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Abstract

We analyze a repeated prisoners’ dilemma game played in a community setting with het-

erogeneous types. Some players are bad types, programmed to defect, others are good types,

programmed to cooperate, and others yet choose actions to maximize their discounted pay-

offs. Players are also able to strategically choose whether to continue interacting with the same

partner - form a long term relationship - or separate and seek a new partner. We show that

the ability to form long term relationships facilitates the achievement of cooperative outcomes

without information flows, without instability due to observational errors, and without a central

coordinating device to synchronize players’ actions. We also show that the heterogeneity of

types helps, rather than hinders, cooperative behavior by inducing players to avoid bad types

that inflict low payoffs on them and seek good (or opportunistic) types that bestow high payoffs.
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1 Introduction

Overview and Results. The theory of repeated games has shown how inefficiencies that natu-

rally arise in a game setting (as opposed to a competitive setting) can be rectified if the game is

repeated, and if players are able to condition their present behavior on past behavior. This idea

has been shown to work under a variety of circumstances, including the possibility that the game

is played in a community setting, where players interact with varying opponents and, hence, where

quick and personal retaliation are not feasible. This community setting scenario is explored in pa-

pers by Kandori (1992) and Ellison (1994), who find that although it is possible to sustain efficiency,

the informational requirements needed to do so are not light. In particular, an individual needs

to have information about behavior in interactions in which she did not participate. Alternatively,

she may need to be able to synchronize her behavior with others’ behavior by perfectly observing

a public coordination device, or, else, the stability of efficient behavior cannot be guaranteed.

The present paper continues this line of research by studying the role that the endogenous for-

mation of long-term relationships may play in sustaining efficient behavior. Unlike previous analysis

we consider the situation where the choice of a partner to interact with is (partly) endogenous, and

hence where interaction is neither perfectly anonymous (as in the community setting) nor perfectly

intimate (as in the traditional repeated game setting). Instead, a player, in addition to choosing her

action, also chooses whether to keep interacting with her present partner, or seek a new partner.

Another departure of our setting from previous analysis is that we accommodate the heterogeneity

of types and, in particular, the presence of commitment types that are programmed to play specific

actions.

What we find in this setting is that the community may be able to enforce efficient behavior,

and make this behavior stable, while relying on minimal informational requirements. In particular,

a player needs to know only what her present partner did in interacting with her, and not what the

partner (or anyone else) did in interacting with others in the distant past. Furthermore, an indi-

vidual does not have to synchronize her behavior with others’ behavior by perfectly observing the

outcome of a public coordination device. In this sense, what we show is that endogenously forming

long-term relationships and keeping track of information that is internal to such relationships is

sufficient to achieve efficient outcomes.
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Another finding that emerges from our analysis is that heterogeneity of types helps, rather

than hinders, sustain efficient outcomes. In essence, the fact that players have control over who to

interact with and that different players are of different types, implies that players avoid interacting

with types whose behavior might harm them, and seek interacting with types whose behavior

might benefit them. If this objective (namely the search for a beneficial partner) is accomplished

by cooperating with one’s partner, then heterogeneity helps achieve cooperation and thereby raise

players’ payoffs.

In somewhat greater detail, we study a repeated prisoners’ dilemma game in the context of

a community with a continuum of agents. Each agent in the community is one of three types:

either bad, which means she defects unconditionally (i.e., independent of her personal history), or

good, which means she cooperates unconditionally, or she is an opportunist who chooses actions to

maximize discounted payoffs. Players in the community are matched in pairs to play a prisoners’

dilemma game in each period. An agent learns her opponent’s action, and may choose to stay in a

relationship with this opponent in the next period, or separate and be matched with another agent.

We focus on a class of equilibria in this setting in which strategies are particularly simple: Strategies

are such that an individual immediately separates from her partner if she encounters uncooperative

behavior. In addition, an individual’s choice of action is only conditioned on whether she is about

to interact with her partner for the first time, or whether she has already interacted with him in

the past.

Given this game and the class of strategies we focus on, our aim is to determine equilibrium

behaviors. More specifically, for any configuration of parameter values, we determine whether there

is a pure and/or a mixed-strategy equilibrium. In doing so we link parameters values (payoffs in

the payoff matrix, the discount factor, the rate of turnover in the community, and the configuration

of types in the community) to behavior that is manifested in equilibrium. This link enables us then

to establish comparative static properties of the equilibria.

Armed with these results we are able to be more precise about the intuitions we suggested

earlier. For example we are able to show that the proportion of bad types must exceed some

critical value (and must be no bigger than another critical value) to induce all opportunists to

cooperate in equilibrium. We are also able to show that if the proportion of good types exceeds

some critical value the dismal equilibrium in which players unconditionally defect no longer exists.
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This contrast with standard results of the theory of repeated games, whereby the dismal equilibrium

is the “easiest” one to construct. We offer a closed-form characterization of these critical values,

and offer additional intuitions about these results in the body of the paper.

In an extension of the model we endogenize the configuration of types in the community by

giving individuals the option to invest in human capital, which expands the range of actions avail-

able to them (converting them from bad to opportunistic types). This extension enables us to

study the interplay between investment in human capital and cooperative behavior, showing that

more educated populace is positively correlated with more civil (or cooperative) behavior in the

community. The extension also enables us to do welfare exercises, contrasting the equilibrium

with a planner’s optimum. This comparison identifies two kinds of departures between equilibrium

and optimum. In one departure individuals under-invest because the fruits of their investments

are partially enjoyed by others. In another departure individuals over-invest because of a conflict

between ex-ante and ex-post incentives: On the one hand, it pays individuals to invest ex-ante

to be “eligible” for the benefits of long-term relationships; on the other hand, having invested, an

individual may defect because equilibrium in the community game dictates that a certain fraction

of agents defect. Because of that, some of the ex-ante investments are not utilized ex-post, which

implies they are wasted from a social point of view.

Although this paper is intended as a theoretical exploration, anecdotal evidence suggests that

the forces we identify here are of empirical relevance. One anecdote suggesting this comes from the

banking industry and, in particular, the practice of “customer relationships.” Roughly speaking,

this practice is such that established customers, who pay back their loans on time, are able to enter

into (or sustain) long-term relationships, and borrow at a lower interest rate or borrow a larger

amount. On the other hand, new customers may have to pay a higher interest rate or borrow a

smaller amount, and customers who are not current on their loans are denied credit and may have to

turn to other institutions for future business, and pay a higher interest rate. Thereby, the promise

of forming a long-term relationship and enjoying favorable terms, and the punishment of severing

a relationship, having to start from scratch, and suffering unfavorable terms induces borrowers to

behave honestly. Other examples in the same spirit are seniority in employment relationships, or

securing long-term contracts in procurement and buyer-supplier relationships. A more extensive

discussion of real-world institutions of this type that operate in various contexts may be found in
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papers by Johnson et al. (2002), Kali (1999), Kranton (1996), and Taylor (2000).

Brief literature review Apart from the community setting papers that we already mentioned,

there is a small literature on “building trust” that we base our formulation on. This literature

started in a little known paper by Dutta (1993), in which he shows that playing more and more

cooperative actions over time is a way to gradually achieve efficient outcomes. This idea is signifi-

cantly extended in Ghosh and Ray (1996) who incorporate (impatient) types into their framework,

and refine the set of equilibria that arise based on the criterion of renegotiation proofness. Com-

pared to those papers, the present paper makes three contributions. First the component game

we analyze is a standard prisoners’ dilemma game with two actions and, therefore, with a limited

scope for trust building and gradual convergence to cooperation. Instead, our focus is on the incen-

tivating role that the heterogeneity of types plays. The second contribution is that we consider a

richer framework with good types as well as bad and opportunistic types, and explore a wider class

of equilibria. In doing so, we provide a full characterization of the set of pure and mixed-strategy

equilibria, relate them to underlying parameters, and do comparative statics exercises. The third

contribution is that we extend the model to study investment in human capital, how it interacts

with cooperation, and what its welfare properties are.

Another paper that relates to our theme is Sobel (2002). He focuses, however, on the role of

legal rules and does not deal with the heterogeneity of types. A different approach is taken by Tirole

(1996) and Dixit (2003) who study community games appended with information intermediaries

that make information available to players. Somewhat more tangential to our theme (although still

relevant) are papers by Eeckhout (2002), Lindsey (2002) et al., and Watson (2002).

Preview. The plan of the paper is as follows. The next section introduces our framework. In

Section 3 we determine when the pure-strategy good equilibrium, in which opportunists always

cooperate, exists and how it depends on parameters. In Section 4 we do the same thing with

respect to the pure-strategy bad equilibrium in which opportunists always defect. In Section 5 we

study mixed-strategy equilibria. In Section 6 we classify all equilibria and relate them to parameter

values. In Section 7 we relate social welfare to the heterogeneity of types. And, in section 8, we

extend the model to study investment in human capital, how it interacts with cooperative behavior,

and what departures may exist between the equilibrium of this investment game and the social
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optimum. Some proofs are found in a technical appendix, while others are found in a working

paper version.

2 Model Formulation

The Environment We consider a community of individuals (or players or agents), modeled as

a continuum of measure 1. Time is discrete and the horizon is infinite. Each individual is infinitely

lived.

At the beginning of each period, the community is divided into partnerships (or relationships),

and each pair of partners play a two-stage game. In the first stage they play a prisoners’ dilemma

game, and each partner chooses either C, which stands for “cooperate,” or D, which stands for

“defect.” The payoff matrix of this first-stage game is specified momentarily.

After this stage, each partnership persists with probability ρ, and breaks with probability

1− ρ. If a partnership persists, the two partners go into a simultaneous-move second-stage game,

in which each partner makes a stay-or-separate decision. If both partners choose to stay, the

current partnership continues into the next period. If at least one partner chooses to separate,

or if the partnership (exogenously) breaks, both partners go into a pool of unmatched players.

Players in this pool are randomly matched at the beginning of the next period, forming new

partnerships. Consequently, the dissolution and re-formation of partnerships are partly exogenous

and partly endogenous. No direct payoffs are associated with the second-stage game; its only role

is to endogenize the decision whether to interact with the same individual in the next period.

Since there is a countable number of time periods and a continuum of players, we assume that

no player is ever matched with one of his ex-partners. The timing convention we just described is

shown in Figure 1.

There are three types of players in the population. There is a measure α of opportunistic types

that we denote by O, a measure β of bad types that we denote by B, and a measure γ (= 1−α−β)

of good types that we denote by G. A G-type player always chooses C in the first-stage game, and

a B-type player always chooses D. An O-type player chooses either C or D, depending on which

gives her a higher payoff (which depends on the equilibrium play). The payoff matrix of an O-type,
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N e w  p a r tn e r s h ip s  a r e  
f o r m e d  in  t h e  p o o l  o f  
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a c t io n s  i n  t h e  
f i r s t - s ta g e  g a m e

S o m e  p a r tn e r s h ip s  
a r e  e x o g e n o u s ly  
d i s s o lv e d

P a r tn e r s  d e c id e  
w h e th e r  to  s t a y  i n  
n o n - d i s s o lv e d  
p a r tn e r s h ip s

A g e n t s  f r o m  
d i s s o lv e d  
p a r tn e r s h ip s  e n t e r  
t h e  p o o l  o f  
u n m a t c h e d  a g e n t s

Figure 1: Time Line

considered as a row player, is shown in Table 1.1

C D

C a −l

D b 0

Table 1: Payoff matrix of an O-type

We assume b > a > 0, l > 0, and 2a > b− l. The first two restrictions say that this game, when

played by two O-types, is a standard prisoners’ dilemma game. The third restriction says that the

action profile (C,C) maximizes the sum of players’ payoffs when the game is played between two

O-types. The objective of all players is to maximize the discounted sum of payoffs.2 The discount
1A G-type player is either a “commitment type” (perhaps inherently moral), or has a payoff matrix that is

obtained from Table 1 by subtracting a large number from the D row. Similarly, a B-type is either a commitment

type (inherently immoral), or a large number is subtracted from the C row. The subtracted number is bigger than

a, so that a B-type’s payoff is negative at (C,C). Because of that, playing unconditional D is a dominant strategy

for a B-type not only in the period game but also in the repeated game.
2The fact that G-types always choose C yet they are assumed to maximize their discounted payoff is reconciled

as follows. In the first-stage game they choose C because C is a dominant action (in the period game) for G-types.

In the second stage they may separate because they foresee a higher payoff from being matched with types who play

C. Therefore, maximizing behavior is manifested in both stages.
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factor is common to all players and is denoted by δ, where δ ∈ (0, 1).

We assume that monitoring is perfect inside each partnership: a player observes his partner’s

actions - beginning with the date at which this partnership is commenced. However, when a player

is matched to a new partner he knows nothing about the partner’s past history of actions with

other partners. That is, there are no information flows across matches. Also, a player’s type is

private information. However, players make statistical inferences about types (of other players),

based on the actions they observe. In particular, a player observed to choose C is known not to be

a B-type, and a player observed to choose D is known not to be a G-type. We also assume that

the configuration of types, (α,β, γ), are common knowledge.

Steady-state equilibria This is an infinitely repeated community game with incomplete infor-

mation, so folk-theorem type arguments establish that there are many equilibria supported by a

variety of repeated-game strategies. For example, when β = γ = 0, Kandori’s (1992) “contagious

equilibrium,” in which each player plays D forever if either he or one of his previous partners played

D, is an equilibrium in our setting.

Rather than prove folk theorems, this paper focuses on a certain class of equilibria. This class is

defined by two properties that strategies are required to satisfy, along with a specification of certain

“initial conditions.” To state these properties we first define the concept of a phase. A player is

said to be in the stranger phase, denoted S, if he never interacted with his current partner (i.e., if

he just entered into a new partnership). On the other hand, a player is said to be in the friendly

phase, denoted F , if he interacted at least once with his current partner.3 The first property that

strategies are required to satisfy is that a player’s action, or mixed strategy, in the first-stage game

only depends on which of these two phases he is in, and on no other aspect of his personal history

(this requirement rules out the contagious equilibrium). If this requirement is satisfied, we call the

mapping from phases to actions in the first-stage game a behavior pattern. The second property

that strategies are required to satisfy is that a player’s action in the second-stage game is to separate

if, and only if, at least one partner defected (in the first-stage game) at any point since the start

of the partnership. These two properties, along with initial conditions (regarding at which phase

each player is in initially), determine the measure of types in each phase at each point in time.
3Terminology borrowed from Ghosh and Ray (1996).
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The third requirement we impose is that these measures have settled to a steady state (at t = 0),

and, as such, remain constant through time. We refer to equilibria with these three properties as

steady-state equilibria.

A few words are in order to explain why we focus on steady-state equilibria. The first (and

obvious) reason is tractability. Indeed, as will be seen, we are able to fully characterize pure and

mixed-strategy equilibria in this class, relate them - via closed-form expressions - to underlying

parameters, and do comparative statics exercises. Arguably, one can expand our class of equilib-

ria, while preserving tractability. For example, one may study strategies in which the degree of

cooperation depends on the length of the relationship, i.e., where a player chooses C with a higher

probability in a relationship that have lasted for a longer time. We found, however, that straight-

forward generalizations of this sort do not lead to new insights. Another important property of

steady-state equilibria is that learning about one’s partner’s type (and thus behavior) does not

occur beyond the first period of a relationship. This is true because the distribution of types within

the friendly phase is independent of the length of the relationship, and because perfect monitoring

reveals - in the first period of interaction - all the information about one’s partner’s type that is

ever going to be revealed. Therefore, one may view the class of equilibria we study as those for

which behavior does not vary, if information does not vary.

Another (and perhaps more substantive) reason for focusing on steady-state equilibria is that

they capture behavior that seems “realistic.” Ordinarily (i.e., outside of the game-theory com-

munity), such behavior is explained using psychology or using emotionally charged language. For

example, it would ordinarily seem that defection has the effect of “souring a relationship,” triggering

separation, and initiating a new relationship. But this is exactly what the separation strategy we

focus on specifies. Likewise, it would seem that players view a new relationship as an opportunity

for a “fresh start,” and consequently would not let their past experience affect it. But this, again,

is what a behavior pattern in our framework specifies. An important feature of our analysis is

that there is no need to resort to explanations that are outside the purview of economics. Instead,

the behavior we study is equilibrium behavior, so one may view it as purely driven by economic

incentives and equilibrium reasoning.
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Objective of Analysis Having delineated the game and the class of equilibria we focus on,

we proceed to analyze them. Specifically, for any configuration of parameter values (i.e., some

(a, b, l, δ, ρ,α,β, γ)-tuple) we determine whether an equilibrium exists, what type of behavior it

manifests, and whether it is unique. To this end, we note that some aspects of agents’ behavior

are already “hard-wired” into our setting. In particular, G and B-types are hard-wired to play C

and D, respectively, in the first-stage game. In addition, we already specified that all player types

separate in the second-stage game if they encounter D (and this behavior is optimal because it gives

them a chance to interact with players who play C, which generates higher payoffs). Given this,

the only aspect of behavior that remains to be endogenously determined is the behavior-pattern of

O-types in the first-stage game. This will be the focus of the analysis in the next sections.

3 The Good Equilibrium

In this section we analyze a pure-strategy equilibrium, referred to as the good equilibrium, in

which the behavior pattern of O-types is to play C in both phase S and phase F . That is, O-types

behave exactly like G-types.

Steady State This behavior pattern, along with the previously described separation strategy,

induce a steady-state. The first step in the analysis is to determine this steady-state, i.e., determine

the overall measure of agents in phase S, and its composition. To do that, we note that all B-types

are always in phase S. In addition, the fact that agents are sometimes exogenously separated

implies that a certain measure of G and O-types, henceforth called non-bad types, are also in phase

S. We let x ∈ [0, 1 − β] be the measure of non-bad types in phase S. Then, the overall measure

of agents in phase S is x + β, and the overall measure of agents in phase F is 1 − x − β . In the

steady-state of the good equilibrium x must satisfy

(1− ρ)(1− x− β) = xρ
x

x+ β
. (1)

To interpret (1), note that its left hand side is the measure of agents flowing from phase F into

phase S each period. This “inflow” is simply the probability of exogenous dissolutions, 1−ρ, times

the measure of agents in phase F , 1 − x − β. The right hand side of (1) is the measure of agents

flowing from phase S to phase F each period. This “outflow” is the product of x, which is the
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measure of agents that could possibly depart phase S, the probability that one of these agents is

matched with another non-bad agent, which is x
x+β , and the probability, ρ, that such a match is

not exogenously dissolved after the first interaction. In a steady-state the inflow equals the outflow,

which is satisfied for any x ∈ [0, 1−β] that solves (1). Such solution to (1) is unique and, as stated

earlier, is the measure of non-bad types in phase S.

As (1) shows, this x depends on β and ρ, but, since the ensuing analysis focuses mostly on the

role of β, we consider x as a function of β only, writing it as x(β). Given x(β) and β we define the

variable y(β) ≡ β/x(β), or simply y, which reflects the composition of bad versus non-bad types

in phase S. Given the behavior pattern we focus on, y also reflects the composition of behavior in

phase S, i.e., the ratio of agents choosing D to those choosing C (more precisely, it is the ratio of

the measures of these agents). We next state a simple, but important, property of y(β).

Lemma 1 y(β) is increasing in β, ranging from zero to infinity, as β ranges from 0 to 1.

Proof. See the Appendix.

Value functions Given the behavior pattern prescribed by the good equilibrium and given the

steady-state corresponding to it, we define beginning-of-period value functions for O-types. Let

VF and VS be the discounted payoffs in phases F and S, respectively. Let V dF be the discounted

payoff when in phase F , deviating to D, and returning to prescribed behavior (i.e., C) thereafter,

a one-shot deviation. And let V dS be the discounted payoff of a one-shot deviation when in phase

S. The equations defining these values are:

VF = a+ δ[ρVF + (1− ρ)VS] (2)

VS =
x

x+ β
VF +

β

x+ β
(−l + δVS) (3)

V dF = b+ δVS (4)

V dS =
x

x+ β
(b+ δVS) +

β

x+ β
(0 + δVS). (5)

As a representative of the logic on which these equations rest, consider the RHS of (2), which is the

discounted payoff of an O-type at F . This payoff is the sum of two terms: the period payoff a (all

agents in phase F are non-bad types, play C and, consequently, receive a), and the continuation
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payoff: With probability ρ the partnership continues and an O-type gets δVF ; with probability

1 − ρ the partnership dissolves and an O-type gets δVS . All other value functions are based on a

similar logic.

Equations (2) and (3) represent two linear equations in two unknowns, VF and VS, so one can

explicitly solve them. Doing so we get

VF =
(x+ β − δβ)a− βδ(1− ρ)l

(1− δ)[x+ β(1− δρ)]
(6)

VS =
xa− β(1− δρ)l

(1− δ)[x+ β(1− δρ)]
, (7)

where x is the solution to (1).

Incentive Constraints Above we considered the “mechanics” of the good equilibrium, comput-

ing the steady-state distribution, and O-types’ discounted payoffs - assuming O-types follow the

hypothesized behavior pattern. Now we determine the conditions under which O-types have the

incentive to carry out this behavior pattern, i.e., the conditions under which this behavior pattern

is part of an equilibrium. The following two incentive constraints must be satisfied:

No deviation in phase F : 0 ≤ VF − V dF . (8)

No deviation in phase S : 0 ≤ VS − V dS . (9)

Analysis of these incentive constraints gives the first result.

Lemma 2 (i) (8) is redundant if (9) is satisfied. (ii) The good equilibrium exists if, and only if,

b− a ≤ β

x+ β
δρb− β

x
(1− δρ)l. (10)

Proof. (i) From (4) and (5), we have

V dS =
x

x+ β
V dF +

β

x+ β
δVS .

Subtracting this last equation from (3), we get

0 ≤ VS − V dS ⇔ 0 ≤ x

x+ β
(VF − V dF )−

β

x+ β
l.

Since 0 < l, this last equivalency shows that (9) implies (8).
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(ii) Subtracting (5) from (3), we get

VS − V dS =
x

x+ β
(−b+ VF − δVS)−

β

x+ β
l.

From (2) we have

VF − δVS = a+ δρ(VF − VS).

Substituting the last equation into the one just before it, we get

0 ≤ VS − V dS ⇔
b− a
δρ

+
βl

xδρ
≤ VF − VS.

Solving for VF − VS from (6) and (7) and substituting the result into the last inequality, we obtain

(10).

In words, Lemma 2 tells us two things. The first thing is that it is “safer” to play C in phase F

than in phase S. Indeed, in phase F an O-type is sure to encounter C from her partner, resulting

in a payoff of a, while in phase S she may encounter D, resulting in a payoff of −l. Therefore, if it

pays to play C in phase S, it certainly pays to play C in phase F . The second thing that Lemma

2 gives is a reduced-form expression, (10), telling us when O-types optimally choose C, so that the

good equilibrium exists.

To elaborate on how to interpret (10), let us note that the choice between C and D in phase S

is governed by three forces. First, there is the long-term gain of switching from phase S to phase

F , which is VF − VS. Second, there is the probability that this gain is realized, x
x+β . Third, there

is the short-term cost from playing C instead of D: An opportunist gets −l instead of 0 when

paired with a bad type, and she gets a instead of b when paired with a non-bad type. Condition

(10) summarizes the interplay between these three forces, giving us a reduced-form criterion to

determine whether the good equilibrium exists.

Existence of the good equilibrium Inspection of condition (10) shows that it depends on all

parameter values. As stated earlier, however, we wish to isolate the role that the heterogeneity of

types plays, i.e., the role that (α,β, γ) plays as regards the existence of the good equilibrium. To

this end, we use the definition y ≡ β
x to re-write (10) as

b− a ≤ y

1 + y
δρb− y(1− δρ)l ≡ f(y). (11)
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We give the RHS of (11) a name, f(y), since it will be used frequently in the analysis. Figure 2

shows (one possibility for) what the graph of f looks like.

0

b -a

yy y

f

Figure 2: The graph of f

Inspecting (11) we see that its LHS, b−a, is positive and independent of y. On the other hand,

its RHS is strictly concave in y, goes to 0 as y goes to 0, and goes to −∞ as y goes to ∞ (see

Figure 2). Also, f is uniquely maximized at

y∗ =

s
δρb

(1− δρ)l
− 1.

Consequently, for the good equilibrium to exist, two conditions must hold: 0 < y∗, and b− a ≤

f(y∗). The first condition is necessary because, if y∗ ≤ 0, then f is strictly decreasing and f(y) ≤ 0

for all 0 ≤ y, so obviously there is no 0 ≤ y for which 0 < b − a ≤ f(y). The second condition is

necessary because, if the inequality were reversed, f(y∗) < b− a, there would again not be a y for

which b− a ≤ f(y). After some manipulations, we eliminate the endogenous variable y, and write

the two conditions in terms of model primitives only:

(1− δρ)l ≤ δρb and 4δρb(1− δρ)l ≤ [a+ (1− δρ)(l − b)]2. (12)

This analysis shows that (12) is a necessary condition for the existence of the good equilibrium.

Condition (12) is also sufficient. Indeed, if (12) is satisfied, then, as shown in Figure 2, there is an

interval of y’s (a single point “interval” is possible), call it [y, y], where (11) holds and thus where

the good equilibrium exists. y and y are the small and the large roots of the equation f(y) = b−a,
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which are independent of (α,β, γ) (because f is). Since, as per Lemma 1, y is strictly increasing

in β, y ∈ [y, y] is equivalent to β ∈ [β,β], where β is defined by y = β/x(β), and β is defined

by y = β/x(β). Moreover, [β,β] does not include 0 or 1. This is because when β = 0, y = 0,

and f(0) = 0. And, when β = 1, y = ∞, and f(∞) = −∞. Either way, (11) does not hold.

Therefore, the interval of β’s that satisfy (11) is interior to (0, 1). Also, observe that criterion (11)

is independent of γ, the proportion of good types.

We have now shown how the existence of the good equilibrium depends on the configuration of

parameter values. Summarizing our analysis, we have the following result.

Proposition 1 (i) The existence of the good equilibrium does not hinge on γ, the measure of good

types. (ii) If (12) is not satisfied, then the good equilibrium does not exist. (iii) If (12) is satisfied,

then the good equilibrium exists if, and only if, β ∈ [β,β], where 0 < β < β < 1, β and β being the

roots of f( β
x(β)) = b− a.

The main insight from Proposition 1 is that for the good equilibrium to exist the measure, β,

of B-types must not be too small or too large. If β is too small, say β = 0, the fraction of B-types

in phase S is zero, which implies that behavior (under the hypothesized equilibrium strategy) in

phase S is the same as behavior in phase F . But, then, there is no punishment for playing D,

and no reward for playing C. If an O-type chooses D in phase F , he goes into phase S, where

he encounters the same behavior he encountered in phase F , and receives the same payoff, which

means he is not being punished. Conversely, if an O-type chooses C in phase S he goes into phase

F , where he again encounters the same behavior and receives the same payoff, which means he is

not being rewarded. Therefore, if β = 0, VF = VS and the good equilibrium unravels. At the other

end of the spectrum, if the measure of B-types is too large, the probability of being matched with

a non-bad type in phase S, x
x+β , is next to nil, which destroys the incentive to play C, and the

good equilibrium unravels again. Only if the proportion of B-types is in some intermediate range,

not too small to reduce the effectiveness of punishment in phase F , and not too large to discourage

cooperation in phase S, does the good equilibrium exist.

Another way to think about the structure of incentives in the good equilibrium is as follows. The

proportion of bad types in the community as a whole is β. However, as a result of the equilibrium

play, the proportion of bad types in phase S, β
β+x , is bigger than β (β < β

β+x because β + x < 1 ).
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Intuitively, phase S is “contaminated” by a disproportionately large measure of bad types because

bad types never leave this phase. But this induces O-types to choose C, because choosing D means

going to (or staying at) phase S, interacting with bad types with a non-negligible probability, and

receiving low payoffs. Without (a critical mass of) bad types this inducement/threat does not exist,

and neither does the good equilibrium.

Note also that the measure of G-types has no bearing on the existence of the good equilibrium.

The reason for this is that the incentive of an O-type to play C hinges only on the composition

of behavior in phase S. But, since G-types and O-types behave alike in the good equilibrium, the

breakdown between the measures of these types makes no difference. Only the overall measure of

non-B-types (or, equivalently, the measure of B-types4) makes a difference.

Observe, finally, that the good equilibrium may not exist at all - no matter what β is. This

possibility is due to the values that other parameters assume. Most notably, if b−a is large enough,

so is the temptation to play D, which destroys the good equilibrium.

Stability Having commented on the structure of incentives at the good equilibrium, let us now

comment on its “resilience,” and on how the good equilibrium compares in this regard to the

contagious equilibrium à la Kandori (1992).

To this point we assumed that monitoring is perfect within a relationship. Consider now the

possibility of observational errors: A player observes her partner to play D (C) with probability

ε > 0, even though the partner actually chose C (D). Then, no matter how small ε is, an obser-

vational error eventually occurs, i.e., some player is erroneously observed to play D. Once that

happens, a contagious process is set in motion under the contagious equilibrium, whereby more and

more players defect, so cooperation in the community breaks down. By contrast, consider the good

equilibrium in our setting. This equilibrium continues to exist under the presence of observational

errors - for conditions analogous to (12), and as long as ε is small enough (one has to appropriately

modify the steady-state condition and the incentive constraints to account for the observational

errors). More importantly, cooperation does not break down in this equilibrium. Intuitively, in the

good equilibrium an agent that mis-observes his partner’s action separates from the partner, and
4Recall that the measures of B and non-B types add up to 1, so any condition on the measure of non-B types is

equivalent to a condition on the measure of B-types.
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both get a fresh start in a new relationship next period. In this new relationship, each partner

ignores the past and expects (rationally) that playing C bears a chance of being rewarded in the

future. Thus, the effect of an observational error is local; it does not trigger the spread of uncoop-

erative behavior, and has no effect on global behavior in the community. This difference between

the good equilibrium and the contagious equilibrium comes from the fact that we endogenize sep-

arations and re-start of relationships, which is exactly what ‘contains’ the impact of observational

errors.

Let us mention at this juncture that Ellison (1994) proposed another resolution to this non-

resilience problem - within the context of the contagious equilibrium. In Ellison’s framework the

contagious equilibrium is made resilient if players have access to a public randomization device.

Such device allows the severity of punishments to be adjusted and coordinated based on the outcome

of a device that everyone in the community can perfectly observe. In our view, however, reliance

on such device is a bit far fetched from a practical point of view. Indeed, it is hard to visualize

a whole community relying on a central device to synchronize everyone’s behavior. On the other

hand, severing relationships, starting new ones, and observing behavior only within a relationship

is a way to decentralize this outcome, which seems simpler and more realistic.

Comparative Statistics Since Proposition 1 provides a closed-form criterion (namely, (12)) -

written in terms of model primitives - to determine when the good equilibrium exists, one can

readily use it to derive comparative statics results. One comparative statics result, which is just

a re-statement of Proposition 1, is that the effect of a change in β on the existence of the good

equilibrium is non-monotonic: When β is small the effect is positive (an increase in β widens the

set of circumstances under which the good equilibrium exists), but when β is large the effect is

negative.

Other comparative statics results are similarly derived. For instance, the effect of increasing

δ is positive, i.e., (10) is satisfied under a wider set of circumstances. This mirrors conventional

wisdom conveyed by folk theorems. On the other hand, the effect of the persistence probability, ρ,

is not so conventional, and is, in fact, non-monotonic. In one sense, an increase in ρ, “should be”

equivalent to an increase in δ because it prolongs the longevity of relationships and, as such, should

always have a positive effect. What we find, instead (under a mild extra restriction), is that the
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effect is non-monotonic. We first state the result, then explain the intuition.

Proposition 2 Assume (1− δ)(a+ l) < b < a+l
1−δ ,

5 and a good equilibrium exists for some value of

ρ. Then, there exist a ρ and a ρ ∈ (0, 1), where ρ < ρ, so that the good equilibrium exists if, and

only if, ρ ∈ [ρ, ρ].

Proof. See the working paper.

The intuition is that an increase in ρ has two effects. The first effect is what we mentioned

earlier: An increase in ρ prolongs the expected amount of time spent in phase F and, thus, makes

it more rewarding to play C in that phase. The second effect is that an increase in ρ reduces the

measure of non-bad types in phase S. As a result, an O-type is less likely to be matched with a

non-bad type in phase S, which makes it less rewarding to play C in that phase. These two effects

work in opposite directions. It turns out that when ρ is small the first effect dominates, whereas

when ρ is large the second effect dominates. Thus, in a community setting, a small possibility of

exogenous turnover (1− ρ) may help, rather than hinder, cooperation. The reason for this is that

turnover introduces “fluidity” into the system,6 enabling movements from phase S to phase F and,

thereby, generating incentives to play C in phase S.

Other comparative statics results, namely, with respect to parameters of the constituent game,

a, b and l, are derived straightforwardly and conform with expected intuitions; consequently, we do

not spell them out here (they may be found in the working paper version).

4 The Bad Equilibrium

In this and the next section we expand our approach to other steady-state equilibria. Our analysis

here expands the analysis in Section 3 in the sense that we unravel the structure of incentives at

these other equilibria, and pin down the conditions under which they exist. More broadly, our

analysis here makes two points. The first point is that when the good equilibrium fails to exist for

some configuration of parameter values, another steady-state equilibrium may exist. More than
5This assumption is satisfied if δ is large enough or if b = a+ l, which is the condition that the component game

is a partnership game.

6When ρ = 1 agents are “stuck” in phase S, so there is no long-term reward for playing C. This can be seen from

equation (1), which shows that x = 0, if ρ = 1.
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that, we show that some steady-state equilibrium exists for any configuration of parameter values.

The second point is that for some configurations of parameter values, there may exist more than

one steady-state equilibrium.

Steady state To start with, we study a pure-strategy equilibrium, that we call the bad equilib-

rium, in which O-types play D in phase S. Given the separation strategy, B-types and O-types,

henceforth called non-good types, are always in phase S. On top of those there is a certain measure

of G-types in phase S - because of exogenous dissolutions. Let x ∈ [0, γ] be the measure of G-types

in phase S. Then, the steady-state condition corresponding to the bad equilibrium is

(1− ρ)(γ − x) = xρ x

x+ 1− γ
. (13)

Analogous to (1), the solution to (13) determines x as a function of γ. We let the ratio of non-good

types to good type in phase S be y ≡ 1−γ
x(γ) , which, as before, is also the ratio of agents choosing

D to those choosing C in phase S. Similar to the good equilibrium, one shows that y is strictly

decreasing in γ, approaches 0 as γ goes to 1, and approaches ∞ as γ goes to 0.

Value Functions and Incentive Constraints Since the hypothesized behavior pattern of O-

types here is such that they play D in phase S, they are never in phase F . Nevertheless, to check

whether this strategy is part of an equilibrium, the choice in phase F has to be specified. Obviously,

there are two possible specifications: either play D, or play C in phase F . We analyze these two

possibilities in turn.

• O-types play D in phase F

We first define value functions. The notation is similar to that of the previous section, except

that the hypothesized behavior pattern in the bad equilibrium is different, which generates a dif-

ferent steady-state and different period payoffs. Making the requisite adjustments, the new value

functions are:
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VF = b+ δVS (14)

VS =
x

x+ 1− γ
b+ δVS (15)

V dF = a+ δ[ρVF + (1− ρ)VS ] (16)

V dS =
x

x+ 1− γ
{a+ δ[ρVF + (1− ρ)VS ]}+

1− γ

x+ 1− γ
(−l + δVS). (17)

Given these value functions, the incentive constraints are:

No deviation in phase F : 0 ≤ VF − V dF . (18)

No deviation in phase S : 0 ≤ VS − V dS . (19)

Analyzing these constraints, we have the following result.

Lemma 3 (i) (19) is redundant if (18) is satisfied. (ii) A bad equilibrium in which O-types defect

in phase F exists if, and only if,
1− γ

x+ 1− γ
δρb ≤ b− a. (20)

Proof. See the working paper.

Although Lemma 3 is the analogue of Lemma 2, two differences should be noted. First, the

binding incentive constraint here is in phase F , not in phase S. Second, b− a has to be bigger, not

smaller, than some threshold value. This is due to the fact that in the bad equilibrium opportunists

are supposed to defect, not cooperate.

• O-types play C in phase F

We carry out similar analysis as in the last case. For brevity, we just report the end result (a

proof is found in the working paper version).

Lemma 4 A bad equilibrium in which O-types play C in phase F exists if, and only if,

1− γ

x+ 1− γ
δρb− 1− γ

x
(1− δρ)l ≤ b− a ≤ 1− γ

x+ 1− γ
δb. (21)
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Unlike in Lemmas 2 and 3, no deviation in phase F does not imply no deviation in phase S,

and no deviation in phase S does not imply no deviation in phase F . That’s why two inequalities

(rather than one) have to be satisfied in condition (21).

Combining Lemma 3 and Lemma 4, we see that a bad equilibrium exists if and only if

1− γ

x+ 1− γ
δρb− 1− γ

x
(1− δρ)l ≤ b− a. (22)

Existence of the bad equilibrium As we did with the good equilibrium, we transform condition

(22) to a condition that involves only the primitive data. To this end we re-write the RHS of (22)

in terms of y, giving us:
y

1 + y
δρb− y(1− δρ)l ≤ b− a. (23)

As can be readily seen, (23) is similar to (11), with 1− γ replacing β and reversing the inequality.

Thus, following the analysis leading up to Proposition 1, we derive the following result.

Proposition 3 (i) The existence of the bad equilibrium does not hinge on β, the proportion of bad

types. (ii) If (12) is not satisfied, then the bad equilibrium exists for any γ. (iii) If (12) is satisfied,

then the bad equilibrium exists if, and only if, γ ∈ [0, γ] ∪ [γ, 1] (equivalently if γ /∈ (γ, γ)), where γ

and γ are found by solving f( 1−γx(γ)) = b− a, and are such that 0 < γ < γ < 1.

Although Proposition 3 is analogous to Proposition 1, one feature of it merits discussion and

comparison to the traditional theory of repeated games. Namely, Proposition 3 shows that the

bad equilibrium does not exist for some parameter configurations. This contrasts with the theory

of repeated games, where an indefinite repetition of a Nash equilibrium (the bad equilibrium in

our context) is the easiest equilibrium to construct. This is still true in our context if we consider

a community setting with good types, but without endogenously formed long-term relationships.

Therefore, Proposition 3 shows that with endogenously formed relationships, a new force comes

into play: An opportunist may cooperate in phase S in the hope of hooking up with a good type,

entering into phase F , and enjoying higher future payoffs. Therefore, having good types and the

possibility of forming long-term relationships may destroy the bad equilibrium. Proposition 3 pins

down the set of circumstances under which this force is sufficiently strong that the bad equilibrium

does not exist.

21



To be more specific about this set of circumstances, Proposition 3 shows that a bad equilibrium

does not exist if γ is in some intermediate range. If γ is small, all opportunists playing D in

phase S is an equilibrium because the probability of meeting a good type is too small. If γ is big,

all opportunists playing D in phase S is again an equilibrium, since the difference between the

continuation payoffs in phase F and phase S is too small. Thus, in both cases the bad equilibrium

exists. However, if γ is in some intermediate range, opportunists in phase S have a reasonable chance

of meeting a good type, and opportunists in phase F enjoy a significantly higher continuation payoff

than in phase S. Thus, the bad equilibrium does not exist when γ is in this range.

A convenient feature of Propositions 1 and 3 that we are going to exploit later is that there is a

duality between the existence of the good equilibrium and the non-existence of the bad equilibrium.

The incentive of an opportunist to cooperate in phase S (which is what it means for the good

equilibrium to exist, or for the bad equilibrium not to exist) depends on the proportion of agents

cooperating in that phase. Since this proportion is strictly decreasing in β in the good equilibrium

and strictly increasing in γ in the bad equilibrium, there is a duality between β and γ: If the good

equilibrium exists for some β, then the bad equilibrium does not exist for γ = 1 − β, and if the

bad equilibrium does not exist for some γ, then the good equilibrium exists for β = 1 − γ. Also,

Propositions 1 and 3 show that the presence of bad types can support the good equilibrium, while

the presence of good types cannot. Analogously, the presence of good types can upset the bad

equilibrium, while the presence of bad types cannot.

5 The Mixed Strategy Equilibrium

In this section we study mixed-strategy equilibria in which the behavior pattern of O-types is

to mix instead of play a pure strategy (which is what they do in the good and the bad equilibria).

Since opportunists may mix in either or both phases, there are several types of mixed behavior

patterns to consider. As we show in the working paper version, however, several of these behavior

patterns do not give rise to equilibria, or give rise to equilibria that are behavior- and, hence,

payoff-equivalent to equilibria we already considered. The only mixed behavior pattern that is not

like this is where O-types mix in phase S and play C in phase F . Consequently, we focus now on

this behavior pattern, investigating the circumstances under which it gives rise to an equilibrium.

As a matter of notation, we let λ be O-types’ probability of playing D in phase S.
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Steady state and value functions In a mixed-strategy equilibrium good types, bad types and

opportunistic types all behave differently. This requires the introduction of additional notation.

Let xα be the measure of O-types, and let xγ be the measure G-types in phase S. The steady-state

of a mixed-strategy equilibrium is characterized by a pair (xα, xγ) ∈ [0,α]× [0, γ], which satisfies

(1− ρ)(α− xα) = (1− λ)xαρ
(1− λ)xα + xγ
xα + xγ + β

(24)

(1− ρ)(γ − xγ) = xγρ
(1− λ)xα + xγ
xα + xγ + β

. (25)

Let z ≡ xα + xγ be the measure of non-bad types in phase S, and x ≡ (1 − λ)xα + xγ be the

measure of non-bad types that play C in phase S. Then, β + z is the overall measure of types in

phase S, and β+z−x
x is the ratio of agents playing D to agents playing C in phase S.7

The value functions of O-types, defined under this mixed behavior pattern, are:

VF = a+ δ[ρVF + (1− ρ)V CS ] (26)

V CS =
x

z + β
VF +

z + β − x
z + β

(−l + δV CS ) (27)

V dF = b+ δV CS

V DS =
x

z + β
(b+ δV CS ) +

z + β − x
z + β

(0 + δV CS ),

where the superscripts on VS refer now to (candidate) equilibrium behavior, rather than to deviation

from such behavior (while the superscript on VF continues to refer to deviation).

Incentive constraints This mixed behavior pattern is an equilibrium if and only if analogous

incentive constraints are satisfied. After some manipulations, we simplify these constraints as

follows.

No-deviation in phase F : 0 ≤ VF − V dF ⇔
b− a
δρ
≤ VF − VS. (28)

Indifference in phase S: V DS = V CS ⇔ VF − VS =
b− a
δρ

+
(z + β − x)l

δρx
. (29)

Since the RHS of (29) exceeds the RHS of (28), it suffices to require (29), which we re-write (after

solving for VF and VS) as:
xa− (1− δρ)(z + β − x)l
(z + β)(1− δρ) + δρx

=
xb

z + β
. (30)

7β+z is the analogue of β+x in the good equilibrium and 1−γ+x in the bad equilibrium; β+z−x
x

is the analogue

of β
x
in the good equilibrium and 1−γ

x
in the bad equilibrium.
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As before, we let y ≡ β+z−x
x be the ratio of agents playing D to agents playing C in phase S.

Using the definition of y, equation (30) is re-written as

b− a = y

1 + y
δρb− y(1− δρ)l ≡ f(y). (31)

Existence of mixed-strategy equilibria We note that (31) is the same as (11), except that an

equality is in place of the inequality. This narrows down the set of y’s that can be associated with

a mixed-strategy equilibrium to at most two values, y and y, which are the small and the large

roots of (31). From the discussion in Section 3 we know that if (12) is not satisfied, there are no

roots to equation (31) and, hence, no mixed-strategy equilibria. Therefore, to proceed, we assume

that (12) is satisfied.

Since it plays an important role, the dependence of y on λ is made explicit here, y(λ). Observe

now that when λ = 0, y = β
xg
, where xg satisfies the steady-state condition of the good equilibrium

(under β), (1), and that when λ = 1, y = 1−γ
xb
, where xb satisfies the steady-state condition of

the bad equilibrium, (13). Furthermore, straightforward calculations show that for any (α,β, γ),
β
xg
< 1−γ

xb
, and that y(λ) is strictly increasing in λ.8 Therefore, as one varies λ over [0, 1], the value of

y varies over [ βxg ,
1−γ
xb
]. Combining this with the fact that the y associated with any mixed strategy

equilibrium is either y and y, we conclude that a completely mixed-strategy equilibrium exists if

and only if at least one of y or y is in ( β
xg
, 1−γxb ) (“completely” means that 0 < λ < 1). Furthermore,

a mixed-strategy (unless we state otherwise mixed means completely mixed) equilibrium is unique

if exactly one of y or y is in ( β
xg
, 1−γxb ).

To be more precise about the set of circumstances under which a completely mixed strategy

equilibrium exists, consider the condition β
xg
< y < 1−γ

xb
. The LHS of this condition is equivalent to

β < β and the RHS is equivalent to γ < γ; this follows from the monotonicity of β
xg
in β, and 1−γ

xb

in γ, and from the definitions of β and γ. If this condition is satisfied, i.e., if (β, γ) ∈ [0,β)× [0, γ),

a λ ∈ (0, 1) can be found which gives rise to a completely mixed-strategy equilibrium “replicating”

y. Likewise, the condition β
xg
< y < 1−γ

xb
is equivalent to β < β and γ < γ, and when this condition

is satisfied, one can find a mixed-strategy equilibrium replicating y. This gives us a complete

characterization of when mixed-strategy equilibria exist as a function of underlying parameters.
8This is parallel to the property that y is increasing in β for the good equilibrium, and in 1 − γ for the bad

equilibrium.
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We summarize the analysis as follows.

Proposition 4 If (12) is violated, there are no mixed-strategy equilibria. If (12) holds, then: (i)

A completely mixed-strategy equilibrium exists if, and only if, there is a λ ∈ (0, 1) so that (24),

(25) and (31) are satisfied. (ii) This holds if and only if y or y ∈ ( β
xg
, 1−γxb ), which is equivalent

to (β, γ) ∈ [0,β) × [0, γ) ∪ [0,β) × [0, γ). (iii) A mixed-strategy equilibrium is unique if, and only

if, exactly one of y or y is in ( βxg ,
1−γ
xb
). (iv) In any mixed-strategy equilibrium, the ratio of agents

playing D to agents playing C in phase S is either y or y.

Having shown the set of circumstances under which a mixed-strategy equilibrium can be con-

structed and how to compute it, let us comment now about how this mixed-strategy equilibrium

relates to the procedure for constructing mixed-strategy equilibria in general, and how it relates to

the pure-strategy equilibria we studied in Sections 3 and 4. To be concrete we make these comments

for parameter configurations in the domain (β, γ) ∈ [0,β) × (γ, γ). We know - from Propositions

1 and 3 - that a pure-strategy equilibrium does not exist for such parameter values, and we also

know - from Proposition 4 - that a mixed strategy equilibrium does.

1. Let (β, γ) ∈ [0,β) × (γ, γ). Then, if all opportunists play C (which is what they do in the

good equilibrium), y < y (because β < β), which implies that an opportunist is better off playing

D. On the other hand, if all opportunists play D, y < y < y (because γ < γ < γ), which implies

that an opportunist is better off playing C. Such a “cycle” is the reason a pure strategy equilibrium

does not exist. But it is also the reason that a mixed strategy equilibrium exists (not only here, but

in general): specifically a mixed strategy is found by letting some opportunists play C and others

play D, or, more precisely, by finding an intermediate value of λ ∈ (0, 1), so that when a measure λ

of opportunists play D and a measure 1−λ play C in phase S, opportunists’ choices are consistent

with each other’s, i.e., each opportunist’s choice is a best response to others’ choices.

2. One way to think about the mixed strategy equilibrium is that it endogenizes the measure of

bad types. Indeed, there is a measure β of bad types to begin with, but the measure of agents that

play D (which is the behavior manifested by bad types) is actually β < β = β + z − x. This, in

effect, means that the measure of bad types is endogenously increased via uncooperative behavior

of opportunists. Alternatively, one may think of the mixed-strategy equilibrium as endogenously

increasing the measure of good types from γ to γ.
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3. Once the measures of commitment types is endogenously increased in this way, we can think

of the mixed strategy equilibrium as replicating the good equilibrium in a fictional community with

β bad types or, equivalently, as replicating the bad equilibrium in a fictional community with γ

good types. Either way, the measure of agents in phase S is β + z and the ratio of agents playing

D to agents playing C in phase S is β+z−x
x =

β

x(β) . These two variables are independent of the

particular value that (β, γ) assumes. Therefore, if we define aggregate behavior as this pair of

variables, we see that aggregate behavior in the community, at this mixed-strategy equilibrium, is

the same for all (β, γ) ∈ [0,β)× (γ, γ).

Likewise, mixed-strategy equilibria over other regions in the parameter space are equivalent to

pure-strategy equilibria (good or bad) in fictional communities with β or β bad types, or γ or γ

good types. As stated earlier, what mixed strategies do is to (endogenously) increase the measure

of bad types to β or β and the measure of good types to γ or γ, enabling thereby the construction

of a pure strategy equilibrium. This trick works whenever there are sufficiently many opportunists

to increase the measure of commitment types to the requisite critical values (which implies that a

mixed-strategy equilibrium exists for some parameter values but not for others). Obviously, this

trick does not work to decrease the measures of bad or good types (and it, obviously, does not work

to transform the behavior of commitment types).

6 Classification of Equilibrium Outcomes

Propositions 1, 3, and 4 give a complete picture of how parameter configurations relate to different

types of steady-state equilibria. In particular, taking some configuration of parameter values, we

are now able to tell whether some steady-state equilibrium exists for this configuration and, if so,

whether it is unique and of which type(s) it is. To graphically illustrate the result, we fix the

values of all parameters other than (α,β, γ), and show how the equilibrium depends on (α,β, γ)

only. Since α+ β + γ = 1, it is convenient to represent the various (α,β, γ)-triples in the simplex

β + γ ≤ 1, which is shown in Figure 3.

To elaborate on what Figure 3 shows, let us first consider the existence of pure-strategy equilib-

ria. We know from Propositions 1 and 3 that the good equilibrium exists if and only if β ∈ [β,β],

and the bad equilibrium exists if and only if γ /∈ (γ, γ). Also, due to duality, γ = 1 − β and

26



γ

β

I

II

III

IV

V VI

β β

γ

γ

Figure 3: Classification of Equilibrium Outcomes

γ = 1− β. Because of this, the simplex β + γ ≤ 1 is partitioned into six regions (to avoid tedious

statements a region is exclusive of its boundaries). In regions I, III, and V I, the bad equilibrium

exists, while the good equilibrium does not exist. In region IV , the good equilibrium exists, while

the bad equilibrium does not exist. In region V , both the good and the bad equilibria exist. In

region II, neither the good nor the bad equilibrium exists.

Let us turn now to completely mixed-strategy equilibria, determining whether they exist in each

of the above six regions, whether they are unique, and what type of behavior they manifest. To do

that, we consider four cases that exhaust the universe of possibilities.

Case 1 Neither the good nor the bad equilibria exist (region II in the simplex).

This case corresponds to β
xg
< y and y < 1−γ

xb
< y. But then y ∈ ( β

xg
, 1−γxb ), i.e., there exists

a λ ∈ (0, 1) so that β+z−x
x = y. At the same time there is no λ ∈ (0, 1) so that β+z−x

x = y, i.e.,

y /∈ ( βxg ,
1−γ
xb
). Therefore, there is only one mixed-strategy equilibrium in region II, and the phase

S ratio of agents choosing D to those choosing C in it is y = y.

Case 2 The good equilibrium exists, but the bad equilibrium does not exist (region IV in the sim-

plex).
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This case corresponds to y < β
xg
, 1−γxb < y. But, then, y, y /∈ ( β

xg
, 1−γxb ), which means there are

no mixed-strategy equilibria.

Case 3 The bad equilibrium exists but the good equilibrium does not exist (Regions I, III and V I

in the simplex).

In this case either β
xg
< y or y < β

xg
, and either 1−γxg < y or y < 1−γ

xb
. Recalling that one must

have β
xg
< 1−γ

xb
, there are three sub-cases to consider.

(sub-case 3.1) β
xg
< y and 1−γ

xb
< y, which is region I. Then, y, y /∈ ( β

xg
, 1−γxb ), so there are no

mixed-strategy equilibria.

(sub-case 3.2) β
xg
< y and y < 1−γ

xb
, which is region III. Then, y, y ∈ ( βxg ,

1−γ
xb
), implying there

are two mixed-strategy equilibria, replicating y and y.

(sub-case 3.3) y < β
xg
and y < 1−γ

xb
, which is region V I. Then, y, y /∈ ( βxg ,

1−γ
xb
), so there are

again no mixed-strategy equilibria.

Case 4 Both the good and the bad equilibria exist (region V in the simplex).

In this case y < β
xg
< y and y < 1−γ

xb
. Thus y ∈ ( β

xg
,1−γxb ) and y /∈ (

β
xg
,1−γxb ). This means there

is a unique mixed-strategy equilibrium replicating y.

We summarize the existence of pure and mixed-strategy equilibria in Table 2.

Table 2: Characterization of Equilibria

Regions Pure-strategy equilibria Mixed-strategy equilibria

Region I Bad equilibrium None

Region II None One replicating y

Region III Bad equilibrium Two

Region IV Good equilibrium None

Region V Both equilibria One replicating y

Region V I Bad equilibrium None
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In summary, our analysis and Table 2 show that a steady-state equilibrium exists for each

configuration of parameter values, and that the equilibrium is sometimes, but not always, unique.

The analysis also shows, for each of the six regions whether zero, one, or two pure-strategy equilibria

exist, and whether zero, one, or two mixed-strategy equilibria exist.

A numerical example We illustrate this characterization by means of a numerical example. Let

us specify parameter values, other than the configuration of types, as follows:

a = 4, b = 6, l = 2, δ = 0.9, ρ = 0.9.

Then, it is readily verified that (12) is satisfied for these parameter values, which, as per

Proposition 1, means that the good equilibrium exists for a range of β values. Indeed, the good

equilibrium exists if and only if f( β
x(β)) ≤ 2 = b − a. The two roots of f(

β
x(β)) = 2 are β = 0.143

and β = 0.702. Therefore, the good equilibrium exists if and only if β ∈ [0.143, 0.702]. By duality,

the bad equilibrium does not exist if and only if γ ∈ (0.298, 0.857). Table 3 specializes Table 2 to

these numerical results, and provides examples of mixed-strategy equilibria.

Table 3: Numerical Example

Regions Parameter Values Pure equilibria Mixed equilibria

I β ∈ [0, 0.143); γ ∈ [0.857, 1] Bad None

II β ∈ [0, 0.143); γ ∈ (0.298, 0.857) None β = 0.1, γ = 0.5; λ = 0.406

III β ∈ [0, 0.143); γ ∈ [0, 0.298] Bad β = 0.1, γ = 0.2;

λ = 0.271,λ = 0.936

IV β ∈ [0.143, 0.702]; γ ∈ (0.298, 0.857) Good None

V β ∈ [0.143, 0.702]; γ ∈ [0, 0.298] Both β = γ = 0.2; λ = 0.914

V I β ∈ (0.702, 1]; γ ∈ [0, 0.298] Bad None

7 Welfare

In this section we construct measures of social welfare at certain steady-state equilibria, and show

how they relate to the configuration of types, (α,β, γ). We already know from the analysis in

Section 6 that some (α,β, γ) configurations give rise to multiple equilibria, so numerous welfare

measures may be calculated. To limit the number of cases to report and to prepare for the analysis
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in the next section, we offer two calculations. In the first calculation we fix the measure of good

types at zero, γ = 0, and compute welfare as a function of β at the best equilibrium corresponding

to this β. Then, in the second calculation, we fix the measure of bad types at zero, β = 0, and

compute welfare as a function of γ at the worst equilibrium.9 Our measure of welfare is the total

per-period payoff to the whole community at the equilibrium in question. Since the overall measure

of agents is one, this is the same as the average per-period payoff.

Welfare as a function of β Suppose γ = 0. Then, specializing the analysis in Section 6, we have

a tripartite partition. When β < β (region III), three equilibria exist and the best equilibrium is

the mixed-strategy equilibrium replicating y. When β ≤ β ≤ β (region V ), two equilibria exist and

the best equilibrium is the good equilibrium. When β < β (region V I), the unique steady-state

equilibrium is the bad equilibrium.

Taking these three cases into account, social welfare takes the following form.

W (β) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1− z − β)a+ (β + z − x) x

z+β b+ x[
x
z+βa−

β+z−x
z+β l] if β < β

(1− x− β)a+ β x
x+β b+ x[

x
x+βa−

β
x+β l] if β ≤ β ≤ β

0 if β < β

, (32)

where x in the second line comes from the solution to (1), and x and z in the first line come from

the solution to (24) and (25).

To elaborate on how (32) is arrived at, consider the middle term, β ≤ β ≤ β. Then, as stated

above, welfare is evaluated at the good equilibrium. Opportunists in this equilibrium get a period

payoff of a in phase F , and get either a or −l in phase S, depending on whom they meet. Bad

types get either b or 0, depending again on whom they meet. Using the measures of agents at each

phase (which come from the solution to the steady-state equation), we take the average over these

payoffs, and get the reported expression.

Analyzing equation (32) we derive the following result, which is graphically illustrated in the

left panel of Figure 4.

Lemma 5 (i) When β < β, W (β) is constant; (ii) when β ≤ β ≤ β, W (β) is strictly decreasing,

and is hence maximized at β; (iii) when β < β, W (β) is zero.
9These two calculations relate to our previous results that the presence of B-type can support the good equilibrium

and the presence of G-type can upset the bad equilibrium.
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Figure 4: Welfare Measures

Proof. See the Appendix.

The reason W is zero for β < β is that welfare is evaluated at the bad equilibrium, where all

agents play D and collect zero. The reason W decreases for β ≤ β ≤ β is that welfare is evaluated

at the good equilibrium at which having more bad types is not necessary to induce opportunists to

play C. As Proposition 1 shows, β is already in the range that induces (all) opportunists to play

C, so having more bad types only reduces the average level of cooperation and, hence, the average

payoff in the community. Finally, the reason welfare is constant for β ≤ β is that welfare (for each

β in this range) is measured at the mixed-strategy equilibrium replicating y. As commented earlier

(see comment 3 after Proposition 4), the aggregate behavior in the community at each of these

mixed-strategy equilibria is the same and, thus, the aggregate payoff is also the same and is, thus,

constant.

An interesting feature of Figure 4 is that welfare decreases discontinuously at β = β. The reason

for this is that an equilibrium sustaining some cooperation can be achieved for β = β and for β < β,

but not for β slightly above β (for β < β, the only equilibrium is the bad one). Therefore, as β

crosses β, an infinitesimal increase in β has a quantum effect on the degree of cooperation in the

community and on welfare.
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Welfare as a function of γ Let us turn now to the case where there are no bad types, β = 0.

As γ varies over [0, 1], the worst equilibrium varies as follows: When γ ∈ [0, γ] or γ ∈ [γ, 1], the

worst equilibrium is the bad equilibrium; and, when γ ∈ (γ, γ), the unique equilibrium is the

mixed-strategy equilibrium replicating y. Evaluating welfare at these equilibria, we get

W (γ) =

⎧⎨⎩ x(−l) + (γ − x)a+ (1− γ) x
x+1−γ b if γ ≤ γ or γ ≤ γ

(1− z)a+ (z − x)xz b+ x[
x
za−

z−x
z l] if γ < γ < γ

. (33)

Analyzing this welfare function we derive the following result, which is proven in the working paper

version, and is illustrated in the right panel of Figure 4.

Lemma 6 (i)When γ ∈ [0, γ] ∪ [γ, 1], W (γ) is increasing in γ; (ii) when γ ∈ (γ, γ), W (γ) is

constant in γ.

Intuitively, as γ increases the average cooperation level in the bad equilibrium increases, and

thus social welfare increases. In the mixed-strategy equilibrium replicating y, aggregate behavior

is constant (i.e., independent of γ) and, thus, the social welfare in that equilibrium is constant too.

The relationship between the social welfare of the worst equilibrium and γ is plotted in the

right panel of Figure 4. Analogous to the best equilibrium, social welfare has an upward jump at

γ. This is because the bad equilibrium no longer exists when γ is infinitesimally bigger than γ.

8 Endogenous Choice of Types

In this section we extend the model to the scenario in which individuals endogenously choose their

types by investing in human capital. This extension enables us to address two issues: One is the

interplay between investments in human capital and the level of cooperation in the community.

The other is the comparison between the equilibrium outcome in the game in which individuals

invest in human capital, based on their private returns, and the social optimum.

To motivate this extension consider the scenario in which a “partnership” is a team of profes-

sionals (say attorneys or accountants) that can reap higher benefits working as a team than the

sum of benefits that partners may collect on their own.10 To realize such benefits, team members
10More explicitly, some of the advantages of team production come from synergies, large projects that require the

efforts of several partners, or because team members exchange favors.
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must, however, be trained to execute team task, i.e., they must acquire human capital. Once they

have been trained, they still face an incentive (or a moral hazard) problem inasmuch as they have

the option to not cooperate, denying other team members the benefits of cooperation. To this

point we have analyzed the incentive to cooperate in a community with heterogenous types, some

trained and some untrained. In this section we analyze the investment in human capital problem,

which determines how many individuals are trained in the first place.

To merge this scenario with the analysis thus far, we assume that initially all individuals are

bad types,11 and that each individual has the option of becoming an opportunist by investing in

human capital (the effect of “investment” therefore is to expand the set of available actions). These

investments take place initially, and are followed by the community game we have analyzed. In order

to apply the analysis above, we continue to assume that types are unobserved. This assumption

is more objectionable in the context of this extension because one may verify an individual’s type

simply by asking for a diploma or interviewing a candidate. Nonetheless, what we have in mind

is that there are certain aspects of training and/or type that cannot be easily ascertained using

such methods. For example, it is hard to know how “seriously” the individual took her training

or how committed she is to apply the skills she acquired to team production. Hence, so long

as investment entails private information, and some residual uncertainty remains regarding the

outcomes of investments, the forces we identify here remain relevant (although their effect may be

attenuated).

We proceed using the method of backwards induction. As usual, the equilibrium outcome in

the community game is what dictates incentives in the investment game. Taking this point of view,

the reason an individual may invest in human capital is that this enables her to interact over the

long-haul with other individuals that have invested too, reaping the benefits of team production.

On the other hand, an individual that does not invest in human capital is deprived of the option of

entering into a long-term relationship and enjoying the benefits of team production (she may still

reap a short-term benefit before the relationship she is in is terminated). Whether this trade-off

is such that some (or all) individuals invest depends of course on the level of cooperation in the

community, which in turn depends on how many individuals invest. As stated earlier the aim of

this section is to analyze this interplay between investments and cooperation.
11We briefly comment on the effect of having good types at the end of this section.
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To be more concrete, we assume that investment in human capital costs c > 0, which is the

same for all individuals, and is solely borne by individuals that make the investments (no subsi-

dies or surcharges to the acquisition of human capital). The timing of the extended game is as

follows. Initially all individuals are B-types. Then, before the community game starts, each indi-

vidual decides whether to invest in human capital (at cost c), or not. These decisions are made

independently and simultaneously. Once these decisions are implemented, the distribution of types

in the community is determined, and becomes common knowledge. Then, the infinitely repeated

community game is played under this distribution. To limit the number of cases to consider, we

assume that players coordinate on the best equilibrium in this community game (this situation

parallels the first welfare exercise of Section 7). We also assume that a steady-state is reached

immediately,12 and that individuals who invest are randomly assigned (at t = 0) to phases F or S

according to the steady-state probabilities.

Before we proceed we note the existence of a degenerate equilibrium in which no one invests.

This equilibrium arises because of investment externalities: it takes a critical mass of agents to

invest to make it worthwhile for anyone to invest. In the sequel we focus (naturally) on other

equilibria.

Gross Return to Investment We are interested in determining the equilibrium outcome in

the investment game. To this end we derive the gross return to investment in human capital,

introducing the following notation. Let πO(β) (πB(β)) be an O-type’s (B-type’s) discounted payoff

at the best equilibrium under β in the community game. These payoffs are derived from the value

functions that correspond to this equilibrium.

If β ∈ (β, 1], payoffs are evaluated at the bad equilibrium, so that

πO(β) = πB(β) = 0.

If β ∈ [β,β], payoffs are evaluated at the good equilibrium, so that

πO(β) =
x

1− β
VS(β) +

1− β − x
1− β

VF (β)

πB(β) =
1

1− δ

x

x+ β
b,

12This assumption is justified if players are patient enough or the convergence to the steady-state is sufficiently

fast.
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where VF (β) and VS(β) are given by (6) and (7), and x is the solution to (1) under β.

Finally, if β ∈ [0,β), payoffs are evaluated at the mixed-strategy equilibrium, so that

πO(β) =
z − β

1− β
VS(β) +

1− z
1− β

VF (β)

πB(β) =
1

1− δ

x

z + β
b,

where x and z are derived from the solution to (24) and (25), and VF (β) and VS(β) are derived

from the solution to (26) and (27) under these values of x and z.

Let ∆(β) be the gross return to investment, which is the (discounted) payoff difference between

being an O-type and a B-type at the best equilibrium in the community game,

∆(β) ≡ πO(β)− πB(β).

Then, we have the following result.

Lemma 7 (i) ∆(β) ≥ 0 for all β ∈ [0, 1]; (ii) ∆(β) = 0 for β ∈ (β, 1]; (iii) ∆(0)̇ > 0, and ∆(β)

is increasing in β for β ∈ [0,β]. (iv) Assume b ≤ a+ l. Then, ∆(β) increases at β, and is either

increasing throughout [β, β], or is hump shaped, i.e., there is a bβ ∈ (β, β) so that ∆(β) is increasing
over β ∈ [β, bβ) and decreasing over (bβ,β].

Proof. See the Appendix.

The reason that ∆(β) is increasing in β over [0,β] is that welfare is evaluated at the mixed-

strategy equilibrium. Then, the aggregate behavior in the community (see comment 3 after Propo-

sition 4) is constant in β, which implies πB(β), VS(β) and VF (β) are constant as well. As a

consequence, the only effect of a decrease in β is that an O-type has a smaller probability of being

assigned to phase F (at t = 0), which makes πO(β) and, consequently, ∆(β) smaller.

This effect is also present for β ∈ [β, β] (where welfare is evaluated at the good equilibrium).

There is, however, a second effect for β ∈ [β, β], which is that VF (β) − VS(β) is increasing in β.

These two effects work in opposite directions, resulting in a (potentially) hump-shaped ∆ curve

over the domain [β, β].

Figure 5 illustrates the content of Lemma 7 (ignore for now the horizontal line with height c).
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Figure 5: Endogenous Types

Equilibrium in the investment game Given the shape of ∆, as shown in Figure 5, an equilib-

rium in the investment game may be either interior (with some but not all individuals investing),

in which case it is characterized by indifference between investing and not; or, it may be a corner

equilibrium (with all or none of the individuals investing), in which case it is characterized by a

weak preference for the unanimously chosen alternative. In symbols, these possibilities are:

Some but not all players invest : ∆(β)− c = 0 for some β ∈ (0, 1)

Everybody invests : ∆(0)− c ≥ 0

Nobody invests : ∆(β)− c ≤ 0 for all β ∈ [0, 1].

To determine which of these equilibria materializes, let us inspect Figure 5 that shows ∆(β),

which is the gross return to investment, along with the horizontal line at height c, which is the cost

of investment. This figure is drawn so that the c-line intersects the ∆(β)-curve at two points. The

other possibilities for drawing this figure are that the c-line lies entirely above the ∆(β)-curve, or

that it lies below it over the range [0,β]. Which of these possibilities materializes (which depends

on parameter values), pins down the type of equilibrium that occurs in the investment game.

Let’s consider the possibility shown in Figure 5. Since ∆(β) is hump-shaped, there are (po-

tentially) two intersection points, giving rise to two equilibria. We rule out the equilibrium at the
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higher intersection point, because it corresponds to an unstable equilibrium. Indeed, suppose that

β is decreased (say) a little bit from this equilibrium value. Then, from Figure 5, at the perturbed

point, c < ∆(β−ε), so more individuals invest in human capital, which further decreases β, drifting

the system away from the original equilibrium value. On the hand, if we decrease β at the equi-

librium with the lower intersection point, ∆(β − ε) < c, so less individuals invest in human capital

and β drifts back towards its original equilibrium value. As a consequence, the interior equilibrium

at the smaller β is stable, while the other is unstable. We concentrate from point onwards on the

stable one.

Turning to corner equilibria, Lemma 7 tells us that ∆(0) > 0. Thus, everybody invests if

c ≤ ∆(0), and we have a corner equilibrium. At the other end of the spectrum, if the c-line lies

entirely above the ∆(β)-curve, then no investment is a dominant strategy, and we have the other

type of corner equilibrium, with no one investing. Summarizing the analysis, we have the following

proposition.

Proposition 5 (i) If c ≤ ∆(0), then everybody invests. (ii) If ∆(0) < c ≤ ∆(bβ), then somebody
but not everybody invests; moreover, the measure of players that invest in the stable equilibrium is

decreasing in c. (iii) If c > ∆(bβ), then nobody invests.
Proposition 5 shows that the level of human capital and the degree of cooperation in the

community are positively correlated in equilibrium. Indeed, let’s consider a decrease in c. Then,

the equilibrium measure of individuals investing in human capital either increases if this equilibrium

is interior, or stays constant if the equilibrium is corner. At the same time, the level of cooperation

increases if the equilibrium β is such that the community is at the good equilibrium, or remains

constant if the community is at the mixed-strategy or the bad equilibrium. Whatever combination

of these possibilities materializes, a decrease in the exogenous variable c induces a non-negative

correlation between the endogenous variables β and the degree of cooperation. As a consequence

of this, the model predicts that in communities with more educated populace, people are more civil

to each other.

Contrasting the Free entry equilibrium with the Social Optimum We contrast now the

equilibrium in the investment game to a planner’s optimum.
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Proposition 6 (i) If c < ∆(β), then individuals over-invest at the free-entry equilibrium. (ii) If

∆(bβ) < c < W (β)

1−β , individuals under-invest in the free-entry equilibrium.

Proof. (i) If c < ∆(β), the equilibrium measure of individuals that invest exceeds 1 − β.

But Lemma 5 tells us that gross welfare, W (β), is constant over [0,β], and we assumed a positive

investment cost c > 0, so it does not pay (from a social planner’s perspective) for more than 1− β

individuals to invest.

(ii) The social planner maximizes S(β) ≡ W (β)− c(1− β) over β. Given the shape of W (see

Lemma 7), if c <
W (β)

1−β , S(β) > S(1) = 0, so no one investing cannot be socially optimal. On the

other hand, since ∆(bβ) < c, no one invests in the free-entry equilibrium.
Proposition 6 shows two departures of the equilibrium from the social optimum. On the one

hand, individuals may under-invest in human capital because some of the benefit accrues to others

who interact with them, and are able to realize higher payoffs in the community game. On the other

hand, which might be more surprising, individuals may over-invest in human capital. This is because

individuals first invest in human capital but then “undo” the investment by not cooperating.13 It

may seem bizarre that individuals, on their own volition, will choose to do so. The point, however,

is that there is a discrepancy between ex-ante and ex-post incentives. Ex-ante some agents acquire

human capital because this entitles them to enter into long-term, high-paying relationships. Ex-

post, when in transit between such relationships, an opportunist has a short-run incentive to defect.

Because of that investments in human capital are not fully utilized, which means they had been

wasted from a social point of view.

The impact of G-type on the investment game As Proposition 5 shows, an equilibrium with

no one investing in human capital may occur, depending on parameter values. This was shown on

the assumption that all agents are bad types to begin with, which implies the bad equilibrium in

the community game is a possibility. Suppose, on the other hand, that there is a core of good types

and, more specifically, that γ ∈ [γ, γ]. Then, as the analysis in Section 4 shows, the bad equilibrium
13Another way to think about this is that the maximum cooperation level in the community is reached when there

are β > 0 bad types. Further decrease in β cannot increase the cooperation level, since to sustain cooperation a

certain fraction of agents has to defect in the stranger phase. Therefore, if more agents than 1 − β invest in skill

acquisition, some agents’ investment are “reversed” (and are hence wasted) because of the structure of incentives in

the community game.
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in the community game is no longer a possibility. As a result, if ∆(bβ) < c < e∆(1 − γ), where e∆
is the analogue of ∆ in a community with good types, the no investment equilibrium that would

have occurred without good types no longer occurs when the measure of good types exceeds some

critical mass. From this we conclude that the presence of good types can have a good influence on

the investment behavior of bad types, and help agents coordinate on a more efficient outcome.
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9 Appendix

Proof of Lemma 1

Proof. The solution to (1) is

x =
(1− ρ)(1− 2β) +

p
(1− ρ)2 + 4β(1− β)ρ(1− ρ)

2
. (34)

Dividing (34) by β we get

1

y
=
x

β
=
(1− ρ)( 1β − 2) +

q
(1−ρ)2
β2

+ 4( 1β − 1)ρ(1− ρ)

2
. (35)

Since all terms in (35) decrease in β, y(β) increases in β. Moreover, when β → 0, x/β → ∞, and

y → 0. On the other hand, when β → 1, x→ 0, and y →∞.

Proof of Lemma 5

Proof. (i) In stationary state, by abusing notation (both z and x are functions of β),

(1− ρ)(1− β − z) = xρ
x

z + β

⇔ 1− ρ

ρ
(
1

x
− β + z

x
) =

x

z + β
(36)

But we know that, when β ≤ β, in the mixed-strategy equilibrium β+z−x
x = y is independent of β.

Therefore, from (36) x is also independent of β. As a result, β + z is also independent of β. Since

W (β) is only a function of x and z + β (see equation (32), we reach the conclusion that W (β) is

constant when β ≤ β.

(ii) First we show that 1−x−β, which is the measure of agents in phase F is strictly decreasing

in β. Suppose not, that is, suppose there exist a β0 and a β00 in [β,β] so that β0 < β00 and yet

1− x0 − β0 ≤ 1− x00 − β00, where x0 (x00) is the steady state x under β0 (β00). Then from (1)

x0
x0

x0 + β0
≤ x00 x00

x00 + β00
,

which is equivalent to

x0
1

1 + β0/x0
≤ x00 1

1 + β00/x00
.

But β0/x0 < β00/x00 since y is increasing in β. Therefore, we must have x0 < x00, which implies

1− x00 − β00 < 1− x0 − β0,
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a contradiction.

Lemma ?? shows that x
x+β , the probability of being matched with a non-bad type in phase S,

is decreasing in β. From expression (32) we see that by increasing β, the average payoff in phase

S decreases and the weight placed on this payoff increases. Hence the total social welfare in the

community must decrease.

Proof of parts (i)-(iii) of Lemma 7

Proof. (i) An O-type has the option of playing D independent of her personal history, in which

case she realizes the same payoff as a B-type. Hence, 0 ≤ πO(β)− πB(β) = ∆(β).

(ii) If β ∈ (β, 1], the unique steady-state equilibrium is the bad one. Therefore, ∆(β) = 0.

(iii) If β ∈ [0,β], the mixed-strategy equilibrium replicating y features

πB(β) =
1

1− δ

x(β)

z(β) + β
b =

1

1− δ

b

1 + y
,

which is independent of β. In addition,

πO(β) =
z − β

1− β
VS(β) +

1− z
1− β

VF (β).

From the analysis in Section 5 we know that both VS(β) = πB(β) and VF (β) are independent of β

(which follows from the fact that aggregate behavior is independent of β), and VS(β) < VF (β). From

the same analysis, we also know that β+z is constant in β and, thus, that z is decreasing in β. But

then z−β
1−β is decreasing in β and

1−z
1−β is increasing in β. Putting these facts together, we conclude that

the weighted average z−β1−βVS(β)+
1−z
1−βVF (β) is increasing in β, which implies ∆(β) = πO(β)−πB(β)

is increasing too. Finally, when β = 0, VS(0) = V B(0). So, since 0 = VS(0) < VF (0) and 1−z
1−β is

positive, we have 0 < ∆(0).

Proof of part (iv) of Lemma 7

Proof. We first show (a) the hump shapedness of ∆, then we show (b) it increases at β.

(a) Since ∆ is evaluated at the good equilibrium, we have

∆(β) =
x

1− β
VS(β) + (1−

x

1− β
)VF (β)− πB(β) (37)

= VS(β)− πB(β) + (1− x

1− β
)[VF (β)− VS(β)]

=
1

1− δ
[
xa− β(1− δρ)l

x+ β(1− δρ)
− x

x+ β
b] + (1− x

1− β
)

β(a+ l)

x+ β(1− δρ)
,
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where x comes from (1) and VS and VF are given by (6) and (7). Using the variable y ≡ β/x(β),

(1) tells us that
x

1− β
=

(1 + y)(1− ρ)

ρ+ (1 + y)(1− ρ)
.

Substituting this into (37), we get

∆(y) =
1

1− δ
[
a− y(1− δρ)l

1 + y(1− δρ)
− 1

1 + y
b] +

ρ

ρ+ (1 + y)(1− ρ)

y(a+ l)

1 + y(1− δρ)
. (38)

Differentiating (38) and doing some algebra, we get:

∆0(y) =
1

1− δ
[
−(1− δρ)(a+ l)

(1 + y(1− δρ))2
+

b

(1 + y)2
] +

ρ

ρ+ (1 + y)(1− ρ)

(a+ l)

(1 + y(1− δρ))2

− ρ(1− ρ)

(ρ+ (1 + y)(1− ρ))2
y(a+ l)

1 + y(1− δρ)

=
1

(1− δ)[1 + y(1− δρ)]2
×

×
½
[b− (1− δρ)(a+ l)] + 2y(1− δρ)[b− (a+ l)] + (1− δρ)[(1− δρ)b− (a+ l)]y2

(1 + y)2

+
ρ[1− (1− ρ)(1− δρ)y2]

(ρ+ (1 + y)(1− ρ))2
(a+ l)

¾
. (39)

We are going to show now that there is a 0 ≤ by so that ∆0(y) is positive for 0 < y < by and
negative for by < y, which implies that ∆ has the desired hump shape property (if by = 0, ∆ is

increasing throughout). Since 0 < 1
(1−δ)[1+y(1−δρ)]2 , it suffices to show this for the term inside the

braces, which we abbreviate as

ϕ(y) =
f1(y)

g1(y)
+
f2(y)

g2(y)
.

Inspecting the two terms of ϕ we see that: (1) The denominator of each term is positive and

increasing in y. (2) Each numerator is quadratic and, because a+ l ≤ b, it decreases in y and tends

to −∞ as y → ∞. From these observations we infer that there are two points 0 ≤ y1 and 0 < y2
so that the first term is positive for y < y1 and negative for y1 < y, and similarly for the second

term. In addition, one readily verifies that y1 < y2, so that ϕ is positive for [0, y1] and negative for

[y2,∞).

It remains to analyze the behavior of ϕ over (y1, y2). By continuity, there exists a by ∈ (y1, y2)
so that ϕ(by) = 0. To show that by is unique, which would bring the proof to a conclusion, it suffices
to prove that ϕ0(by) < 0.
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Since y1 < y2, we know that
f1(by)
g1(by) < 0 < f2(by)

g2(by) . This implies
³
f2(y)
g2(y)

´0
|y=by< 0, so it suffices to

show that
³
f1(y)
g1(y)

´0
|y=by< 0. Now,µ

f1(y)

g1(y)

¶0
=
f 01g1 − f1g01

g21
< 0⇐⇒ f 01g1 < f1g

0
1.

Substituting in for f1 and g1, leaves us with the following inequality to prove:

(1 + y)2 {2(1− δρ)[b− (a+ l)] + 2(1− δρ)[(1− δρ)b− (a+ l)]y}

< 2(1 + y)
©
[b− (1− δρ)(a+ l)] + 2y(1− δρ)[b− (a+ l)] + (1− δρ)[(1− δρ)b− (a+ l)]y2

ª
.

Dividing both sides of this inequality by 2(1 + y), we need to show that:

[b− (1− δρ)(a+ l)] + 2y(1− δρ)[b− (a+ l)] + (1− δρ)[(1− δρ)b− (a+ l)]y2

> (1 + y) {(1− δρ)[b− (a+ l)] + (1− δρ)[(1− δρ)b− (a+ l)]y}

= (1− δρ)[(1− δρ)b− (a+ l)]y2 + (1− δρ)[(1− δρ)b− (a+ l)]y + (1− δρ)[b− (a+ l)]y

+(1− δρ)[b− (a+ l)]

= (1− δρ)[(1− δρ)b− (a+ l)]y2 + (1− δρ)[(2− δρ)b− 2(a+ l)]y + (1− δρ)[b− (a+ l)].

Looking at the two ends of this inequality, and comparing term by term establishes that this

inequality holds.

(b) Consider the two terms of (39), evaluated at y. The first term is equivalent to d(VS(y)−π
B(y))

dy ,

which is positive at y because VS(y)−πB(y) = 0 and 0 < VS(y)−πB(y) for all y ∈ (y, y). Also, since

y1 < y2, we have that the numerator of the second term of (39) is positive. Since the denominator

of the second term is always positive, this term is positive as well, so altogether 0 < ∆0(y). Finally,

since β and y are monotonically related, this implies 0 < ∆0(β).
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