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1. Introduction 

The idea of speculation as trading based on information differences is a 

widespread one both inside and outside of economics. Such phenomenon as betting on 

horse races, not to speak of speculation in the stock market, are difficult to imagine in a 

world in which everyone has identical beliefs. Indeed, authors such as Hirshleifer [1975] 

have argued that the very idea of speculation is meaningless unless there are differences 

in beliefs. Yet the idea of speculation as information based trading runs quickly afoul of 

various no-trade theorems.  The simplest such result is that if agents are risk averse and 

have a common prior, and the initial allocation is Pareto-optimal, then in a Nash 

equilibrium there must be no trade. This follows from the fact that if there were an 

equilibrium with trade, each agent would at least weakly improve his utility, 

contradicting the assumption that the initial allocation was optimal.  Kreps [1977] and 

Tirole [1982] prove extensions of this result to rational expectations equilibria with risk-

neutral traders. Milgrom and Stokey [1982] show that the assumption of Nash 

equilibrium can be replaced by the assumption that it is common knowledge that all 

players have prefer the proposed allocation to the initial one. Thus, either Nash 

equilibrium or common knowledge of agreement to trade, along with a common prior and 

risk averse agents, implies that there cannot be trade solely on the basis of differences in 

beliefs. 

 From the viewpoint of non-equilibrium learning theory, though, both the 

assumption of a common prior on Nature’s moves and the assumption of a Nash 

equilibrium (that is, a common belief on players’ strategies) may be too strong. In the 

theory of learning in games, the assumption of exogenous knowledge about the 

distribution of moves is replaced with the idea that players acquire knowledge through 

learning.  Thus common beliefs about either Nature’s moves or the play of other players 

may or may not arise, depending on the environment. Consequently, the steady states of 

standard learning processes correspond not to the Nash equilibria but to the larger class of 

self-confirming equilibria that we introduced in Fudenberg and Levine [1993].3 In 

simultaneous-move complete-information games, if players observe the profiles of 

                                                 
3 See also Battigalli (1987), Fudenberg and Kreps [1988,1995], and Rubinstein and Wolinksy (1994). 
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actions played in each round, the self-confirming equilibria coincide with the set of Nash 

equilibria of the game.4  By contrast, as argued in Dekel et al [2004], in games of 

incomplete information, if players begin with inconsistent priors there are broad classes 

of games in which the self-confirming equilibria (and  hence the steady states of standard 

learning processes)  do not coincide with the Nash equilibria. 

 Nevertheless, there are important classes of incomplete-information games  where 

the steady states of learning models do coincide with the Nash equilibria.  For example, 

Dekel at al showed that this is the case when players observe one another’s actions and 

there are independent private values.  In the trading games that we consider here, it is not 

plausible that all agents observe one another’s actions. Never-the-less the equivalence of 

Nash and self-confirming equilibria still holds, because the games have the property that 

each agent knows his own utility function and hence knows the payoff he will get from 

not trading. As we show, it is this “known security level” property that underlies the no-

trade results.  

In addition, we show that not even self-confirming equilibrium is needed for the 

no-trade conclusion.  Specifically, while the steady states of standard learning processes 

must be self-confirming equilibrium, there is no guarantee that even well-behaved 

learning procedures necessarily converge to a steady state. For this reason, we also 

examine the notion of “marginal best response distributions” introduced by Fudenberg 

and Levine [1995]. If all players follow learning procedures that are moderately rational, 

then the joint distribution of play must at least converge to the set of these distributions. 

In both cases, we show that the no-trade theorem applies. The intuition is simple: if 

agents are risk averse, the only possibility of trade is based on information differences, 

and trade takes place, then there must be an agent who would do better not to trade. A 

player need not be a terribly clever learner to discover that he is doing poorly, all that is 

required is that he know the utility he would get by not trading. So in the long run, all 

trade must stop. 

                                                 
4 We will not formally model the dynamics of learning, but we have in mind “belief-based” processes in 
which players base their actions on their beliefs about opponents’ play. Fudenberg and Kreps [1995] and 
Fudenberg and Levine [1993b] showed that the long-run outcomes of such processes correspond to the self-
confirming equilibria; they considered general extensive form games and supposed that the signals 
corresponded to the terminal nodes of the game. 
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 We should emphasize that we are not claiming that in practice there is no trade 

based on information differences. Rather we are claiming that there must be some other 

underlying reason for trade, such as portfolio balance, joy of betting on the horses, noise 

traders who are not rational, before it becomes possible to trade based on information 

differences. See for example, Zurita (2004) for a model in which underlying gains to 

balancing portfolios allows trading based on information differences in a model with 

common knowledge. 

2.  The Model 

 There are �  traders �� �� �� � .  Each trader has finitely many possible types, 

with trader i ’s type denoted �� .  The profile of types �  is called the state.  There are m  

goods, so the consumption bundle consumed by trader i  is �
�� � � .  Trader i ’s 

endowment is ��� �� �  depending his type; note that endowments do not depend on the 

types of other players.5 Utility �� �� �� � �  is Von Neumann-Morgenstern and comes from 

the consumption of goods and may also depend on the state.  We assume strict risk 

aversion: 

Assumption 1: �� ��� ��  is strictly concave. 

 The final allocation is determined from endowments by a finite simultaneous-

move game.6  Each trader i observes his own type ��  then chooses an action � �� ��  

from a finite set.  Mixed actions are denoted by 
�
� .  The final allocation is given by 

�� �
� �
� � ��� , and is assumed to be socially feasible 

Assumption 2: �� � ��� �� �
� � �� ��� � . 

Each trader has the option of not trading, denoted by ��� . 

Assumption 3: ��� � � ��� � � � �� � � �� �� � . 

 If learning by traders is to be possibly, the economy must meet repeatedly.  We 

assume that each time the economy meets the state is determined by an independent draw 

                                                 
5 Since a player’s type is supposed to encapsulate all private information available to him, and since we 
presume players know their own endowments before beginning trading, a player’s own type should 
determine his endowment. 
6 Or the game may be an elaborate dynamic game, in which case our simultaneous move game represents 
the strategic form. 



 4 

from a fixed (objective) probability distribution �  that is unknown to the traders.  

Traders do not necessarily observe the realized value of � , so if they start out with 

incorrect beliefs about � , it is not obvious that they will learn the true distribution. 

 Since we are interested only in trade due to differences in beliefs, we must rule 

out other reasons for trade.  Consequently we assume that the endowment is ex ante 

Pareto efficient; that is  

Assumption 4: There exist weights ��� �  such that if �� ��� � �� �
� �� ��� �  

 ���� ��� ���� ���� � � � � � �� �
� � � �
� �

� � � � � � � � � �	� � � � . 

We consider two equilibrium concepts that relax Nash equilibrium. The key 

components of self-confirming (and Nash) equilibrium are each player i’s beliefs about 

Nature’s move, her strategy, and her conjecture about the strategies used by her 

opponents. Player � ’s beliefs, denoted by ��� , are a point in the space ��
�  of 

distributions over Nature’s move, and her strategy is a map � ��� � ��� � � 
 .  The space 

of all such strategies is denoted Σi , and the player’s conjectures about opponents’ play 

are assumed to be a � � � 	�� �� � , that is, a strategy profile of i’s opponents.  The 

notation � �� ��
�� ��  refers to the conditional distribution derived from ��� , conditional on 

the private type �� , while � ��� � ��� �  denotes the probability that ��� �� �  assigns to ai .   

Of course, what players might learn from repeated play depends on what they 

observe at the end of each round of play. To model this, the equilibrium concepts suppose 

that after each play of the game, players receive private signals �� �� �
 
 � �� .  As the 

notation indicates, these signals are a deterministic function of �  and � .  We assume that 

each player observes her own private signal �
 , along with her own action and own type, 

so these are their only sources of information about Nature’s and their opponents’ 

moves.7   

Our equilibrium concept is a variation on the type of self -confirming equilibrium 

defined in Fudenberg and Levine [1993] and Dekel el al [2004] 

                                                 
7 We consider the case in which knowledge of opponents’ play comes only from learning by observation 
and updating, and not from deduction based on opponents’ rationality, so we do not require that players 
know their opponents’ utility functions or beliefs.  Rubinstein and Wolinsky (1994), Battigalli and Guaitoli 
(1997) and Dekel, Fudenberg and Levine (1999) present solution concepts based on steady states in which 
players do make deductions based on rationality of the other players.   
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Definition 1: A strategy profile σ  is an � -self-confirming equilibrium with conjectures 

� ���  and beliefs ���  if for each player � , 

(i) for all ��  , � �� � ��� � �� � � �� �  

and for any pair  ��� ���  such that � ��� � �� ��
� � � ��� � � �� �  both the following conditions are 

satisfied  

(ii) 
�

�

� ���� � � �� � � � � �

� �	
� �� � � �� � � � � �

�

� �

�
�

� �

�
� � � � � � � � ��

�
� � � � � � � � � ��

� � � �

� � � �

�

�

� � � � � � � �

� � � � � � �

� �

� �

� � � � � �

� � � � � �

� 	�

�
, 

and for any �
  in the range of �
  

(iii) 
�� � ��� � � � 

�� � ��� � � � 

� �� � � � � �

� �� � � ��

�� � � � � � �

�� � � � � � �

�
� � � � �� 
 � � 


� � � � �� 
 � � 


�

�

� � �

� � �

� � � � �

� � � � �

� � � �

� � � �

� � � ��

� � � ��
�

�

�

 

We say that �  is a self-confirming equilibrium if there is some collection � �� � ��
� � �� �� �  

such that (i), (ii) and (iii) are satisfied.8 

 Our key assumption is that each trader observes enough information to determine 

her utility from the no-trade action. For example. if the endowment represents some 

complicated stock portfolio, and the trader engages in a complicated series of trades, if 

the trader does not observe the prices of stocks that were held in positive quantities in her 

endowment, but were traded away, then she may not be able to determine the utility of 

not having traded at all.  

Assumption 5: (Known Security Levels): 

 ���� �� � �� � � �  depends only on �� �
� .9  

                                                 
8 It is appropriate to have a single �

�
�
�

 for each player i in the definition because we assume that there is a 
single agent in each player role.  This is called the “unitary” version of self-confirming equilibria; when we 
consider large populations and matching in Section 4 we allow for heterogeneous beliefs.   

Note that i’s beliefs about opponents’ play take the form of a strategy profile as opposed to a 
probability distribution over strategy profiles.  The complications that arise due to correlations in 
conjectures are discussed in Fudenberg and Kreps (1988) and Fudenberg and Levine (1993a); we simplify 
by ignoring them here.  Given this restriction, there is no further loss of generality in taking beliefs to be 
point conjectures.  Battigalli (1987) defined a similar concept to the one above, as did Kalai and Lehrer 
(1993). 
9 That is, if for some � , ��
����� � �� ��� � 
 � 
 �� � � �� �  then ���� � ���� ��� � � � � �� � � �� � � �� . 
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This immediately implies the following sufficient condition for an � -self-confirming 

equilibrium, which underlies our first result: 

Lemma 1: If a profile of mixed actions �  is a � -self-confirming equilibrium, then   

�� �� ��� �  implies 

 
� �

��� � �� � � ��� ���� ���
� �
� � � � � � � � �� �
� � � � � � �

� �
� � � � � � � � � �

� �
� � � � 	� � . 

 

This says that the expected utility from the action actually taken gives within ε  of the 

utility from the endowment.   

 The idea of self-confirming equilibrium is that we do not require that players 

beliefs about what they did not see opponents do be correct.  However, there is no general 

theorem guaranteeing the global convergence of a sensible class of learning procedures to 

a self-confirming equilibrium.  This leads us our second “equilibrium” notion, a variation 

the idea of a marginal best response distribution introduced in Fudenberg and Levine 

[1995].   

Definition 2: A joint distribution �  over pure action profiles is an � -marginal best 

response distribution if  

 
� �
��� �� ����� 	
� ��� �� � � ���

�
�

�� � � � � �� �
� � � � � � � �

� �
� � � � � � � � � � �

�
� �

� 	� �  

where ���  is the marginal over all actions by players other than player � . 

 This says that the utility that player �  actually gets is at least within �  of the most 

he could get against the marginal distribution of opponents actions; that is, correlations 

are ignored.  The significance of this notion is that there exist a broad class of 

approximately universally consistent learning strategies and if players use such strategies, 

asymptotic play will be close to an approximate marginal best response distribution even 

if it never converges.  From the definition, it appears that it is necessary that players 

observe their opponents actions. However, Fudenberg and Levine [1998] and Hart and 

Mas-Colell [2001] show that there are learning procedures that give this result when 

players observe only their own action and own utility. In particular, Assumption 5 need 

not be satisfied for these learning procedures to work. In other words, marginal best 
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response distributions capture long-run non-equilibrium play under the very weak 

assumption that players know their past actions and payoffs. 

3.  The Result 

 Our conclusion is that in the limit as �� �  for either self-confirming or 

marginal best-response there is convergence to no-trade.  The idea is that under our 

assumption of strict concavity of the utility functions, any probability distribution over 

socially feasible allocations that Pareto dominates the endowment must involve no-trade.  

As ε → 0  both ε -self confirming equilibria and ε -marginal best response distributions 

give each trader at least the utility that they could get from their endowment, and so the 

limiting allocation must weakly Pareto dominate the endowment. 

 First we show that socially feasible allocations that weakly Pareto dominate the 

endowment involve no trade. 

Lemma 2:  If �  is a joint probability distribution over actions such that 

 ��� �� ����� ���� ���� � � � �� � � � � �
� �

� � � � � � � � �	� �  

then  

 ����� � ��� �� � �� � � �� � �� �  

Proof:  Since �  is ex ante Pareto efficient, and the �� ’s are strictly concave the only 

socially feasible allocation that weakly Pareto dominates �  is �  itself.  Consequently, 

any probability distribution over socially feasible allocations that weakly Pareto 

dominates �  must choose �  with probability one.  The result now follows from the fact 

that �� ����  is socially feasible. 

� 

 Our main results now say that in the limit both self-confirming equilibria and 

marginal best response equilibria involve no trade.  In the case of self-confirming, the 

fact that each trader gets at least the endowment utility in the limit follows from upper 

hemi-continuity of the � -equilibrium correspondence and the fact that trader know the 

endowment utility. 

Theorem 1:  If  ��  is are a sequence of � -self-confirming equilibrium then  

 ���	 ����� � ��� �� � �� � � ��
� � � �� � � , 
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where ���� �  is the joint probability distribution over actions induced by �� . 

Proof:  If not there is an action � , a state �  and a subsequence such that �� ���� �� � � , 

�� ��� �  and �� � ��� �� � �� �� .  Since  �� ���� �� � �  and �� � , it follows from 

continuity and the Lemma 1 that 

 

 
� �

��� � �� � � ��� ���� ���
� �
� � � � � � � � �� �
� � � � � � �

� �
� � � � � � � � �

� �
� � � 	� � . 

This contradicts Lemma 2. 

� 

 In the case of � -marginal best response distribution the fact that each trader gets 

at least the endowment utility in the limit follows from the fact that a marginal best 

response distribution gives each player at least the minmax. 

Theorem 2: If ��  is are a sequence of � -marginal best response distributions then  

 ���	 ����� � ��� �� � �� � � ��
� � � �� � � . 

Proof:  As in the proof of Theorem 1, we may use the definition of an ε -marginal best 

response distribution to conclude that �� ��  with 

 
� �
��� �� ����� 	
� ��� �� � � ���

�
�

�� � � � � �� �
� � � � � � � �

� �
� � � � � � � � � �

�
� �

	� � . 

Since  

 

�

�
�

	
� ��� �� � � ���

��� � �� � � ���

�� ���

�
�

�

� � � � ��

� � � � � ��

� �

� � � �

� � � � �

� �

�

�

�

� � � � �

� � � � �

� � �

�

�

� �

� � �
	

�

�

�

�

 

this again contradicts Lemma 2. 

� 
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