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Abstract

Jovanovic and Nyarko (1996) showed that when agents learn-by-doing and are

myopic, less advanced agents may adopt new technologies while more advanced

¯rms stick with the old technology since the new technology takes time to learn.

In this case, the less advanced agents might eventually overtake (or \leapfrog")

the advanced agents. We show that this kind of overtaking can also occur if

agents are forward looking and have high discount rates. However, if agents are

su±ciently patient, overtaking cannot occur. A lower discount rate increases the

set of states at which agents adopt new technologies, so more patient agents tend

to upgrade their technology more frequently.

keywords: learning-by-doing, overtaking, leapfrogging, technology adoption, eco-

nomic growth
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1 Introduction

Modern development economics emphasizes the role of technology in determining

relative growth paths. For example, Lucas (1993) identi¯es technology adoption

as the most important explanation of the fast economic growth of several Asian

countries. Recent textbooks such as Aghion and Howitt (1998) and Barro and

Sala-i-Martin (1995) re°ect the importance attributed to technology in explaining

growth. Technological improvements can lead to divergence in growth paths

when ¯rms in the \advanced" country have a greater incentive to adopt new

technology. In other circumstances, ¯rms in less advanced countries may be

more likely adopt the new technology, even when it is less pro¯table for them

than for the advanced ¯rms. The adoption decision depends on a comparison

of pro¯ts under the new technology and under the next best alternative, i.e. on

the opportunity cost of adoption. The opportunity cost of adoption may be

higher for the more advanced ¯rms, because of their pro¯ciency in using the

old technology. In this case, innovations in technology can contribute to the

convergence of growth paths, or even to \overtaking" (or \leapfrogging") by the

less advanced country.

There have been a number of historical examples where technology adoption

has contributed to overtaking, both at the industry and country level. Industries

in regions destroyed by war (such as in post-war Europe and Japan) sometimes

rebuild using the latest technology, eventually overtaking established industries

elsewhere. Start-up industries may begin with the latest technology which in-

cumbents are slow to adopt. Brezis et al. (1993) cite cases where new technolo-

gies have contributed to overtaking by entire countries rather than individual

sectors: the United Kingdom overtaking the Netherlands, and the United States

subsequently overtaking the United Kingdom.

The incentives to adopt a new technology depend on the ¯rm's ability to use

the previous generation of technology. This ability may depend on the experience

the ¯rm has had with the technology, i..e., on the amount of learning-by-doing

that has occurred. Chari and Hopenhayn (1991), Parente (1994) and Stokey

(1988) study learning-by-doing as a force for sustained growth. Brezis et al.
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(1993), Krussell and Rios-Rull (1996), and Jovanovic and Nyarko (1996) show

that learning-by-doing can give rise to the type of overtaking noted in the growth

literature. An agent accustomed to an existing technology may be unwilling to

adopt a newer technology which requires learning and leads to lower pro¯ts in

the short run. An agent who is less familiar with the existing technology has a

lower opportunity cost of adopting the new technology. The second agent may

adopt the new technology and eventually overtake the ¯rst, who was initially

more advanced.1

Brezis et al. (1993) study a general equilibrium model in which learning is a

non-excludable public good within a country. In this situation, ¯rms have no

incentive to consider future payo®s when making their adoption decision. (See

their footnote 6.) Jovanovic and Nyarko (1996) study a partial equilibrium

model in which learning is internal to the ¯rm, but they assume that ¯rms solve

a succession of static problems. Thus, in both of these models, agents are myopic:

the adoption decision depends on a comparison of current pro¯ts under the old

and new technology.

Forward-looking ¯rms who internalize learning-by-doing would consider the

future stream of payo®s in deciding whether to adopt the new technology. In

order to determine the sensitivity of the overtaking result to the assumption of

myopia, we replace the myopic decision-maker in Jovanovic and Nyarko's (1996;

hereafter, JN) model with a forward-looking agent. The possibility of overtaking

is robust, in the sense that it can occur even when agents are forward looking.

However, overtaking is less likely to occur when agents are forward looking, and

it never occurs if agents are su±ciently patient.

We also examine the e®ect of the discount rate on the frequency of adoption.

Forward looking agents adopt new technologies more frequently than myopic

1There is an industrial organization literature on leapfrogging which is closely related to the

economic growth literature we cite in the text. The IO literature emphasizes ¯rms' strategic

incentives to change a decision, such as improving technology. Budd et al. (1993) review

recent contributions to leapfrogging models in IO, and Brezis et al. (1994) discuss the relation

between the two literatures. Motta et al. (1997) study a model in which trade changes a

¯rm's strategic decision (quality, in their case), and overtaking can occur. Their model thus

incorporates elements of both the IO and economic growth literatures.
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agents. At least for small discount factors, the frequency of adoption is monotonic

in the discount factor. Parente (1994) uses simulations to show that adoption

occurs more rapidly when ¯rms use higher discount factors, and when capital

markets improve. Our results complement these simulations, although the two

models are quite di®erent.

2 Model

We adapt JN's model of learning-by-doing by including forward looking agents.

The payo® associated with a particular technology depends on an unknown pa-

rameter. As the agent learns about this parameter over discrete time, the payo®

from the technology increases. An agent working with a technology of grade n

chooses x in period t and receives the payo®:

q = °n
£
1¡ (yt ¡ x)2

¤
; ° > 1:

After observing the payo®, the agent can infer the value of yt since she knows

°; n; x. This inferred value is yt = µn + wt, the sum of two random variables;

µn is a random variable that depends on the technology grade nt, and wt is an

i.i.d. normal random variable with zero mean and variance ¾2w. The agent knows

the distribution of wt. The agent does not know the value of µn but has prior

beliefs about it. Before learning yt the agent maximizes the expected payo® by

setting x equal to the expected value of yt, conditional on information available

in period t:

x = Et[yt] = Et[µn]

where the second equality follows from the fact that wt is white noise.
2 This

choice yields the expected payo®:

Et[q] = °
n[1¡ var

t
(µn)¡ ¾2w] (1)

where vart(µn) is the variance of µn conditional on information available in period

t:
2This solution remains valid in the context of dynamic optimization because the information

generation is independent of the action choice.
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The agent can switch to a higher grade technology in any period. We assume

that technology grades are integer-valued and the agent can switch only to the

next grade in one period. There is no cost of switching except that the agent

has to learn about the new technology. Skills acquired in working with the old

technology are only partially transferable. Di®erent grades of technology are

linked to each other according to the following relationship:

µn+1 =
p
® µn + ²n+1 (2)

where ²n+1 s N(0; ¾2²) and µn and ²n+1 are independent.

The agent updates her prior on µn based on the signal yt: Denote the precision

of the unknown technological parameter µn in period t by ´t and the precision

of wt by º : ´t =
1

vart(µn)
; º = 1

¾2w
. Obviously ´t and º can take only positive

real values, and we assume that º > 1. This restriction implies that agents earn

positive pro¯ts for su±ciently large ´. In period 1 the agent begins with a Normal

prior on the current technology (the value of µ) with precision ´1.

We now describe how ´ changes over time. First suppose that there is no

technology switch in period t: Since wt is a Normal random variable, given the

Normal prior on the random variable µn, its precision is updated in period t

according to the following formula (DeGroot, 1970):

´t+1 = ´t + º: (3)

If the agent switches to a new technology, the variance is updated through two

steps. The ¯rst step is due to the technology switch and second to the observation

of the outcome from the new technology. The ¯rst step transforms the variance

(prior to the switch) vart(µn) to ® ¢ vart(µn) + ¾2² (the variance after the switch)
due to the transformation of µn as in equation (2). The agent then chooses x,

observes qt, infers yt, and updates beliefs about the value of µn+1. The second

step transforms the post-switch variance using equation (3). Combining the two,

the precision in the period after a switch occurs is

´t+1 =
1

®=´t + ¾
2
²

+ º =
´t

®+ ´t¾
2
²

+ º: (4)
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It is convenient to de¯ne a function which represents the ¯rst step of the

updating procedure:

h(´) =
´

®+ ¾2²´
:

Hereafter we restrict attention to state space where ´ ¸ h(´). This restriction

is innocuous, since for any initial condition it must be satis¯ed in ¯nite time,

regardless of the agent's upgrade decisions. If the restriction is satis¯ed at any

period, it holds in all subsequent periods. Moreover, given the interpretation of

the function h(´), the model is sensible only when the restriction is satis¯ed. (If

´ < h(´); upgrading increases precision, which means that the agent knows more

about the new technology than about the old technology.)

We now introduce forward looking agents. The agent maximizes the present

value of the in¯nite stream of payo®s with a discount factor, ¯ > 0. In period

1 the agent starts with an arbitrary grade of technology, which we normalize to

be grade n = 0. De¯ne kt = 0 if the agent decides to stick with the current

technology in period t and kt = 1 if the agent chooses to upgrade. The strategy

pro¯le is (k1; k2; : : : ). De¯ne Tn = mintfk1 + k2 + ::: + kt ¸ ng, the period in
which the agent switches to the nth grade of technology, with the convention

that T0 = 0. Given a strategy (k1; k2; : : : ), we can use the single-period expected

payo® in equation (1) to compute the discounted expected payo®.

Suppose that the agent has the precision ´ at the beginning of the ¯rst period.

The sequence problem which maximizes the discounted expected payo®, given

precision ´ and technology grade n = 0 is:

W ¤(´; 0) = max
(k1;k2;::: )

W (k1; k2; : : : : ´; 0)

=

1X

n=0

°n¯Tnf
Tn+1¡1X

t=Tn

¯t¡Tn[¹¡ 1

´t
]g (SP)

where ´t is updated according to either equation (3) or equation (4). The ¯rst

argument of W ¤ is the precision, ´, and the second is the technology grade, n

(here n = 0).

We use the sequence problem to formulate the dynamic programming equation

(DPE). The payo® from the agent's choice depends on the grade of the technology
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and the precision. Hence the DPE has two state variables, nt and ´t:

eV (´t; nt) = max
kt2f0;1g

fF (kt; ´t; nt) + ¯ eV (´t+1; nt + kt)g (5)

where

F (kt; ´; n) =

(
°n[¹¡ 1

´
] if kt = 0

°n+1[¹¡ 1
h(´)
] if kt = 1;

´t+1 =

(
´t + º

h(´t) + º

if kt = 0

if kt = 1;

and

nt+1 = nt + kt:

An optimal policy, k¤(´; n); solves the DPE (5).

3 Preliminaries

We ¯rst prove the existence of the solution to the DPE (5) and then show that

the optimal adoption decision depends only on the precision, ´. The following as-

sumption guarantees the equivalence of the solution to the DPE and the solution

to the original sequence problem.

Assumption 1 ¯° < 1:

We need the equivalence between the two problems in order to justify using

the DPE in later analysis.

Proposition 1 1. There exists a solution to the DPE (5).

2. Under Assumption 1, the solution to the DPE satisfying

lim
t!1

¯teV (´t; nt) = 0

is the unique solution to the sequence problem (SP).
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Proof. The proof for part 1 of the proposition is standard; de¯ne the operator

T eV = max
k2f0;1g

fF (k : ´t; nt) + ¯ eV (´t+1; nt + k)g:

>From equation (5) and T is easily seen to be a contraction mapping with

modulus ¯:

The second part follows from the result that if the solution to the sequence

problem (SP) is bounded, the solution to the DPE satisfying

lim
t!1

¯teV (´t; nt) = 0

is the unique solution to the sequence problem (SP). (Theorem 4.3 on p.72 of

Stokey and Lucas (1989)) Hence it su±ces to prove that Assumption 1 implies

that the solution to the sequence problem (SP) is bounded:

If ¯° < 1, then

W ¤(´; 0) = max
(k1;k2;::: )

W (k1; k2; : : : : ´1;1)

=

1X

n=1

°n¡1¯Tn¡1f
Tn¡1X

t=Tn¡1

¯t¡Tn¡1 [¹¡ 1

´t
]g

·
1X

t=1

¯t°t¹ =
¹

1¡ ¯° < 1:

Therefore the solution to the sequence problem (SP) is bounded.

Next we show that the optimal upgrade rule depends on the value of ´, but

not on the grade of technology n or on time, t.

Proposition 2 The optimal upgrade rule depends only on ´. That is, the solu-

tion to the DPE (5) is a correspondence k = k¤(´).

Proof. We use the fact that F (k; ´; n) = °nF (k; ´; 0) to \guess" the trial

solution: eV (´; n) = °nV (´) for some function V Given the uniqueness of eV (´; n),
this trial solution must be correct if it solves the DPE. Since the equation of

motion of ´ is independent of n, we can substitute the trial solution into equation

(5) to obtain an equivalent DPE

°nV (´t) = max
kt2f0;1g

°nfF (k; ´t; 0) + ¯°kV (´t+1)g: (6)

Dividing both sides by °n results in a DPE { and thus an optimal decision rule

{ which is independent of both n and t.
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4 Choice of Technology

4.1 Myopic Case

Before analyzing the case for forward looking agents, we review JN's results for

the case where agents base their current adoption decisions only on pro¯ts in the

current period. In this case, agents solve the problem maxf¹¡ 1
´
; °(¹¡ 1

h(´)
)g,

which uses the de¯nition ¹ ´ º¡1
º
> 0 in equation (1), and the de¯nition of

h(´). The ¯rst term in the maximand equals pro¯ts if the agent sticks with the

current technology, and the second equals pro¯ts if the agent upgrades to the

next generation of technology. (We ignore the factor °n, which a®ects pro¯ts

under both alternatives, but not the adoption decision.) The agent sticks with

the current technology if and only if the current precision satis¯es the inequality

z(´) ´ ®° + °¾2²´ ¡ 1
´

¡ ¹(° ¡ 1) ¸ 0:

The function z(´) gives the increased pro¯ts, in the current period, resulting

from not upgrading. In other words, z(´) is the opportunity cost of adoption.

The slope of z(´) has the same sign as 1 ¡ ®°. If there exists a positive root

of z(´) = 0, it is unique. Denote this root (when it exists) as ´c ´ 1¡®°
°¾2²¡¹(°¡1) .

The agent is indi®erent between upgrading and sticking if and only if ´ = ´c, i.e.

when the opportunity cost of adoption is zero.

®° > 1 ®° < 1

¾2² >
¹(°¡1)
°

stagnation; never upgrade (possible) overtaking; upgrade if

@´c ´ < ´c

¾2² <
¹(°¡1)
°

standard case; upgrade if continual upgrading

´ > ´c @´c

Table 1: The Myopic Model
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Table 1 summarizes the relation between the parameter values and the optimal

decision. In entries along the diagonal, it is optimal either never to upgrade or to

upgrade in every period, regardless of the value of ´. In these situations, ´c does

not exist. In the lower left entry of Table 1, agents with low precision stick with

the current technology until they learn to use it su±ciently well (until ´ ¸ ´c),

at which time they upgrade. We refer to this as the \standard" case.

In the upper right entry, it is optimal to upgrade only if the agent has low

precision. An agent who is relatively unfamiliar with the current technology (i.e.,

has low precision ´ < ´c) upgrades, whereas the agent who knows how to use the

current technology well (i.e. has high precision ´ > ´c) sticks with it. In this

situation, the agent with lower initial precision (and thus, lower initial pro¯ts)

may eventually obtain higher pro¯ts: she continues to upgrade her technology

even though she never becomes expert at using it. In that sense, she overtakes

the agent with high initial precision.

In order to guarantee that overtaking occurs, we need the following additional

restriction. De¯ne ´s as the (unique) positive steady state to equation (4).

Assumption 2 ´c > ´s:

The following lemma summarizes the overtaking result in JN.

Assumption 3 Lemma 1 (Overtaking) When ®° < 1, ¾2² >
¹(°¡1)
°
, and As-

sumption 2 holds, an agent with initial precision ´ < ´c eventually earns higher

pro¯ts than an agent with initial precision ´ > ´c:

Proof. The agent with initial precision ´ > ´c never upgrades, so ´t ! 1 and

her pro¯ts converge to °n0¹, where n0 is the initial grade of technology. The agent

with initial precision ´ < ´ccontinues to upgrade in every period so nt ! 1 and

´t ! ´s. Thus, her pro¯ts approach +1 provided that ¹¡ 1
h(´s)

> 0. Suppose

to the contrary that ¹¡ 1
h(´s)

· 0. In that case, °(¹¡ 1
h(´s)

) · ¹¡ 1
h(´s)

< ¹¡ 1
´s

(since h(´s) < ´s), so it is not optimal to upgrade at ´s, contradicting the

assumptions of the lemma.

If Assumption 2 did not hold, all agents would eventually cease to upgrade,

and overtaking might not occur. Hereafter, when discussing the case of overtak-
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ing, we maintain Assumption 2.

4.2 General Case

This section generalizes the results from the myopic setting. All of the four

possibilities described in Table 1 remain when ¯ is positive. Thus, the possibility

that overtaking occurs does not rely on the assumption that agents are myopic.

However, if agents are su±ciently patient, overtaking cannot occur. We also

show that a positive value of ¯ never decreases, and typically increases the set of

precision levels at which upgrading is optimal. In this sense, a forward looking

agent upgrades more frequently than a myopic agent.

First we de¯ne overtaking in the general setting. Overtaking requires that

there is an interval of ´ over which the agent is willing to upgrade. Moreover,

if the initial precision lies in this interval, the equilibrium technology sequence

is unbounded: limt!1 nt = 1. There is also a critical value of ´, which we

denote ´, above which the agent never upgrades. Thus, if one agent begins with

precision in the interval for which upgrading continues, and a second agent begins

with ´ > ´, the ¯rst agent eventually uses higher grade technology and receives

higher pro¯ts in every period, regardless of their initial technologies (their initial

values of n).

The next two theorems analyze the ¯rst row of Table 1 when ¯ > 0. The-

orem 1 shows that overtaking is a generic possibility. Theorem 2 shows that a

su±ciently large value of ¯ eliminates the possibility of overtaking. If ¯ is large

it is optimal to sometimes upgrade, under con¯gurations of parameter values for

which upgrading is never optimal when ¯ = 0 (i.e. in the upper left entry in

Table 1).

Theorem 1 If Assumptions 1 and 2 hold and ®° < 1, ¾2² >
¹(°¡1)
°

(so that

overtaking occurs when ¯ = 0), overtaking can occur for small positive values of

¯.

Proof. We show that for su±ciently small but positive values of ¯; it is

optimal to upgrade in every period when ´ is small, and it is optimal never to

upgrade when ´ is large. Using equation (6) and the de¯nition of z(´), it is
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optimal not to upgrade if

z(´) > ¯ [°V (h(´) + º)¡ V (´ + º)] : (7)

V (´) is nondecreasing and V ( 1
¹
) > 0; since the strategy of never upgrading in

the future gives a stream of positive payo®s when ´ > 1
¹
. Thus, for ´ ¸ 1

¹
,

the right side of equation (7) is bounded above by ¯°V (h(´) + º). For all ´,

¯°V (h(´) + º) is bounded above by ¯°¹
1¡¯° (which equals the present value of the

payo® if a new technology is adopted in every period and the precision instantly

becomes in¯nite). De¯ne ´¤ as the unique positive solution to z(´) = ¯°¹
1¡¯° .

Given the assumed parameter restrictions, ´¤ exists for ¯ su±ciently small but

positive. Thus, equation (7) is satis¯ed, and it is optimal not to upgrade for

´ ¸ ´ ´ maxf´¤; 1
¹
g.

It is optimal to upgrade if the inequality in equation (7) is reversed. The right

side of equation (7) is approximately 0 for small ¯; the left side is independent

of ¯ and is strictly negative for ´ in the neighborhood of ´s (since ´s < ´c).

Therefore, for su±ciently small ¯ there exists a critical value of ´ greater than

´s, below which it is optimal to upgrade. If the initial value of ´ is below this

critical value, the agent upgrades in every period. Since ¹¡ 1
h(´s)

> 0 by lemma

1, overtaking occurs

Although the possibility of overtaking is generic, it never occurs if agents are

su±ciently patient.

Theorem 2 Suppose Assumption 1 holds.

1. If ®° < 1, ¾2² >
¹(°¡1)
°
, and Assumption 2 holds (so that overtaking occurs

when ¯ = 0), there exists ¯¤ < 1
°
such that for all ¯ ¸ ¯¤; overtaking cannot

occur.

2. If ®° > 1, ¾2² >
¹(°¡1)
°

(so that it is never optimal to upgrade when ¯ = 0),

and in addition ¹ ¡ 1
h(´s)

> 0;3 it is sometimes optimal to upgrade when

¯ ¸ ¯¤:

3When ´c does not exist, we obviously cannot invoke Assumption 2. We therefore impose

this inequality directly.
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Proof. 1. Overtaking requires that agents with su±ciently high precision

never upgrade. We show that never upgrading in the future cannot be an optimal

policy when ¯ is large. De¯ne ¼s ´ ¹ ¡ 1
h(´s)

, which is positive by lemma 1.

Therefore the value of the optimal program at ´s is V (´s) ¸ ¼s
1¡¯° : The payo®

from never upgrading is bounded above by ¹
1¡¯ : Monotonicity of V (´) implies

that it is not optimal to stick with the current technology forever if ¼s
1¡¯° >

¹
1¡¯ ,

i.e. if ¯ > ¹¡¼s
°¹¡¼s ´ ¯¤. Since ° > 1; ¯¤ < 1

°
. Thus there exists a range of

parameter values that satisfy Assumptions 1 and 2 and ®° < 1, ¾2² >
¹(°¡1)
°
, for

which overtaking cannot occur.

2. The proof of part 2 uses the same argument to show that never upgrading

is not optimal when ¯ is su±ciently large.

We next show how forward-looking behavior changes the set of ´ at which

upgrading is optimal. We de¯ne ´c¯ as a value of ´ at which the agent with

discount rate ¯ is indi®erent between sticking with the current technology and

upgrading. That is, ´c¯ satis¯es

z(´) = ¯ [°V (h(´) + º)¡ V (´ + º)] (8)

(so ´c0 = ´c). As with the static case, ´c¯ may not exist, in which case the

agent either upgrades in every period, or never upgrades. Unlike the static case,

we have not shown that ´c¯ is unique. When we refer to ´c¯ we always mean

any value of ´ that satis¯es equation (8). We show that z(´c¯) > 0 for ¯ > 0.

This inequality means that at a level of precision where the agent is indi®erent

between upgrading and sticking, upgrading reduces pro¯ts in the current period.

We ¯rst state two facts which we use to prove this result.

Lemma 2 De¯ne the function Â(´; w) ´ (°¡ 1)¹+ 1
´+w

¡ °
h(´)+w

: Â(´; w) is an

increasing function of w.

Proof. Di®erentiate the function Â and use the restriction that ´ > h(´).

Lemma 3 h(´) + º > h(´ + º):

Proof. h(´ + º) < h(´) + h0(´)º < h(´) + º where the ¯rst inequality

follows from concavity and the second from the restriction ´ > h(´) which implies

h0(´) < 1.
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Proposition 3 For ¯ > 0, at a level of precision where the agent is indi®erent

between upgrading and sticking, upgrading causes losses in the current period:

z(´c¯) > 0:

Proof. Suppose to the contrary that

z(´c¯) · 0 (9)

We derive a contradiction for the two interesting cases.4 Case 1: it is optimal to

upgrade at ´c¯ ¡ ² for small positive ² and it is optimal to stick with the current
technology for T periods at ´c¯ + ². (We allow the possibility that T = 1, a
necessary condition for overtaking.) Case 2: It is optimal to stick at ´c¯ ¡ ² for
small positive ² and it is optimal to upgrade at ´c¯ + ²: (Case 2 corresponds to

the second row of Table 1.)

Case 1. Choose ´ = ´c¯ + ², so that the optimal policy yields the payo®

V (´) =
T¡1X

t=0

¯t
µ
¹¡ 1

´ + tº

¶
+ ¯T°V (h(´ + Tº))

where T (possibly in¯nite) is the optimal time of the next upgrade. Consider

the deviation of moving forward the time of the next upgrade, e.g. upgrading at

time 0 rather than time T . The payo® corresponding to this deviation is D(´)

D(´) =
T¡1X

t=0

¯t°

µ
¹¡ 1

h(´) + tº

¶
+ ¯T°V (h(´) + Tº):

Using these expressions, we have

D(´)¡ V (´) =
"
T¡1X

t=0

¯tÂ(´; tº)

#
+ ¯T° fV (h(´) + Tº)¡ V (h(´ + Tº)g :

Evaluate this di®erence at ´ = ´c¯ , where Â(´; 0) = ¡z(´) ¸ 0 by equation (9).

By lemma 2, Â(´; tº) > 0 for t > 0, so the term in the square brackets is positive.

By lemma 3 and monotonicity of V , the term in the curly brackets is positive.

Therefore D(´c¯)¡ V (´c¯) > 0, which contradicts optimality.
4We ignore the unlikely possibility that the agent prefers to upgrade (or prefers to stick) for

both ´c¯ § ², ² small. Even if this situation could arise, it is plausible that a perturbation of

parameters would eliminate it.
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Case 2. Choose ´ · ´c¯ with ´+º > ´c¯. The optimal policy at such a value

of ´ is to wait until the next period to upgrade, which leads to the payo®

V (´) =

µ
¹¡ 1

´

¶
+ ¯°

µ
¹¡ 1

h(´ + º)

¶
+ ¯2°V (h(´ + º) + º):

Consider the deviation of upgrading in the current period rather than in the next

one. We again denote the value of this deviation as D(´) :

D(´) = °

µ
¹¡ 1

h(´)

¶
+ ¯°

µ
¹¡ 1

h(´) + º

¶
+ ¯2°V (h(´) + 2º):

The di®erence in the payo® is

D(´)¡ V (´) = ¡z(´) + ¯°
·

1

h(´ + º)
¡ 1

h(´) + º

¸

+¯2° fV (h(´) + 2º)¡ V (h(´ + º) + º)g :

Evaluate this di®erence at ´ = ´c¯. The ¯rst term on the right side is non-

negative by equation (9), the second term (square brackets) is positive by lemma

3, and the third term (curly brackets) is positive by lemma 3 and the monotonic-

ity of the value function. Consequently, D(´) ¡ V (´) > 0, which contradicts

optimality.

Proposition 3 demonstrates the trade-o® the agent faces in the choice of tech-

nology under learning-by-doing. Forward-looking agents upgrade to the new tech-

nology because the future bene¯t from the new technology exceeds the short-term

cost from discarding the familiar old technology. In other words, forward looking

agents upgrade when the current payo® from the new technology is strictly less

than the current payo® from the old technology, whereas myopic agents upgrade

only when the current payo® from the new technology is at least as great as the

current payo® from the old technology.

Proposition 3 enables us to compare the critical values ´c¯ and ´c. In order

to allow for the possibility that ´c¯ is not unique, we de¯ne ´c¯ = maxf´c¯g and
´c¯ = minf´c¯g. We have

Corollary 1 Suppose ´c¯ and ´c exist. Then ´c¯ < ´c for ®° > 1; and ´c¯ > ´c

for ®° < 1.
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Proof. By inspection, z(´) is monotonic, and the derivative dz
d´
has the same

sign as 1 ¡ ®°: From Proposition 3, z(´c¯) > 0 = z(´c). Hence, when dz
d´
>

0; ´c¯ > ´c, implying ´c¯ > ´c for ®° < 1: When dz
d´
< 0; ´c¯ < ´c, implying

´c¯ < ´c for ®° > 1:

Figure 1, which shows the graph of z(´) for the two cases ®° < 1 (solid

curve) and ®° > 1 (dashed curve), illustrates the corollary. We use this result

to show how a positive value of ¯ a®ects the decision to upgrade. De¯ne the

\upgrade set" ¢¯ = f´ : k(´) = 1g, the set of ´ for which it is optimal to upgrade,
given ¯. Table 1 implicitly de¯nes ¢0 (the upgrade set for ¯ = 0) under di®erent

con¯gurations of parameter values. The following theorem compares the upgrade

sets for ¯ = 0 and for 0 < ¯ < 1
°
under these four con¯gurations of parameter

values.

Theorem 3 For 0 < ¯ < 1
°
; ¢0 µ ¢¯ :

Proof. It is convenient to prove the claim for separate cases in Table 1. That

is,

(i) If, for ¯ = 0, there is either stagnation (®° > 1 and ¾2² >
¹(°¡1)
°
) or

continual upgrading (®° < 1 and ¾2² <
¹(°¡1)
°
), then ¢0 µ ¢¯ .

(ii) If the \standard case" occurs when ¯ = 0 (®° > 1 and ¾2² <
¹(°¡1)
°
), then

¢0 ½ ¢¯ :

(iii) If overtaking is possible when ¯ = 0 (®° < 1, and ¾2² >
¹(°¡1)
°

), then

¢0 ½ ¢¯ :

We take these cases in turn.

(i) Under stagnation, ¢0 = ; µ ¢¯ : (From Theorem 2, ¢¯ may be nonempty,

in which case ¢0 ½ ¢¯ .) Under continual overtaking, ¢0 = <+, and it is

straightforward to show that ¢¯ = <+.

(ii) In this case, ¢0 = f´ : ´ > ´cg. If ´c¯ exists, then it must be the case

that ¢¯ ¶ f´ : ´ > ´c¯g: If this relation did not hold, then for su±ciently large
´; it is optimal never to upgrade. However, using the inequality ¾2² <

¹(°¡1)
°

we

can show that for su±ciently large ´ the payo® of upgrading once and then never

subsequently upgrading is greater than the payo® of never upgrading. Since
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´c¯ < ´c from Corollary 1, we obtain ¢¯ ¶ f´ : ´ > ´c¯g ¾ ¢0: If ´c¯ does not

exist, it is optimal to upgrade for all ´, so ¢¯ = <+:

(iii) In this case, ¢0 = f´ : ´ · ´cg. If ´c¯ exists, then from Corollary 1,

´c¯ > ´c. We need to show that ¢¯ ¶ f´ : ´ < ´c¯g: (This relationship implies
that for ¯ > 0 it is strictly better to upgrade at ´ = ´c:) Suppose, to the contrary,

that for ´ < ´c¯ it is optimal not to upgrade. Then at ´ = ´c it is optimal to

stick with the current technology for T ¸ 1 periods, where T is the smallest

integer that satis¯es ´ = ´c+Tº ¸ ´c¯. At time T time it is optimal to upgrade.

Consider the deviation of upgrading in the current period (when ´ = ´c) rather

than waiting T periods. The additional pro¯ts resulting from this deviation,

rather than following the optimal program, are
"
T¡1X

t=0

¯tÂ(´c; tº)

#
+ ¯T fV (h(´c) + Tº)¡ V (h(´c + Tº))g :

The ¯rst term (square brackets) is positive using the de¯nition of ´c and lemma

2, and the second term (curly brackets) is positive by lemma 3 and monotonicity

of V (´). Consequently, it must be optimal to upgrade when ´ = ´c and ¯ > 0.

Therefore ¢¯ ¶ f´ : ´ < ´c¯g ¾ f´ : ´ < ´cg = ¢0:

If ´c¯ does not exist, it is optimal to upgrade for all ´, so ¢¯ = <+:

Theorem 3 means that forward-looking agents are \more likely" to upgrade

than myopic agents. For example, if overtaking occurs in the myopic setting,

the introduction of a positive discount factor reduces (and according to Theorem

2 may eliminate) the values of ´ above which further upgrading never occurs.

In addition, if ¾2² <
¹(°¡1)
°

(the second row in Table 1) so that overtaking does

not occur when ¯ = 0, then overtaking cannot occur when ¯ > 0. Finally,

if ¾2² >
¹(°¡1)
°
, ®° > 1 (the upper left entry in Table 1) myopic agents would

never upgrade. For these parameter values and ¯ > 0; agents might upgrade

when ´ is su±ciently large. In this case, the introduction of a positive discount

factor transforms the \stagnation" scenario to the \standard" scenario, in which

agents wait until they are su±ciently familiar with the current technology before

upgrading.

Theorem 3 compares the upgrade sets under a myopic and a forward looking

agent. The next theorem compares upgrade sets for small values of ¯. To

16



emphasize the dependence of the value function on ¯, we replace V (´) with

V (´; ¯).

Theorem 4 For small ¯ the upgrade set is monotone in ¯: ¢¯ µ ¢¯0 for ¯0 > ¯

(with ¯0and ¯ small).

Proof. De¯ne the function

G(´; ¯) ´ z(´)¡ ¯ [°V (h(´) + º; ¯)¡ V (´ + º; ¯)] :

G(´; ¯) is the gain from sticking with the current technology, and ´c¯ satis¯es

G(´c¯; ¯) = 0. From equation (7) it is optimal to upgrade if and only if G(´; ¯) ·
0; i.e. ¢¯ = f´ : G(´; ¯) · 0g. The implicit function theorem can be invoked to

yield

d´c¯

d¯
= ¡G¯(´

c¯ ; ¯)

G´(´c¯; ¯)
:

Continuity ofG(´;¯) implies that ¢¯ µ ¢¯
0
i®G¯(´

c¯; ¯) < 0: (IfG´(´
c¯; ¯) < 0,

it is optimal to upgrade for ´ = ´c¯ + ², so a decrease in ´c¯ enlarges the upgrade

set. If G´(´
c¯ ; ¯) > 0, it is optimal to upgrade for ´ = ´c¯ ¡ ², so an increase in

´c¯ enlarges the upgrade set.) From the de¯nition of G(¢) we have
@G

@¯
= ¡ [°V (h(´) + º : ¯)¡ V (´ + º; ¯)]

¡¯
µ
°
@V (h(´) + º : ¯)

@¯
¡ @V (´ + º;¯)

@¯

¶

From Proposition 3, the term in square brackets is positive (since it equals

z(´c¯) > 0). The derivative of V (´ + º; ¯) with respect to ¯ is positive and

bounded above by ¹°

(1¡¯°)2 since the value function is bounded above by
¹

1¡¯° as

shown in Proposition 1. Consequently the term on the second line can be made

arbitrarily small by choosing small ¯: It follows that for small ¯ the upgrade set

is monotone in ¯.

Theorem 4 implies that as the agent becomes more patient, she upgrades to

the new technology for a larger set of precision levels. The combined results of

Theorems 1-4 can be related to the role of capital markets and technology choice
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at di®erent stages of development.5 At an early stage of economic development,

an economy may have no ¯nancial markets, causing the cost of capital and the

discount rate to be high. In this case overtaking occurs for some initial conditions

and parameter values. As the economy develops, ¯nancial markets also develop,

leading to a lower discount rate and causing ¯rms to become more willing to

upgrade. Since overtaking is less likely for patient agents, convergence is more

likely to occur among developed economies, and certainly occurs if the discount

rate becomes su±ciently small.

5 Conclusion

When skills are only partly transferrable across generations of technology, being

more expert at using an existing technology may make it easier adopt a higher

grade. However, greater skill at using the existing technology also leads to a

higher opportunity cost of upgrading. The agent who is skilled at using the

existing technology may decide not to upgrade. An agent who is less skilled

has a lower opportunity cost and may upgrade, even though she cannot use the

new technology as pro¯tably as the ¯rst agent. The less skilled agent may

continue to upgrade to increasingly sophisticated technologies, even though she

never becomes expert at using any of them. She eventually achieves higher

pro¯ts than the more skilled agent.

This kind of overtaking can occur even when agents are forward looking,

as in Parente's (1994) model. However, overtaking never occurs if agents are

su±ciently patient. Previous papers emphasized the characteristics of technology

and learning that lead to the possibility of overtaking. We have emphasized the

need for a su±ciently low discount factor in order to obtain overtaking.

We also showed that when the myopic agent's upgrade decision depends non-

trivially on her skill level, a forward looking agent decides to upgrade for a larger

set of skill levels. At least for small discount factors, the upgrade set is nonde-

creasing in the discount factor. In this sense, forward looking agents are more

5Parente (1994) made a similar point based on a simulation result that the availability of

capital market a®ects the develpment path via the technology choice.
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likely to upgrade, and they upgrade more frequently.

Overtaking occurs because the skilled agent, who can use the new technology

more pro¯tably, also has a higher opportunity cost of upgrading, relative to the

unskilled agent. In the model we analyzed, the higher opportunity cost is the

result of learning-by-doing. However, other actions taken in the past might also

give rise to overtaking. For example, a producer who uses the current technology

may ¯nd it cheaper to upgrade to a newer technology, relative to a producer who

is not using the current technology. However, the ¯rst producer also has less

incentive to adopt the newer technology, because of the alternative to continue

using the technology which has already been purchased.
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