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1.  Introduction

We study the problem of mechanism design under incomplete information when

there is transferable utility.  Using techniques originally developed in our study of

repeated games, Fudenberg, Levine and Maskin [1994] (FLM) , we develop sufficient

conditions for social choice functions to be Bayesian Nash implementable by mechanisms

whose transfers sum to zero, that is, by balanced-budget mechanisms.  We also consider

when implementing mechanisms can be constructed that satisfy both budget-balance and

interim individual-rationality constraints.

We have two sets of results.  The first set concerns the case where the players’

types are distributed independently.  Here we show that (i) any social choice function

(hereafter denoted scf) that can be implemented at all can be implemented with transfers

that sum to zero, so that the balanced-budget requirement does not restrict the set of

implementable scf’s (see Proposition 1).   Moreover, we show that (ii) if the scf being

implemented yields higher ex ante expected social welfare than autarky, then the

implementing balanced-budget mechanism can be constructed to be ex ante individually

rational (see Proposition 3).   Result (i) extends the theorem of d'Aspremont and Gérard-

Varet [1979], and result (ii) generalizes a conclusion of Laffont and Maskin [1979].

Both those papers,  unlike this one, consider only the first-best scf,  and restrict attention

to the "private values" case where each agent's utility function does not depend on the

types of the others.1

Our second set of results concerns the case where the players' types may be

correlated.  Here we show that if there are three or more players, and no one player has

“too many” more possible types than any other, then for generic prior probability

distributions over types, (iii) any scf can be implemented with a balanced budget

                                                
1 d’Aspremont and Gérard-Varet [1979] actually use a more general condition they call “condition C”
instead of assuming independent types. However,  verifying that the condition is satisfied requires solving a
linear programming problem, and he only case in which they show the condition holds is that of
indpependent types.
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(Proposition 4) and (iv) any scf that increases ex ante social welfare can be implemented

with a mechanism that is interim individually rational and has transfers whose expected

value is nonpositive (Proposition 5).  Result (iii) extends the theorems of Maskin [1986]

and d’Aspremont, Crémer, and Gérard-Varet [1990], which restrict attention to private

values and first-best allocations.  In contemporaneous work, d'Aspremont, Crémer, and

Gérard-Varet [1995] have obtained the same conclusion as our result (iii)  on the weaker

hypotheseses that there are at least three agents and each agent has at least two types.

Result (iv)  extends the results of Crémer and MacLean [1988] and McAfee, McMillan,

and Reny [1989], who considered the special case of allocating a single private good, that

is, an auction.

To prove our results, we use linear programming arguments to show that transfer

rules satisfying both incentive compatibility and balanced-budget constraints can be

found whenever it is possible to statistically distinguish between deviations by different

players. We originally used these techniques to study repeated games, where the analog of

utility transfers are the dynamic programming continuation payoffs.  In the repeated game

setting, balanced-budget conditions arise from the need to constrain continuation payoff

vectors to lie in a particular hyperplane or half-space.  Related techniques have been used

in Legros [1988], Legros and Matsushima [1989], and Radner and Williams [1989] in the

study of static moral hazard in teams.

2.  The Model

There are I agents, i I= 1, ,K  with types θ i i∈Θ .  We assume each type space Θi

is finite, with ni  elements; we let Θ Θ= ×i i , with representative element θ θ θ= ( ,..., )1 I ,

and set n nii
= = ∏#Θ .  Players have a common prior probability distribution p on Θ.

An outcome is a pair y x t= ( , ) , where x is an allocation of physical goods (or,

more generally, a public decision), and t t tI= ( ,..., )1  is a vector of income transfers from

the principal to each agent. We let X denote the (arbitrary) set of possible allocations, and
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let Ti = ℜ  (the real line) be the set of feasible transfers to player i, so that T Ti i
I≡ × = ℜ .

(The assumption of unbounded transfers is quite important for our results about correlated

types; see the discussion at the end of section 5.)

Each agent i I= 1, ,K  has a quasilinear utility function u x ti i( , )θ + . This

formulation allows agent i’s utility to depend on the entire vector of types Θ ; in the

special case of private values, agent i’s utility is not influenced by the types of other

agents, so that  utility is u x ti i i( , )θ + .

After observing his  type, each agent sends a message or report mi  in the message

space $Θi  to an unmodelled principal; a strategy for player i is thus a map mi i i: $Θ Θ→ .

From the revelation principle, we restrict attention to direct revelation mechanisms, in

which $Θi  is isomorphic to the type space Θi ; henceforth we identify these two spaces and

write $Θ Θi i= .  Thus each agent i has k ni i
ni=  pure strategies. We will find it convenient

to number agent i’s types from 1 to ni , and index strategies by vectors, so that

mi * = m ni i[ , ,...., ]1 2  is the “truthful”  strategy, and  the strategy mi[ ,...., ]1 1  corresponds to

player i always reporting that he is the first type.

Let f be a map from Θ to X; we  interpret this map as a social choice function

(scf).  Let F X= Θ  denote the space of all such maps.  A mechanism is a map

( , ):f X Tτ Θ → × . Each mechanism induces a Bayesian game among the agents in the

obvious way.  If truthful reporting is an equilibrium of this game, we say that the

mechanism enforces  truthful reporting, and also that it implements the social choice

function  f.  Formally, this requires that the incentive-compatibility constraint

(IC)

p u f

p u f

i i i i i i i i i i

i i i i i i i i i i

i

i

( | )[ ( ( , ), ( , )) ( , )]

( | )[ ( ( $ , ), ( , )) ( $ , )]

θ θ θ θ θ θ τ θ θ

θ θ θ θ θ θ τ θ θ

θ

θ

− − − −

− − − −

+ ≥

+
−

−

∑

∑

hold for each player i, type θ i  and every possible report $θ i , where p i i( | )θ θ−  is the

probability of θ−i  conditional on θi .  We call this the enforceability constraint  for the
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mechanism.2 The mechanism ( , )f τ  has a balanced budget if  the sum of the transfers

equals zero for every possible vector of reports, that is τ θii
( ) =∑ 0  for all profiles θ.

We will sometimes suppose that each player has the option of not participating in

the mechanism, and further that the payoff from not participating does not depend on the

realization of the types; in this case we normalize the non-participation value to 0.  We

distinguish two cases, depending on the point at which the players can opt not to

participate.  If the players can opt out after learning their types, the mechanism must be

interim individually rational:

(Interim IR) for all players  i and all θ i

p u fi i i i i i i i i i

i

( )[ ( ( , ),( , )) ( , )]θ θ θ θ θ θ τ θ θ
θ

− − − −+ ≥
−
∑ 0 .

If the players must decide whether to participate before learning their type, the

mechanism must satisfy the weaker condition of being ex ante individually rational:

(Ex Ante IR) for all i

p p u fi i i i i i i i i i i

i i

( ) ( )[ ( ( , ), ( )) ( , )]θ θ θ θ θ θ θ τ θ θ
θ θ
∑ ∑ − − − −+ ≥

−
0 .

An scf  f is extremal if there are positive weights { }λi  such that f satisfies

(Extremal)  f p u ff F i ii
∈ ∈ ∑∑arg max ’ ( ) ( ’( ), )λ θ θ θ

θ
.3

                                                
2This is the “interim” version of the constraint,  which corresponds to i’s decision problem after he learns
his own type. The “ex ante” version formulates the constraint on i’s choice of strategy before he learns his
type.  These two formulations are equivalent when all types have positive probability.
3This condition is sometimes called ex ante Pareto optimality in the mechanism design literature.  However,
because utility is transferable, (Extremal) is not interpretable as an efficiency condition when the utility
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We say that an scf is ex ante socially rational  if the sum of the player’s ex ante

utilities is higher under the mechanism than under “autarky:”

(Ex ante SR) p u fii
( ) ( ( ), ) .θ θ θθ ∑∑ ≥ 0

This condition is clearly necessary in order for f to be implemented with a balanced-

budget mechanism that is ex ante individually rational.  Finally, an scf is interim socially

rational if the social rationality constraint is imposed for all profiles of types:

(Interim SR) u fii
( ( ), ) .θ θ θ≥∑ 0 for all

3.  Pairwise Identifiability

 We begin by studying the probability distributions over reports induced by

particular strategies. The key condition we use is called pairwise identifiability.  Loosely

speaking, a strategy profile is pairwise identifiable for players i and j if the probability

distributions over reports resulting from deviations by player i can be statistically

distinguished from those resulting from deviations by j; that is, if deviations by player i

lead to distributions over outcomes that cannot be replicated  by some (possibly random)

reporting strategy of player j.  Lemma 1 below shows that when this condition is satisfied,

any implementable scf can be implemented with a balanced budget.

To state the condition precisely,  choose a numbering scheme for each agent's pure

strategies and fix a strategy profile m m mI= ( ,..., )1  for the agents.  We let Πi im( )−  be the

k ni ×  matrix whose kth row is the probability distribution over reports $θ  when agent i

uses his kth pure strategy and the other players  use m i− .  For any pair of players i and j,

                                                                                                                                                
weights are not equal.  See Ledyard and Palfrey [1994] for a discussion of the relationship between these
two conditions under a different normalization of the utility functions.
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we let Πij m( ) be the ( )k k ni j+ ×  matrix formed by stacking   Πi im( )−  on top of

Π j jm( )− :

Π
Π
Πij

i i

j j

m
m

m
( )

( )

( )
=

�
! 

"
$#

−

−
.

Definition:   The profile m is pairwise identifiable for players i and j if

rank (Πij m( )) = rank(Πi im( )− ) + rank(Π j jm( )− ) -1, where the rank of the matrix is the

dimension of the space spanned by its rows.

Pairwise identifiability requires that the stacked matrix Πij m( ) have the largest

rank possible given the ranks of Πi im( )−  and Π j jm( )− :Πij m( ) cannot have rank equal to

the sum of the ranks of the two submatrices, since the row of Πi im( )−  corresponding to i

playing mi   must be the same as the row of Π j jm( )−  corresponding to j playing mj  .

(Note, though, that pairwise identifiability does not require that the constituent matrices

themselves have full row rank. Indeed, submatrices cannot have full rank.  As the proof

of Lemma 3 demonstrates, the maximum possible  rank of Πi im( )−  is n ni i( )− +1 1).

Lemma 1:  If the social choice function f is implementable by some mechanism, and the

truthful reporting profile is pairwise identifiable for all pairs of agents i j, , then f can be

implemented by a mechanism with a balanced budget.

Proof:   This is essentially lemma 5.5 of FLM.  That result shows that if a pure action

profile (here, truthful reporting) is enforceable, and is pairwise identifiable for every pair

of players, then it can be enforced with continuation payoffs (here, transfer payments)  on

any regular hyperplane.  Enforceability in the current context is equivalent to the social

choice function being implementable by some mechanism.  Regular hyperplanes are
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defined by weights λ i ≠ 0 , and the transfer payments lie on the regular hyperplane λ  if

λ i ii
t∑ = 0 ; a balanced budget corresponds to the particular regular hyperplane where all

weights are equal.

❑

Here is a sketch of the argument behind Lemma 1.   The first step is to note that a

sufficient condition for f  to be implementable with a balanced budget is that, for every

pair of players i,j ,  and every pair of nonzero weights β βi j, , there be  transfer functions

τ τi j,    that  enforce truthful reporting for  i  and j  (that is, satisfy IC for these players)  

and also satisfy β τ θ β τ θi i j j( ) ( )+ = 0 .4   Setting all of the weights βi to equal 1, and

considering  the pairs (1,2), (3,4) and so on, shows that this condition implies that f  can

be implemenated with budget balance for any even number of players.  If there are an odd

number of players, then define transfers for players (4,5), (6,7) and so on as above, with

budget balance within each pair.  To define the transfers for players 1,2, and 3, let

{ , ’ }τ τ1 2  be transfers that enforce f  for 1 and 2 and satisfy β θ β θ1 2

1

2
0( ) ( )+ = , let

{ , }"τ τ2 3  be transfers that enforce f  for 2 and 3 and satisfy 
1

2
02 3β θ β θ( ) ( )+ = , and set

τ θ τ θ τ θ2 2 2

1

2

1

2
( ) ’ ( ) ( )"= + .  Since τ2  is a convex combination of transfer fuctions that

enforces truthful reporting   for player 2, τ2  does also, and the transfers τ τ τ1 2, ,..., I

satisfy budget balance, which finishes the verification of the first claim.

Next, note that the (IC)  constraint for player k can equivalently be expressed as

the inequalities

(*) p u fk k( )[ ( ( ), ) ( )]θ θ θ τ θ
θ

+∑ ≥ +− −∑ p u f m mk k k k k k k k( )[ ( ( ( ), ), ) ( ( ), )]θ θ θ θ τ θ θ
θ

                                                
4 FLM [1994] call this “enforceability with respect to pairwsie hyperplanes.” The argument in this
paragraph is essentially lemma 5.3 of that paper.
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for all reporting strategies mk

Consider the set of inequalities consisting of the incentive constraints for players

i and j (as given by (*) when k i j= , ).  In light of the argument above, it will be sufficient

to show that these constraints can be satisfied when we replace each τ j   in this set by

−βτi  for any nonzero β.

To investigate this question we turn to the matrices Πi im( )*
−  and Π j jm( )*

− .

Because Πi im( )*
−  does not have full rank, it has a row corresponding to some reporting

strategy ′mi  that can be written as a linear combination of the other rows.  Because f is

implementable, there exists a transfer rule τi  that satisfies the incentive constraints (*) for

the strategies corresponding to these other rows.  Moreover, implementability implies that

′mi  can be chosen so that τi  also satisfies (*) for this strategy as well.  Thus, in seeking a

solution to the system of incentive constraints, we can delete the constraint corresponding

to ′mi .  A similar argument applies to Π j jm( )*
− .  Proceeding iteratively, we can delete

enough rows from Π Πi i j jm m( ) ( )* *
− − and  that the reduced matrices have full rank.

Pairwise identifiability then implies that the system of incentive constraints for i and j

corresponding to the reduced versions of Π Πi i j jm m( ) ( )* *
− − and  is solvable.  But the way

that we have deleted  rows ensures that a solution to this system satisfies all  the incentive

constraints for players i and j.

4.  Independent Types

Suppose now that the prior distribution p on the agents’ types is a product

measure, p pi ii
( ) ( )θ θ= ∏ , where pi i( )θ  is the marginal probability of θ i , so that the

types of the various agents are independently distributed.

Lemma 2:  With independent types, every pure strategy profile is pairwise identifiable for

every pair of players.
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Proof:  The intuition for this result is that when types are independent, the joint

distribution over report vectors is simply the product of the marginal distributions of the

reports of the individual players, so that the report distributions arising from deviations by

player i cannot be replicated by deviations of player j.  More formally, with independent

types, the game has a product structure in the sense of FLM.  The concept of a product

structure applies to a much broader class of games than those considered here.  In a game

in which each player i chooses an action ai  and the profile of actions a a ai I= ( ,..., )

results in a distribution over outcome profiles y y yI= ( ,..., )1 , product structure is

satisfied if ( )i  the marginal distribution of yi  given a depends only on ai , and ( )ii  the

joint distribution of y given a is the product of the marginal distributions.  In our setting,

an “action” is a  reporting strategy and a profile of “outcomes” is just a profile of reports.

Hence ( )i  is satisfied trivially (a player’s report depends only on his own reporting

strategy) and ( )ii  holds thanks to independence of types.  The result then follows from

Lemma 7.1 in FLM

❑

The following is an immediate consequence of Lemmas 1 and 2.

Proposition 1:   If types are independently distributed, then any social choice rule that is

implementable by some mechanism can be implemented by a mechanism with a balanced

budget.

In light of Proposition 1, it is interesting to ask which social choice rules are

implementable. The next proposition shows that in the case of private values f is

implementable if it is extremal.  Moreover, the set of extremal mechanisms does not

depend on the particular distribution over types:
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Proposition 2:  (a) If social choice rule f is extremal under the measure p on Θ, it is

extremal for all measures with the same support.  If, moreover, (b) agents have private

values, then any extremal f is implementable.

Proof:   (a)  If f is extremal, there are positive weights { }λi  such that f is a solution of

max ( ) ( ’( ), )’f F i ii
p u f∈ ∑∑ λ θ θ θ

θ
.  Reversing the order of sums, we find that for each

θ ,  f ( )θ  must maximize λ θ θi ii
u f( ’( ), )∑ , that is, an extremal rule must maximize

social utility pointwise.

(b) Suppose f is extremal and that agents have private values.  For each player i,

set  τ θ λ λ θ θi j i j jj i
u f( $) ( / ) ( ( $ ), $ )=

≠∑ , where the weights λ j  are from the proof of part

(a), and $θ  is the observed vector of reports.  If all others report truthfully, player i’s

overall payoff from reporting $θ i   when his type is θ i  is

u f u f u fi i i i j i jj i i i j i j j i i jj

I
( ( $ , $ ), ) ( / ) ( ($ , $ ), $ ) ( / ) ( ( $ , ), )θ θ θ λ λ θ θ θ λ λ θ θ θ− ≠ − −=

+ =∑ ∑1
1

Consequently player i’s objective is the same as the social maximization problem for

which f  is extremal; hence player i’s payoff is maximized by reporting truthfully, so that

for each θ  the outcome is that prescribed by f.

❑

Remark 1:  The proof of part (b) shows that, with private values, any extremal mechanism

is implementable in dominant strategies.  When the utility weights { }λ i on all players are

equal, the transfers constructed in the proof correspond to a Groves mechanism (Groves

[1973].)  Propositions 1 and 2 together imply that any extremal mechanism is

implementable by a mechanism with a balanced budget in the case of private values and



12

independent types;  this result was first obtained by d’Aspremont and Gérard-Varet

[1979].5

Remark 2:  Depending on the utility functions, many non-extremal social choice

functions may be implementable.  One classic example is that of monotonic scfs:

suppose that X  and each Θ i  are subsets of the real line, that each ui  is concave and

twice-differentiable in x, and that ∂ ∂u xi /  is increasing in θ i .  Then any scf that is

differentiable and nondecreasing in θ i  for each i is implementable. (Laffont and Maskin

[1979]). Conversely, if ∂ ∂u xi /  is increasing in θ i , but there are not private values, then

some extremal scf’s may not have the “expected monotonicity” condition (namely that

E f
i i iθ θ θ

− −( , )  be nondecreasing in θ i ) and consequently may not be implementable when

types are independent.6   Section 5 gives a sufficient condition for any scf to be

implementable in the case of correlated types.

Next we turn to the question of implementation under individual rationality

constraints.

Proposition 3:   If types are independently distributed, and the social choice function  f  is

ex ante socially rational and implementable, it is implementable by a balanced-budget

mechanism that is ex ante individually rational.

                                                
5 As we noted in the introduction, their paper shows that the assumption of independence can be relaxed to
“condition C” on the solution to a linear program, but the paper does not indicate what conditions other than
independence might suffice for condition C.
6As an example, suppose that I = 2  and ui x i j x( , ) ( )θ θ θ= − 2 , where x  can be either 0 or 1 and each θi
takes values on the grid { , / ,..., / , }.− − + −1 1 1 1 1 1k k   The scf that chooses x to maximize the sum of the
two player’s utilities has x = 1 only if the sum of the two types is negative, and consequently is not
monotonic.  It is straightforward to check that this scf is consequently not implementable if types are
independently distributed and the “grid” of types is sufficiently fine, (i.e., k  is sufficiently big).
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Remark:  This proposition generalizes a similar result of Laffont and Maskin [1979], who

assumed private values.

Proof:  Under the hypotheses, Proposition 1 implies that there exists balanced transfer

rule τ  such that  ( , )f τ  implements f .   Because transfers are balanced and f is ex ante

socially rational,  we have

p u fi ii
( )[ ( ( ), ) ( )]θ θ θ τ θ

θ
+ ≥∑∑ 0.

That is, the sum over players of the "direct" expected utility plus the expected transfer is

positive. Thus we can find constants { }ki  independent of θ such that kii
=∑ 0 , and

p u f ki i i( )[ ( ( ), ) ( ) ]θ θ θ τ θ
θ

+ + ≥∑ 0 for all i. Hence the transfers  ′ = +τ θ τ θi i ik( ) ( )

implement f, sum to 0, and are ex ante individually rational.

❑

Remark:  The results of  Laffont and Maskin [1979] and Myerson and Satterthwaite

[1981] show that  Proposition 3 does not hold if  we replace ex ante individual rationality

with the stronger requirement of interim IR, even when the scf to be implemented is

interim socially rational.  Indeed, these results establish that even if the balanced budget

requirement is weakened so that only the condition that the expected sum of the transfers

be nonpositive is required, there is still a conflict with interim IR.  (However, Proposition

5 shows that this conflict vanishes in the case of correlated types.)

 5.  Correlated Types

Now we allow the prior distribution p to be any probability distribution on Θ .

Here we can show that for generic distributions, truthful reporting is pairwise identifiable
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and every social choice function is implementable.  We prove the following result in the

Appendix:

Lemma 3:  Suppose that

(♣) n nkk i j i≠∏ ≥
,

 for all  i≠ j.   

Then for generic probability distributions on Θ, the truthful reporting profile is pairwise

identifiable for every pair of players.

Remark:  An example may help to show both why the lemma requires more than two

players and why pairwise identifiability need not be satisfied by all strategy profiles.

Suppose that there are two players, each with two types.  Then, for any m2 , the rows

corresponding to the three strategies m m m1 1 111 2 2 1 2[ , ] [ , ], [ , ] ,  and  are generically a basis

for the matrix Π1 2( )m , (i.e., the matrix generically has rank three).  Similarly for Π2 1( )m .

(This claim is verified in the proof in the Appendix.)   Then  pairwise identifiability

requires that Π12 ( )m  have rank 5.  But there are only 4 possible report profiles -- that is,

Π12 ( )m  has only 4 columns and so rank 5 is impossible.  Hence, there are deviations by

player 1 that cannot be distinguished from those by player 2.  However, if we introduce a

third player who reports truthfully, and whose types are correlated with those of player 1

differently from their correlation with those of player 2 (the generic case), then we may be

able to use the distribution over messages by player 3 to distinguish between player 1’s

and 2’s deviations.  Note, however, that if the third player does not tell the truth, but

instead reports type 1, say, regardless of his true type, then his report contains no

information about the strategies of other players.7  Thus, even with three players, pairwise

identifiability for players 1 and 2 is not satisfied by all profiles.

                                                
7 More generally, whenever player 3 makes the same announcement for two different types, there is a loss of
information about the players 1 and 2.
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If each player has the same number of possible types, than condition (♣) is

satisfied whenever there are three or more players.  More generally, the condition is

satisfied if the number of players is sufficiently large compared to the variation in the

number of types across players;  a sufficient condition along these lines is that the number

of players be at least 2 + ln (max ) ln(min )i i i in n .

Once we have established that the truthful reporting strategies are pairwise

identifiable, we know that any implementable social choice function is implementable

with a balanced budget.  But, as the next lemma establishes, any social choice function is

generically implementable provided that a weak condition on the number of types holds.

Lemma 4:  Suppose that, for all i, n nj ij i
≥ −

≠∏ 1.  Then for generic probability

distributions on Θ, any social choice function  f is implementable.

Remark:  Note that the generic set guaranteed by the lemma is independent of the  social

choice rule specified.  The proof shows that each fixed f is implementable for a generic

distribution; since there are only finitely many social choice functions, and a finite

intersection of open and dense sets is open and dense, the stated conclusion follows.

Note also that the hypothesis of lemma 4 is implied by hypothesis (♣) of lemma 3.

Informal  proof:  To show that f is implementable by some mechanism, it suffices to

consider each player i separately and show that there are transfers that make it optimal for

i to report truthfully if he believes that his opponents will do so.  If player  i  is the only

player, the conclusion of the lemma is easily seen to be false: suppose, for example, that

player i  prefers allocation  x to allocation  y by an amount equal to θ θi i, , , where = 1 2 3,

and that the social choice function calls for allocation  x if θi = 1 and  y otherwise.  Then
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any transfer that makes type θi = 3 willing to report truthfully will induce all types to

make a report that leads to y being chosen.  Even if there are other players, we are no

better off if their types are independent, since in that case, their reports embody no useful

information about i’s type.8

The principle behind lemma 4 is that correlation between types of the various

players allows the design of mechanisms that “detect and punish” misreporting by player

i.  More precisely, the joint distribution of others’ reports (assuming that they report

truthfully) is different depending on player i’s type.  Hence i  can be induced to report

truthfully by making his transfer depend appropriately on these other reports.  To

accomplish this, each type θ θi i’≠  must be deterred from reporting θ i  .  That is, each type

θ i
’  must give rise to a different conditional distribution on others’ reports.  Since there are

ni −1 such types we need to deter, and Π j i jn≠  types of other players, we are led to the

hypothesis used in lemma 4.

Proof:   We must show that there is a transfer function τ  that satisfies (IC) for all  andi

all $ .θ θi i≠   That is, we must satisfy n ni i( )−1  constraints.  Now these constraints can be

satisfied provided that the matrix Πi im( )*
−  has rank at least n ni i( )−1  (where m i−

*  is the

profile of truthful reporting strategies for players other than i ).  But, from the proof of

Lemma 3, Πi im( )*
−  generically has rank at least n ni i( )−1  provided that n n ni i≥ −( )1 , that

is, Π j i j in n≠ ≥ −1.

❏

Combining lemmas 3 and 4 yields the following result.

Proposition 4:  Suppose that (♣) holds. Then for generic probability distributions on Θ,

any social choice function is implementabile by a balanced-budget mechanism.

                                                
8  In this sort of setting only monotonic social choice functions  can be implemented, see Remark 2,
following Proposition 2.
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Proposition 4 generalizes the conclusions of d’Aspremont, Crémer, and Gérard-

Varet [1990] and Maskin [1986], who assumed private values and extremal social choice

functions.  Maskin assumed each player had only 2 types; d'Aspremont, Crémer and

Gérard-Varet studied generic probability distributions, as we do. Using a technique based

on “scoring rules” instead of linear algebra, d’Aspremont, Crémer, and Gérard-Varet

[1995] obtain the same conclusion as Proposition 4, replacing our hypothesis (♣) with the

weaker condition that there are at least three players, each of whom has at least two types.

Next we turn to the question of implementation under individual rationality

constraints.   Proposition 3 readily extends to the case of correlated types.  That is, under

the hypotheses of proposition 4, any ex ante SR social choice function can be

implemented for generic distributions on types by a balanced-budget mechanism that

satisfies ex ante individual rationality.  However, as in the case of independent types, one

can construct examples in which generically implementation with a balanced budget and

interim individual rationality is impossible, even if the scf satisfies interim SR; see the

example following Proposition 5.

Nevertheless, unlike the case of independent types, interim individual rationality

is attainable if the balanced-budget requirement is weakened to require only that the sum

of the transfers have a non-positive expected value.  This weaker condition is of interest

if, for example, the agents have access to a risk-neutral bank that can provide an infusion

of funds in some states of the world, but will agree to participate in the mechanism only if

its expected profit is non-negative.

Proposition 5:  Suppose that Π
j i

n nj i≠
≥  for all i.  Let f  be a social choice function that

satisfies ex ante social rationality.  Then for a generic probability distribution over θ,  f is

implementable with a mechanism that is interim individually rational and such that the

expected value of the sum of the transfers is nonpositive.
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Remark:  The proof shows that f can be implemented with transfers such that every

player’s interim individual rationality constraint holds with exact equality for each of the

player’s possible types;  the assumption that the social choice rule is ex ante SR then

implies that the expected sum of the transfers is nonnegative.  Thus, if we think of the

negative of the transfers as accruing to an unmodelled “bank” or principal, this principal

extracts all the interim surplus that the social choice rule provides to the players.  When

the types of different players are independently distributed, mechanisms that enforce truth

telling may need to leave some surplus (“informational rents”) to those types with a

relatively high value from participating in the mechanism. This is why proposition 5 is

false for the case of independent types, as shown by the results of  Laffont and Maskin

[1979] and Myerson and Satterthwaite [1981].

Proof:   Fix a player i .  As the Remark indicates, it suffices to show that there exists a

transfer rule τi  that satisfies (IC) and (interim IR) with equality for all values of θi .  For

each k ni= 1,..., , let ρk  be the n-dimensional vector of coefficients corresponding to the

interim IR constraint for the kth  value of θi .  (Interim IR) can be expressed as

p k k p k u f k ki i i i i i i

ii

( , ) ( , ) ( , ) ( ( , ), ( , )),θ τ θ θ θ θ
θθ

− − − − −≥ −
−−
∑∑

where we are slightly abusing notation by using “k ” to denote the kth value of θi .  Hence

ρk , the vector of coefficients of the transfers, is given by

( ,..., , ( , ), ,..., ),0 0 0 0p k

k

⋅
� 

th entry



19

where each “0” corresponds to a vector of Π
j i

n j≠
 zeros).  Similarly, let ρkl  be the vector of

coefficients corresponding to the IC

p k k p k li i i i i i

i i

( , ) ( , ) ( ( , ) ( , ))θ τ θ θ τ θ
θ θ

− − − −

− −
∑ ∑+ −

≥ −− − − − −

−
∑ p k u f l k u f k ki i i i i i i

i

( , )( ( ( , ), ( , )) ( ( , ), ( , )))θ θ θ θ θ
θ

Hence, ρkl  can be expressed as

( ,..., , ( , ) , ,..., , ( , ) , ,..., )0 0 0 0 0 0p k

k

p k

l

⋅
�

− ⋅
�

th entry th entry

.

To show that the set of these vectors is linearly independent, we must demonstrate that if

the equation

(**) λ ρ λ ρk k kl kl
l kk

ni

k

ni
+ =

≠==
∑∑∑

11
0

holds, then all the scalars λ k  are λ kl  are zero.

Fix θ−i  and consider the component of (**) corresponding to the hth  value of θi  (i.e., the

coefficient of the transfer τ θi ih( , )− .  We have

λ λ θ λ θhl h i kh i
l h k h

p h p k+
�
��

�
�� + − =

≠ ≠
∑ ∑− −( , ) ( , )1 6 0 .
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From the inequality in the statement of the Proposition, we know that the vectors

{ ( , ),..., ( , )}p p ni1 ⋅ ⋅  are generically, linearly independent.  Hence, since the above equation

holds for all θ−i , we have

λ λ λhl h kh
l k

k h
≠
∑ + = − = ≠0 for .

We conclude that all the scalars are indeed zero.

q

This result generalizes those of Crémer and McLean [1988] and McAfee and

Reny [1988] for the case of auctions with private values.

Discussion:   As with previous results about correlated types, propositions 4 and 5  cannot

be strengthened to impose a uniform bound on the absolute values of the transfers; the

transfers required can grow without bound along a sequence of correlated distributions

whose limit is a distribution with independent types. For this reason the results are of the

most interest in cases where the amount of correlation is not negligible.

To see that Proposition 5 cannot be strengthened to require an exactly balanced

budget, consider the following example.

Example: Suppose that there are two players ( , )i = 1 2 , each with two possible types,

θ θi i
1 2 and .  For each i = 1 2, , let

u fi i
i i

i i

$ , $ ,
, $

, $
θ θ θ θ θ

θ θ1 2

0

1
4 94 9 = =

≠
%&'

 if 

 if 
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Notice that f is not only ex ante but interim SR.  Moreover, the example satisfies the

hypotheses of Proposition 5.  Nevertheless, for an open set of priors  f cannot be

implemented by a balanced budget mechanism let alone one satisfying the interim IR

constraints.

To see this, take

p p

p p
11 12

21 22

1

3

1

6
1

6

1

3

�
��

�
�� =

�

�
���

�

�
���

  ,

where, for all i and j, p pij r
i j= { , }θ θ1 2 .   If the budget balances, we can express the

incentive-compatibility constraints for Player 1 and 2 as

2

3

1

3

2

3

1

3
1

1

3

2

3

1

3

2

3
1

2

3

2

3

1

3

1

3
1

1

3

1

3

2

3

2

3
1

11 12 21 22

11 12 21 22

11 12 21 22

11 12 21 22

t t t t

t t t t

t t t t

t t t t

+ − − ≥

− − + + ≥

− + − + ≥

− + − ≥

 

Adding the inequalities in (*) together, we obtain 0 4≥ , a contradiction.  Clearly, the

same contradiction would hold if we perturbed the probabilities slightly.
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Appendix

.

Recall that the definition of pairwise identifiability for players i and j compares

the rank of a stacked matrix to those of its two constituent submatrices, and requires that

rank( ( )) rank( ( ) rank( ( ))Π Π Πij i i j jm m m= + −− − 1.   That is, the subspace corresponding

to the intersection of the spans of the two matrices has dimension 1.   (The span of a

matrix is the linear space comprising all linear combinations of its rows.)

Lemma 3:  Suppose that for all i and j, i≠ j,

(♣) n nkk i j i≠∏ ≥
,

Then for generic probability distributions on Θ, the truthful reporting profile m* is

pairwise identifiable for every pair of players.

Proof:    Fix the truthful reporting profile m*.  We must show that

 dim ( ( )) ( ( ))* *span spanΠ Πi i j jm m− − =I 1 .

Part 1:  Define the strategies m k m k k ki i( ) [ , , , ]= K  (player i makes the same report  k
regardless of his type) and, for all h k, ≠ 1, m h k mi i( , ) [ ,..., ]= 1 1,...,1, k ,1

h-1 components
1 24 34

 (player i reports

type 1 unless he is type h ≠ 1 , in which case he reports type k ≠ 1.)  Let Mi  consist of all

strategies m ki ( )  and m h ki ( , ) .  For each mi , let ρ( )mi  denote the corresponding row of

Πi im( )*
−  (that is, the distribution over vectors of reports generated by the profile

( , )*m mi i− ).  Then

ρ ρ ρ ρ( [ , , , ]) ( ( )) ( ( , )) ( ( , ))m k k k m k m j k m j ki n i i j ij

n

i

i

1 2 1 12
K = + −

=∑ 3 8 .
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This shows that the span of ρ( )Mi  (= ρ( )mim Mi i∈U ) and Πi im( * )−  are the same.9 In

particular, the rank of Πi im( * )−  can be at most the number of elements of Mi , which is

( )n ni i− +1 2 .  (In the example following the statement of Lemma 3 in the text, each player

has two types, so that the rank of Πi im( * )−  can be at most 3.)

 Part 2:  We will find it convenient to work with the projection operator that sends

probability distributions on Θ  to the corresponding marginal distributions on the space of

type vectors θ−i .  This map, denoted Hi , is given by the n njj i
×

≠∏  matrix

Hi i
i i

i i

( , ’ )
’

’
θ θ

θ θ
θ θ−

− −

− −

=
=
≠

%&'
1

0

 if 

 if 
 .

If p is a probability distribution on types, that is, an n −dimensional probability vector,
then p Hi( ) ( , )θ θ

θ
∑ ⋅  is the corresponding marginal distribution on types of  players other

than player  i . Denote this marginal distribution by p i−  .

Claim:  For generic p, all i , and all j i≠ , rank ( * ) rank[ ( * ) ]Π Πi i i i jm m H− −= = # Mi .

To establish the claim, we will show that for generic p, the row vectors in

ρ( )M Hi j  are linearly independent.  This will imply that the rows of ρ( )Mi  are

independent as well; the claim then follows from the conclusion of part 1, that the spans

of Mi  and Πi im( )*
−  are equal.

Suppose to the contrary that there is a linear dependence, so that for some vector

λ ≠ 0, λρ( )M Hi j = 0.  Let p hj i j− − −( , )θ  be the probability (under distribution p j− ) that

player i is of type h, and that the types of players other than i and j are given by θ − −i j .

                                                
9This conclusion holds for any profile m i− , and not just for the truthful reporting profile.
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Since in Πi im( * )−  all players except i  are telling the truth the rows of ρ( )M Hi j  are

given by

ρ θ θ

ρ θ

ρ θ θ

ρ θ

( ( )) ( , ) ( , ), ,...,

( ( )) ( , ) , , , ,...,

( ( , )) ( , ) ( , ), ,

( ( , )) ( , ) , , , ,

m k H k p h k n

m H k k k n

m h k H k p h h k

m h H k h k

i j i j j i jh

n

i

i j i j i

i j i j j i j

i j i j

i3 8
3 8

3 8
3 8

− − − − −=

− −

− − − − −

− −

= =

= ≠ =

= ≠

= ≠ ≠

∑ 1
1

0 1

1

0 1 1

l l l

l l l

                

               

where ρ θ( ) ( , )m H ki j i j− −  is the component of ρ( )m Hi j  corresponding to report profile

( , ),k i jθ− − .  Consequently, the component of λρ( )M Hi j  corresponding to ( , )k i jθ− −  is

λ θ λ θ( ) ( , ) ( , ) ( , )k p h h k p hj i jh

n

j i jh

ni i

− − −= − − −=∑ ∑+ =
1 2

0

where we are using the fact that the strategies m ki ( , )1  are not in Mi .  This may be

rewritten as

λ λ λ( ) ( , ) ( ( ) ( , )) ( , )k p k h k p hj jh

ni

− −=
⋅ + + ⋅ =∑1 0

2
.

It follows that λ = 0 provided that the vectors p p nj j i− −⋅ ⋅( , ), , ( , )1 K= B  are inequalities.

Now the vectors p p nj j i− −⋅ ⋅( , ), , ( , )1 K= B  form a n ni kk i j
× ≠∏ ,

 matrix, and, given

inequalities (♣) , such a matrix generically has rank ni , that is, has independent rows as

required.10  This does not  yet establish the claim, since it hypothesized generic

probabilities on the set Θ , as opposed to generic marginal probabilities..

                                                
10 Note that the requirement that probabilities sum to 1 plays no role in the arguments that follow, as every
matrix is a scalar multiple of a matrix satisfying the adding up restriction, and scalar multiplication does not
effect the rank of a matrix.  The positivity requirement of probabilities similarly plays no role, as the set of
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However, we may view the probabilities p( )θ  as a n ni kk i
×

≠∏  matrix, in which

rows correspond to types of player i , and columns to profiles of other player types. Let

Hi j   be  the n nk kk i jk i
×

≠≠ ∏∏ ,
 projection matrix that computes marginal probabilities

over types of players other than players i and j . That is, Hi j  is the analog of Hi  for maps

from Θ−i  to Θ− −i j .  It is clear that that Hi j  is surjective (onto). Consequently, since it is a

linear map, it is an open map, and therefore preserves genericity.  The observation that

p p Hj j j ij− − −= ⋅( ) ( , )θ θ  then  completes the proof of the claim.

Part 3:  The claim of part 2 shows that for generic p,

dim[ ( * )] dim[ ( ( * ) )]span spanΠ Πi i i i jm m H− −= , so that H j  is 1 to 1 on the span of

Πi im( * )− . Consequently, H j  is 1-1 on span spanΠ Πi i j jm m( ) ( )* *
− −∩ , and so

dim[ ( ) ( )] dim[ ( ( ) ( )) ]* * * *span span span spanΠ Π Π Πi i j j i i j j jm m m m H− − − −∩ = ∩3 8 .

Moreover,

[ ( * ) ( * ))]

( ( * )) ( ( * ))

( ( * ))

span span

span span

span

Π Π

Π Π

Π

i i j j j

i i j j j j

j j j

m m H

m H m H

m H

− −

− −

−

∩ ⊆

∩ ⊆

Now dim ( * )spanΠ j j jm H− = 1.  This follows since player j ’s strategy is irrelevant for

the distribution of outcomes of typesθ − j : every strategy for player j  leads to the same

distribution over θ − j  as m j−
*  itself.  Since dim( ( ) ( )) ,* *span spanΠ Πi i j jm m− −∩ ≥ 1   we

conclude that dim( ( * ) ( * ))span spanΠ Πi i j jm m− −∩ = 1  .

❏

                                                                                                                                                
matrices with non-negative entries is the union of an open set with its boundaries, and consequently inherits
properties that are generic in the space of all matrices.
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