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1 Introduction

1.1 Motivation

The common prior assumption is one of the cornerstones of modern economic analysis. Most

models assume that the players in a game have a common prior about the game form and

the payoffs. For example, they postulate that some state (e.g., a payoff-relevant parameter)

θ is drawn from a commonly known distribution G, even though each player may also have

additional information about some components of θ. The typical justification for the common

prior assumption comes from learning; individuals, through their own experiences and the

communication of others, will have access to a history of events informative about the state

θ and this process will lead to “agreement” among individuals about the distribution of θ. A

strong version of this view is expressed in Savage (1954, p. 48) as the statement that a Bayesian

individual, who does not assign zero probability to “the truth,” will learn it eventually as long

as the signals are informative about the truth. An immediate implication of this result is that

two individuals who observe the same sequence of signals will ultimately agree, even if they

start with very different priors.

Despite this powerful intuition, disagreement is the rule rather than the exception in prac-

tice. For example, there is typically considerable disagreement among economists working on

a certain topic. Similarly, there are deep divides about religious beliefs within populations

with shared experiences. In most cases, the source of disagreement does not seem to be dif-

ferences in observations or experiences. Instead, individuals appear to interpret the available

data differently. For example, an estimate showing that there are peer effects is interpreted

very differently by two economists starting with different priors. An economist believing that

peer effects are small and unimportant appears more likely to judge the data or the methods

leading to this estimate to be unreliable and thus to attach less importance to this evidence.

In this paper, we investigate the outcome of learning about an underlying state by two

Bayesian individuals with different priors when they are possibly uncertain about the con-

ditional distributions (or interpretations) of signals. This leads to a potential identification

problem, as the same long-run frequency of signals may result at multiple states. Hence, even

though the individuals will learn the asymptotic frequency of signals, they may not always be

able to infer the state θ and initial differences in their beliefs may translate into differences

in asymptotic beliefs. When the amount of uncertainty is small, the identification problem is

also small in the sense that each individual finds it highly likely that he will eventually assign

high probability to the true state. One may then expect that the asymptotic beliefs of the
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two individuals about the underlying states should be close as well. If so, the common prior

assumption would be a good approximation when players have a long common experience and

face only a small amount of uncertainty about how the signals are related to the states.

Our focus in this paper is to investigate the validity of this line of argument. In particular,

we study whether a small amount of uncertainty leads only to a small amount of disagreement

asymptotically. Our main result shows that this is never the case: for every model, there exists

a vanishingly small amount of uncertainty such that under this uncertainty both individuals

assign nearly probability 1 that they will asymptotically hold significantly different beliefs

about the underlying state. This result implies that learning foundations of common priors

are not as strong as generally presumed.

1.2 Formulation

Consider the following example, which illustrates the main ideas presented below. There are

two states θ ∈ {A,B} and binary signals st ∈ {a, b}. Two individuals with given priors publicly
observe a sequence of signals, {st}nt=1, and form their posteriors about the state θ. Conditional
on the state, the signals are independently and identically distributed, but the individuals do

not necessarily know this distribution. Letting pθ be this unknown probability of st = a at

state θ, we assume that each individual has a possibly non-degenerate belief about pθ. This

belief has a cumulative distribution function F i
θ; the density, when it exists, is denoted by f

i
θ.

The standard model used for analysis of learning and agreement in the literature is the special

case of this environment where each F i
θ puts all of its mass at some pθ, with pA > 1/2 > pB.

Throughout, we refer to this benchmark as the (or a) “standard model”. Thus in contrast

to the standard model, where the informativeness of signals is known, the individuals in our

environments may face some uncertainty about the informativeness of signals. Consequently,

as they observe additional signals, they learn not only about the state θ, but also about the

interpretation of the signals. Our general model is introduced in Section 2 and the example

here is a special case that is discussed in greater detail in Section 3. In that section, using

an asset trading example, we illustrate how the failure of asymptotic agreement may have

significant implications for game theoretic and economic analysis.

In Section 4, we first extend existing results on asymptotic learning and agreement. In

particular, we show that when the supports of F i
A and F i

B are disjoint (which is significantly

more general than the standard case where each F i
θ has point mass), there is “full identification”

for both individuals, in the sense that each can identify the state from the long-run frequency
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of signals (as n→∞). In this case, each individual is certain that he will eventually learn the
true state (asymptotic learning). Moreover, we show that under additional mild conditions,

each individual is also certain that they will eventually agree (asymptotic agreement).

A key observation of our paper is that asymptotic agreement under full identification rests

on how individuals treat zero probability events. In particular, under full identification, indi-

viduals do not question their models even along sample paths that are impossible according to

their model, because they attribute the frequencies that are outside the support of their model

to sampling variation, regardless of how unlikely such sampling variation may be and how large

their samples are. An implication is that along such sample paths their beliefs about the future

frequencies diverge from the empirical long-run frequency, leading to a form of inconsistency.

This inconsistency and the unwillingness of individuals to adjust their models in the face of

overwhelming evidence to the contrary are unappealing features of the standard formulation.

More importantly, support restrictions are clearly idealizations that equate small probabilities

with zero probability; they can be justified only when we know that behavior under small and

zero probabilities are similar. Whether or not this is so can only be studied by first considering

models without such support restrictions.

Motivated by these observations, we relax all such support restrictions and instead assume

that each F i
θ has full support. Under full support, as each individual observes additional

signals, his beliefs about the future frequencies approach the empirical long-run frequency. By

Bayes rule, beliefs about the underlying payoff-relevant state are determined by the likelihood

ratio f iB/f
i
A of the densities at the realized long-run frequencies. Sampling variation (which

disappears due to the strong law of large numbers) plays no role in the formation of asymptotic

beliefs.

An immediate implication of the full support assumption is that there will be no full

identification. Consequently, each individual recognizes that he will never fully learn the true

state, as some uncertainty about the informativeness of the signals and the state remains

forever. This also implies that, except for the knife-edge cases, each individual is also certain

that asymptotic agreement will fail, in the sense that some amount of differences of opinions

will remain forever.

The most substantive part of our paper, Section 5, investigates whether the amount of

disagreement is small (vanishing) when we are arbitrarily close to a fully-identified model. We

consider a standard (fully-identified) model parameterized by a vector
¡
p1A, p

1
B, p

2
A, p

2
B

¢
, where

each F i
θ puts probability 1 on a single frequency piθ. We then consider families {F i

θ,m} of dis-
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tributions with full support that become increasingly concentrated on piθ (as m→ ∞). Here,
a family {F i

θ,m} is a possible relaxation of the idealized assumptions in the standard model.
Our main question is thus whether the amount of asymptotic disagreement vanishes in the

limit as m → ∞ (as the model is arbitrarily close to the standard model). Our first main

result in this section shows that asymptotic agreement is never robust to all relaxations. More

precisely, for every standard model (here parameterized by the vector
¡
p1A, p

1
B, p

2
A, p

2
B

¢
), we

construct a family {F i
θ,m} of distributions that become more and more concentrated around

piθ, such that the amount of asymptotic disagreement eventually exceeds a fixed positive level

for almost all sample paths and for all m. This result therefore implies that asymptotic agree-

ment is “fragile”–small perturbations of the standard model lead to significant asymptotic

disagreement.

The idea underlying this fragility result is intuitive. As m → ∞ and we approach the

standard model, the identification problem vanishes, in the sense that each individual i assigns

nearly probability 1 to the event that he will learn the true state. However, even though

asymptotic learning applies, asymptotic agreement is considerably more demanding. For as-

ymptotic agreement, each individual must also be certain that the other individual will also

eventually learn the true state. While this latter requirement is true in the standard model,

it is often not the case near the standard model. In particular, near any standard model,

each individual assigns a high probability to a small set of long-run frequencies (thus ensuring

asymptotic learning). Yet, even if F 1θ and F
2
θ are very close to each other, the likelihood ratios

of the densities may remain significantly different on those sets. In particular, j may assign a

low probability to the true state at the frequencies i finds likely. In that case, i would be nearly

certain that j will fail to learn the true state and the beliefs will be different in the long run.

Importantly, this conclusion is true even for (instances of) the standard model when p1θ = p2θ,

so that the individuals agree on the likely frequencies.

Our second main result in Section 5 provides a tight characterization of the conditions

under which asymptotic agreement is fragile when the families of distributions {F i
θ,m} is such

that the resulting likelihood ratios converge uniformly to a continuous function. This uniform

convergence requirement ensures that asymptotic beliefs are not highly sensitive to the long-run

frequency of signals as m → ∞. In the context of a canonical example, our characterization
shows that the asymptotic agreement results are fragile when the families of distributions

{F i
θ,m} converging to the standard model have regularly-varying (polynomial) tails, such as the

Pareto or the log-normal distributions but not when they have rapidly-varying (exponential)
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tails, such as the normal and the exponential distributions.

Our third main result in Section 5 shows that agreement is “continuous” in the medium

run.1 Consider any standard model with asymptotic agreement and any family {F i
θ,m} of

models converging to the standard model. For any model F i
θ,m, individual beliefs may be far

apart at the beginning and also asymptotically (as n → ∞). However, we show that in the
middle, the beliefs of the two individuals will be arbitrarily close to each other for long periods,

provided that m is sufficiently large. The intuition for this result is as follows. The events

concerning a few signal realizations correspond to only “coarse” information. This information

is similar under F i
θ,m and the standard model, so that individual beliefs are similar in the

two models and the disagreement decreases with more observations for a while. However,

eventually, individuals start using “finer” information in updating their beliefs and it is this

finer information that is different under the two models. Therefore, eventually beliefs may

grow apart under F i
θ,m, while they keep approaching each other under the standard model.

1.3 Interpretation

Our results cast doubt on the idea that the common prior assumption may be justified by

learning. They imply that in many environments, even when there is little uncertainty so that

each individual believes that he will learn the true state, Bayesian learning does not necessarily

imply agreement about the relevant parameters. Consequently, the strategic outcomes may be

significantly different from those in the common-prior environments.2 Whether this common

prior assumption is warranted therefore depends on the specific setting and what type of

information individuals are trying to glean from the data.

The relevance of our results for theoretical modeling depends on whether our full-support

assumption is a better approximation to reality and a more useful modeling tool for certain

situations than the standard full-identification assumption. The full-support assumption does

not rule out that pB, the unknown probability of st = a at state θ = B, is higher than pA, the

unknown probability of st = a at state θ = A. That is, the individual finds it possible (though

unlikely) that a signal st = a can be considered as evidence in favor of state B rather than A.

This is because the individual is uncertain not only about the informativeness of the signals

1We thank a referee for conjecturing such a result and encouraging us to investigate it further.
2See Section 3 for an example. For previous arguments on whether game-theoretic models should be for-

mulated with all individuals having a common prior, see, for example, Aumann (1986, 1998) and Gul (1998).
Gul (1998), for instance, questions whether the common prior assumption makes sense when there is no ex ante
stage.
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but also about their direction.3

It may at first appear that individuals should always know whether a particular signal

value is evidence in favor of state A or state B. One might then argue that as an individual

observes more and more a signals, he should not decrease his belief that the state is A–that

is, beliefs should be monotone in frequencies. For example, this reasoning would suggest that

if a candidate for an internal promotion has more publications in a particular journal, then his

chances for promotion should also be higher. Likewise, if we keep finding radioactive residues

in various sites in a country, we should not decrease our belief that the country has a covert

nuclear weapons program.4

These intuitions are correct in fully-identified models, but not in our more general envi-

ronment.5 This is a strength–not a shortcoming–of our model. We now argue that these

intuitions are in fact not as compelling as they first appear and rule out a range of relevant

empirical and theoretical possibilities.

Consider the internal promotion case first. The department has voted for promotion and

the case comes before the president of the university, who is from an unrelated department.

The chair of the department tells her that journal A publishes only exceptional contributions to

the discipline, while journal B publishes minor contributions to the candidate’s field. Suppose

that the candidate has 3 publications in journal A and 3 publications in journal B, and the

president approves the promotion. Now consider the case where the candidate had 2 more

publications in journal A. It is natural to suppose that she would be even more enthusiastic

about the case. Would she still be as enthusiastic about the promotion if the candidate had

20 publications in journal A? 200 more publications? 2000 more publications? Clearly, as we

increase the number of publications in journal A, the president will eventually start doubting

the description that journal A publishes only exceptional contributions and at some point will

start putting less weight on publications in journal A. Naturally, before seeing the candidate’s

publication record, she would have attached a very small probability to seeing 2000 publications

in journal A. But faced with such a promotion case, she would start questioning her working

hypothesis.

Similarly, finding nuclear residue in a site may be considered a strong evidence for a covert

3Note, however, that under {F i
θ,m}, the probability that pB is higher than pA becomes vanishingly small as

m→∞.
4We thank an anonymous referee for suggesting these examples.
5 In fact, the full-identification assumption is considerably stronger than monotonicity and hence full-

identification assumption fails whenever asymptotic beliefs are non-monotone on some (possibly unlikely) events.
Theorem 5 below shows that our fragility results hold even when asymptotic beliefs are monotone in signal fre-
quencies (though naturally our results are not true under full identification).
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nuclear weapons program. Finding residues in three different sites would probably be consid-

ered a smoking gun. But what if we find nuclear residues everywhere in the country? We

would presumably not conclude that there is a nuclear facility in every building in the country,

but start entertaining the hypothesis that the measurements are wrong or they are responding

to some other compound or to some specific feature of the geography of the country.

1.4 A Brief Literature Review

Blackwell and Dubins (1962) show that when two agents agree on zero probability events (i.e.,

their beliefs are absolutely continuous with respect to each other), asymptotically, they will

make the same predictions about future frequencies of signals. It is well-understood that the

absolute continuity assumption is crucial for such a merging of opinions and its relaxation can

lead to a failure of merging; see, for example, Freedman (1963, 1965), Diaconis and Freedman,

1986, Miller and Sanchirico (1999), and Stinchcombe (2005).6 For example, Freedman shows

that when there are infinitely many signal values, an individual may put positive probability to

the conditional signal distributions that are arbitrarily close to the true signal distribution in

the product topology, but his future predictions may diverge dramatically from those of another

individual who knows the true signal distribution. This is because posterior beliefs may be

quite sensitive to the tail of the conditional signal distribution and the tails are negligible in

the product topology. Similarly, a number of important theorems in statistics, for example,

Berk (1966), show that when individuals place zero probability on the true data generating

process, limiting posteriors will have their support on the set of all identifiable values, but they

may fail to converge to a limiting distribution.

In contrast to the above-mentioned papers, we do not question the absolute continuity

assumption, as our full-support assumption implies absolute continuity. In particular, as in

Blackwell and Dubins’ theorem, the individuals asymptotically agree on the future frequency

of signals. Indeed, our results rely on the fact that agreeing about future frequencies is not

the same as agreeing about the underlying payoff-relevant state, because of the identification

problem that arises in the presence of uncertainty.7 This identification problem leads to dif-

ferent possible interpretations of the same signal sequence by individuals with different priors.

In most economic situations, what is important is not future frequencies of signals but some

6In dynamic games, another source of lack of merging is that some subgames are never visited along the
equilibrium path and thus players do not observe information that contradict their beliefs about payoffs in these
subgames, failing to learn their payoffs (see, Fudenberg and Levine, 1993, Fudenberg and Kreps, 1995).

7 In this respect, our paper is also related to Kurz (1994, 1996), who considers a situation in which agents
agree about long-run frequencies, but their beliefs fail to merge because of the non-stationarity of the world.
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payoff-relevant parameter. For example, what is relevant for economists trying to evaluate a

policy is not the frequency of estimates on the effect of similar policies from other researchers,

but the impact of this specific policy when (and if) implemented. Similarly, in the asset trading

example discussed in Section 3, what is most relevant is not the frequency of information about

the dividend process but the actual dividend that the asset will pay. Thus, many situations in

which individuals need to learn about a parameter or state that will determine their ultimate

payoff as a function of their action falls within the realm of the analysis here. Our main re-

sults show that even when this identification problem is negligible for individual learning, its

implications for asymptotic agreement may be significant.

Our paper is also related to recent independent work by Cripps, Ely, Mailath and Samuelson

(2008), who study the conditions under which there will be “common learning” by two agents

observing correlated private signals. Cripps, et al. focus on a model in which individuals start

with common priors and then learn from private signals under certainty (though they note that

their results could be extended to the case of non-common priors). They show that individual

learning ensures “approximate common knowledge” when the signal space is finite, but not

necessarily when it is infinite. In contrast, we focus on the case in which the agents start

with heterogenous priors and learn from public signals under (negligible) uncertainty. Since

all signals are public in our model, there is no difficulty in achieving approximate common

knowledge.8

2 Model

There are two individuals, denoted by i ∈ {1, 2}. The individuals care about a state θ, which
comes from a finite set Θ with K ≥ 2 elements. The individuals cannot observe the state,
but they publicly observe a sequence of signals {st}nt=1 where st ∈ Σ for some finite set Σ
with L ≥ 2 elements. We designate θ ∈ Θ and σ ∈ Σ as a generic state and a generic signal
value, respectively. We write ∆ (Θ) ⊂ [0, 1]K and ∆ (Σ) ⊂ [0, 1]L for the sets of all probability
distributions on Θ and Σ, respectively. We endow ∆ (Θ) and ∆ (Σ) with the supremum norm

k·k. Agent i assigns ex ante probability πiθ > 0 to θ; we write πi ≡
¡
πiθ
¢
θ∈Θ ∈ ∆ (Θ) for the

vector of prior beliefs. The individuals believe that, given θ, the signals are exchangeable, i.e.,

they are independently and identically distributed with an unknown distribution.9 That is,

8Put differently, we ask whether a player thinks that the other player will learn, whereas Cripps et al. ask
whether a player i thinks that the other player j thinks that i thinks that j thinks that ... a player will learn.

9See, for example, Billingsley (1995). If there were only one state, then our model would be identical to De
Finetti’s canonical model (see, for example, Savage, 1954). In the context of this model, De Finetti’s theorem
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the probability of st = σ given θ is an unknown number pθ,σ. Here, pθ,σ can be considered as

the long-run frequency of σ when the true state is θ. We write pθ ≡ (pθ,σ)σ∈Σ ∈ ∆ (Σ).
Our main departure from the standard model is that we allow the individuals to be un-

certain about pθ. We denote the cumulative joint distribution function of pθ according to

individual i–namely, his subjective probability distribution–by F i
θ. In the standard model, F

i
θ

is degenerate (Dirac) and puts probability 1 at some p̂iθ. In contrast, for most of the analysis,

we will impose the following assumption:

Assumption 1 (Full Support) For each i and θ, F i
θ has a continuous, non-zero and finite

density f iθ over ∆ (Σ).

The assumption implies that F i
θ has a full support over the simplex ∆ (Σ). Assumption 1 is

stronger than necessary for our results, but simplifies the exposition. In addition, throughout

we assume that π1, π2, F 1θ and F 2θ are known to both individuals.
10

We consider infinite sequences s ≡ {st}∞t=1 of signals and write S for the set of all such

sequences. We write

φiθ,n (s) ≡ Pri (θ | {st}nt=1)

for the posterior probability that the true state is θ given a sequence of signals {st}nt=1 under
prior πi and subjective probability distribution F i

θ . After observing {st}
n
t=1, i assigns prob-

ability φiθ,n (s) to state θ. Since the sequence of signals, s, is generated by an exchangeable

process, the order of the signals does not matter for the posterior. It only depends on

rσ,n (s) ≡ # {t ≤ n|st = σ} ,

the number of times st = σ out of first n signals for each signal value σ ∈ Σ; we write
rn (s) ≡ (rσ,n (s))σ∈Σ.11 Let us write

S̄ ≡ {s ∈ S| limn→∞ rσ,n (s) /n exists for each σ ∈ Σ} (1)

provides a Bayesian foundation for classical probability theory by showing that exchangeability (i.e., invariance
under permutations of the order of signals) is equivalent to having an independent identical unknown distrib-
ution and implies that posteriors converge to long-run frequencies. De Finetti’s decomposition of probability
distributions is extended by Jackson, Kalai and Smorodinsky (1999) to cover cases without exchangeability.
10Since our purpose is to understand whether learning justifies the common prior assumption, we do not

assume a common prior, allowing agents to have differing beliefs even when the beliefs are commonly known.
11Given the definition of rn (s), the probability distribution Pri on Θ× S is defined by setting

Pri
³
Eθ,s,n

´
≡ πiθ

Z Q
σ∈Σ p

rσ,n(s)

θ,σ f iθ (pθ) dpθ

at each event Eθ,s,n = {(θ, s0) |s0t = st for each t ≤ n}, where s ≡ {st}∞t=1 and s0 ≡ {s0t}∞t=1.

9



for the set of sequences under which the empirical frequency rσ,n (s) /n converges to some

long-run frequency and let us denote this long-run frequency of σ under s by

ρσ (s) ≡ limn→∞ rσ,n (s) /n. (2)

We denote the vector of long-run frequencies by ρ (s) ≡ (ρσ (s))σ∈Σ ∈ ∆ (Σ). By the strong
law of large numbers, such a limit exists almost surely for both individuals, which implies that

Pri
¡
s ∈ S̄

¢
= 1 for i = 1, 2. We will often state our results for all sample paths s in S̄, which

equivalently implies that these statements are true almost surely or with probability 1. Now,

a straightforward application of the Bayes rule gives

φiθ,n (s) =
1

1 +
P

θ0 6=θ
πi
θ0
πiθ

Pri(rn|θ0)
Pri(rn|θ)

, (3)

where Pri (rn|θ) is the probability of observing the signal st = σ exactly rσ,n times out of n

signals for each σ ∈ Σ with respect to the distribution F i
θ .

The following lemma provides a useful formula for the asymptotic belief of individual i,

limn→∞ φiθ,n (s), and introduces the concept of the asymptotic likelihood ratio. Both the

formula and the asymptotic likelihood ratio are used throughout the rest of the paper.

Lemma 1 Suppose Assumption 1 holds. Then for all s ∈ S̄,

lim
n→∞

φθ,n (s) =
1

1 +
P

θ0 6=θ
πi
θ0
πiθ

Ri
θ,θ0
(ρ (s))

≡ φiθ,∞ (ρ (s)) (4)

where

Ri
θ,θ0 ≡ f iθ0/f

i
θ (5)

is the asymptotic likelihood ratio for θ and θ0.

Proof. All proofs are in the Appendix.

In (5), Ri
θ,θ0 (ρ) is the asymptotic likelihood ratio of observing frequency vector ρ when the

true state is θ0 versus when it is θ. Lemma 1 states that, asymptotically, individual i uses

these likelihood ratios and the Bayes rule to compute his asymptotic posterior beliefs about θ.

Notice that φiθ,∞ and Ri
θ,θ0 are defined on the simplex ∆ (Σ) of frequency vectors. We write

φi∞ ≡
¡
φθ,∞

¢
θ∈Θ.

The two questions of interest for us are:

1. Asymptotic learning: whether Pri
¡
φiθ,∞ = 1|θ

¢
= 1 for each θ and i = 1, 2.
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2. Asymptotic agreement: whether Pri
¡°°φ1∞ − φ2∞

°° = 0¢ = 1 for i = 1, 2.
Notice that both asymptotic learning and agreement are defined in terms of the ex ante

probability assessments of the two individuals.12 Therefore, asymptotic learning implies that

an individual believes that he or she will ultimately learn the truth, while asymptotic agreement

implies that both individuals believe that their assessments will eventually converge.13

3 A Binary Example

In this section, we illustrate the main idea of the paper using the following simple example.

We take Θ = {A,B} and Σ = {a, b}, so that there are two states and the signals are binary.

3.1 A Standard Model

We first consider an instance of the standard model, where it is commonly known that pA,a = p̂A

and pB,b = p̂B for some p̂A, p̂B ∈ (1/2, 1]. Now, suppose that ra,n out of the first n signals
are a. The likelihood of this event is p̂ra,nA (1− p̂A)

n−ra,n under θ = A and p̂
n−ra,n
B (1− p̂B)

ra,n

under B. The relative likelihood ratio is

R (ra,n, n) =

Ã
p̂
ra,n/n
A (1− p̂A)

1−ra,n/n

p̂
1−ra,n/n
B (1− p̂B)

ra,n/n

!n

.

Suppose that n → ∞ and ra,n/n → ρa. If p̂
ρa
A (1− p̂A)

1−ρa > p̂
1−ρa
B (1− p̂B)

ρa (so that ρa is

more likely under A than under B), then the expression in the parentheses is greater than

1, and R (ra,n, n) → ∞. In that case, asymptotically, each individual assigns probability 1
to state A. When the true state is A, ra,n/n → p̂A. Therefore, as n → ∞, both individuals
assign probability 1 to the true state,. Similarly, when the true state is B, ra,n/n converges

to 1− p̂B, and since the expression in the parentheses is now less than 1, R (ra,n, n) → 0. In

that case, both individuals assign probability 1 to the true state B, asymptotically. Except

for the knife-edge case p̂ρaA (1− p̂A)
1−ρa = p̂

1−ρa
B (1− p̂B)

ρa , both individuals asymptotically

assign probability 1 to the same state, leading to asymptotic agreement.

12We formulate asymptotic learning and agreement in terms of each individual’s initial probability measure
so as not to take a position on what the “objective” for “true” probability measure is. Under Assumption 1,
asymptotic learning and agreement occur if and only if the corresponding limits hold for almost all long-run
frequencies ρ (s) ∈ ∆ (Σ) under the Lebesgue measure, which has also an “objective” meaning.
13 In a strategic situation, the players may care both about θ and the future signal frequencies. In that case,

for asymptotic agreement, one may ask that both posteriors about θ and the future frequencies merge. The
two concepts are equivalent under the full support assumption, since, in this case, the beliefs about the future
frequencies merge.
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3.2 A Model with Small Uncertainty

Now, we consider the case in which each individual faces a small amount of uncertainty about

the conditional signal distributions. The individuals’ beliefs about the conditional distributions

are slightly different. For some small , λ ∈ (0, 1), each individual i thinks that with probability
1− , pθ is in a λ-neighborhood of some p̂iθ > (1 + λ) /2, but with probability , the signals are

not informative. More precisely, for p̂iθ > (1 + λ) /2 and λ <
¯̄
p̂1θ − p̂2θ

¯̄
, we have

f iθ (pθ) =

½
+ (1− ) /λ if pθ,θ ∈

¡
p̂iθ − λ/2, p̂iθ + λ/2

¢
otherwise

(6)

for each θ and i. Here, pθ,θ is pA,a for θ = A and pB,b for θ = B. Also, one can pick p̂1θ, p̂
2
θ,

and p̂θ close to each other and pick and λ very small, so that each individual’s beliefs are

approximately the same as in the standard model discussed in the previous subsection. Now,

by (5), the asymptotic likelihood ratio is

Ri
A,B (ρ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λ
1− (1−λ) ifρa ∈ Di

A ≡
¡
p̂iA − λ/2, p̂iA + λ/2

¢
1− (1−λ)

λ ifρa ∈ Di
B ≡

¡
1− p̂iB − λ/2, 1− p̂iB + λ/2

¢
1 otherwise.

(7)

This and other relevant functions are plotted in Figure 1 for → 0, λ→ 0. The likelihood ratio

Ri
A,B (ρ) is 1 when ρa is small, takes a very high value at 1− p̂iB, goes down to 1 afterwards,

becomes nearly zero around p̂iA, and then jumps back to 1. By Lemma 1, φ
i
A,∞ (ρ) will also be

non-monotone: when ρa is small, the signals are not informative, thus φ
i
A,∞ (ρ) is the same as

the prior, πiA. In contrast, around ρa = 1− p̂iB, the signals become very informative suggesting
that the state is B, thus φiA,∞ (ρ) ∼= 0. After this point, the signals become uninformative again
and φiA,∞ (ρ) goes back to πiA. Around p̂iA, the signals are again informative, but this time

favoring state A, so φiA,∞ (ρ) ∼= 1. Finally, signals again become uninformative and φiA,∞ (ρ)

falls back to πiA.

Intuitively, when ρa (s) is around 1− p̂iB or p̂iA, the individual assigns very high probability
to the true state, but outside of this region, he sticks to his prior, concluding that the signals

are not informative.

The first important observation is that even though φiA,∞ is equal to the prior for a large

range of limiting frequencies, as → 0 and λ → 0 each individual attaches probability 1 to

the event that he will learn θ. This is because, as → 0 and λ→ 0, each individual becomes

convinced that the limiting frequencies will be close to either 1 − p̂iB or p̂iA. Thus, there is

asymptotic learning in this environment.
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Figure 1: The three panels show, respectively, the approximate values of Ri
A,B, φ

i
A,∞, and¯̄

φ1A,∞ − φ2A,∞
¯̄
as → 0 for p̂iA = p̂iB = p̂i.

However, asymptotic learning is considerably weaker than asymptotic agreement. Each

individual also understands that since λ <
¯̄
p̂1θ − p̂2θ

¯̄
, when the long-run frequency is in a

region where he learns that θ = A, the other individual will conclude that the signals are

uninformative and adhere to his prior belief. Consequently, he expects the posterior beliefs

of the other individual to be always far from his. Put differently, as → 0 and λ → 0, each

individual believes that he will learn the value of θ himself but that the other individual will fail

to learn. Therefore, each attaches probability 1 to the event that they disagree. This can be

seen from the third panel of Figure 1; at each sample path in S̄, at least one of the individuals

will fail to learn, and the difference between their limiting posteriors will be uniformly higher

than the following “objective” bound

z̃ ≡ min
©
π1A, π

2
A, π

1
B, π

2
B,
¯̄
π1A − π2A

¯̄ª
. (8)

When π1A = 1/3 and π2A = 2/3, this bound is equal to 1/3. In fact, the belief of each

individual regarding potential disagreement can be greater than this; each individual be-

lieves that he will learn but the other individual will fail to do so. Consequently, for each

i, Pri
¡¯̄
φ1A,∞ (ρ)− φ2A,∞ (ρ)

¯̄
≥ Z

¢
≥ 1− , where as → 0,

Z → z ≡ min
©
π1A, π

2
A, π

1
B, π

2
B

ª
. (9)

This “subjective” bound can be as high as 1/2.

Clearly, we can pick p̂1θ
∼= p̂2θ

∼= p̂θ and ∼= λ ∼= 0, so that each individual’s beliefs is

approximately the same as in the above instance of the standard model. Yet, our individuals

are certain that their beliefs will remain far apart as they observe the public signals, while the

individuals in the standard model are certain that their beliefs will merge eventually.14

14Note that both heterogeneous beliefs about the interpretation of signals, i.e., p̂1θ 6= p̂2θ, and uncertainty, i.e.,
6= 0 6= λ, are important for this discontinuity.
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3.3 A Model of Asset Trading

Failure of asymptotic agreement may have major implications in a game theoretical analysis,

as the following simple asset trading example illustrates.15

There are three dates, τ = 0, 1, 2, two players and and an asset that yields a dividend only

at date 2. The asset pays 1 if the state is A and 0 if the state is B. Player 2 owns the asset,

but Player 1 would like to buy it because he is more optimistic: π1A > π2A. Between the dates

τ = 0 and τ = 1, the players observe a sequence s ≡ {st}∞t=1 of signals. Player 1 has all the
bargaining power: at each date Player 1 makes a take-it-or-leave-it price offer Qτ , and trade

occurs at price Qτ if Player 2 accepts the offer. We are interested in the subgame-perfect

equilibrium of this game.

Let us start with the standard (learning) model. At τ = 1, after observing s, except for the

knife-edge case, the individuals have the same belief about θ, and hence they are indifferent

toward trading the asset (at price Q1 = φ1A,∞ (ρ (s)) = φ2A,∞ (ρ (s))). In particular, at τ = 0,

both individuals believe that the price at τ = 1 will be 1 if the state is A and 0 if the state is

B, leaving both players indifferent. Hence, if trade does not occur at τ = 0, the continuation

value of Player 1 is 0, and the continuation value of Player 2 is π2A. If they trade at price Q0,

then the continuation value of players 1 and 2 will be π1A −Q0 and Q0, respectively. Thus at

date 0, Player 2 will accept an offer if and only if Q0 ≥ π2A. Since π
1
A > π2A, Player 1 offers

Q0 = π20 at date τ = 0 and trade takes place. Therefore, in any subgame-perfect equilibrium,

there is immediate trade at τ = 0.

We next turn to the model with small uncertainty, discussed in the previous subsection. In

particular, suppose that in terms of the example there we have ∼= λ ∼= 0. We will then show
that trade is delayed in equilibrium. Now, at date 1, if ρa (s) ∈ D1

A ≡
¡
p̂1A − λ/2, p̂1A + λ/2

¢
,

then the value of the asset for Player 2 is φ2A,∞ (ρ (s)) = π2A, and the value of the asset for

Player 1 is approximately 1. Hence, at such ρ (s), Player 1 will buy the asset from Player 2

at price Q1 (ρ (s)) = π2A, enjoying gains from trade equal to 1 − π2A. On the other hand, if

ρa (s) ∈ D1
B or ρa (s) ∈ D2

A, there will be no trade at date 1. For example, if ρa (s) ∈ D1
B,

Player 2 assigns probability π2A to state A, accepting an offer Q1 only if Q1 ≥ π2A. But since

Player 1 assigns nearly probability 0 to state A, he would prefer not to trade at such a price.

The continuation value of Player 1 is therefore approximately equal to

π1A
¡
1− π2A

¢
15See Acemoglu, Chernozhukov and Yildiz (2006) for a more general model of asset trading under learning

under uncertainty.
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(when → 0). The continuation value of Player 2 in this case is π2A, since he only trades at

his continuation value. Therefore, at date 0, Player 2 would accept a price offer Q0 only if

Q0 ≥ π2A. But such an offer would leave Player 1 at most a surplus of π
1
A−π2A. Since π1A−π2A is

strictly less than his continuation value π1A
¡
1− π2A

¢
, there will be no trade at τ = 0. Instead,

in any subgame-perfect equilibrium, Player 1 waits for the information to buy the asset at date

1 (provided that ρ (s) turns out to be in a range where he concludes that the asset pays 1).

This example highlights two important implications of the type of learning analyzed in

this paper for game theoretic and economic analysis. First, for players’ behavior at τ = 1

after observing s the crucial question is whether their beliefs will be close to each other after

observing s at τ = 1. If so, then their behavior will be very similar to that postulated in

the standard (learning) model. Second, for players’ behavior at τ = 0, the crucial question is

whether each player assigns high probability at τ = 0 to the event that their beliefs will be

similar at τ = 1 (as in our definition of asymptotic agreement). If so, then the continuation

values of each player will be as in the standard model, leading them to behave accordingly.

Otherwise, they may behave quite differently, as our example has illustrated.

This example also illustrates that it is not sufficient for each individual to be certain that

he will learn the truth for the equilibrium to be similar to that resulting under do standard

(learning) model. When individuals are uncertain about pθ, each is certain that he will learn

the true state but is also certain that the other player will fail to do so. This assessment then

induces each to wait for the arrival of additional information before trading.16

4 Asymptotic Learning and Agreement–Preliminary Results

In this section we return to the general environment introduced in Section 2 and consider two

polar benchmarks, one in which the model is fully identified as in the standard model and one

under our full-support assumption, Assumption 1. In each case we characterize whether the

individuals will eventually learn the truth and whether they will agree asymptotically. Under

full identification, asymptotic learning and agreement apply under relatively mild conditions.

Under full support, the individuals never learn the truth and their beliefs “generically” diverge.

These preliminary results will provide the starting point for our main results on fragility of

asymptotic agreement presented in the next section.

16This contrasts with the intuition that observation of common information should take agents towards
common beliefs and make trades less likely. This intuition is correct in models of learning under full identification
and is the reason why previous models have generated speculative trade early in the game (e.g., Harrison and
Kreps (1978) and Morris (1996)).
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4.1 Asymptotic Learning and Agreement with Full Identification

We write supp
¡
F i
θ

¢
for the smallest closed set to which F i

θ assigns probability 1. That is,R
supp(F ) dF

i
θ = 1 and for any x ∈ supp

¡
F i
θ

¢
and any open neighborhood V of x,

R
V dF i

θ > 0.

In this subsection, we assume that the supports of the frequencies are disjoint under different

states, which ensures that the model is fully identified.

Assumption 2 (Full Identification) For all θ 6= θ0 and i, supp
¡
F i
θ

¢
∩ supp

¡
F i
θ0
¢
= ∅.

We next establish asymptotic learning and agreement under this full-identification assump-

tion and an additional genericity assumption. To state this characterization result, we first

define the cross-entropy distance between ρ and p ∈ ∆ (Σ) as:17

H (ρ, p) ≡ −
X
σ

ρσ log (pσ) .

We also define

P i (ρ) ≡ arg min
p∈∪θsupp(F i

θ)
H (ρ, p)

as the set of frequency vectors p (among those that i initially finds possible) that are closest

to ρ according to cross-entropy H. We use #P i (ρ) to denote the number of elements in the

set P i (ρ). Our genericity assumption is presented next.

Assumption 3 (Genericity) For all θ ∈ Θ and each i ∈ {1, 2}, supp
¡
F i
θ

¢
is in the interior

of ∆ (Σ) and for each ρ ∈ supp
¡
F i
θ

¢
, #P j(ρ) = 1 (for j 6= i).

This assumption is imposed for expositional simplicity and will be used only in the following

result. It holds generically in the sense that any F i
θ can be approximated by distributions that

satisfy it. (Note that for any p̂ ∈ P j (ρ) and ε ∈ (0, 1), P j (ερ+ (1− ε) p̂) = {p̂}.)

Theorem 1 (Asymptotic Learning and Agreement under Full Identification) Sup-

pose Assumptions 2 and 3 hold. Then for each i ∈ {1, 2} and j 6= i:

1. Pri
¡
limn→∞ φiθ,n (s) = 1|θ

¢
= 1.

2. Pri
¡
limn→∞

¯̄
φ1θ,n (s)− φ2θ,n (s)

¯̄
= 0

¢
= 1 if and only if P j(ρ) ⊆ supp(F j

θ ) for all ρ ∈
supp(F i

θ) and all θ.

17The cross-entropy function is closely related to Kullback-Leibler divergence in information theory and is
often used as a measure of distance between two probability distributions. In particular, the Kullback-Leibler
divergence of p from ρ is H (ρ, p)−H(p, p), where H (p, p) is also the entropy of p. See, for example, Burnham
and Anderson (1989).

16



The first part of the theorem states that full identification ensures asymptotic learning.

The second part provides necessary and sufficient conditions for asymptotic agreement. In

particular, under full identification there will be asymptotic agreement if and only if the sup-

ports of F 1θ and F 2θ are close enough according to cross-entropy, in the sense that the closest

point among ∪θ0supp(F
j
θ0
) to a point in supp(F i

θ) lies in supp(F
j
θ ). It is remarkable that asymp-

totic agreement is a property of the supports. In particular, the common support assumption

implies asymptotic agreement. This is stated in the next corollary.

Corollary 1 (Common Support) Under Assumptions 2, if supp(F 1θ ) = supp(F 2θ ) for all

θ, then Pri
¡
φ1∞ = φ2∞

¢
= 1 for each i.

A special case of the corollary is the following well-known result of Savage (1954), which

was already discussed in the context of the Binary Example. Savage’s result is the basis of the

argument that Bayesian learning will push individuals towards common beliefs and priors.

Corollary 2 (Savage’s Theorem) Assume that each F i
θ puts probability 1 on p̂θ for some

p̂θ such that p̂θ 6= p̂θ0 for all θ 6= θ0. Then asymptotic learning and agreement always obtain,

i.e., for each i = 1,2,

1. Pri
¡
limn→∞ φiθ,n (s) = 1|θ

¢
= 1.

2. Pri
¡
limn→∞

°°φ1n (s)− φ2n (s)
°° = 0¢ = 1.

It is useful to spell out the intuition for Theorem 1 and Corollary 2. Let us start with

the latter. Corollary 2 states that when the individuals know the conditional distributions of

the signals (and hence they agree what those distributions are), they will learn the truth with

experience (almost surely as n → ∞) and two individuals observing the same sequence will
necessarily come to agree on what the underlying state, θ, is. A simple intuition for this result

is that the underlying state θ is fully identified from the limiting frequencies, so that both

individuals can infer the underlying state from the observation of the limiting frequencies of

signals.18

However, there is more to this corollary than this simple intuition. Each individual is sure

that, at state θ, they will be confronted with a limiting frequency of p̂θ, in which case they

18 In our working paper, we also identified other conditions, such as symmetric supports, that ensure asymptotic
learning and agreement according to our characterization, showing that asymptotic learning and agreement are
substantially more general than Savage’s original theorem, presented here in Corollary 2. All of these results
also rely on the full-identification assumption (thus implicitly imposing that Assumption 1 does not hold).
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will conclude that the true state is θ; and they attach zero probability to the events that they

will observe a different asymptotic frequency. To elaborate this point, consider the following

crucial question:

What happens if an individual observes a frequency ρ of signals different from every

p̂θ in a large sample of size n?

The answer to this question highlights why asymptotic agreement under the standard model

rests on problematic assumptions and also provides the intuition for our characterization and

some of our main results. First, note that the event in the question has zero probability

under the individual’s beliefs at the limit n = ∞. However, for n < ∞ any frequency has

strictly positive probability because of sampling variation. In particular, the individual expects

frequency ρ to occur with probability e−H(ρ,p̂θ)n under state θ when the sample size is n. For

any θ with p̂θ ∈ P i (ρ) and θ0 with p̂θ0 6∈ P i (ρ), this event is infinitely more likely under

θ than under θ0 in the sense that e−H(ρ,p̂θ)n/e−H(ρ,p̂θ0)n → ∞ as n → ∞. Therefore, when
P i (ρ) =

©
p̂θ(ρ)

ª
for some θ (ρ) ∈ Θ, as n → ∞, he becomes increasingly certain that the

long-run frequency is p̂θ(ρ), which is distinct from ρ, and assigns probability 1 to state θ (ρ).

Crucially, the individual reaches this inference despite the fact that as n → ∞, frequency ρ

has zero probability under θ (ρ). The fact that full identification relies on inference based on

such zero probability events is the problematic aspect of the standard model (see below for a

further discussion).

The intuition for Theorem 1 is very similar to that of Corollary 2. Now, i believes that

as n → ∞, under each θ, the empirical frequency will converge to some ρ ∈ supp(F i
θ), and i

will assign probability 1 to state θ. What happens if ρ 6∈ ∪θ0supp(F
j
θ0
)? Then, j presumes

that this has resulted from sampling variation. That is, he thinks that the actual long-run

frequency is some p ∈ ∪θ0supp(F
j
θ0
), but the sampling variation leads to ρ, which has probability

e−H(ρ,p)n. Suppose P j(ρ) is a singleton with its unique element p̂θj(ρ) from supp(F j

θj(ρ)
) for

some θj (ρ) ∈ Θ. Then, once again, as n → ∞, the likelihood of ρ is infinitely greater under
p̂θj(ρ) than any other p. Consequently, j assigns probability 1 to the event that the actual long-

run frequency is p̂θj(ρ) and the true state is θ
j (ρ). There will be asymptotic agreement on such

a sample path if and only if θj (ρ) = θ. When the supports of F i
θ and F j

θ are sufficiently close,

this condition is satisfied and there will be asymptotic agreement. In contrast, if the supports

were far apart, so that θj (ρ) 6= θ, then i would assign positive probability to the event that their

beliefs would diverge to the extremes and we would thus have limn→∞
°°φ1n (s)− φ2n (s)

°° = 1.
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Now we can see even more explicitly that the behavior of individual i’s beliefs when

ρ (s) 6∈ ∪θ0supp(F i
θ0) is problematic. First, individual i never questions the validity of his model

even though the reality is increasingly inconsistent with this model (since ρ (s) 6∈ ∪θ0supp(F i
θ0)).

As we discussed in the Introduction, in practice we expect individuals to revise their models

and working hypotheses when faced with overwhelming evidence inconsistent with their as-

sumptions. Second, individual i’s beliefs (at sample path s) concerning future frequencies

diverge from the actual empirical frequency. In particular, we have

lim
n→∞

(Pri
¡
sn+1 = σ| {st}t=nt=1

¢
)σ∈Σ 6= ρ (s)

because limn→∞(Pr
i
¡
sn+1 = σ| {st}t=nt=1

¢
)σ∈Σ ∈ P i (ρ (s)) ⊂ ∪θ0supp(F i

θ0) while ρ (s) 6∈ ∪θ0supp(F
i
θ0).

This is despite the fact that his model prescribes a symmetric world due to exchangeability.

In contrast, under the full-support assumption, we have

lim
n→∞

(Pri
¡
sn+1 = σ| {st}t=nt=1

¢
)σ∈Σ = ρ (s) ∀s ∈ S̄,

so that individuals’ beliefs about the future frequencies always converge to the empirical fre-

quency.19

This discussion suggests that the full-identification assumption leads to a range of problem-

atic conclusions when individuals observe “surprising” frequencies (because individuals always

ascribe these frequencies to sampling variability). It also suggests that equating small proba-

bility events with zero probability events may have important implications and consequences.

To investigate these issues systematically, we next turn to the case in which the full-support

assumption applies.

4.2 Failure of Asymptotic Learning and Agreement with Full Support

We next impose Assumption 1 and show that when F i
θ has full support, there will be neither

asymptotic learning nor asymptotic agreement.

Theorem 2 (Lack of Asymptotic Learning and Agreement Under Full Support)

Under Assumption 1, for all θ and i,

1. Pri
¡
φiθ,∞ (ρ (s)) 6= 1|θ

¢
= 1, and

19This claim can be readily proved following the same steps as in the proof of Lemma 3 in the Appendix since
P i (ρ) = {ρ} for all ρ and i under the full-support assumption.
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2. under the Euclidean metric on real numbers and the Lp metric on density functions,
there exits an open and dense set of models

¡
πiθ, f

i
θ

¢
i,θ
such that for each i ∈ {1, 2},

Pri
¡
φ1θ,∞ (ρ (s)) 6= φ2θ,∞ (ρ (s))

¢
= 1.

Under the full support assumption, Theorem 2 leads to the opposite of the conclusions

drawn from Theorem 1. The first conclusion of Theorem 2 states that each individual is certain

that he will not learn the truth. This is simply because the likelihood ratio Ri
θ,θ0 never takes

values of 0 or ∞, and hence, by Lemma 1, i would never put probability 1 on any state. That
is, on every sample path s ∈ S, his probability assessment of each state remains bounded away

from 0, eventually. The second conclusion states that, generically, he is also certain that their

beliefs will never merge, and there will always be some difference of opinions. This is also an

immediate implication of Lemma 1. Under the full-support assumption, the asymptotic beliefs

vary with the parameters of the individual’s subjective model, and asymptotic agreement at

any ρ boils down to a family of equality restrictions, indexed by θ ∈ Θ:X
θ0 6=θ

π1
θ0

π1θ
R1θ,θ0 (ρ (s)) =

X
θ0 6=θ

π2
θ0

π2θ
R2θ,θ0 (ρ (s)) .

Clearly, these equalities are “knife-edge” and a small perturbation always ensures that they

are not satisfied almost everywhere (according to the Lebesgue measure on ∆ (Σ)). Thus,

for almost all learning models
¡
πiθ, f

i
θ

¢
i,θ
, there will be no asymptotic agreement under full

support.

There is a simple intuition for the lack of learning. Under full support, an individual is

never sure about the exact interpretation of the sequence of signals he observes and will update

his views about pθ (the informativeness of the signals) as well as his views about the underlying

state. For example, even when signal a is more likely in state A than in state B, a very high

frequency of a will not necessarily convince him that the true state is A, because he may infer

that the signals are not as reliable as he initially believed and they may instead be biased

towards a. Therefore, the individual never becomes certain about the state. This is captured

by the fact that Ri
θ,θ0 (ρ) defined in (5) never takes the value zero or infinity.

Nevertheless, Theorem 1 may be more robust than Theorem 2 appears to suggest. Under

the idealized full-identification assumption, Theorem 1 showed that individuals expect to assign

exactly probability 1 to the true state and the asymptotic disagreement is exactly 0 (under some

additional mile conditions). When this idealized assumption is relaxed, these conclusions may

no longer hold. But this is simply because the individuals do not assign exactly probability 1 to

any state. This does not, however, rule out the possibility that Theorem 1 is robust in the sense
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that the amount of asymptotic disagreement is small in the neighborhood of fully identified

models, e.g., when the amount of uncertainty about the conditional signal distributions is

small.

5 Fragility of Asymptotic Agreement–Main Results

In this section, we investigate whether as the amount of uncertainty about the interpretation

of the signals disappears, the amount of asymptotic disagreement vanishes continuously. We

first show that this is not the case: one can perturb a standard model of learning under

certainty slightly and obtain a model in which there is a substantial amount of asymptotic

disagreement. We establish such a discontinuity for every model with certainty, including the

canonical model of learning under certainty, where both individuals share the same beliefs

regarding the conditional signal distributions. We then restrict our perturbations by imposing

a uniform convergence assumption. Within this class, we characterize the perturbations under

which the amount of asymptotic disagreement vanishes continuously.

For any p̂ ∈ ∆ (Σ), write δp̂ for the Dirac distribution that puts probability 1 on p = p̂. Let

{F i
θ,m}m∈N,i∈{1,2},θ∈Θ ({F i

θ,m} for short) denote an arbitrary sequence of subjective probability
distributions converging to a Dirac distribution δpiθ

for each (i, θ) as m→∞. (We will simply
say that {F i

θ,m} converges to δpiθ). Throughout it is implicitly assumed that there is asymptotic
agreement under δpiθ (as in Theorem 1). Therefore, as m → ∞, uncertainty about the inter-
pretation of the signals disappears and we converge to a model with asymptotic agreement.

We write Prim for the ex ante probability under (F
i
θ,m)θ∈Θ, φ

i
θ,∞,m for the asymptotic posterior

belief that true state is θ under (F i
θ,m)θ∈Θ, and R

i
θ,θ0,m = f i

θ0,m/f
i
θ,m for the long-run likelihood

ratio.

We first observe that learning is continuous at certainty in the following sense:

Theorem 3 (Continuity of Asymptotic Learning) Consider any {F i
θ,m} converging to

δpiθ
with piθ 6= pi

θ0 for all θ 6= θ0 and i. For any ε > 0 and (θ, i),

lim
m→∞

Prim
¡
φiθ,∞,m > 1− ε|θ

¢
= 1.

Equivalently, for any
¡
ε, θ, θ0, i

¢
with ε > 0 and any θ 6= θ0,

lim
m→∞

Prim

³
Ri
θ,θ0m < ε|θ

´
= 1.

This theorem states that as {F i
θ,m} converges to δpiθ , each individual becomes increasingly

convinced that he will learn the true state. Equivalently, when a model of learning under
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certainty is perturbed, deviations from full learning will be small and each individual will

attach a probability arbitrarily close to 1 that he will eventually learn the payoff-relevant state

variable θ. Hence, the first part of Theorem 1, which concerns asymptotic learning, is robust.

We next define the continuity of asymptotic agreement at certainty and show that, in

contrast to the first part, the second part of Theorem 1 is not robust.

Definition 1 For any given family {F i
θ,m}, we say that asymptotic agreement is contin-

uous at certainty under {F i
θ,m}, if for all ε > 0 and for each i = 1, 2,

lim
m→∞

Prim
¡°°φ1∞,m − φ2∞,m

°° < ε
¢
= 1.

We say that asymptotic agreement is continuous at certainty at
¡
p1, p2

¢
∈ ∆ (Σ)2K if it is

continuous at certainty under all families {F i
θ,m} converging to δpiθ

.

Continuity at certainty requires that as the family of subjective probability distributions

converge to a Dirac distribution (at which there is asymptotic agreement), each individual

becomes increasingly certain that asymptotic disagreement will be arbitrarily small. Hence,

asymptotic agreement is discontinuous at certainty at
¡
p1A, p

1
B, p

2
A, p

2
B

¢
if there exists a family

{F i
θ,m} converging to δpiθ and ε > 0 such that

lim
m→∞

Prim
¡¯̄
φ1∞,m − φ2∞,m

¯̄
> ε

¢
> 0

for i = 1, 2. We will next define a stronger notion of discontinuity.

Definition 2 We say that asymptotic agreement is strongly discontinuous at cer-

tainty under {F i
θ,m} if there exists ε > 0 such that

lim
m→∞

Prim
¡°°φ1∞,m − φ2∞,m

°° > ε
¢
= 1

for i = 1, 2. We say that asymptotic agreement is strongly discontinuous at certainty

at
¡
p1, p2

¢
∈ ∆ (Σ)2K if it is strongly discontinuous at certainty under some family {F i

θ,m}
converging to δpiθ .

Strong discontinuity requires that even as we approach the world of learning under certainty,

asymptotic agreement will fail with probability approximately equal to 1 according to both

individuals. Finally, we introduce an even a stronger notion of discontinuity.
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Definition 3 We say that asymptotic agreement is almost-surely discontinuous at

certainty under {F i
θ,m} if there exist ε > 0 and m̄ < ∞ such that for all m > m̄ and

ρ ∈ ∆ (Σ), °°φ1∞,m (ρ)− φ2∞,m (ρ)
°° > ε.

We say that asymptotic agreement is almost-surely discontinuous at certainty at¡
p1, p2

¢
∈ ∆ (Σ)2K if it is almost-surely discontinuous at certainty under some family {F i

θ,m}
(with possibly discontinuous density functions) converging to δpiθ .

Almost-sure discontinuity requires that on every sample path s ∈ S̄, with well-defined

long-run frequency ρ (s), asymptotic beliefs will be bounded away from each other. Hence,

almost surely, there will be a significant asymptotic disagreement. In contrast, strong disconti-

nuity only requires that individuals assign high probabilities to those sample paths. Therefore,

almost-sure discontinuity implies strong discontinuity, and strong discontinuity implies discon-

tinuity.

5.1 Discontinuity of Asymptotic Agreement

Theorem 4 (Strong Discontinuity) Asymptotic agreement is strongly discontinuous at cer-

tainty at each
¡
p1, p2

¢
∈ ∆ (Σ)2K . Moreover, if π1 6= π2, then asymptotic agreement is almost-

surely discontinuous at every
¡
p1, p2

¢
∈ ∆ (Σ)2K .

That is, for every model with certainty, one can introduce a vanishingly small uncertainty

in such a way that the individuals’ asymptotic beliefs remain substantially different from each

other at almost all sample paths. Therefore, the asymptotic agreement results are always

fragile. The proof is based on a perturbation as in the Binary Example introduced in Section

3.

Example 1 (Discontinuity of Asymptotic Agreement) In Section 3.2, for each m, take

= λ = ¯/m, p̂1θ = p̂θ + λ, and p̂2θ = p̂θ − λ where ¯ is such that φiB,∞ (ρ) < πjB/2 for

ρa ∈ Di
A and φiA,∞ (ρ) < πjA/2 for ρa ∈ Di

B whenever = λ ≤ .̄ (Recall from (7) that Di
A ≡¡

p̂iA − λ/2, p̂iA + λ/2
¢
and Di

B ≡
¡
1− p̂iB − λ/2, 1− p̂iB + λ/2

¢
). Such ¯ exists (by asymptotic

learning of i). By construction, each F i
θ,m converges to the beliefs in the standard model, and¯̄

p̂1θ − p̂2θ
¯̄
> λ for each θ. To see strong discontinuity, consider the bound Z̄ = z/2 > 0 with

z as in (9). By the choice of ,̄
¯̄
φ1A,∞,m (ρ)− φ2A,∞,m (ρ)

¯̄
> Z̄ whenever ρa ∈ Di

A ∪Di
B. But

Prim
¡
ρa (s) ∈ Di

A ∪Di
B

¢
= 1− (1− λ), which goes to 1 as m→∞. Therefore,

lim
m→∞

Prim
¡¯̄
φ1A,∞,m − φ2A,∞,m

¯̄
> Z̄

¢
= 1. (10)

23



This establishes that agreement is strongly discontinuous under {F i
θ,m}.

To show almost-sure discontinuity, consider the bound Z̃ = z̃/2, which is positive when

π1 6= π2, where z̃ is as defined in (8). Clearly,
¯̄
φ1A,∞,m (ρ)− φ2A,∞,m (ρ)

¯̄
> Z̄ ≥ Z̃ when

ρa ∈ Di
A ∪Di

B, and
¯̄
φ1A,∞,m (ρ)− φ2A,∞,m (ρ)

¯̄
=
¯̄
π1A − π2A

¯̄
> Z̃ when ρa 6∈ Di

A ∪Di
B. That is,

at each frequency, the asymptotic disagreement exceeds Z̃, showing that agreement is almost-

surely discontinuous under {F i
θ,m}.

In the Binary Example (and in the proof of Theorem 4), the likelihood ratio Ri
θ,θ0,m (ρ (s))

and the asymptotic beliefs φiθ,∞,m (ρ (s)) are non-monotone in the frequency ρ (s). This is a

natural outcome of uncertainty on conditional signal distributions (see the discussion in the

Introduction and Figure 2 below). In the Binary Example, when Ri
θ,θ0,m is monotone and the

amount of uncertainty is small, at each state one of the individuals assigns high probability

that both of them will learn the true state and consequently asymptotic disagreement will

be small. Nevertheless, asymptotic agreement is still discontinuous at uncertainty when we

impose the monotone likelihood ratio property. This is shown in the next theorem.

Theorem 5 (Discontinuity under Monotonicity) Take Θ = {A,B} and Σ = {a, b}.
Take any π1A, π

2
B ∈ (0, 1) and for each i ∈ {1, 2} take any p̂iA and p̂iB with p̂iA,a > 1/2 and

p̂iB,b > 1/2. There exist a family {F i
θ,m} and such that:

1. F i
θ,m converges to δp̂iθ

for each θ and i;

2. the likelihood ratio Ri
A,B,m (ρ) is nonincreasing in ρa for each i and m, where ρ =

(ρa, 1− ρa), and

3. agreement is discontinuous at certainty under {F i
θ,m}.

The monotonicity of the likelihood ratio has weakened the conclusion of Theorem 4. Now,

asymptotic agreement is discontinuous at certainty, but it is not almost-surely or strongly

discontinuous.

In the proof of Theorem 4, the family {F i
θ,m} leading to the discontinuity of asymptotic

agreement induces discontinuous likelihood ratios. This is not important for the results (except

for almost-sure discontinuity) because smooth approximations to F i
θ,m would ensure continuity

of the likelihood ratios. More importantly, the likelihood ratio Ri
A,B,m converges point-wise to a

continuous function (i.e., limmRi
A,B,m (ρ) = 1 for each ρ), but this convergence is not uniform.

The failure of uniform convergence is crucial for the stark discontinuity results above, as we

establish next.
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5.2 A Characterization of Continuity with Uniform Convergence

We now assume that the likelihood ratio function Ri
θ,θ0,m uniformly converges to a (continuous)

function in the relevant regions and characterize the perturbations under which the asymptotic

agreement is continuous.

Let Ri
θ,θ0,∞ (ρ) = limm→∞Ri

θ,θ0,m (ρ) be the pointwise limit of R
i
θ,θ0,m (ρ) in the extended

reals. It must be emphasized that the limiting asymptotic likelihood ratio, Ri
θ,θ0,∞, is distinct

from the asymptotic likelihood ratio in the limiting model. For example, in Example 1, Ri
θ,θ0,∞

is identically 1. On the other hand, the limiting model specifies that each individual i is certain

that pθ,θ = p̂θ. Consequently, in the limiting model, the asymptotic likelihood ratio is 0 around

ρa = pA and∞ around ρa = 1− p̂B. Under uniform convergence, our characterization theorem
establishes that whether asymptotic agreement holds is tied to the value of Ri

θ,θ0,∞ at the

relevant frequencies, and it has no connection to the likelihood ratio in the limiting model:

Theorem 6 (Characterization under Uniform Convergence) Under Assumption 1,

consider any {F i
θ,m} converging to δpiθ

where piθ 6= pi
θ0 for all distinct θ and θ0 and (m, i).

Assume that for each
¡
θ, θ0, i, j

¢
, there exists an open neighborhood V i

θ of p
i
θ on which Ri

θ,θ0,m

converges uniformly to Ri
θ,θ0,∞. Then, the following are true.

1. Asymptotic agreement is continuous at certainty under {F i
θ,m} if and only if

Rj
θ,θ0,∞

¡
piθ
¢
= 0 ∀i 6= j, θ 6= θ0.

2. If Rj
θ,θ0,∞

¡
piθ
¢
6= 0 for all i 6= j and θ 6= θ0, then asymptotic agreement is strongly

discontinuous at certainty under {F i
θ,m}.

The characterization establishes that whether asymptotic agreement is continuous at cer-

tainty depends on whether the limiting asymptotic likelihood ratio for states θ and θ0 according

to j, Rj
θ,θ0,∞, is equal to 0 at the frequency p

i
θ that will be realized under state θ according to

the limiting model of i. The idea here is intuitive. Individual i is almost certain that, if the

state is θ, then the realized frequency will be around piθ and he will assign nearly probability

1 to θ. For the other individual j to agree with him, she must also assign nearly probability 1

to θ at those frequencies, which requires that her likelihood ratio, Rj
θ,θ0,m

, is nearly 0 at those

frequencies. But these ratios are all approximately equal to Rj
θ,θ0,∞

¡
piθ
¢
when Rj

θ,θ0,m
converges

uniformly.

In Theorem 6, the uniform convergence assumption is not superfluous for either direction

of the characterization, as the next counterexample shows.
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Example 2 (Counterexample to Necessity) Without uniform convergence, there may be

asymptotic agreement even if Rj
θ,θ0,∞ 6= 0. In the Binary Example from Section 3, suppose

instead that

f iθ,m (p) =

½
1/m+m (1− 1/m) if p ∈

¡
p̂m − 1

2m , p̂m +
1
2m

¢
1/m otherwise

where p̂m = 3/4 − 1/m. The limiting asymptotic likelihood ratio, Rj
θ,θ0,∞, is identically 1.

Nevertheless, agreement is continuous under {F i
θ,m} because the individuals have the same

model of learning.

(Counterexample to Sufficiency) Without uniform convergence, asymptotic agreement

may fail even if Rj
θ,θ0,∞ = 0. Consider the following variation of the Binary Example:

f iθ,m (pθ) =

⎧⎨⎩
xm if pθ,θ ∈

¡
p̂im − 1/m, p̂m + 1/m

¢
1/m if pθ,θ ∈ [1/2, 1] \

¡
p̂im − 7/m, p̂m + 7/m

¢
1/m2 otherwise

for large m where p̂1m = 3/4 + 14/m, p̂
2
m = 3/4 + 18/m, and xm is such that f iθ,m is a density

function. One can check that Rj
θ,θ0,∞ (ρ) = 0 whenever ρθ > 1/2. Nevertheless, agreement is

still strongly discontinuous under {F i
θ,m}.

We next explore the implications of the characterization results in Theorem 6 in the context

of a canonical example.

5.3 A Canonical Example

As in the Binary Example, we take Θ = {A,B} and Σ = {a, b}. We consider a class of
“symmetric” families {F i

θ,m} that converge to the Dirac distribution δpiθ where p
i
A =

¡
p̂i, 1− p̂i

¢
and piB =

¡
1− p̂i, p̂i

¢
for some p̂i ∈ (1/2, 1). The family is parameterized by a determining

density function f : R→ R that is strictly positive, symmetric around zero, and monotone in

the tails. The subjective density function f iθ,m is then induced by f and the transformation

x 7→
¡
x− p̂i

¢
/m:

f iθ,m (ρ) = ci (m) f
¡
m
¡
ρθ − p̂i

¢¢
(11)

where ci (m) ≡ 1/
R 1
0 f

¡
m
¡
ρθ − p̂i

¢¢
dρθ is a correction factor to ensure that f

i
θ,m is a proper

probability density function on ∆ (Σ). Here, the mapping x 7→
¡
x− p̂i

¢
/m scales down the

real line around p̂i by the factor 1/m, scaling down the uncertainty about pθ by 1/m. As

m → ∞, the uncertainty vanishes and F i
θ,m converges to δpiθ . When p̂1 = p̂2, the individuals

have the same subjective densities, leading trivially to asymptotic agreement. To analyze
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the continuity of asymptotic agreement at certainty, we will assume p̂1 6= p̂2. Define x̂ ≡
p̂1 + p̂2 − 1 >

¯̄
p̂1 − p̂2

¯̄
≡ ŷ > 0.

The relevant asymptotic likelihood ratios are all equal to

Rj
θ,θ0,m

¡
piθ
¢
=

f
¡
m
¡
p̂1 + p̂2 − 1

¢¢
f (m |p̂1 − p̂2|) =

f (mx̂)

f (mŷ)
.

Hence, under the uniform convergence assumption, whether asymptotic agreement is continu-

ous at certainty under {F i
θ,m} depends on whether

lim
m→∞

f (mx̂)

f (mŷ)
= 0. (12)

This is a familiar condition in statistics. Whether it is satisfied depends on whether f has

rapidly-varying (exponential) or regularly-varying (polynomial) tails:

Definition 4 A density function f has regularly-varying tails if

lim
m→∞

f(mx)

f(m)
= H(x) ∈ R ∀x > 0.

The condition that H (x) ∈ R is relatively weak, but nonetheless has important implica-
tions. In particular, it implies that H(x) ≡ x−α for α ∈ (0,∞).20 Moreover, Seneta (1976)
shows that the convergence in Definition 4 is uniform on any compact set. Therefore, if f has

regularly-varying tails, then Rj
θ,θ0,m

converges uniformly to Rj
θ,θ0,∞, where

Rj
θ,θ0,∞

¡
piθ
¢
= (x̂/ŷ)−α > 0

for some α ∈ (0,∞). Our characterization then shows that asymptotic agreement is strongly
discontinuous it certainty under {F i

θ,m}. Many common distributions, including the Pareto,
log-normal, and t-distributions, have regularly-varying densities.

Definition 5 A density function f has rapidly-varying tails if for every x > 0,

lim
m→∞

f (mx)

f (m)
= x−∞ ≡

⎧⎨⎩
0 if x > 1
1 if x = 1
∞ if x < 1.

Once again, the convergence is uniform on compact intervals that exclude x = 1 (as in our

case), and hence each Rj
θ,θ0,m

converges uniformly to Rj
θ,θ0,∞ where

Rj
θ,θ0,∞

¡
piθ
¢
= (x̂/ŷ)−∞ = 0.

20The proof of this claim is provided in our working paper. See, for example, De Haan (1970).
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Our characterization then shows that if f has rapidly varying tails, then agreement is contin-

uous under {F i
θ,m}. Examples of densities with rapidly-varying tails include the exponential

and the normal densities.

Therefore, whether there is asymptotic agreement depends on the tails:

1. If f has regularly-varying tails, then agreement is continuous at certainty under {F i
θ,m}.

2. If f has rapidly-varying tails, then agreement is strongly discontinuous at certainty under

{F i
θ,m}.

The intuition for these results is as follows. The continuity of agreement is determined by

whether Rj
θ,θ0,m

¡
piθ
¢ ∼= 0. That is, whether i thinks that the frequency that will be realized at

state θ (namely piθ) will convince the other individual j, too, that the state is θ. Now, since

ŷ =
¯̄
p̂i − p̂j

¯̄
<
¯̄
p̂i −

¡
1− p̂j

¢¯̄
= x̂, j also considers frequency piθ as an evidence for state θ.

For large m, the strength of this evidence depends on the tail of f . Rapidly-varying tails are

increasingly informative. Any difference between x̂ and ŷ is magnified as we go to the tail

frequencies (as m increases). Hence, as m→∞, j infers from the frequency piθ that the state

is θ (i.e., Rj
θ,θ0,∞

¡
piθ
¢
= 0). On the other hand, informativeness remains nearly constant on

regularly-varying tails. Hence, increasing m does not make the frequency piθ correspond to

“stronger evidence”; as a result, Rj
θ,θ0,∞

¡
piθ
¢
remains around (x̂/ŷ)−α, bounded away from 0.

Even in the limit m → ∞, j assigns a significant probability to the other state, leading to a
significant asymptotic disagreement.

To illustrate the nature of asymptotic disagreement under regularly-varying tails further,

consider the Pareto distribution with some α > 0. This is particularly relevant, since all

distributions with regularly-varying tails behave similar to the Pareto-distribution for large m.

For simplicity, suppose π1A = π2A = 1/2, so that there is no initial disagreement. The likelihood

ratio is

Ri
θ,θ0,m (ρ (s)) =

µ
ρθ (s) + p̂i − 1
ρθ (s)− p̂i

¶−α
,

and the asymptotic probability that the true state is θ is

φiθ,∞,m (ρ (s)) =

¡
ρθ (s)− p̂i

¢−α
(ρθ (s)− p̂i)−α + (ρθ (s) + p̂i − 1)−α

for all m. As illustrated in Figure 2, in this case φiθ,∞,m is not monotone. To see the magnitude

of asymptotic disagreement, consider ρθ (s) ∼= p̂i. In that case, φiθ,∞,m (ρ (s)) is approximately
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Figure 2: limn→∞ φin (s) for Pareto distribution as a function of ρ (s) [for α = 2, p̂
i = 3/4].

1, and φjθ,∞,m (ρ (s)) is approximately ŷ
−α/ (x̂−α + ŷ−α). Hence, both individuals believe that

the difference between their asymptotic posteriors will be¯̄
φ1θ,∞,m − φ2θ,∞,m

¯̄ ∼= x̂−α

x̂−α + ŷ−α
.

This asymptotic difference is increasing with the difference ŷ ≡
¯̄
p̂1 − p̂2

¯̄
, which corresponds

to the difference in the individuals’ views on which frequencies of signals are most likely. It is

also clear from this expression that this asymptotic difference will converge to zero as ŷ → 0

(i.e., as p̂1 → p̂2).21

5.4 Robustness of Agreement in the Medium Run

We have so far established that asymptotic agreement in standard models is fragile in the

sense that there may be substantial asymptotic disagreement when one introduces a small

amount of uncertainty. In the latter model, the amount of disagreement eventually exceeds a

predetermined level, casting doubt on the notion that beliefs of different individuals become

eventually similar as they observe the same public information. Nevertheless, it is possible

that even in the model with divergent asymptotic beliefs, the individuals’ beliefs may be quite

similar for a long while before they eventually diverge. Then, one may be able to use the

common-prior assumption as an approximation in the medium run, after sufficient amount

of learning, but before beliefs eventually diverge. We will now show that this is indeed the

case whenever there is asymptotic agreement in the limiting standard model. In other words,

21The working paper paper version shows that in this canonical example asymptotic disagreement will be
small for large m whenever ŷ is small.
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medium-run agreement is continuous at certainty. (Below Eim is the expectation operator under

Prim, and δpiθ
is the Dirac measure that puts probability 1 on piθ.)

Theorem 7 (Continuity of Medium-Run Agreement) Let
¡
p1, p2

¢
∈
³
∆ (Σ)Θ

´2
be such

that there is asymptotic agreement under (δpiθ)θ∈Θ,i∈{1,2} (e.g. p1 = p2 and piθ 6= pi
θ0 for all

distinct θ and θ0). Let {F i
θ,m} be any family converging to δpiθ

. Then, for every ε > 0 and

N <∞, there exist n̄ <∞ and m̄ <∞ such that

Prim
¡°°φ1n,m − φ2n,m

°° > ε
¢
< ε (∀m > m̄,∀n ∈ {n̄, n̄+ 1, . . . , n̄+N}) .

Equivalently, for every ε > 0 and N <∞, there exist n̄ <∞ and m̄ <∞ such that

Eim
£°°φ1n,m − φ2n,m

°°¤ < ε (∀m > m̄,∀n ∈ {n̄, n̄+ 1, . . . , n̄+N}) .

Imagine two individuals who face a small amount of uncertainty about the conditional

signal distributions, but their beliefs are similar to those in a standard model. A significant

amount of belief differences may remain early in the process because it takes time to reduce the

initial belief differences. Their beliefs may also eventually diverge as in the Binary Example.

Despite this, Theorem 7 establishes that, in between these two ends, their beliefs will remain

arbitrarily close to each other for an arbitrarily long period of time, provided that the amount

of uncertainty is sufficiently small.

The idea of the proof is simple. Firstly, in the standard model, the expected disagreement

between the individuals’ beliefs vanishes as n → ∞, so that it becomes less than ε/2 when

n exceeds some n̄. Moreover, for a fixed n, since the asymptotic beliefs are continuous and

bounded, as m → ∞, the expected disagreement in the model with uncertainty converges to
the one under the standard model, so that it becomes within ε/2 neighborhood of the latter

difference when m exceeds some m̄n. Hence, the expected disagreement (in both models) will

be less than ε whenever m ≥ m̄n and n ≥ n̄. Therefore, when m ≥ maxn̄≤n≤n̄+N m̄n, the

expected amount of disagreement will be less than ε for each n in between n̄ and n̄+N .

As n grows, in the standard model, the expected disagreement diminishes and vanishes

eventually. In a nearby model with small uncertainty, the expected difference also diminishes

and becomes very small for a long while (because it remains close to the one in the standard

model), but it may eventually grow larger and become substantial. In a sense, small differ-

ences between the two models build up and lead to a substantial difference eventually as the

individuals receive more and more information.

30



0.05

0.
05

0.1
0.1

0.1

0.
1

0.
1

0.
1

0.15
0.15

0.15

0.
15

0.
15

0.
150.2

0.2

0 .
2

0.
2

0.
2

0.
2

0.25
0.25

0 .
2 5 0.

25

0.
25

0.
25

0.3

0 .
3

0 .
3

0.
3

0.
3

0.
3

0.
35

0.
35

0.
35

0.
4

0.
4

0.
4

0.
45

0.
45

0.
45

0.
5

0.
5

Number of observations (n)

C
on

ce
nt

ra
tio

n 
pa

ra
m

et
er

 (m
)

Expected Level of Disagreement (with Player 1s Beliefs)

20 40 60 80 100 120 140
100

200

300

400

500

600

700

800

900

Figure 3: Ex-ante expected disagreement in the Binary Example of Section 3.2 for = λ = 1/m.

For an illustration, consider the Binary Example of Section 3.2 for = λ = 1/m. Take

π1A = 2/3 and π
2
A = 1/3 as the prior beliefs. In Figure 3, we plot the ex-ante expected value of

the disagreement aftern n observations as a function of m and n. (The value on the contour

indicates the expected disagreement along the contour.) For any fixed m, as the individuals

observe more signals, the expected disagreement decreases first and starts increasing after a

while, eventually approaching 5/9. As m increases (and uncertainty decreases), it takes longer

for the asymptotic effect to take over, allowing the expected disagreement to decrease to lower

values and stay low longer before increasing. Theorem 7 shows that this period becomes

arbitrarily long as m → ∞. Remarkably, however, even when m is around 1000, so that the

individuals know probabilities upto the third digits, the expected disagreement starts growing

rapidly only after 30 observations or so.

6 Concluding Remarks

The standard approach in game theory and economic modeling assumes that individuals have a

“common prior,” meaning that they have beliefs consistent with each other regarding the game

forms, institutions, and possible distributions of payoff-relevant parameters. This presumption

is often justified by the argument that sufficient common experiences and observations, either
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through individual observations or transmission of information from others, will eliminate

disagreements, taking agents towards common priors. It receives support from a number of

well-known theorems in statistics, such as Savage (1954) and Blackwell and Dubins (1962).

Nevertheless, existing results assume that conditional distribution (i.e., “interpretations”)

of signals are known. This is sufficient to ensure that payoff-relevant parameters (states)

can be identified from limiting frequencies of signals. In many situations, individuals are not

only learning about payoff-relevant parameters but also about the interpretation of different

signals–i.e., learning would be taking place under uncertainty. For example, many signals

favoring a particular interpretation might make individuals suspicious that the signals come

from a biased source. This may prevent full identification (in the standard sense of the term

in econometrics and statistics). In such situations, information will be useful to individuals

but may not lead to full learning.

This paper investigates the conditions under which learning under uncertainty will take

individuals towards common priors and asymptotic agreement. We consider an environment

in which two individuals with different priors observe the same infinite sequence of signals

informative about some underlying parameter. However, learning is under uncertainty in the

sense that each individual has a non-degenerate subjective probability distribution over the

likelihood of different signals given the values of the parameter. When subjective probability

distributions of both individuals have full support, they will never agree, even after observing

the same infinite sequence of signals.

Our main results provide conditions under which a small amount of uncertainty may lead to

a substantial (non-vanishing) amount of asymptotic disagreement, namely asymptotic agree-

ment is discontinuous at certainty. We first show that asymptotic agreement is discontinuous

(and thus fragile) at certainty for every model. In particular, a vanishingly small amount of

uncertainty about the signal distribution can guarantee that both individuals attach probabil-

ity arbitrarily close to 1 that there will be a significant amount of asymptotic disagreement.

Under an additional uniform convergence assumption, we also characterize the conditions un-

der which asymptotic agreement is continuous at certainty. According to our characterization,

asymptotic disagreement may prevail even as the amount of uncertainty vanishes, depending

on the tail properties of the families of subjective probability distributions. These results imply

learning foundations of common priors are not as strong as generally presumed.
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Appendix: Proofs
Proof of Lemma 1. Write

Pri
¡
rn|θ0

¢
Pri (rn|θ)

=

Z Q
σ p

rσ,n
θ0,σ f

i
θ0(pθ0)dpθ0Z Q

σ p
rσ,n
θ,σ f iθ(pθ)dpθ

=

Z Q
σ
p
rσ,n

θ0,σ fi
θ0 (pθ0 )dpθ0Z Q

σ
p
rσ,n

θ0,σ dpθ0Z Q
σ
p
rσ,n
θ,σ fiθ(pθ)dpθZ Q
σ
p
rσ,n
θ,σ dpθ

=
Eλ[f iθ0 |rn]
Eλ[f iθ|rn]

.

Here, the first equality is obtained by dividing the numerator and the denominator by the same term.
The resulting expression on the numerator is the conditional expectation of f iθ0(pθ0) given rn under
the flat (Lebesgue) prior on pθ0 and the Bernoulli distribution on {st}nt=1. Denoting this by Eλ[f iθ0 |rn],
and the denominator, which is similarly defined as the conditional expectation of fθ (pθ), by Eλ[f iθ|rn],
we obtain the last equality. By Doob’s consistency theorem for Bayesian posterior expectation of the
parameter, as rn → ρ (that is, as rσ,n → ρσ for each σ ∈ Σ), we have that Eλ[f iθ0 |rn] → fθ0(ρ) and
Eλ[f iθ|rn] → f iθ(ρ) (Doob (1949) shows the convergence for almost all ρ, and Diaconis and Freedman
shows the convergence for all ρ in our multinomial model). This establishes

Pri
¡
rn|θ0

¢
Pri (rn|θ)

→ Ri
θ,θ0 (ρ) ,

as defined in (5). Equation (4) then follows from (3).

Proof of Theorem 1. Throughout the proof, Assumptions 2 and 3 are imposed. We first develop
the necessary notation.

Notation: For any i, write
U i =

©
ρ|#P i(ρ) = 1

ª
. (13)

For every ρ ∈ U i, write pi (ρ) for the unique member of P i(ρ) and θi (ρ) for the unique θ with pi (ρ) ∈
supp(F i

θ). Writing rn (s) = (rσ,n (s))σ∈Σ, note that

φiθ,n (s) =
1

1 +
P

θ0 6=θ
πi
θ0
πiθ

R̄i
θ,θ0,n (rn (s))

(14)

where

R̄i
θ,θ0,n (rn (s)) =

Z Q
σ p

rσ,n(s)
σ dF i

θ0 (p)Z Q
σ p

rσ,n(s)
σ dF i

θ (p)
=

R
e−H(rn(s)/n,p)ndF i

θ0 (p)R
e−H(rn(s)/n,p)ndF i

θ (p)
. (15)

We will use following lemmas in our proof.

Lemma 2 Under Assumptions 2 and 3, for any i, as n → ∞, if rn (s) /n → ρ ∈ U i, then for all
θ0 6= θi (ρ),

R̄i
θi(ρ),θ0,n (rn (s))→ 0.

Proof of Lemma: By definition, H
¡
ρ, pi (ρ)

¢
< H (ρ, p) for all p ∈ supp

¡
F i
θ0
¢
. Since H is continuous

and supp
¡
F i
θ0
¢
is closed, this implies that there exist open neighborhoods Vp and Vρ of pi (ρ) and ρ,

respectively, such that

Ĥ ≡ sup
ρ0∈Vρ,p∈Vp

H (ρ0, p) < inf
ρ0∈Vρ,p∈supp(F i

θ0)
H (ρ0, p) ≡ Ĥ 0.
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Since rn (s) /n→ ρ, there exists n̄ <∞ such that rn (s) /n ∈ Vρ for all n > n̄. Take any n > n̄. Then,
by definition of Ĥ 0, Z

e−H(rn(s)/n,p)ndF i
θ0 (p) ≤ e−Ĥ

0n. (16)

Moreover,Z
e−H(rn(s)/n,p)ndF i

θi(ρ) (p) ≥
Z
p∈Vp

e−H(rn(s)/n,p)ndF i
θi(ρ) (p) ≥ e−Ĥn Pri

¡
Vp|θi (ρ)

¢
, (17)

where the first equality is by non-negativity of exponential function and the second inequality is by
definition of Ĥ. Note that since pi (ρ) ∈ supp(F i

θi(ρ)
) and Vp is an open neighborhood of pi (ρ), by

definition of supp, Pri
¡
Vp|θi (ρ)

¢
> 0. Substituting (16) and (17) in definition (15), we then obtain

R̄i
θi(ρ),θ0,n (rn (s)) ≤

e−Ĥ
0n

e−Ĥn Pri
¡
Vp|θi (ρ)

¢ = e−(Ĥ
0−Ĥ)n

Pri
¡
Vp|θi (ρ)

¢ .
Since Ĥ 0 > Ĥ, the right-hand side goes to zero, showing that Ri

θi(ρ),θ0,n
(rn (s))→ 0. QED

Lemma 3 For any i and s ∈ S̄ with ρ (s) ∈ U i, as n→∞, φiθi(ρ(s)),n (s)→ 1.

Proof of Lemma: This lemma follows from Lemma 2 and (14). QED

We are now ready to prove the theorem.

(Proof of Part 1) Take any θ. Firstly, by Doob’s consistency theorem,

Pri
¡
rn (s) /n→ ρ (s) ∈ supp

¡
F i
θ

¢
|θ
¢
= 1. (18)

Moreover, for any ρ ∈ supp
¡
F i
θ

¢
, P i(ρ) = {ρ}, yielding ρ ∈ U i with pi (ρ) = ρ and θi (ρ) = θ. Then,

Lemma 3 establishes that
Pri

¡
φiθ,n (s)→ 1|θ

¢
= 1.

(Proof of Part 2: Sufficiency) Take any θ̂. By Assumption 3, supp(F i
θ̂
) ⊆ U j . Assume that for

every ρ ∈ supp(F i
θ̂
) ⊆ U j , P j(ρ) ⊆ supp(F j

θ̂
), so that θj (ρ) = θ̂. Since ρ ∈ supp(F i

θ̂
), θi (ρ) = θ̂ as

in part 1. Then, whenever rn (s) /n → ρ (s) ∈ supp(F i
θ̂
), by Lemma 3, φi

θ̂,n
(s) → 1 and φj

θ̂,n
(s) → 1.

Consequently,
¯̄
φ1θ,n (s)− φ2θ,n (s)

¯̄
→ 0 for each θ ∈ Θ. Therefore, by (18), for each θ ∈ Θ,

Pri
³¯̄
φ1θ,n (s)− φ2θ,n (s)

¯̄
→ 0|θ̂

´
= 1.

Since θ̂ is arbitrary, this shows that, for all θ,

Pri
¡¯̄
φ1θ,n (s)− φ2θ,n (s)

¯̄
→ 0

¢
= 1.

(Proof of Part 2: Necessity) Suppose that for some θ̂ and ρ̂ ∈ supp(F i
θ̂
), P j(ρ̂) 6⊆ supp(F j

θ̂
),

so that θj (ρ̂) 6= θ̂ = θi (ρ̂). Recall that ρ̂ ∈ U i and ρ̂ ∈ U j (by Assumption 3), with well-defined
θi (ρ̂) and θj (ρ̂). Now, since H is continuous, P j is upper-semicontinuous. Hence, there exists an open
neighborhood V̂ ⊂ U j of ρ̂ such that θj (ρ) = θj (ρ̂) 6= θ̂ for each ρ ∈ V̂ . Thus, for any s ∈ S̄ with ρ (s) ∈
V̂ ∩ supp(F i

θ̂
), Lemma 3 implies that φi

θ̂,n
(s)→ 1 and φj

θj(ρ̂),n
(s)→ 1, so that

¯̄̄
φ1
θ̂,n
(s)− φ2

θ̂,n
(s)
¯̄̄
→ 1.

Since V̂ is an open neighborhood of ρ̂ ∈ supp(F i
θ̂
), Pri

³
ρ (s) ∈ V̂ ∩ supp(F i

θ̂
)|θ̂
´
> 0, showing that

Pri
³¯̄̄
φ1
θ̂,n
(s)− φ2

θ̂,n
(s)
¯̄̄
→ 1

´
> 0,
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and thus contradicting asymptotic agreement.

Proof of Theorem 2. (Proof of Part 1) This part immediately follows from Lemma 1, as each
πiθ0fθ0 (ρ (s)) is positive, and πiθfθ (ρ (s)) is finite.

(Proof of Part 2) By Lemma 1, φ1θ,∞ (ρ)−φ2θ,∞(ρ) = 0 if and only if
P

θ0 6=θ R
1
θ,θ0 (ρ (s))π

1
θ0/π

1
θ =P

θ0 6=θ R
2
θ,θ0 (ρ (s))π

2
θ0/π

2
θ. There is an open and dense set of parameters for which the equality on

the right-hand side is satisfied only at a set of frequencies ρ (s) with Lebesgue measure zero. Since
we have densities, in any such case, Pri also puts probability zero on those frequencies, yielding
Pri

¡¯̄
φ1∞ (s)− φ2∞ (s)

¯̄
6= 0

¢
= 1 for i = 1, 2.

Proof of Theorem 3. Fix any
¡
ε, θ, θ0, i

¢
with ε > 0 and θ 6= θ0. We will show that

limm→∞ Pr
i
m

³
Ri
θ,θ0,m ≥ ε|θ

´
= 0. Let V be a neighborhood of piθ such that p

i
θ0 6∈ V̄ , where V̄ is

the closure of V . Define
Dm =

©
ρ ∈ V |Ri

θ,θ0,m (ρ) ≥ ε
ª
.

By definition,
Prim

¡
Ri
θ,θ0,m ≥ ε|θ

¢
≤ Prim (Dm|θ) + 1− Prim (V |θ) . (19)

But

Prim (Dm|θ) =

Z
ρ∈Dm

f iθ,m (ρ) dρ

≤ 1

ε

Z
ρ∈Dm

f iθ0,m (ρ) dρ =
1

ε
Prim

¡
Dm|θ0

¢
≤ 1

ε
Prim

¡
V |θ0

¢
(20)

where the first inequality follows from the fact that Ri
θ,θ0,m = f iθ0/f

i
θ ≥ ε on Dm and the second

inequality holds since Dm ⊆ V . Combining (19) and (20), we obtain

0 ≤ Prim
¡
Ri
θ,θ0,m ≥ ε|θ

¢
≤ 1

ε
Prim

¡
V |θ0

¢
+ 1− Prim (V |θ) .

Now, since F i
θ0 → δpi

θ0
and piθ0 6∈ V̄ , Prim

¡
V |θ0

¢
→ 0. Likewise, since F i

θ → δpiθ and p
i
θ ∈ V , Prim (V |θ)→

1. Therefore, the upper bound goes to 0, completing the proof.

Proof of Theorem 4. Pick sequences piθ,m and ¯> 0 such that piθ,m → piθ and
°°°piθ,m − pjθ0,m

°°° >
¯/m for all (θ, i) 6=

¡
θ0, j

¢
. For each (θ, i), define

Di
θ,m ≡

©
p ∈ ∆ (Σ) : 3

°°p− piθ,m
°° ≤ ¯/mª ,

which will be the set of likely frequencies at state θ according to i. Notice that Di
θ,m ∩D

j
θ0,m 6= ∅ iff

θ = θ0 and i = j. Define

f iθ,m (ρ) ≡
½

xiθ,m if ρ ∈ Di
θ,m

1/m otherwise,

where xiθ,m is normalized so that f iθ,m is a probability density function. By construction of sequences
f iθ,m and piθ,m, F

i
θ,m → δpiθ for each (θ, i). We will show that agreement is strongly discontinuous under

{F i
θ,m}. Now

φiθ,∞,m (ρ) =
1

1 +
1−πiθ

πiθmxiθ,m
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if ρ ∈ Di
θ,m for some θ and φi∞,m (ρ) = πi otherwise. Note that φiθ,∞,m (ρ)→ 1 if ρ ∈ Di

θ,m. Moreover,

since the sets Di
θ,m and Dj

θ0,m are disjoint for each θ0, φj∞,m (ρ) = πj when ρ ∈ Di
θ,m. Hence, there

exist m̄ such that for any m ≥ m̄ and any ρ ∈ Di
m ≡ ∪θD

i,m
θ ,°°φi∞,m (ρ)− φj∞,m (ρ)
°° > ε

where ε ≡ minj,θ
³
1− πjθ

´
/2. But for each θ, Prim

³
Di
θ,m|θ

´
≥ 1 − 1/m, showing that Prim

¡
Di
m

¢
≥

1− 1/m. Therefore,
lim

m→∞
Prim

¡°°φi∞,m − φj∞,m

°° > ε
¢
= 1.

For the second part of the theorem, take π1 6= π2. Then, by construction, for each ρ,
°°φi∞,m (ρ)− φj∞,m (ρ)

°° >
min

©
ε,
°°π1 − π2

°°ª > 0, showing that agreement almost-surely discontinuous under {F i
θ,m}.

Proof of Theorem 5. For each mÀ 1, let

f iθ,m (ρ) ≡

⎧⎨⎩ xθ/λ if ρθ ∈
£
p̂iθ − λ/2, p̂iθ + λ/2

¤
,

ε3 if ρθ < 1− p̂iθ0 − λ/2,
ε otherwise,

where θ0 6= θ, ε = λ = 1/m, p̂1A = p̂A + λ, p̂1B = p̂B − λ, p̂2A = p̂A − λ, p̂2B = p̂B + λ, and xθ =
1− ε

¡
p̂iθ0 − λ/2

¢
− ε3

¡
1− p̂iθ0 − λ/2

¢
∈ (0, 1). Here, xθ is close to 1 for large m. Then,

Ri
A,B,m (ρ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1/ε2 if ρα < 1− p̂iB − λ/2,
xB/ε

2 if 1− p̂iB − λ/2 ≤ ρa ≤ 1− p̂iB + λ/2,
1 if 1− p̂iB + λ/2 < ρa < p̂iA − λ/2,
ε2/xA if p̂iA − λ/2 ≤ ρa ≤ p̂iA + λ/2,
ε2 if ρa > p̂iA + λ/2,

which is clearly decreasing in ρa when m is large. For ε ∼= 0, we have

Ri
A,B,m (ρ)

∼=

⎧⎨⎩ ∞ if ρa ≤ 1− p̂iB + λ/2,
1 if 1− p̂iB + λ/2 < ρa < p̂iA − λ/2,
0 if ρa ≥ p̂iA − λ/2,

and hence

φiA,∞,m (ρ)
∼=

⎧⎨⎩ 0 if ρ ≤ 1− p̂iB + λ/2,
πi if 1− p̂iB + λ/2 < ρ < p̂iA − λ/2,
1 if ρ ≥ p̂iA − λ/2.

Notice that when ρa ∈
£
p̂2A − λ/2, p̂2A + λ/2

¤
, we have ρa < p̂1A − λ/2, so that φ2A,∞,m (ρ)

∼= 1 and
φ1A,∞,m (ρ)

∼= π1A, yielding
¯̄
φ1A,∞,m (ρ)− φ2A,∞,m (ρ)

¯̄ ∼= 1−π1A. Similarly, when ρa ∈ £1− p̂1B − λ/2, p̂1B + λ/2
¤
,

we have φ1A,∞,m (ρ)
∼= 0 and φ2A,∞,m (ρ)

∼= π2A, so that
¯̄
φ1A,∞,m (ρ)− φ2A,∞,m (ρ)

¯̄ ∼= π2A. In order to
complete the proof of theorem, let us set Z̄ = min

©
π2A, 1− π1A

ª
/2. In that case,

lim
m→∞

Pr1m
¡¯̄
φ1A,∞,m (ρ)− φ2A,∞,m (ρ)

¯̄
> Z̄

¢
= lim

m→∞
Pr1m

¡
ρa ∈

£
1− p̂1B − λ/2, p̂1B + λ/2

¤¢
= π1B > 0,

and

lim
m→∞

Pr2m
¡¯̄
φ1A,∞,m (ρ)− φ2A,∞,m (ρ)

¯̄
> Z̄

¢
= lim

m→∞
Pr2m

¡
ρa ∈

£
p̂2A − λ/2, p̂2A + λ/2

¤¢
= π2A > 0,

completing the proof.
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Proof of Theorem 6. (Part 1: Sufficiency) Fix any θ̂, and assume that Rj

θ̂,θ,∞

³
pi
θ̂

´
= 0 for

each θ 6= θ̂. We will show that for every ε > 0,

lim
m→∞

Pri
³
φ1
θ̂,∞,m

> 1− ε, φ2
θ̂,∞,m

> 1− ε|θ̂
´
= 1, (21)

which implies that, for each θ,

lim
m→∞

Prim

³¯̄
φ1θ,∞,m − φ2θ,∞,m

¯̄
< ε|θ̂

´
= 1.

Since θ̂ is arbitrary, this yields the desired inequality for each θ:

lim
m→∞

Prim
¡¯̄
φ1θ,∞,m − φ2θ,∞,m

¯̄
< ε

¢
= 1.

To prove (21), it suffices to prove that for every ε > 0, and every i, j and every θ,

lim
m→∞

Prim

³
Rj

θ̂,θ,m
< ε|θ̂

´
= 1. (22)

Since Proposition 3 has established (22) for j = i already, we only need to prove (22) for j 6= i. Since
Rj

θ̂,θ,m
converges uniformly to Rj

θ̂,θ,∞ and each Rj

θ̂,θ,m
is continuous, Rj

θ̂,θ,∞ is continuous at pi
θ̂
. Hence,

there exists an open neighborhood V̂ ⊂ V i
θ̂
of pi

θ̂
such that Rj

θ̂,θ,∞ (ρ) < ε/2 for each ρ ∈ V̂ . Since Rj

θ̂,θ,m

converges uniformly to Rj

θ̂,θ,∞ over V̂ , this implies that there exists m̄ < ∞ such that Rj

θ̂,θ,m
(ρ) < ε

for each ρ ∈ V̂ and m > m̄. But since F i
θ̂,m

converges to δpi
θ̂
and V̂ is an open neighborhood of pi

θ̂
,

Prim

³
V̂ |θ̂

´
→ 1, proving (22).

(Part 1: Necessity) Suppose that Rj
θ,θ0,∞

¡
piθ
¢
6= 0 for some i 6= j and θ 6= θ0. We will show that

there exists ε0 > 0 such that

lim
m→∞

Prim
¡¯̄
φ1θ,∞,m − φ2θ,∞,m

¯̄
> ε0|θ

¢
= 1. (23)

This implies that
lim

m→∞
Prim

¡¯̄
φ1θ,∞,m − φ2θ,∞,m

¯̄
> ε0

¢
≥ πiθ > 0,

showing that agreement is discontinuous at certainty under {F i
θ,m}. To prove (23), we set

ε0 ≡
1

2

⎛⎜⎝1− 1

1 +
πj
θ0

πjθ
Rj
θ,θ0,∞

¡
piθ
¢
/2

⎞⎟⎠ > 0.

Now, as in the sufficiency part, we use the uniform convergence of Rj
θ,θ0,m to Rj

θ,θ0,∞ and continuity

of Rj
θ,θ0,∞ to conclude that there exist an open neighborhood V̂ ⊂ V i

θ of p
i
θ and m̄ < ∞ such that

Rj
θ,θ0,m (ρ) > Rj

θ,θ0,∞
¡
piθ
¢
/2 for all ρ ∈ V̂ and for all m > m̄. But for any such m and ρ, φjθ,∞,m (ρ) <

1− 2ε0. Once again, Prim
³
V̂ |θ

´
→ 1, showing that

lim
m→∞

Prim

³
φjθ,∞,m (ρ) < 1− 2ε0|θ

´
= 1. (24)

On the other hand, by Proposition 3,

lim
m→∞

Prim
¡
φiθ,∞,m (ρ) > 1− ε0|θ

¢
= 1. (25)
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When φjθ,∞,m < 1 − 2ε0 and φiθ,∞,m > 1 − ε0, we have
¯̄
φ1θ,∞,m − φ2θ,∞,m

¯̄
> ε0. Therefore, (24) and

(25) imply (23), completing the proof of Part 1.
(Part 2) Assume that Rj

θ,θ0,∞
¡
piθ
¢
6= 0 for all i 6= j and θ 6= θ0. Then, by (23), there exists ε1 > 0

such that Prim
¡¯̄
φ1θ,∞,m − φ2θ,∞,m

¯̄
> ε1|θ

¢
→ 1 for every θ. (To compute ε1, replace R

j
θ,θ0,∞

¡
piθ
¢
with

minθ,θ0{Rj
θ,θ0,∞

¡
piθ
¢
} in the definition of ε0). Therefore,

lim
m→∞

Prim
¡°°φ1∞,m − φ2∞,m

°° > ε1
¢
= 1,

showing that agreement is strongly discontinuous at certainty under
n
F i
θ,m

o
.

Proof of Theoerm 7. It suffices to show that Eim
£°°φ1n,m − φ2n,m

°°¤ < ε because Prim
¡°°φ1n,m − φ2n,m

°° > ε
¢
<

ε whenever Eim
£°°φ1n,m − φ2n,m

°°¤ < ε2. In our proof we will use Ei∞ and φin,∞ for the expectation op-
erator and the posterior belief at n, respectively, under the standard model (δpiθ)θ∈Θ,i∈{1,2}. First, we
observe that

lim
n→∞

Ei∞
£°°φ1n,∞ − φ2n,∞

°°¤ = Ei∞ h limn→∞

°°φ1n,∞ − φ2n,∞
°°i = 0, (26)

where the first equality is by the Bounded Convergence Theorem, and the second equality is by
the hypothesis of the theorem that there is asymptotic agreement under the standard model, i.e.,
limn→∞

°°φ1n,∞ − φ2n,∞
°° = 0 almost surely.

Next, we introduce:

Claim 1 For any fixed n, we have

lim
m→∞

Eim
£°°φ1n,m − φ2n,m

°°¤ = Ei∞ £°°φ1n,∞ − φ2n,∞
°°¤ . (27)

Given this result, fix any ε > 0 and N <∞. By (26), there exist n̄ <∞ such that for all n ≥ n̄,

Ei∞
£°°φ1n,∞ − φ2n,∞

°°¤ < ε/2.

On the other hand, for each n ≥ n̄, by (27), there exists m̄n <∞ such that for all m > m̄n,

Eim
£°°φ1n,m − φ2n,m

°°¤ < Ei∞ £°°φ1n,∞ − φ2n,∞
°°¤+ ε/2.

By picking m̄ = maxn̄≤n≤n̄+N m̄n, we conclude that for each m > m̄ and n ∈ {n̄, n̄+ 1, . . . , n̄+N},

Eim
£°°φ1n,m − φ2n,m

°°¤ < Ei∞ £°°φ1n,∞ − φ2n,∞
°°¤+ ε/2 < ε/2 + ε/2 = ε.

This establishes the desired result. The proof is completed by providing a proof for the Claim.
Proof of Claim: For any rn, we write

Prim (rn) =
X

θ
πiθ

Z Q
σ p

rn,σ
θ,σ dF i

θ,m (pθ) > 0

for the probability of observing rn. Since
Q

σ p
rn,σ
θ,σ is a continuous function of pθ and F i

θ,m → δpiθ ,

lim
m→∞

Prim (rn) =
X

θ
πiθ
Q

σ

¡
piθ,σ

¢rn,σ ≡ Pri∞ (rn) > 0, (28)

where Pri∞ (rn) is the probability of rn under the standard model. We also compute that

Eim
£¯̄
φ1θ,n,m − φ2θ,n,m

¯̄¤
=

X
rn
Prim (rn)

¯̄̄̄
¯πiθ

R Q
σ p

rn,σ
θ,σ dF i

θ,m (pθ)

Prim (rn)
−

πjθ
R Q

σ p
rn,σ
θ,σ dF j

θ,m (pθ)

Prjm (rn)

¯̄̄̄
¯

=
X

rn

¯̄̄̄
πiθ

Z Q
σ p

rn,σ
θ,σ dF i

θ,m (pθ)−
Prim (rn)

Prjm (rn)
πjθ

Z Q
σ p

rn,σ
θ,σ dF j

θ,m (pθ)

¯̄̄̄
.
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Now, asm→∞,
R Q

σ p
rn,σ
θ,σ dF i

θ,m (pθ)→
Q

σ

³
piθ,σ

´rn,σ
(as above) and Prim (rn) /Pr

j
m (rn)→ Pri∞ (rn) /Pr

j
∞ (rn)

by (28) and the Continuous Mapping Theorem. Therefore,

lim
m→∞

Eim
£¯̄
φ1θ,n,m − φ2θ,n,m

¯̄¤
=

X
rn

¯̄̄̄
πiθ
Q

σ

¡
piθ,σ

¢rn,σ − Pri∞ (rn)
Prj∞ (rn)

πjθ
Q

σ

³
pjθ,σ

´rn,σ ¯̄̄̄
= Eim

£¯̄
φ1θ,n,∞ − φ2θ,n,∞

¯̄¤
.

Sincemaxθ is continuous, one more application of the Continuous Mapping Theorem yields (27), proving
the Claim. This completes the proof of the theorem.
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