > 0 for both i. That
is, there is no belief-free equilibrium payoff corresponding to the constant sequence A1, nor to
the constant sequence A2. Yet there are belief-free equilibrium payoffs for some distribution over
those two regimes. Therefore, the set of belief-free equilibrium payoffs may be larger than the
convex hull of the belief-free equilibrium payoffs that use a constant sequence of regimes. Among

6The second part of the proof resembles, and actually has been inspired by, a theorem from dynamic program-
ming (See Theorem 3.1 of Altman (1999)). Altman studies an infinite-horizon constrained optimization problem.
The agent chooses a policy, i.e. an action for each period, possibly mixed, from a finite set of possible actions.
Altman allows for multiple states of the world and for the realization of state of the world depending on previous
actions. Each policy generates an occupation measure, defined over the set of actions by

P (a) = (1− δ)Σ∞t=1δ
t−1Pt(a),

where Pt(a) denotes the probability that action a is taken in period t given the policy.
Altman’s Theorem 3.1 asserts that, under some conditions on the kind of constraints, the set of stationary

policies, i.e. policies where the action taken in each period is independent of the actions taken in the past, is
complete, i.e. generates the same set of occupation measures as the set of all policies.
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the examples presented below, the prisoner’s dilemma and the one-sided prisoner’s dilemma are
games for which this inclusion is strict. Second, Proposition 5 does not assume, but implies,
that attention can be restricted to public randomizations which are i.i.d draws from the same
distribution.

Proposition 5 does not cover the abnormal case. The abnormal case is non-generic, in a sense
described below. As a preliminary, the following lemma is needed.

Lemma 2 Suppose that the stage game has the property that

u1 (a, α2) = u1 (a, α′2) (18)

whenever a is a best reply to both α2 and α′2. Then player 1 has a dominant action.

Proof: Consider the family of sets A′2 ⊂ A2 with the property that some action a1 ∈ A1 is a
best reply to every action a2 ∈ A′2. Pick a maximal, with respect to inclusion, element of this
family. If A′2 = A2, then there exists a1 ∈ A1 which is a best reply to every a2 ∈ A′2, which is
therefore a dominant action.

Suppose instead that A′2 6= A2. Pick a′2 ∈ A2−A′2. Then there exists a1 ∈ A1 which is a best
reply to every a2 ∈ A′2 but which is not a best reply to a′2. Let α2 be the mixed action that assigns
probability (1−λ)/ |A′2| to every action a2 ∈ A′2, where |A′2| stands for the number of elements of
A′2, and probability λ to action a′2. For λ > 0 close enough to zero, an action a1 which is a best
reply to every a2 ∈ A′2 is also a best reply to α2. This yields, by (18), that u1 (a1, a

′
2) = u1 (a1, a2)

for all a2 ∈ A′2. Since a1 is not a best reply to a′2, u1 (a′1, a
′
2) > u1 (a1, a

′
2) for every best reply a′1.

For λ > 0 close enough to one, there exists an action a′1 which is a best reply to a′2 and a best
reply to α2. By (18), u1 (a′1, a

′
2) = u1 (a′1, α2), and so u1 (a′1, a2) ≥ u1 (a′1, a

′
2) for some a2 ∈ A′2.

This yields u1 (a′1, a2) ≥ u1 (a′1, a
′
2) > u1 (a1, a

′
2) = u1 (a1, a2), and so a1 is not a best reply to

a2, a contradiction.

We show now that the abnormal case only obtains for non-generic stage games, independently
of the monitoring structure.

Proposition 6 In the abnormal case, one of the players has a dominant action yielding the
same payoff against all actions of the other player.

Proof: Without loss of generality, suppose that there exists a non-negative p such that4M1p =
0,4M2p > 0. Then4MA

1 ≤ 0 for allA ∈ J . Indeed, if4MA
1 > 0 for someA the j-th element of

J , then pλ = (1− λ) p+λej, where ej is the j-th unit vector, would satisfy 4Mip
λ > 0, i = 1, 2,

for λ > 0 close enough to zero. For all a ∈ A1, define regime A (a) = a × A2. It is clear that
this regime maximizes 4MA

1 among all regimes for which a ∈ A1. Suppose that a is a best reply

to both α2 and α′2. Since M
A(a)
1 ≥ max {u1 (a, α2) , u1 (a, α′2)} ≥ min {u1 (a, α2) , u1 (a, α′2)} ≥

m
A(a)
1 , it follows that u1 (a, α2) = u1 (a, α′2), and Lemma 2 applies. It follows immediately from

(18) that the dominant action yields the same payoff against all actions of the other player.
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Nevertheless, the set of (belief-free) equilibrium payoffs can be characterized in the abnormal
case as well. In the abnormal case, there exists a probability vector p and a player i such
that

∑
A p (A)

(
MA

j −mAj
) ≥ 0 with the inequality holding strictly for player −i and binding

for player i. Although there may be several such probability vectors, the player i for which
the corresponding inequality binds is always the same, because otherwise any strict mixture of
such probability vectors, where the corresponding inequality binds for different players, satisfies
both inequalities strictly, and so the stage game is positive, not abnormal. By Proposition 6,
player i has a dominant action yielding a constant payoff v. Because player i cannot be given
intertemporal incentives, one can restrict attention to regimes A in which ui (ai, a−i) = v for all
(ai, a−i) ∈ A. If there is no probability vector p with support restricted to this subset of regimes
such that

∑
A p (A)

(
MA
−i −mA−i

)
> 0, then it is not possible to provide intertemporal incentives

to player −i either, and V reduces to the convex hull of the stage game’s Nash equilibria.
Otherwise, player −i’s payoff is, as in the positive case and by the same argument, the union
over such probability vectors p of [pm−i, pM−i] . In either case, player i’s equilibrium payoff is
unique and equal to v. We summarize this discussion in the following proposition:

Proposition 7 Suppose that the stage game is abnormal, and that player 1 has a dominant
action yielding a constant payoff v. Let J ′ =

{A ∈ J : ∀(a1,a2)∈A u1 (a1, a2) = v
}

. If there
exists p with support in J ′, such that 4M2p > 0, then V = ∪{p≥0; supp(p)⊆J ′, 4M2p≥0,p1=1} {v} ×
[m2p,M2p]. Otherwise V is the convex hull of the Nash equilibria of the bimatrix game.

The theorem of the alternatives can be used to give alternative characterizations of the
positive case, or to determine whether a payoff can be achieved in equilibrium. We conclude this
subsection with two such results.

Proposition 8 The positive case obtains if and only if, for all (x1, x2) ≥ 0,

max
A∈J

{4MA
1 x1 +4MA

2 x2

}
> 0.

The proof is an application of a theorem of the alternative (Theorem 2.10 of Gale (1960)).

Proposition 9 In the positive case, (V1, V2) is an equilibrium payoff if and only if

min
(x1,x2,x3,x4,x5,x6)≥0

max
A∈J

{ (
MA

1 − V1

)
x1 +

(
MA

2 − V2

)
x2 +

(
V1 −mA1

)
x3

+
(
V2 −mA2

)
x4 +4MA

1 x5 +4MA
2 x6

}
≥ 0

This is again an application of a theorem of the alternative (Theorem 2.8 of Gale (1960)).
Finally, as a last application of the same theorem, we state a necessary and sufficient condition
for there not to exist any equilibrium payoff that (weakly) Pareto-dominates V = (V1, V2): there
exists a nonnegative vector (x1, x2, x3, x4) such that:

max
A

{(
MA

1 − V1

)
x1 +

(
MA

2 − V2

)
x2 +4MA

1 x3 +4MA
2 x4

}
< 0.
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4.2 Vanishing Noise

How does the set of belief-free equilibrium payoffs vary with the information structure? In
particular, what is the limit, if any, of this set, when the noise is arbitrarily small? To ad-
dress these issues, we define Γ (a−i) as the matrix whose (k, l)-th entry is the probability that
player −i observes signal σl−i given that player i’s action is aki and player −i’s action is a−i, i.e.
m−i

(
σl−i | aki , a−i

)
, where signals σ−i and actions ai have been indexed, respectively, by l and k.

Let Γ = (Γ (a−i) , all a−i, i = 1, 2) be the information structure. We write V (Γ), MA
i (Γ) and

mAi (Γ) to denote V , MA
i and mAi when the information structure is emphasized. Given a set of

signals, we say that monitoring is ε-perfect if, for any player i and any action profile a, there exists
a set of signals Σi (a) ⊂ Σi such that

∑
σi∈Σi(a) mi (σi | a) > 1− ε, and

∑
σi∈Σi(a)mi (σi | a′) < ε

for any a′ 6= a. Convergence to 0-perfect monitoring is denoted ε→ 0.
The next lemma shows that MA

i (Γ) and mAi (Γ) are monotonic in Ai, A−i and in Γ, equipped
with the Blackwell ordering. In particular, they have well-defined limits when the noise vanishes:

M̄A
i := max

α−i∈A−i
min
ai∈Ai

ui (ai, α−i) , m̄Ai := min
α−i∈A−i

max
ai∈Ai

ui (ai, α−i) .

To understand these limits, consider the case of perfect information. Recall that MA
i is the

maximum payoff player i can get, given that he must be indifferent among all actions in Ai,
and given that his opponent is restricted to actions in A−i and to negative transfers (fines).
Therefore, player i’s payoff is at most equal to his lowest payoff among all actions in Ai, given
his opponent’s action α−i ∈ 4A−i. Hence, his maximal payoff is the maximum of this worst
payoff over all mixed actions in4A−i, and player −i, upon observing this “worst” action ai, does
not punish player i. Similarly, m̄Ai can be interpreted as the minimum payoff to which player −i
can hold player i to, without deviating himself from A−i when player i is not restricted to Ai.
(Observe that, in the definition of m̄Ai , the maximum is taken with respect to Ai, not Ai).

These properties of MA
i and mAi are recorded in the next lemma. Recall that: a matrix M

is Markov if the entries of M are non-negative and the sum of entries of each row is equal to 1;
a matrix A is a garbling of a matrix B if there exists a Markov matrix M such that A = BM .
We say that Γ is a garbling of Γ′ if Γ (a−i) is a garbling of Γ′ (a−i), for all a−i and all i = 1, 2.

Lemma 3 For all i = 1, 2 and all A,A′ ∈ J ,

1. Ai = A′i, A−i ⊆ A′−i implies that MA
i ≤MA′

i and mAi ≥ mA
′

i ;

2. Ai ⊆ A′i, A−i = A′−i implies that MA
i ≥MA′

i and mAi ≤ mA
′

i ;

3. MA
i ≤ M̄A

i and limε→0M
A
i = M̄A

i ;

4. mAi ≥ m̄Ai and limε→0m
A
i = m̄Ai ;
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5. If Γ is a garbling of Γ′, then MA
i (Γ) ≤MA

i (Γ′) and mAi (Γ) ≥ mAi (Γ′) .

Proof: 1. and 2. follow from the fact that increasing the number of constraints decreases the
value of a linear program.

5. We prove the first part, the second part is analogous. Since Γ (a−i) is a garbling of
Γ′ (a−i), there exists a Markov matrix M (a−i) such that Γ (a−i) = Γ′ (a−i)M (a−i). For xi :
A−i×Σ−i → R−, denote by xi(a−i) the column vector with coordinates xi(a−i, σl−i). Notice that
if α−i ∈ 4A−i and xi : A−i × Σ−i → R− achieve value vi in the program (4) with noise Γ (a−i),
then α−i and x′i defined by

x′i(a−i) = M (a−i) xi(a−i)

also achieve value vi in the program (4) with noise Γ′ (a−i). Since xi : A−i ×Σ−i → R− and the
entries of M (a−i) are non-negative, x′i : A−i × Σ−i → R−.

3. Notice that M̄A
i solves the program (4) with no noise. Suppose first that Γ (a−i) is a square

matrix. By 5., MA
i ≤ M̄A

i . For ε → 0, Γ (a−i) converges to the identity matrix; in particular,
Γ (a−i) is invertible. Take α−i ∈ 4A−i and xi : A−i × Σ−i → R− that achieve value vi in the
program (4) with no noise. Define x′′i by

x′′i (a−i) = Γ (a−i)
−1 xi(a−i).

Then α−i and x′′i also achieve value vi in the program (4) with noise Γ (a−i). Of course, the
coordinates of x′′i (a−i) may be positive; say that the highest of them is equal to x. Then α−i and

x′i(a−i) = x′′i (a−i)− x

achieve value vi − x in the program (4) with noise Γ (a−i); and x′i : A−i × Σ−i → R−. Since
Γ (a−i)

−1 converges to the identity matrix, x→ 0 as ε→ 0, and so MA
i converges to M̄A

i .
Suppose now that Γ (a−i) is not a square matrix. Since player −i can perfectly infer ai as

ε → 0, Γ (a−i) → Γ0 (a−i) such that each column of Γ0 (a−i) has at most one non-zero entry.
Define matrix Γ′ (a−i) and vector x′i(a−i) as follows. Let k-th column of Γ′ (a−i) be the sum of
all columns of Γ (a−i) and x′i(a−i) be the sum of all entries of xi(a−i) such that the only non-zero
entry of the corresponding column of Γ0 (a−i) stands in k-th row. Apply now the argument for
square Γ (a−i) to Γ′ (a−i) and x′i(a−i).

4. is analogous.

Because MA
i (Γ) and mAi (Γ) are monotonic in Γ, the set of belief-free equilibrium payoffs

V (Γ) itself is monotonic Γ. This result is formalized in the following corollary.

Corollary 2 If Γ is a garbling of Γ′, then V (Γ) ⊂ V (Γ′).

Proof: It follows from Lemma 3, Propositions 5, 6 and 8.
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4.3 Examples

When the noise is small enough, the positive case obtains for many common games, such as
the prisoner’s dilemma, or the battle of the sexes. Therefore, the procedure to determine the
limit of the payoff set when δ → 1 and ε → 0 is simple. First, compute for each of the (finitely
many) regimes and for each player the values M̄A

i and m̄Ai . Then, enumerate the vertices of the
set
{
p ∈ R+ | p · 1 = 1, 4M̄ip ≥ 0, i = 1, 2

}
, where 1 is the vector with all entries equal to one.

Finally, for each of the vertices and each player, compute M̄ip and m̄ip. Although it follows from
the previous results that this procedure yields the set of belief-free equilibrium payoffs when the
discount factor is taken to 1 first, and then the noise is taken to 0, it is clear from the previous
results that the order of limits is irrelevant.

The following examples show that in general, belief-free strategies are not sufficient to es-
tablish a folk theorem for vanishing noise. In this respect, the prisoner’s dilemma turns out to
rather “exceptional”. The crucial feature of the prisoner’s dilemma is that, for any payoff vi in
[0, 1], there exists an action by player −i that guarantees that player i cannot get more than vi,
independently of his action, yet also another action that guarantees that player i cannot get less
than vi.

Example 1 (The Battle of the Sexes) Consider the game:

L R
T (2, 1) (0, 0)
B (0, 0) (1, 2)

To determine V , the limit (when δ → 1) equilibrium payoff set when the noise vanishes, we can
derive the values in figure 1 from the formulas in section 4.2.

It follows from the table that V is spanned by (2/3, 2/3), (2, 1) and (1, 2). The folk theorem
does not obtain, but all Pareto-optimal payoffs are equilibrium payoffs. Interestingly, the payoff
set is the convex hull of the Nash payoffs, yet we are in the positive case as

1

2
4M̄A1

1 +
1

2
4M̄A2

1 =

(
1

6
,
1

6

)

for A1 = {TB}×R and A2 = T ×{LR}. Note that with 2 replaced with 3/2 in the payoff matrix,
we would be in the negative case.

Example 2 (One-Sided Prisoner’s Dilemma) Consider the game:

L R
T (2, 2) (0, 3)
B (0, 0) (1, 1)
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Figure 1: Battle of the Sexes

The table of values is displayed in figure 2 and the payoff set V is the convex hull of (2/3, 1),
(1, 1), (4/3, 2), (4/3, 7/3), (6/7, 18/7) and (2/3, 2). The folk theorem fails, but some Pareto-
optimal payoffs are equilibrium payoffs (but not the one maximizing the sum of payoffs).

Example 3 Stag-Hunt game:

L R
T (4, 4) (0, 3)
B (3, 0) (2, 2)

The set V is equal to the convex hull of {(2, 3) , (3, 2) , (4, 4) , (2, 2)}, which is less than the convex
hull of the feasible and individual rational payoff set.

Example 4 (Prisoner’s Dilemma). Consider

L R
T (1, 1) (−L, 1 +G)
B (1 +G,−L) (0, 0)

where G, L > 0. The set V is the feasible and IR set (irrespective of whether (1, 1) maximizes
the sum of payoffs or not). If (1, 1) does not maximize the sum of payoffs, then the extreme
(asymmetric) payoff vector (0, 1 +G− L) is obtained by playing regime C × D with probability
1 − L/(1 + G), regime D × {CD} with probability L/(1 + G + L) and regime {CD} × D with
complementary probability (probabilities are between 0 and 1 as 1 + G − L > 0). Otherwise,
the extreme asymmetric payoff (0, 1 + G/(1 + L)) is achieved by playing C ×D with probability
1/(1+L), C×{CD} with probability L/((1+G)(1+L)) and {CD}×{CD} with complementary
probability. The payoff (1, 1) is achieved by playing the regime {CD} × {CD} with probability
one.
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Figure 2: One-Sided Prisoner’s Dilemma

Figure 3: Stag Hunt
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In all the previous examples, the limit set of belief-free equilibrium payoffs always included
Pareto-optimal payoffs. This is not always the case: the following stage game admits a unique
Nash equilibrium payoff vector (1/5, 1/5), which is not Pareto-optimal. It is easy to verify that
this game is negative (when the noise vanishes in particular), so that this payoff vector is also
the unique belief-free equilibrium payoff vector in the infinitely repeated game, no matter how
patient players are.

L R
T (2,−1) (−1, 2)
B (−1, 1) (1,−1)

5 Conditionally Independent Signals

Following VPE, in section 4 we examined the limiting set of belief-free equilibrium payoffs when
monitoring is nearly perfect. We showed how to characterize this limit set and applied the
characterization to some examples. In a recent paper, Matsushima (2002) demonstrated a new
approach to constructing equilibria in repeated games with conditionally independent monitoring.
Monitoring is conditionally independent if, given the realized action profile, the signals of the two
players are statistically independent. Matsushima’s construction augments the simple two-state
machine strategies of Ely and Välimäki (2002) with a “review phase” similar to those introduced
by Radner (1985). Applied to the Prisoner’s Dilemma, Matsushima (2002) showed that these
strategies can be used to establish the Folk Theorem even when the noise in monitoring is far
from perfect.

The logic of the Matsushima (2002) construction is roughly as follows. Rather than switching
between “reward” and “punishment” states in each period as the Ely and Välimäki (2002)
strategies do, the Matsushima (2002) strategies remain in the current state for a T -stage review
period during which information is collected and acted upon only at the end. The strategy plays
a constant action throughout the review period: cooperation in the reward state, defection in the
punishment state. Transition between states occurs at the end of the review period and depends
(probabilistically) on the sequence of signals observed. The key is to construct these transitions
so that in any state the most profitable deviation is also to a constant action. For example, in
the reward state, the most profitable deviation is to defect in every stage of the review period.
Given this, to detect a deviation by the opponent it is enough to test the hypothesis that the
opponent deviated in all of the last T stages. No matter how weak the monitoring technology, T
can be chosen large enough so that this test has arbitrarily high power. In this way, the T -stage
review period can be treated as a single stage of the Ely and Välimäki (2002) strategies but with
nearly perfect monitoring. Conditional independence of the monitoring is used to ensure that,
within a review period, neither player obtains any information revealing whether or not he is
likely to pass the test.

In this section, we generalize this scheme. We consider games with two actions and show
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how to apply the Matsushima (2002) construction to equilibria with an arbitrary set of regimes
(as opposed to the two-regime equilibria of Ely and Välimäki (2002)). The result is that some
payoffs which we obtained in section 4 for small noise can be obtained under any conditionally
independent monitoring technology.

Throughout this section, we assume that signals are conditionally independent. That is,

m (σ | a) = m1 (σ1 | a)m2 (σ2 | a)

for every a ∈ A and σ = (σ1, σ2) ∈ Σ. We also assume that A1 and A2 consist of two actions; we
do so because only under this assumption we are able to construct transitions between states so
that in any state the most profitable deviation is to a constant action.

Finally we assume that for every action of player −i, the distribution of signals of player −i
depends on player i’s action. That is,

m−i
(· | a1

i , a−i
) 6= m−i

(· | a2
i , a−i

)

whenever a1
i 6= a2

i . This implies that there exists signals σ1
−i and σ2

−i such that:

m−i
(
σ1
−i | a1

i , a−i
)
> m−i

(
σ1
−i | a2

i , a−i
)

(19)

and
m−i

(
σ2
−i | a1

i , a−i
)
< m−i

(
σ2
−i | a2

i , a−i
)

; (20)

of course, σ1
−i and σ2

−i may depend on a−i.
Given a−i, let f ji (r, T, τ) denote the probability that player −i receives signal σj−i exactly r

times in T periods when player −i plays a−i in each out of the T periods and player i plays aji
in exactly τ out of the T periods. Let

F j
i (r, T, τ) :=

r∑
s=1

f ji (r, T, τ).

That is, F j
i (r, T, τ) denotes the probability that player −i receives signal σj−i at most r times

during the T periods when player −i plays a−i and player i plays aji in exactly τ periods. Both
f ji (r, T, τ) and F j

i (r, T, τ) depend on a−i, but when there is no confusion we will suppress this
dependence to economize on notation.

The following two results are slightly reformulated versions of Matsushima (2002), Lemmas
1 and 2.

Lemma 4 For every real number C ≥ 0 and action a−i, there exists a sequence of integers
(rji (T ))∞T=1 such that:

lim
T→∞

F j
i (rji (T ), T, 0) = 1, (21)

lim
T→∞

F j
i (rji (T ), T, T ) = 0, (22)

lim inf
T→∞

Tf ji (rji (T ), T − 1, 0) ≥ C (23)
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A function h(τ) for τ = 1, . . . , T is single-peaked if h(τ) ≥ h(τ+1) implies h(τ+1) ≥ h(τ+2).

Lemma 5 For every T = 1, 2, ..., and every r = 0, ..., T − 1, f ji (r, T − 1, τ − 1), as a function of
τ = 1, ..., T , is single-peaked.

For a given regime A, define

NAi := max
a−i∈A−i

min
ai∈Ai

ui (ai, a−i) ,

nAi := min
a−i∈A−i

max
ai∈Ai

ui (ai, a−i) ,

and 4NAi = NAi − nAi and 4Ni = Ni − ni; note that, compared to M
A
i and mAi defined in

Section 4.2, the choice of player −i is restricted to pure actions. This is used to ensure that,
within a review period, neither player obtains any information revealing whether or not he is
likely to pass the test. Remember that player −i will play a−i throughout the review period. If
she were randomizing between playing the two actions, then player i could obtain, within the
review period, information revealing whether or not he is likely to pass the test.

Proposition 10 If there exists p ≥ 0 such that 4Nip > 0, i = 1, 2, then the limit of the set of
equilibrium payoffs when δ → 1 contains

∪{p≥0:4Nip≥0,i=1,2,p1=1}
∏
i=1,2

[nip,Nip] .

Note that, for the Prisoner’s Dilemma, NAi = M
A
i and nAi = mAi for all regimes A, and so

Proposition 10 indeed generalizes Matsushima (2002).
Proof: Fix a direct public randomization p. For a given regime A, take aA−i ∈ A−i with the
property that

min
ai∈Ai

ui
(
ai, a

A
−i
)

= NAi ; (24)

and let’s suppose without loss of generality that NAi = ui
(
a1
i , a
A
−i
)
. For a given T , we define

define xAi to be zero if ui(a
2
i , ā
A
−i) < NAi and otherwise the solution to

ui
(
a2
i , a
A
−i
)− ui

(
a1
i , a
A
−i
)

= x̄Ai
[
F 2
i (r2

i (T ), T, T )− F 2
i (r2

i (T ), T, 0)
]
. (25)

and let
zi =

∑
A∈J

p(A)
[
NAi + (1− F 2

i (r2
i (T ), T, 0))xAi

]
.

Similarly, take aA−i ∈ A−i with the property that

max
ai∈Ai

ui
(
ai, a

A
−i
)

= nAi ;
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say that nAi = ui
(
a2
i , a
A
−i
)
. For a given T , define xAi by

ui
(
a2
i , a
A
−i
)− ui

(
a1
i , a
A
−i
)

= xAi
[
m−i

(
σ1
−i | a1

i , a
A
−i
)T −m−i

(
σ1
−i | a2

i , a
A
−i
)T]

(26)

and let
zi =

∑
A∈J

p(A)
[
nAi +m−i

(
σ1
−i | a2

i , a
A
−i
)T
xAi
]

.

Note that x̄Ai is non-positive and xAi is non-negative. It follows from (21) and (19) that

lim
T→∞

zi = Nip and lim
T→∞

zi = nip.

For a given T , divide the time horizon into T -period blocks: {0, 1, ..., T −1}, {T, T +1, ...2T −
1}, ..., and consider the auxiliary game in which each player is constrained to play the same pure
action in all T periods of a given block. We can equivalently think of this as a repeated game
whose stage game consists of T plays of the original stage game with the constraint that each
player must play the same pure action in each of the T plays. In such a game, the effective
discount factor is δT . At the end of each stage, the players observe the T signals generated by
the plays within the stage. We will begin by constructing for this constrained game (for δ close
enough to 1) and for every vector of the set

U = co
∏
i=1,2

{zi, zi},

a belief-free equilibrium which achieves this vector. To do this, we will show that each extreme
value is generated by U , and apply Proposition 4.

To generate z̄i, player −i plays āA−i in regime A. Player i is then promised continuation values
to begin the next block as a function of T -length sequences of signals defined as follows. First,
player −i partitions the set of T -sequences into two subsets ΣPass

−i and ΣFail
−i . A sequence of signals

belongs to ΣPass
−i if at most r2

i (T ) of the signals in the sequence are equal to σ2
−i, otherwise the

sequence is assigned to ΣFail
−i . The continuation value for i in regime A will depend only on which

of these sets the sequence of signals observed by −i belongs to. In ΣPass
−i , the continuation value

is z̄i, in ΣFail
−i , the continuation value is

zi +
1− δT
δT

xAi

These continuation values belong to U when δ is close enough to 1.
Against this, when player i plays a1

i , his payoff is

(1− δT )ui(a
1
i , ā
A
−i) + δT

[
z̄i + (1− F (r2

i (T ), T, 0))
1− δT
δT

x̄Ai

]
(27)
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and when he plays a2
i , his payoff is

(1− δT )ui(a
2
i , ā
A
−i) + δT

[
z̄i + (1− F (r2

i (T ), T, T ))
1− δT
δT

x̄Ai

]

By our construction of x̄Ai , i weakly prefers a1
i and is indifferent when ui(a

2
i , ā
A
−i) ≥ NAi . By (24),

the latter case must hold when a2
i ∈ Ai. Thus, each Ai is enforced, and i’s payoff in regime A is

given by (27). It can be rewritten as

(1− δT )
[
NAi + (1− F (r2

i (T ), T, 0))x̄Ai
]

+ δT z̄i

Multiplying by p(A) and summing over regimes shows that i’s expected payoff is z̄i. We show
that zi is generated by U by a similar argument. In this case we use the action aA−i and the

continuation values are zi + 1−δT
δT

xAi when all of the signals are equal to σ1
−i and zi itself if at

least one signal is different from σ1
−i.

We now apply Proposition 4 to obtain for all δ close enough to 1, for each value u ∈ U , a
belief free equilibrium s (with the structure given by Proposition 4) which achieves value u. We
can extend s to a fully specified strategy profile of the unconstrained game by assuming that
each player ignores his own deviations. We will show that for T large and δ close to 1, (this
extended) s is a Nash equilibrium of the unconstrained game.

By the principle of optimality, it is enough to show that player i cannot profit by deviating to
an alternative T -period strategy within some block and then return to the continuation strategy
dictated by s at the beginning of the next block. Because signals are conditionally independent,
i’s beliefs about the continuation strategy of −i are independent of i’s own history of signals,
conditional on his own history of actions. Thus it suffices to consider deviations to within-block
strategies whose play does not depend on the signals observed within the block. Because the
payoff to any such strategy depends only on the sequence of actions it induces, it is enough
to check that i cannot improve his payoff by deviating in some block to a sequence of actions
different than those prescribed by s.

Consider any regime A. Player −i will either play āA−i or aA−i. We will show that deviations
are unprofitable in either case. Suppose first that player −i plays aA−i. If ui

(
a2
i , a
A
−i
)
< ui

(
a1
i , a
A
−i
)

and A = {a1
i }, then the continuation value beginning in the next block is independent of history

and hence player i prefers playing the static best-reply a1
i in all T periods to playing any other

sequence of actions. Otherwise, ui
(
a2
i , a
A
−i
) ≥ ui

(
a1
i , a
A
−i
)

and, by construction, player i is
indifferent between playing a1

i in all T periods and playing a2
i in all T periods. We have to

show that player i prefers this to playing a1
i in some periods and a2

i in other periods. Because
of discounting we can without loss of generality restrict attention to sequences such that a2

i is
played in the first τ periods and a1

i is played in the remaining T − τ periods of the block.
Let V (0) denote player i’s payoff to playing a1

i in all T periods, and let V (τ) denote player
i’s payoff to playing a2

i in the first τ periods and a1
i in the remaining T − τ periods. Let
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y := ui
(
a2
i , a
A
−i
)− ui

(
a1
i , a
A
−i
)
. Then

V (τ)− V (0) = (1− δτ )y + δT
[
F 2
i (r2

i (T ), T, 0)− F 2
i (r2

i (T ), T, τ)
](1− δT

δT
xAi

)
,

which by (25) can be rewritten

V (τ)− V (0) = y(1− δT )

[
1− δτ
1− δT − g(τ)

]

where

g(τ) :=
F 2
i (r2

i (T ), T, 0)− F 2
i (r2

i (T ), T, τ)

F 2
i (r2

i (T ), T, 0)− F 2
i (r2

i (T ), T, T )

Note that g(0) = 0, g(T ) = 1. We wish to show that T can be chosen large enough and δ close
enough to 1 so that V (τ)− V (0) ≤ 0. Since

lim
δ→1

(
1− δτ
1− δT

)
=
τ

T
,

it suffices to show that we can choose T sufficiently large so that

h(τ) := g(τ)− τ

T
> 0 for τ = 1, ..., T − 1. (28)

Write 4g(τ) = g(τ + 1)− g(τ). We have

4g(τ) =
[F 2
i (r2

i (T ), T, τ)− F 2
i (r2

i (T ), T, τ + 1)]

[F 2
i (r2

i (T ), T, 0)− F 2
i (r2

i (T ), T, T )]

Observe that

F 2
i (r2

i (T ), T, τ)− F 2
i (r2

i (T ), T, τ + 1) = f 2
i (r2

i (T ), T − 1, τ) · (29)

· [m−i
(
σ2
−i | a2

i , a−i
)−m−i

(
σ2
−i | a1

i , a−i
)]

.

so that by Lemma 5, the function 4g(τ) is a constant times a single-peaked function and is
therefore itself single-peaked as a function of τ = 0, . . . , T − 1.

Now by (23) we can choose T large enough to satisfy

f 2
i (r2

i (T ), T − 1, 0) >
1

T
[
m−i

(
σ2
−i | a2

i , a−i
)−m−i

(
σ2
−i | a1

i , a−i
)]

and by (21), (22) and (29),

4g(0) := g(1) >
1

T
(30)
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which further implies h(1) > 0. Finally, we show that for such large T , the function h(τ) is
single-peaked. Since h(1) > 0 and h(T ) = 0, this will establish (28).

Suppose h(τ) ≥ h(τ + 1). This is equivalent to

4g(τ) := g(τ + 1)− g(τ) ≤ τ + 1− τ
T

=
1

T
< 4g(0)

Since 4g(τ) is single-peaked, we have then

4g(τ + 1) ≤ 4g(τ)

g(τ + 2)− g(τ + 1) ≤ 1

T
=
τ + 2

T
− τ + 1

T

g(τ + 1)− τ + 1

T
≥ g(τ + 2)− τ + 2

T

and the latter is equivalent to h(τ + 1) ≥ h(τ + 2). Thus, h(τ) is single-peaked.
Suppose now that player −i plays aA−i. Re-using notation from the previous step, let V (0)

denote player i’s payoff to playing a1
i in all T periods, and let V (τ) denote player i’s payoff to

playing a2
i in the first τ periods and a1

i in the remaining T − τ periods. Let y := ui
(
a2
i , a
A
−i
) −

ui
(
a1
i , a
A
−i
)
. Then V (τ)− V (0) is equal to

(1− δτ )y − δTm−i
(
σ1
−i | a1

i , a
A
−i
)T−τ · [m−i

(
σ1
−i | a1

i , a
A
−i
)τ −m−i

(
σ1
−i | a2

i , a
A
−i
)τ](1− δT

δT
xAi

)
=

= (1− δT )y

{
(1− δτ )
(1− δT )

− g(τ)

}

where

g(τ) =
m−i

(
σ1
−i | a1

i , a
A
−i
)T−τ [

m−i
(
σ1
−i | a1

i , a
A
−i
)τ −m−i

(
σ1
−i | a2

i , a
A
−i
)τ]

[
m−i

(
σ1
−i | a1

i , a
A
−i
)T −m−i

(
σ1
−i | a2

i , a
A
−i
)T]

Since

lim
δ→1

(1− δτ )
(1− δT )

=
τ

T
,

it suffices to show that
g(τ) >

τ

T
(31)

for τ = 1, ..., T − 1.
To this end observe that

g(τ) =
1− cτ
1− cT ,

where

c =
m−i

(
σ1
−i | a2

i , a
A
−i
)

m−i
(
σ1
−i | a1

i , a
A
−i
) < 1,
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and therefore g(τ) is an increasing and concave function of τ , which takes value 0 at τ = 0 and
takes value 1 at τ = T . This implies (31).

6 Concluding Comments

This paper has defined and analyzed a class of strategies, belief-free strategies, for two-player
games. This class of strategies has the appealing feature that, in equilibrium, the support
of optimal strategies is history-independent. We provide a recursive characterization of the
equilibrium payoff set supported by such strategies, strong self-generation, which builds on and
extends the concept of self-generation, of Abreu, Pearce, and Stachetti (1990). This payoff set
includes the equilibrium payoffs explicitly computed by Ely and Välimäki (2002) and Piccione
(2002). As for self-generation, there exists a version of value iteration which holds for this set.
Similarly, attention can be restricted to bang-bang strategies. Finally, we offer a two-stage linear
programming procedure to compute this payoff set when the discount factor tends to one.

Attention has been restricted to two-player games. It is straightforward to generalize the
definition of belief-free strategies and of regimes to more than two players. However, it is no
longer true that, for a fixed sequence of regimes, the payoff set has a product structure. Therefore,
we cannot decompose the computation of the payoff set into distinct linear programs any longer,
and determining the equilibrium payoff set becomes significantly harder.

By definition, belief-free strategies do not require keeping track of beliefs. As we provide sev-
eral examples in which the equilibrium payoff set is a strict subset of the feasible and individually
rational payoff set, it is therefore clear that any attempt to generalize folk theorems to games
with private monitoring must use more complicated, belief-based strategies. Such strategies are
the subject of ongoing research.
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