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Abstract

We study the allocation of several heterogenous, commonly ranked ob-
jects to impatient agents with privately known characteristics who arrive
sequentially according to a Poisson or renewal process. We analyze and
compare the policies that maximize either welfare or revenue. We focus
on two cases: 1. There is a deadline after which no more objects can be
allocated; 2. The horizon is potentially in�nite and there is time discount-
ing. We �rst characterize all implementable allocation schemes, and we
compute the expected revenue for any implementable, deterministic and
Markovian allocation policy. These properties are shared by the welfare
and revenue maximizing policies. Moreover, we show that these policies
do not depend on the characteristics of the available objects at each point
in time. The revenue-maximizing allocation scheme is obtained by a vari-
ational argument which sheds somewhat more light on its properties than
the usual dynamic programming approach. We also obtain several proper-
ties of the welfare maximizing policy using stochastic dominance measures
of increased variability and majorization arguments. These results yield
upper/lower bounds on e¢ ciency/revenue for large classes of distributions
of agents�characteristics or of distributions of inter-arrival times for which
explicit solutions cannot be obtained in closed form.

1 Introduction

We study the following dynamic mechanism design problem in continuous time:
a designer has to allocate (or assign) a �xed, �nite set of heterogenous ob-
jects with known characteristics to a stream of randomly arriving agents with
privately known characteristics. The objects are substitutes, and each agent is
willing to get at most one object. Moreover, all agents rank the available objects
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in the same way, and values for objects have a multiplicative structure involving
the agents�and objects�types . In one formulation we assume that there is a
deadline by which all objects must be sold, in another we assume a discounted
in�nite horizon. Under the assumption that monetary transfers are feasible,
we analyze and compare two distinct goals for the designer: maximization of
expected welfare, and maximization of expected revenue.
For both considered goals, the main trade-o¤ is as follows: assigning an

object today means that the valuable option of assigning it in the future -
possibly to an agent who values it more-, is foregone; on the other hand, since
the arrival process of agents is stochastic, the "future" may never materialize
(if there is a deadline ) or it may be farther away and thus discounted.
The basic dynamic assignment problem has numerous applications such as

the retail of seasonal and style goods, the allocation of �xed capacities in the
travel and leisure industries (e.g., airlines, trains, hotels, rental cars), the allo-
cation of priorities in a queue (e.g., for medical procedures), the assignment of
personnel to incoming tasks. More recently, dynamic pricing methods plays an
increased role in the allocation of electricity and bandwidth.
Whereas a large literature on yield or revenue management has directly

focused on revenue-maximizing pricing (mostly for the special case of linear,
private values for identical objects) our approach starts by a characterization of
all dynamically implementable deterministic allocation policies. All determin-
istic, implementable policies are described by partitions of the set of possible
agent types: an arriving agent gets the best available object if his type lies in
the highest interval of the partition, the second best available object if his type
lies in the second highest interval, and so on... These intervals generally depend
on the point in time of the arrival and on the composition of the set of available
objects at that point in time.
For any implementable allocation policy we derive the associated menus of

prices (one menu for each point in time, and for each subset of remaining objects)
that implement it, and show that these menus have an appealing recursive
structure: each agent who is assigned an object has to pay the value he displaces
in terms of the chosen allocation.
A �rst application is to the implementation of the dynamically welfare-

maximizing allocation policy under Poisson arrivals, which has been charac-
terized for the complete information case - via a system of di¤erential equations
- by Albright [1]. Since that policy is deterministic, Markovian and has the form
of a partition, it can be implemented also in our private information framework
by the dynamic price schedules identi�ed above, which coincide then with the
dynamic version of the Vickrey-Clarke-Groves mechanism. A rather surpris-
ing feature is that the cuto¤ curves de�ning the intervals in the time-dependent
partitions that characterize the dynamic welfare maximizing policy depend only
on the cardinality of the set of available objects, but not on the exact composi-
tion of that set. This is due here to the multiplicative structure of the agents�
valuations for objects.
The dynamically e¢ cient allocation policy can be explicitly computed if the

distribution of agents�types is exponential, while this is not often the case for
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general distributions. But, we can use comparative static results in order to
bound the cuto¤ curves in the welfare maximizing policy (and the associated
expected welfare) for the important and large, non-parametric classes of dis-
tributions that second-order stochastically dominate (are dominated by) the
exponential distribution - these are the so called new better (worse) than old
in expectation distributions. We show that a decrease in the second order sto-
chastic sense in the distribution of agents�types ( which implies an increase in
variability) leads to an increase in expected welfare in the dynamic assignment
problem. The proof of this result uses several simple insights from majorization
theory. 1

While the above comparative static result holds for both the deadline model
and for the discounted, in�nite horizon model, in the latter case - where
the welfare maximizing policy can be characterized and turns out to be time-
independent for general renewal arrival processes - we also examine the e¤ect
on expected welfare of a stochastic increase in the distribution of inter-arrival
times in the sense of the Laplace-transform order. This stochastic order is much
weaker than second order stochastic dominance. In particular, more variability
in inter-arrival times leads to higher expected welfare. Here bounds on ex-
pected welfare relative to the case with an exponential distribution of agents�
types and with a Poisson arrival process can be expressed in terms of the well
known Lambert-W function.
We next switch attention to revenue-maximization. Using several basic re-

sults about the Poisson stochastic process, we �rst compute the revenue gen-
erated by any individual-rational, deterministic, Markovian and implementable
allocation policy. Then, we can directly use variational arguments in order to
characterize the revenue-maximizing policy. The associated optimal prices are
of "secondary importance" since they are completely determined by the imple-
mentation conditions. Whereas the optimal prices necessarily depend on the
composition of the set of available objects, our main result is that, at each point
in time, the revenue maximizing allocation policy depends only on the size of
the set of available objects, but not on the exact composition of that set. The
argument for this somewhat surprising result is somewhat subtler than that
encountered for welfare-maximization.
To understand the meaning of this result, consider the same model, but

with identical objects. Then, for each size of available inventory, and for each
point in time, the revenue maximizing allocation policy is characterized by a
single cut-o¤ type: only an arriving agent with type above that cut-o¤ obtains
one of the objects. In contrast, when objects are heterogenous, the revenue
maximizing policy is, at each point in time, and for each subset of available
objects, characterized by several cut-o¤ types which determine if the arriving
agent gets the best available object, the second best, etc... Our result implies
that, for any subset of k available heterogenous objects, and for any point in
time, the highest cut-o¤ coincides with the optimal cut-o¤ in a situation with
one available object, the second-highest cut-o¤ coincides with the optimal cuto¤

1See Hardy, Littlewood and Polya, [17].
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in a situation with two identical objects, and so on till the lowest cut-o¤ which
coincides with the optimal cut-o¤ in a situation with an inventory of k identical
objects.
Our last result is devoted to a comparison of the welfare maximizing and rev-

enue maximizing allocation policies. We show that, for distributions of agents�
types that have an increasing failure (or hazard) rate, the revenue maximizing
policy is, overall, strictly more conservative: at any point in time, the cuto¤
curves de�ning the revenue maximizing dynamic policy are strictly above the
respective cuto¤ curves de�ning the welfare maximizing policy2 . This result
can be combined with the comparative statics results obtained for welfare max-
imization in order to obtain bounds on revenue for many cases where an explicit
computation is not feasible.
Finally, we want to note that our focus on implementable allocation policies

rather than on prices - inspired by the "mechanism design philosophy" and the
payo¤/revenue equivalence principle - is crucial for our results. Even for the
much studied case of dynamic revenue-maximization for identical goods, our
approach yields new insights and formulas relative to the approach that uses
dynamic programming and Bellman�s equations to characterize optimal prices.
Moreover, our approach facilitates the calculation and assessment of the revenue
associated to simple policies that may be used in practice, even if they are not
optimal in some sense, e.g., the use of a �nite set of prices/price adjustments.

The rest of the paper is organized is follows: In the remainder of this Section
we review the related literature.
In Section 2 we present the continuous-time model of sequential assignment

of several heterogenous objects to randomly arriving, privately informed agents.
Section 3 focuses on a characterization of implementable, deterministic and

Markovian policies, and of the associated menus of dynamic prices that imple-
ment such policies.
In Section 4 we present a Theorem, due to Albright [1] that determines the

dynamic welfare maximization policy in a framework with complete informa-
tion and Poisson arrivals. In Subsection 4-1 we apply Albright�s theorem to a
setting where the allocation of all available objects must occur before a known
deadline, and we consider the e¤ect of changes in the distribution of agents�
types. Subsection 4-2 deals with an in�nite horizon model with exponential
discounting. There we consider both the e¤ects of changes in the distribution
of agents�types and in the distribution of inter-arrival times.
In Section 5 we turn to revenue maximization, and focus �rst on the deadline

case and Poisson arrivals. We obtain a general expression for expected revenue,
and we use a variational argument in order to derive functional equations that
characterize the revenue maximizing allocation policy and the expected revenue
generated by this policy. For the variational argument we need to assume that
the agents�virtual valuation function is increasing. In Subsection 5-1 we brie�y

2We also show that this result may fail if the hazard rate condition is not ful�lled, even if
virtual valuations are increasing.
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characterize the (stationary) revenue maximizing policy for the in�nite horizon
case with exponential discounting and Poisson arrivals.
Section 6 uses the above results for a comparison of the welfare maximizing

and revenue maximizing allocation policies.
Most of the proofs are relegated to an Appendix.

1.1 Related Literature

There is a large theoretical and applied literature on dynamic pricing of inven-
tories (sometimes called revenue or yield management) in the �elds of Manage-
ment and Operations Research3 . We refer the reader to the surveys by Bitran
and Caldentey [6] and Elmaghraby and Keskinocak [12], and to the book by
Talluri and Van Ryzin [25]. McAfee and te Velde [20] survey the applications
to the airline industry. That industry pioneered many of the modern practices
in revenue management.

As Bitran and Caldentey [6] note, due to the technical complexity, the liter-
ature on dynamic revenue maximization with stochastic demand has focused on
models with identical objects4 . In a continuous-time framework with stochastic
arrivals of agents, Kincaid and Darling [18], and Gallego and Van Ryzin [13] use
dynamic programming in order to characterize - implicitly via Bellman�s equa-
tions - the revenue maximizing pricing policy for a set of identical objects that
need to be sold before a deadline. A main result is that the expected revenue in
the optimal policy - which is characterized for each size of inventory by a single
posted price - is increasing and concave both in the number of objects and in the
length of time left till the deadline. Moreover, each relevant cuto¤ price drops
with time as long as there is no sale, but jumps up after each sale5 . These au-
thors were able to calculate in closed form the solution for what amounts (in our
terms) to an exponential distribution of agents�values. Generally, a closed form
solution is not available, and even the general expression of expected revenue as
a function of the optimal cuto¤ prices is not available in the literature.
Arnold and Lippman [2], Das Varma and Vettas [9] and Gallien [15] consider

the same basic problem as above, but in a framework with an in�nite horizon
and discounting. In this case, the revenue maximizing posted prices - again one
price for each size of inventory -, turn out to be stationary, i.e., do not depend
on time6 .
In contrast to the above focus on revenue maximization, the mechanism

3The relevant Economics literature is much smaller. We do not discuss here the literature
on the so-called "Coase Conjecture" where the inventory can be replenished and agents are
strategic about their arrival.

4See Gallego and Van Ryzin [14] for an exception. Some models assume identical objects
but assume that customers belong to several known classes which allows the use of price
discrimination.

5Bitran and Mondschein [5] obtain similar results in a discrete time framework.
6Das Varma and Vettas consider a model with discrete time and deterministic arrivals,

whereas Gallien and Arnold and Lippman have continuous time models with stochastic ar-
rivals. The latter authors assume (rather than derive) the stationarity of posted prices, and
also compare these to reservation prices in a model where arriving agents announce bids.
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design literature on dynamic welfare maximization is somewhat less well devel-
oped. An early paper which uses optimal stopping theory to characterize the
e¢ cient assignment of a single object to randomly arriving agents in continuous
time is Elfving [11].
Derman, Lieberman and Ross [8] introduced a model where a set of distinct,

but commonly ranked, objects needs to be assigned to a set of sequentially ar-
riving agents. There is a �nite number of periods (time is discrete), and one
agent arrives at each period. Both objects and agents can have di¤erent types
and these determine the agents�valuations for the objects via a supermodular
function. The objects�types are �xed, and the agents�types becomes common
knowledge only upon arrival. In other words, at each decision node there is com-
plete information about the present, and uncertainty about the future. These
authors characterize the welfare maximizing assignment policy, and show that,
surprisingly, under a multiplicative speci�cation of values, the optimal policy at
each stage does not depend on the characteristics of the available objects (this
policy does depend though on number of periods and objects which are left).
Albright [1] extends the Derman-Lieberman-Ross model to a continuous-time
framework with random arrivals of agents7 . Albright�s model and results form
the basis for the present paper.
In Gallego and van Ryzin�s framework with identical objects, McAfee and

te Velde [19] compute the dynamic welfare maximizing policy for a Pareto dis-
tributions of agents�values, and show that it coincides there with the revenue
optimizing policy.
Finally, note that if the objects to be allocated in the D-L-R or Albright

model are places (or ranks) in a queue, one obtains an instance of a queueing
problem with priorities. Dolan [10] pioneered the use of dynamic versions of the
Vickrey-Clarke-Groves mechanisms in order to achieve welfare maximization in
queues with random arrivals and with incomplete information about the agents�
characteristics. Dynamic extensions of VCG schemes (for much more general
situations than those considered by Dolan) have recently attracted a lot of
interest (see for example Athey and Segal [3], Bergemann and Valimäki [4], and
Parkes and Singh [21]).

2 The Model

There are n items (or objects). Each item i is characterized by a "type" pi. Each
agent j is characterized by a "type" xj : Agents arrive according to a (possibly
non-homogenous) Poisson process with intensity �(t), and each can only be
served upon arrival (i.e., agents are impatient). After an item is assigned, it
cannot be reallocated in the future. For some results we relax the Poisson
assumption, and we allow for a more general renewal stochastic process that
describe arrivals.

7An early paper dealing with the e¢ cient assignment of a single object to randomly arriving
agents in continuous time is Elfving [11].
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An agent with type xj who obtains an object with characteristic pi enjoys
an utility of pixj . If an item with type pi is assigned to an agent with type
xj at time t, then the utility for the designer is given by r(t)pixj where r is
a piecewise continuous, non-negative, non-increasing discount function which
satis�es r(0) = 1.
While the items�types 0 � pn � pn�1 � ::: � p1 are assumed to be known

constants, the agents�types are assumed to be represented by independent and
identically distributed random variables Xi on [0;+1) with common c.d.f. F .
The realization of Xi is private information of agent i:We assume that each Xi
has a �nite mean, denoted by �, and a �nite variance.

3 Implementable Policies

Without loss of generality, we restrict attention to direct mechanisms where
every agent, upon arrival, reports his characteristic xi and where the mecha-
nism speci�es an allocation (which item, if any, the agent gets) and a payment.
As we shall see, the schemes we develop also have an obvious and immediate
interpretation as indirect mechanisms, where the designer sets a (possibly time-
dependent) menu of prices, one for each item, and the arriving agents are free
to choose out that menu.
An allocation policy is called deterministic and Markovian if, at any time t;

and for any possible type of agent arriving at t, it uses a non-random allocation
rule that only depends on the arrival time t, on the declared type of the arriving
agent, and on the set of items available at t; denoted by �t: Thus, the policy
depends on past decisions only via the state variable �t. Gihman and Skoro-
hod [16] give su¢ cient conditions ensuring that a controlled stochastic process
has an optimal policy that is deterministic and Markovian. These conditions
are satis�ed for the type of problems (e.g., welfare or revenue maximization)
discussed here.
Denote by pt : [0;+1)� �t ! �t [ ; a deterministic Markovian allocation

policy for time t and by qt : [0;+1) � �t ! R the associated payment rule.
Denote also by kt the cardinality of set �t: Finally, we restrict attention to
interim-individually rational policies, where no agent ever pays more than the
utility obtained from the physical allocation.
The next Proposition shows that a deterministic Markovian allocation policy

is implementable if and only if it based on a partition of the agents�type space.8

Proposition 1 Assume that �t is the set of objects available at time t; and
assume that pj 6= pk for any pj ; pk 2 �t; j 6= k. A deterministic, Markovian pol-
icy pt is implementable if and only if there exist kt+1 functions 1 = y0;�t (t) >
y1;�t (t) � y2;�t (t) � � � � � ykt;�t (t) � 0, such that xi 2 (yj;�t (t) ; yj�1;�t (t))
) pt (xi;�t) = p(j) where p(j) denotes the j�th highest element of the set �t; and

8 In fact, the result holds for any deterministic policy. But, since the rest of the analysis
focuses on the Markov case, and in order to save on notational complexity, we consider only
this case also here.
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such that xi < ykt;�t (t) ) pt (xi;�t) = ;.9 Moreover, the associated payment
scheme must satisfy qt (xi;�t) = qt ( exi;�t) if pt (xi;�t) = pt ( exi;�t).
Proof. =) Note �rst that, in any incentive compatible mechanism, if two
reports lead to the same physical allocation, then the payment should be the
same as well. Second, a direct mechanism is equivalent here to a mechanism
where the arriving agent at time t chooses an object and a payment from a menu
(pj ; qj)

kt
j=1. In addition, note that if some type xi prefers the pair (pk; qk) over

any other pair (pl; ql) with pk > pl , then any type exi > xi also prefers (pk; qk)
over (pl; ql). Similarly, if some type xi prefers (pk; qk) over (pl; ql) with pk < pl
then any type exi < xi also prefers (pk; qk) over (pl; ql). These observations allow
us to conclude that an implementable policy must partition the set of the agents�
reported types as in the Proposition�s statement. Otherwise, there exist t;�t
and xi > xi > xi such that pt (xi;�t) = pt

�
xi;�t

�
6= pt (xi;�t). Assume �rst

that pt (xi;�t) > pt (xi;�t). Since type xi prefers (pt (xi;�t) ; qt (xi;�t)) over
(pt (xi;�t) ; qt (xi;�t)), the same should hold also for type xi, a contradiction to
incentive compatibility. Assume next that pt

�
xi;�t

�
< pt (xi;�t) : Since type

xi prefers (pt (xi;�t) ; qt (xi;�t)) over
�
pt
�
xi;�t

�
; qt
�
xi;�t

��
, the same should

hold also for type xi, which yields again a contradiction.
That is, an agent who arrives at time t gets object p(k) if he reports a

type contained in the interval (yk+1;�t (t) ; yk;�t (t)). Moreover, if exi > xi,
then pt ( exi;�t) � pt (xi;�t). A similar argument shows that pt (yi;�t (t) ;�t) 2�
p(i); p(i�1)

	
for i 2 f1; 2; :::; ktg.

(= The proof is constructive. That is, given a policy which is based on a
partition, we design a payment scheme qt that, for any j 2 f1; :::; ktg; will lead
type xi 2 (yj;�t (t) ; yj�1;�t (t)] to choose the object with type p(j) . Without loss
of generality, we assume that an agent whose type is on the boundary between
two intervals in the partition chooses the item with higher type. Consider then
the following payment scheme

qj;�t (t) =

ktX
i=j

(p(i) � p(i+1))yi;�t (t) . (1)

Note that type xi = yj;�t (t) is indi¤erent between
�
p(j); qj

�
and

�
p(j+1); qj+1

�
.

Moreover, any type above yj;�t (t) prefers
�
p(j); qj

�
over

�
p(j+1); qj+1

�
, while

any type below prefers
�
p(j+1); qj+1

�
over

�
p(j); qj

�
. Therefore, any type xi 2

(yj;�t (t) ; yj�1;�t (t)] prefers
�
p(j); qj

�
over any other pairs in the menu.10

We assumed above that the set of objects available at t contains only objects
with distinct types. If there are some identical objects, there exist other imple-
mentable policies that do not take the form of partitions. But, for each such

9Types at the boundary between two intervals can be assigned to either one of the neighbor-
ing elements of the partition. That is, if xi 2

�
ykt;�t (t) ; ykt�1;�t (t) ; :::; y2;�t (t) ; y1;�t (t)

	
,

then pt
�
yi;�t (t) ;�t

�
2 fpi; pi+1g, i = 1; 2; ::; kt.

10The payment given in (1) is not the only one implementing the partition 1 > y1;�t (t) �
y2;�t (t) � � � � � ykt;�t (t) � 0. Adding to the payment any function that does not depend
on the reported type of the agent will not change the implemnted partition.
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policy, there exists another implementable policy that is based on a partition,
and that generates the same expected utility for all agents and for the designer.

4 The Dynamically E¢ cient Policy

Albright [1] characterized the allocation policy that maximizes the total ex-
pected welfare from the designer�s point of view in a complete-information
model. That is, upon arrival, the type of the arriving agent becomes public
information. His main result is:

Theorem 1 (Albright, [1]) There exist n unique functions yn(t) � yn�1(t)::: �
y1(t) , 8t , which do not depend on the p�s such that:

1. If an agent with type x arrives at a time t, it is optimal to assign to that
agent the j�th highest element of �t if x 2 (yj(t); yj�1(t)] ,where y0 � 1,
and not to assign any object if x < ykt(t):

2. For each k; the function yk(t) satis�es :

(a) limt!1r(t)yk(t) = 0

(b) d[r(t)yk(t)]
dt = ��(t)r(t)

R yk�1
yk

(1� F (x))dx � 0 .

3. The expected welfare starting from time t is given by
hPkt

i=1 r(t)p(i)yi(t)
i
,

where p(i) is the i�th highest element of �t.

Remark 1 The most surprising element in the above result is that the dynamic
welfare maximizing cuto¤ curves yj(t) do not depend on the items�characteris-
tics. In other words, although the Markov decision problem is one with 2n � 1
states, corresponding to all possible non-empty subsets of items �t, the welfare
maximizing policy is such that, at each point in time t , and for each type of
the arriving agent, the allocation decision is only contingent on the cardinality
of �t; kt: Moreover, since selling one object is equivalent to exchanging one
of the currently available items with an item having a type equal to zero, the
above observation implies that after any sale at time t; the kt � 1 curves that
determine the optimal allocation from time t on, coincide with the kt�1 highest
curves that were relevant for the decision at time t: Thus, in e¤ect, there are
only n relevant states for the decision maker instead of 2n � 1. To understand
the intuition behind this result, assume for simplicity that at time t there are two
objects p1 > p2 and that the relevant cuto¤s are ye1 > y

e
2. Consider the e¤ect of

a small shift in the highest cut-o¤ from ye1 to y
e
1+�. Note �rst that this shift has

any e¤ect only if an agent indeed arrives at t. Second, the shift has no e¤ect on
designer�s welfare if the arriving agent has a value above ye1 + � or below y

e
1. If,

however, at time t an agent with value ye1 arrives, then this shift switches the
object he gets from p2 to p1 and therefore switches the object available for future
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allocation from p1 to p2. Therefore, the e¤ect of the shift on the social welfare
is

f (ye1) (p1y
e
1 +W (p2; t)� p2ye1 �W (p1; t))

= (p1 � p2) f (ye1) (ye1 �W (1; t))

where W (p; t) denotes here the expected welfare at time t if only one object with
type p remains, given that the optimal policy is followed from time t on and the
equality follows since W (p; t) is linear in p. Note that the above expression is
linear and separable in the di¤erence (p1� p2), and therefore the optimal cuto¤
- where the total e¤ect of a shift should be equal to zero - will not depend on this
di¤erence.

Since the Markovian, deterministic policy described in Theorem 1 has the
form of a partition, it can be implemented by the payments (or by prices in an
indirect mechanism) described in Proposition 1. Note that Theorem 1 -3 implies
that the payment

qj;�t (t) =

ktX
i=j

(pi � pi+1)yi;�t (t)

can be interpreted as the expected externality imposed on other agents by an
agent that arrives at time t who gets the object with the j-th highest type among
those remaining at time t. In other words, for the dynamically e¢ cient policy,
our implementing mechanism coincides with a dynamic Clarke-Groves-Vickrey
mechanism, as studied by Athey and Segal ([3]), Bergemann and Valimäki ([4]),
and Parkes and Singh ([21]).

4.1 The Dynamic E¢ cient Allocation with a Deadline

In this Section we apply Theorem 1 to a framework with deadline T after which
all objects perish. Our main result shows that, under the dynamic welfare-
maximizing policy, an increase in the variability of the distribution of the agents�
values (while keeping a constant mean) increases expected welfare. We want to
emphasize that this result holds even if all available objects are identical !
Besides its intrinsic interest, this result allows us to bound the welfare max-

imizing cuto¤ curves (and thus the expected welfare) for large and important
families of distributions for which an explicit solution of the system of di¤eren-
tial equations that characterizes the e¢ cient policy is not available (see Theorem
1-2b).
We assume that the discount rate satis�es:

r(t) = 1 for 0 � t � T and r(t) = 0 for t > T

It is then obvious that the dynamically e¢ cient policy needs to satisfy

y1(T ) = y2(T ) = ::: = yn(T ) = 0

10



Example 1 Assume that there are three objects, that the arrival process is ho-
mogenous with rate �(t) = � normalized to be 1; and that the distribution of
agents� types is exponential, i.e., F (x) = 1 � e�x: From Theorem 1, we obtain
the following system of di¤erential equations that characterize cut-o¤ curves in
the dynamic welfare maximizing policy:

y01 = �
Z 1

y1

e�xdx = �e�y1

y02 = �
Z y1

y2

e�xdx = e�y1 � e�y2

y03 = �
Z y2

y3

e�xdx = e�y2 � e�y3

with initial conditions y1(T ) = y2(T ) = y3(T ) = 0: The solution to this system
is given by:

y1(t) = ln(1 + T � t)

y2(t) = ln

�
1 +

(T � t)2
2(1 + T � t)

�
y3(t) = ln

�
1 +

(T � t)3
3[(T � t)2 + 2(1 + T � t)]

�
The following �gure depicts the solution for T = 5 :

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

t

y

y1 - solid line; y2 - dashed line; y3 - the dotted line

For the main result in this Section, we �rst need a well- know concept, due
to Hardy, Littlewood and Polya [17] and a Lemma:
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De�nition 1 For any n�tuple  = (1; 2; ::; n) let (j) denote the jth largest
coordinate (so that (n) � (n�1) � ::: � (1). Let � = (�1; �2; ::; �n) and
� = (�1; �2; ::; �n) be two n�tuples. We say that � is majorized by � and we
write � � � if the following system of n � 1 inequalities and one equality is
satis�ed:

�(1) � �(1)

�(1) + �(2) � �(1) + �(2)

::: � :::

�(1) + �(2) + ::�(n�1) � �(1) + �(2) + �(n�1)

�(1) + �(2) + ::+ �(n) = �(1) + �(2) + ::+ �(n)

We say that � is weakly sub-majorized by � and we write � �w � if all relations
above hold with weak inequality.

Lemma 1 Let � = (�1; �2; ::�n) and � = (�1; �2; ::; �n) be two n�tuples such
that

Pn
i=1 �i =

Pn
i=1 �i: Then � � � if and only if

Pn
i=1 pi�(i) �

Pn
i=1 pi�(i)

for any constants pn � pn�1 � ::: � p1:

Proof. See Appendix.

Theorem 2 Consider two distributions of agents� types F and G such that
�F = �G = � and such that F second-order stochastically dominates G (in
particular F has a lower variance than G): Then it holds that:

1.

8k; t;
kX
i=1

yFi (t) �
kX
i=1

yGi (t)

2. For any time t and for any set of available objects at t; �t 6= ;, the
expected welfare in the e¢ cient dynamic allocation under F is lower than
that under G:

Proof. See Appendix.
A main application of the above Theorem follows: For a constant arrival

rate, the system of di¤erential equations that characterizes the e¢ cient dynamic
allocation can be solved explicitly for any number of objects if the distribution
of the agents� types is exponential (see Example above), while this is rarely
the case for other distributions. Together with the above result, that solution
can be used to bound the optimal policy and the associated welfare for large,
non-parametric classes of distributions that are often used in applications.

De�nition 2 A non-negative random variable X is said to be new better than
used in expectation - NBUE (new worse than used in expectation - NWUE) if

E[X � a j X > a] � (�) E[X] ;8a � 0

12



The classes of NBUE (NWUE) distributions are large and contain most of
the distributions that appear in applications. For example, any distribution
with an increasing failure (or hazard) rate is NBUE, while any distribution
with a decreasing failure rate is NWUE.

Theorem 3 Let F; the distribution of agents� types be NBUE (NWUE) with
mean �. Then, for any t and �t 6= ?, the expected welfare in the e¢ cient
dynamic allocation under F is lower (higher) than that under the exponential
distribution G(x) = 1� e�

x
� :

Proof. The result follows directly from Theorem 2 by noting that F second
order stochastically dominates G(x) = 1 � e�

x
� (is second-order stochastically

dominated by G(x) = 1� e�
x
� ) is equivalent to F being NBUE (NWUE) - see

Theorem 8.6.1 in Ross [24]. In other words,

8y � 0;
Z 1

y

(1� F (x))dx � (�)�e�
x
� if F is NBUE (NWUE)

Example 2 Let F (x) = x on [0; 1] so that F is IFR and thus NBUE; and let
�(t) = � = 1: Assume that there is one object with type p1 = 1. The optimal
cut-o¤ curve satis�es

y0F = �
Z 1

yF

(1� x)dx = �1
2
+ yF �

y2F
2

with initial condition yF (T ) = 0: The solution to this di¤erential equation is

yF (t) = 1�
2

T � t+ 2

The �gure below illustrates the Theorem for T = 5 : yF (t) = 1 � 2
7�t is the

dashed line, yG(t) = 1
2 ln[6� t] is the solid line corresponding to the exponential

distribution G(x) = 1� e�2x which has mean 1
2 :
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4.2 The Dynamic E¢ cient Allocation with In�nite Hori-
zon and Discounting

In this Section we assume that r(t) = e��t: Given this "memoryless" speci�-
cation, the arrival process can be more general, and it is assumed here to be a
renewal process with general inter-arrival distribution B (instead of a Poisson
process where the inter-arrival distribution is exponential).11 We start with a
simple, complete information example that illustrates the main insight - the
stationarity of the welfare maximizing dynamic policy.

Example 3 Assume that the arrival process is Poisson with rate �, i.e., B(t)
= 1�e��t: Let eB denote the Laplace- transform of the inter-arrival distribution
B; and note �rst that12

eB(�) = Z 1

0

e��t�e��tdt =
�

�+ �

and that eB(�)
1� eB(�) = �

�

11The derived controlled stochastic process is semi-Markov since the Markov property is
preserved only at decision points, but not between them. See Puterman (2005) for solution
approaches to such problems by an uniformization procedure, and for conditions guaranteeing
that optimal policies are deterministic and Markovian.
12 eB(�) acts here as the e¤ective discount rate. It represents the discounted value of one

unit at the expected time of the next arrival.
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Consider now the the di¤erential equation (see Theorem 1) de�ning the e¢ cient
allocation curve for the case of one object y1(t):

d[r(t)y1(t)]

dt
= ��r(t)

Z 1

y1

(1� F (x))dx

Plugging r(t) = e��t we get

(y01 � �y1) = ��
Z 1

y1

(1� F (x))dx.

Postulating now y01 = 0 yields

y1 =
�

�

Z 1

y1

(1� F (x))dx =
eB(�)

1� eB(�)
Z 1

y1

(1� F (x))dx

On the interval of de�nition of F [0; � ] the identity function on the left hand
side, y1; increases from 0 to � while the function �

�

R1
y1
(1�F (x))dx decreases in

y1 from �
�� (where � is the mean of F ) to 0: Thus, there is a unique intersection

point, and the equation above has a unique solution y�1 . Since limt!1 e
��ty�1 =

0, we obtain that the e¢ cient dynamic cut-o¤ curve is indeed described by the
constant y�1 . The derivations for more items follow analogously.

The complete-information e¢ cient dynamic assignment for the general case
is characterized in the following Theorem:

Theorem 4 (Albright, [1]) Assume that r(t) = e��t: The e¢ cient allocation
curves are constants (i.e., independent of time) yn � yn�1::: � y1: These con-
stants do not depend on the p�s, and are given by the implicit recursion:

(yk + yk�1 + ::y1) =
eB(�)

1� eB(�)
Z 1

yk

(1� F (x))dx ; 1 � k � n

where eB is the Laplace- transform of the inter-arrival distribution B.

The e¢ cient dynamic allocation policy is obviously Markovian and deter-
ministic, and can be therefore implemented by the payments of Proposition 1.
The analog of Theorem 2 for this case is:

Theorem 5 Consider two distributions of agents� types F and G such that
�F = �G = � and such that F second-order stochastically dominates F (in
particular F has a lower variance than G): Then, for any �xed inter-arrival
distribution B it holds that:

1. 8k;
Pk

i=1 y
F
i �

Pk
i=1 y

G
i

2. For any t and any �t 6= ; the expected welfare in the e¢ cient dynamic
allocation under F is lower than that under G:
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Proof. See Appendix.
In addition to the above Theorem about the bene�ts of increased variabil-

ity in the agents�types, we now obtain a comparative-statics result about the
bene�ts of variability in arrival times. Interestingly, this next result holds for a
stochastic order that is much weaker than second-order stochastic dominance.
We �rst need the following de�nition (see Shaked and Shanthikumar, 2006):

De�nition 3 Let X;Y be two non-negative random variables. Then X is said
to be smaller than Y in the Laplace transform order, denoted by X �Lt Y; if

E[e�sX ] � E[e�sY ] for all s > 0

Note that the function w(x) = �e�sx is increasing an concave for any s > 0:
Thus, we obtain that X �SSD Y ) X �Lt Y since the former involves a
comparison of expectations with respect to all increasing concave functions.

Theorem 6 Consider two inter-arrival distributions B and E such that B �Lt
E: Then, for any �xed distribution of agents�characteristics F; it holds that:

1. 8k;
Pk

i=1 y
B
i �

Pk
i=1 y

E
i

2. For any t and for any �t 6= ;; the expected welfare in the e¢ cient dynamic
allocation under B is lower than that under E:

Proof. See Appendix.
Again, we can apply the above comparative static results in order to bound

the optimal cut-o¤ curves and the associated expected welfare for large classes
of distributions of the agents�types and of the inter-arrival times.

Corollary 1 For any t and for any �t 6= ; we have:

1. For any �xed distribution of inter-arrival times, the expected welfare un-
der an NBUE(NWUE) distribution of agents�types with mean � is lower
(higher) than the expected welfare under the exponential distribution G(t) =
1� e�

t
� :

2. For any �xed distribution of agents� types, the expected welfare under an
NBUE(NWUE) distribution of inter-arrival times with mean � is lower
(higher) than the expected welfare under a Poisson arrival process with
rate 1

� :

Proof. The �rst claims follows from Theorems 5 and from the fact that NBUE
(NWUE) distributions second order stochastically dominate (are dominated by)
an exponential distribution with the same mean. The second claim follows from
Theorem 6, from the above observation, and from the fact that second order
stochastic dominance implies domination in the Laplace- transform order.
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Example 4 Assume that there is one object with p1 = 1; and consider a situa-
tion with an NBUE(NWUE) distribution of abilities with mean �, and another
NBUE(NWUE) distribution of inter-arrival times with mean !: Let the discount
rate be �: Then, the expected welfare under the e¢ cient sequential allocation pol-
icy is lower (higher) than

�LambertW(
1

!�
)

where the increasing function LambertW(x) is implicitly de�ned by:

LambertW(x)eLambertW(x) = x

To show this, consider the exponential distributions G� = 1�e�
t
� for the agents�

types and G! = 1� e�
t
! for the inter-arrival times: For these distributions, the

optimal cuto¤ point y1 solves

y1 =
eG!(�)

1� eG!(�)
Z 1

y1

e�
t
� dt =

�

!�
e�

y1
�

The solution to this equation is given by

y1 = �LambertW(
1

!�
)

and the result follows by the above corollary. Note that the solution is linear
in �; the mean of the agents� distribution of types. The next �gures plots the
solution as a function of ! for � = � = 1 (note that as intuition would suggest,
!; the mean inter-arrival time and �; the discount factor, play here analogous
roles):
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5 Dynamic Revenue-Maximization with a Dead-
line

In this section we analyze the dynamic revenue maximization problem. A main
feature that di¤erentiates our analysis from previous ones is the fact that we use
the mechanism design approach developed in Section 2 and the insight behind
the celebrated payo¤/revenue equivalence theorem. Thus, we focus on the dy-
namic allocation policy that underlies revenue maximization, while pricing plays
only a "secondary" role since it is automatically induced by the implementation
requirements once the allocation is �xed.
We �rst calculate the expected revenue for any given Markovian, determin-

istic allocation policy, and then we use a variational argument to derive the
cut-o¤ curves describing the revenue-maximizing dynamic policy. As we shall
see, this approach sheds more light and is more explicit about the properties of
the optimal policy and the resulting revenue than the standard dynamic pro-
gramming approach that is centered around the so called Bellman�s equations.
In addition to the previous assumptions, we assume here that the distribution

of the agents� valuations F is twice di¤erentiable, and we denote by f the
corresponding density function. Moreover, we assume that f (x) < 1 for any
x 2 [0;1).
We �rst analyze the revenue maximizing problem in the setting with a dead-

line. That is, we assume that the seller�s discount function satis�es:

r(t) = 1 for 0 � t � T and r(t) = 0 for t > T .

In the next Section, we will brie�y discuss the setting with in�nite horizon and
exponential discounting.
Recall from Proposition 1 that, in order to implement a Markovian, deter-

ministic allocation which is given by1 = y0;�t (t) > y1;�t (t) � y2;�t (t) � ��� �
ykt;�t (t) > 0, 8t; an agent that arrives at t should be charged

qj;�t (t) =

ktX
i=j

(p(i) � p(i+1))yi;�t (t) + C (t) (2)

if he gets the item with j-th highest characteristic among the remaining objects.
Here C (t) is some allocation-independent function. In any interim individually
rational mechanism we must have C (t) � 0, and in order to maximize the
revenue we must clearly have C (t) = 0:
The next Theorem calculates the expected revenue for any implementable

Markovian, deterministic policy. Note that such a policy must specify an al-
location decision for each possible state, i.e., for each possible subset of object
�t 6= ; available at time t: Moreover, for each state, the policy consists of kt
=j �t j cut-o¤ curves that describe the partition of the set of agents�types -
generally these curves depend on the precise composition of the set �t . The
number of needed curves if there are n objects, P (n), satis�es the recursion
P (n) = n + nP (n� 1) with P (1) = 1. This yields 4 cut-o¤ curves for two
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objects, 15 curves for three objects, 64 curves for 4 objects, and so on... It is
obvious from the recursive formula that there are at least n! curves. In order to
save on notation and to keep the somewhat involved proofs more transparent,
we assume below that there are only two objects with characteristics p1 � p2 .
But we will describe the completely analogous solution to revenue maximization
problem for the general case with any number of distinct objects. A main result
is that the dynamic revenue maximizing policy for n (possibly distinct) objects
is completely described by n cuto¤ curves !
With slight abuse of notation, we write "2" instead of �t = fp1; p2g as the

second subscript of the pricing and allocation functions q (t) and y (t) whenever
kt = 2 . This should not lead here to any confusions.

Theorem 7 Assume that

1. the arrival process is homogenous with rate �(t) = �

2. If kt = 2; the designer uses the dynamic allocation cuto¤-curves y2;2 (t) �
y1;2 (t), i.e., the agent that arrives at time t gets: the object with type
p1if his type is xi � y1;2 (t); the object with type p2, if his type is xi 2
[y2;2 (t) ; y1;2 (t)); no object if xi < y2;2 (t).

3. If kt = 1; the designer uses the dynamic cuto¤�curves y1;pj (t), i.e., the
agent that arrives at time t gets the remaining object with characteristic
pj if xi � y1;pj (t) ; and no object otherwise.

Then, the expected revenue from this policy is given byZ T

0

(p2y2;2 (t) +R (p1; t))� (1� F (y2;2 (t))) e�
R t
0
�(1�F (y2;2(s)))dsdt +Z T

0

((p1 � p2) y1;2 (t) +R (p2; t)�R (p1; t)) �

� (1� F (y1;2 (t))) e�
R t
0
�(1�F (y2;2(s)))dsdt

where

R (pj ; t) = pj

Z T

t

y1;pj (s)�(1� F (y1;pj (s))e
�
R s
t
�[1�F (y1;pj (z))]dzds (3)

is the expected revenue at time t if only one object with characteristic pj remains,
given that the dynamic allocation functions y1;pj (s) is used from t on.

Proof. See Appendix.
In the general case with any set of objects, the expected revenue at time t

where �t 6= ; is given by

R (�t; t) =

ktX
i=1

Z T

t

�
qi;�t (s) +R

�
�tnfp(i)g; s

��
hi;�t (s) ds
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where

hi;�t (s) = � [F (yi�1;�t (s))� F (yi;�t (s))] e�
R s
t
�[1�F (ykt;�t (z))]dz

is the density of the waiting time till the �rst arrival of an agent with a type in
the interval [yi;�t (s) ; yi�1;�t (s)) given that no arrival that leads to a sale (e.g.,
type above ykt (s)) has occurred; and qi;�t (s) is given by (2).

Example 5 We now use the above Theorem to compute the expected revenue
at time t = 0 resulting from dynamically e¢ cient allocation policy in the case
of one object with type p1 = 1; homogenous Poisson arrivals with parameter
�(t) = 1 and an exponential distribution of agents�values. The e¢ cient cuto¤
curve is given by

y(t) = ln[1 + T � t]:

Expected revenue is then given by:Z T

0

y(t)h1(t)dt =

Z T

0

ln[1 + T � t][e� ln[1+T�t]][e�
R t
0
e� ln[1+T�s]ds]dt

= ln(1 + T )� T

T + 1

The �gure displays the expected revenue as a function of the deadline T:
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The next main result derives the revenue maximizing allocation policy. In
particular, it shows that this policy is independent of the characteristics of the
available objects.
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Theorem 8 Assume that the distribution of the agents�valuations satis�es the
assumption of increasing virtual utility, i.e., the function x� 1�F (x)

f(x) is increas-
ing. The dynamic revenue maximizing allocation policy is independent of the
characteristics of available objects p1 and p2. In particular, we have:

1. y1;p1(t) = y1;p2(t) = y1;2(t) := y1(t) where y1(t) is a solution of

y1(t) =
1� F (y1(t))
f (y1(t))

+ �

Z T

t

[1� F (y1(s))]2

f (y1(s))
ds

2. y2;2(t) := y2(t) is a solution of

y2(t) =
1� F (y2(t))
f (y2(t))

+ �

Z T

t

[1� F (y2(s))]2

f (y2(s))
ds�R (1; t)

where

R (1; t) =

Z T

t

y1 (s)�(1� F (y1 (s))e�
R s
t
�[1�F (y1(z))]dzds

The proof proceeds by a sequence of two Claims. First, we derive the
revenue-maximizing cuto¤ curves when only one object remains. Afterwards,
we describe the revenue maximizing allocation policy if two objects are left.

Claim 1 If only one object remains, the dynamic revenue maximizing allocation
curve y1(t) solves

y1(t) =
1� F (y1(t))
f (y1(t))

+ �

Z T

t

[1� F (y1(s))]2

f (y1(s))
ds: (4)

Moreover, the expected revenue at time t where �t = pj is given by R (pj ; t) =
pjR (1; t) where

R (1; t) = �

Z T

t

[1� F (y1(s))]2

f (y1(s))
ds. (5)

Proof. See Appendix.
We proceed now to characterize the revenue-maximizing allocation policy if

there are two objects left.

Claim 2 If two objects remain, the dynamic revenue maximizing policy is char-
acterized by two cuto¤ curves, y1 (t) and y2(t); where y1 (t) satis�es equation (4)
and where y2(t) satis�es:

y2(t) =
1� F (y2(t))
f (y2(t))

+ �

Z T

t

[1� F (y2(s))]2

f (y2(s))
ds�R (1; t) (6)

Moreover, the expected revenue at time t for the case �t = f1; 1g is given by

R(f1; 1g; t) = �
Z T

t

[1� F (y2(s))]2

f (y2(s))
ds. (7)
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Proof. See Appendix.

Remark 2 The cuto¤ curves describing the revenue maximizing allocation pol-
icy do not depend on the p�s . It is worth to compare intuition for this result to
the one we gave for the analogous result for the case of welfare maximization.
As we shall see, the present case is somewhat more intricate. Assume that there
are two available objects p1 > p2 , and that at time t the cuto¤s are y1 > y2.
Again, consider the e¤ect of small shift in the highest cut-o¤ from y1 to

y1 + �. Like in welfare maximization case, this shift has any e¤ect only if some
agent arrives at t. Also as in welfare maximization, the shift has no e¤ect on
the expected revenue if the arriving agent has value below y1. If at time t an
agent with value y1 arrives, then the shift switches the object he gets from p2 to
p1 - which implies that he has to pay q1 instead of q2 - and also switches the
object that remains available for the future allocation from p1 to p2. The e¤ect
is

f (y1) (q2 + p1R (1; t)� q1 � p2R (1; t))
= (p1 � p2) f (y1) (R (1; t)� y1)

where R(t) denotes here the expected revenue at time t if only one object with
p = 1 remains, assuming that the optimal policy will be followed from time t
on. The equality in the above equation follows here from the fact that in any
incentive compatible mechanism we must have q2�q1 = (p2 � p1) y1. So far, the
e¤ects are similar to those encountered in the welfare maximization case. But, a
further, new e¤ect on revenue appears here if the arriving agent�s value is above
y1 + �. The reason is that in any incentive compatible mechanism, the price
agents with the values above y1 have to pay is given by q1 = (p1 � p2) y1+ p2y2.
Therefore, increasing the cut-o¤ y1 implies a higher revenue if an agent with
value above y1 + � arrives. This e¤ect is

(1� F (y1 + �)) ((p1 � p2) (y1 + �) + p2 (y2 +R (1; t)))
� (1� F (y1 + �)) ((p1 � p2) y1 + p2 (y2 +R (1; t)))

= (p1 � p2) (1� F (y1 + �)) �

To sum up, the total e¤ect of the shift on expected revenue is

(p1 � p2) ((1� F (y1 + �)) �� f (y1) (y1 �R (1; t))) .

Again, the expression is linear in the di¤erence (p1 � p2) and the optimal y1 -
where the total e¤ect of the shift should be equal to zero - does not depend on
the characteristics of the available objects.

Remark 3 The equations for the revenue maximizing cuto¤ curves have an
intuitive interpretation. Assume �rst that only one object with p = 1 is still
available. The allocation policy is described then by the equation

y1(t)�
1� F (y1(t))
f (y1(t))

= �

Z T

t

[1� F (y1(s))]2

f (y1(s))
ds = R(1; t).
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On the left hand side, we have the virtual valuation of an agent with type y1(t).
As Claim 1 showed, the right hand side represents the expected revenue from
time t on if the object is not sold at t given that an optimal allocation policy
is followed from time t on. Since the seller is able to extract as revenue only
the virtual valuation of an arriving buyer, the equation shows that the optimal
cut-o¤ curve satis�es an indi¤erence condition between immediate selling and a
continuation that uses the optimal policy.
Let us now proceed to the two objects case, and assume that p1 = p2 = 1. If

both objects are still available at time t, then the equation

y2(t)�
1� F (y2(t))
f (y2(t))

+R (1; t) = �

Z T

t

[1� F (y2(s))]2

f (y2(s))
ds = R(f1; 1g; t)

implies that optimal cut-o¤ at time t is such that the seller is indi¤erent between
selling one object - which generates a revenue given by the left hand side - and
between keeping the object at time t and proceeding using the optimal policy -
which generates a revenue given by the the right hand side.
In the general case, if there are kt = j�tj available objects, then, no matter

what their types are, the i�th cut-o¤ curve, 1 � i � kt; in the dynamic revenue-
maximizing policy is given by

yi(t)�
1� F (yi(t))
f (yi(t))

+�

Z T

t

[1� F (yi�1(s))]2

f (yi�1(s))
ds = �

Z T

t

[1� F (yi(s))]2

f (yi(s))
ds (8)

or, equivalently, by

yi(t)�
1� F (yi(t))
f (yi(t))

+R(1i�1; t) = R(1i; t) (9)

where 1i is the set of 10s of cardinality i and

R(1j ; t) = �

Z T

t

[1� F (yj(s))]2

f (yj(s))
ds (10)

is the expected revenue at time t from the optimal cut-o¤ policy if j identical
objects with p = 1 are still available.
While equation (9) has been obtained for the case of identical objects in the

revenue-management literature (see for example Gallego and van Ryzin [13], and
Bitran and Mondschein [5] for a discrete time model), the explicit expression
in (10) is, to the best of our knowledge, new - a by-product of our analysis that
focused on the allocation policy rather than on prices.
For the general case with several distinct objects, note also that, if an object is

sold at time t, then the lowest among the current optimal cut-o¤ curves becomes
irrelevant regardless of the characteristic of the sold object, while all the other
kt � 1 cuto¤ curves do not change and remain relevant for the future allocation
decisions. That is, the optimal cuto¤ curves depend only on the cardinality of
�t, kt . For any two sets of available objects �1t and �

2
t with k

1
t =

���1t �� and
k2t =

���2t �� , and for any 1 � i � min�k1t ; k2t 	 it holds that
yi;�1t (t) = yi;�2t (t).
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If �t is a set of identical objects, then only the lowest cut-o¤ curve ykt(t) where
kt = j�tj is relevant for the allocation decision.

We conclude this section with an example:

Example 6 Let F (x) = x on [0; 1] , and let �(t) = � = 1; and assume that
there are two objects. Then, the revenue maximizing policy is characterized by:

y1(t) = 1� 2

4 + T � t

y2(t) = 1�
1�

p
5 +

�
1 +

p
5
�
c (T � t+ 4)

p
5

T � t+ 4 + c (T � t+ 4)1+
p
5

where c =
p
5+1

4
p
5(
p
5�1)

. The next picture plots these cut-o¤ curves for T = 5:
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The optimal mechanism can be described as follows: Assume �rst that both
objects are still available at time t; and consider an agent arriving at t : if his
type is xi 2 [y2(t); y1(t)), he gets the object p2 and pays p2y2(t); if his type is
xi 2 [y1(t); 1], he gets object p1 and pays p2y2(t) + (p1 � p2) y1(t); if his type is
x < y2(t); he gets nothing and pays nothing.
Assume now that an object is sold at time � : Then the other object will be

sold at some time t > � which is the time of the �rst arrival of an agent with type
xi 2 [y1(t); 1] (assuming that this arrival is before the deadline). The charged
price depends then on the type of the available object, and is given by piy1(t),
i = 1; 2:
Assume now for illustration that T = 5, p1 = 2 and p2 = 1. The next picture

plots the price dynamics if both objects are still available:
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The next picture plots the price dynamic if only one object is available. The
upper curve describes the o¤ered price if only p1 is available, while the lower
curve corresponds to the o¤ered price if only p2 is available.
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Note that the prices of both objects jump up after a sale, even if the upper cuto¤
curve in the revenue maximizing allocation policy remains the same.

25



5.1 Dynamic RevenueMaximization with In�nite Horizon
and Discounting

In this Section we very brie�y present the characterization of the dynamic
revenue maximizing allocation scheme with in�nite horizon and exponential
discounting. We assume that the arrival process is homogenous Poisson with
� (t) = �. For the case of identical objects, Gallieni [15] has shown that the opti-
mal cuto¤ curves are stationary (i.e., time independent), similarly to Albright�s
result [1] for the dynamic welfare maximization case (see Theorem 4).
We show below that the revenue maximizing allocation policy for the case of

distinct objects does not depend on the characteristics of the available objects.
Since the analysis of the discounted, in�nite-horizon is similar and easier than
the one we performed for the deadline case, we omit the proof of the next
Proposition.

Proposition 2 The dynamic revenue- maximizing policy consists of n con-
stants yn � yn�1::: � y1 which do not depend on the p�s such that:

1. If an agent with type xi arrives at a time t, it is optimal to assign to that
agent the j�th highest element of �t if x 2 [yj ; yj�1) where y0 � 1, and
not to assign any object if xi < ykt , where kt = j�tj :

2. The constants yj satisfy:

yj �
1� F (yj)
f (yj)

+R (1j�1) =
� [1� F (yj)] (yj +R (j � 1))

�+ � [1� F (yj)]
= R(1j)

where

R (1j) =
� [1� F (yj)] (yj +R (j � 1))

�+ � [1� F (yj)]
is the expected revenue at time t if j identical objects with p1 = p2 = ::: =
pl = 1 are available at time t, given that the designer uses the optimal
allocation policy from time t on.

The next example illustrates the Proposition:

Example 7 Assume that there are three objects. Let F (x) = x on [0; 1] and let
� = � = 1. Then, the constant cuto¤s de�ning the revenue maximizing policy
are:

y1 = 2�
p
2 � 0:585 79

y2 = 2�
q
5� 2

p
2 � 0:526 37

y3 = 2�
p
2

q
2
p
2
p
5� 2

p
2� 5

p
5� 2

p
2� 13

p
2 + 24p

5� 2
p
2

� 0:508 58.
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6 Comparison of the E¢ cient and the Revenue
Maximizing Policies

In this section we compare the e¢ cient and revenue-maximizing dynamic al-
location policies for the case where there is a deadline (the discounted in�nite
horizon case is analogous). Our main result in this Section shows that the
curves describing the revenue-maximizing allocation are always above the re-
spective curves describing the e¢ cient allocation if the agents� types follow a
distribution with an increasing failure (or hazard) rate - IFR. In other words,
at any point in time, the revenue maximizing policy is more "conservative".
Denote by yei (t) (y

o
i (t)) the e¢ cient (revenue-maximizing) cut-o¤ curve for the

object with the i�th highest characteristic.

Theorem 9 Assume that

1. �(t) = �

2. the distribution of values F is IFR.

Then, for any t 2 [0; T ] ; yei (t) < yoi (t), i = 1; 2; ::n.

Proof. See Appendix.
The next example illustrates the Theorem:

Example 8 Assume that there are two objects, that the arrival process is ho-
mogenous with rate �(t) = � = 1, and that the distribution of agents� types is
exponential, i.e., F (x) = 1� e�x: The e¢ cient policy is described by the cuto¤
functions

ye1(t) = ln(1 + T � t)

ye2(t) = ln

�
1 +

(T � t)2
2(1 + T � t)

�
while the revenue-maximizing policy is given by

yo1(t) = ln(e+ T � t)

yo2(t) = ln

�
1

2
(e+ T � t) + 1

2

e2

(e+ T � t)

�
The following �gure plots the solutions for T = 5: The solid lines represent the
revenue maximizing cut-o¤ curves and the dashed lines represent the e¢ cient
cut-o¤ curves.
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Our last example shows that the e¢ cient and revenue-maximizing cuto¤
curves may coincide if the IFR assumption is not satis�ed. In particular, an
increasing virtual valuation is not su¢ cient for the result.

Example 9 (McAfee and te Velde [19]) Assume that there is one object , that
the arrival process is Poisson with rate �(t) = 1, and that values are distributed
according to a Pareto distribution, that is F (x) = 1� x�� for x � 1 , � > 1:
The failure rate is given by f(x)

1�F (x) =
�
x which is of course decreasing. McAfee

and te Velde showed for this case that the e¢ cient and revenue-maximizing
cuto¤ curves coincide:

ye1 (t) = y
o
1 (t) =

�
�

�� 1 (T � t)
� 1
�

.

Note also that the virtual valuation is given by x� 1�F (x)
f(x) = x(1� 1

� ) , which
is increasing in x since � > 1: This shows that an increasing virtual valuation
is not su¢ cient for the result of Theorem 9.

References

[1] Albright S.C. (1974): "Optimal Sequential Assignments with Random Ar-
rival Times", Management Science 21 (1), 60-67.

[2] Arnold, M.A. and Lippman, S.A. (2001): "The Analytics of Search with
Posted Prices", Economic Theory 17, 444-466.

28



[3] Athey, S. and Segal, Y (2007): "An E¢ cient Dynamic Mechanism", dis-
cussion paper, Stanford University.

[4] Bergemann, D. and Välimäki, J. (2006): "E¢ cient Dynamic Auctions",
Cowles Foundation Discussion Paper No. 1584

[5] Bitran, G.R. and Mondschein, S.V. (1997): "Periodic Pricing of Seasonal
Products in Retailing", Management Science 43 (1), 64-79.

[6] Bitran, G.R. and Caldentey, R. (2003): "An Overview of Pricing Models for
Revenue Management", Manufacture & Services Operations Management
5(3), 203-229

[7] De La Cal, J. and Carcamo, J. (2006): "Stochastic Orders and Majorization
of Mean Order Statistics", Journal of Applied Probability 43, 704-712.

[8] Derman, C., Lieberman, G.J., and Ross, S.M. (1972): "A Sequential Sto-
chastic Assignment Process", Management Science 18 (7), 349-355.

[9] Das Varma, G., and Vettas, N. (2001): "Optimal Dynamic Pricing with
Inventories", Economic Letters 72 (3), 335-340.

[10] Dolan, R.J. (1978): "Incentive Mechanisms for Priority Queueing Prob-
lems", The Bell Journal of Economics 9 (2), 421-436.

[11] Elfving, G. (1967): "A Persistency Problem Connected with a Point
Process", Journal of Applied Probability 4, 77-89.

[12] Elmaghraby, W. and Keskinocak, P. (2003): "Dynamic Pricing in the Pres-
ence of Inventory Considerations: Research Overview, Current Practices,
and Future Directions", Management Science 49 (10), 1287-1309.

[13] Gallego, G. and van Ryzin, G. (1994): "Optimal Dynamic Pricing of Inven-
tories with Stochastic Demand over Finite Horizons", Management Science
40 (8), 999-1020.

[14] Gallego, G. and van Ryzin, G. (1997): "A Multiproduct Dynamic pricing
Problem and its Applications to Network Yield Management", Operations
Research 45 (1), 24-41.

[15] Gallien, J. (2006): "Dynamic Mechanism Design for Online Commerce",
Operations Research 54 (2), 291-310.

[16] Gihman, I.I. and Skorohod, A.V. (1979): Controlled Stochastic Processes,
Springer: New York

[17] Hardy, G., Littlewood, J.E., and Polya, G. (1934): Inequalities, Cambridge
University Press: Cambridge.

[18] Kincaid, W.M., and Darling, D. (1963): "An Inventory Pricing Problem",
Journal of Mathematical Analysis and Applications 7, 183-208.

29



[19] McAfee, P. and te Velde, V. (2007a): "Dynamic Pricing with Constant
Demand Elasticity", Production and Operations Management, Special Issue
on Revenue Management and Dynamic Pricing, forthcoming.

[20] McAfee, P. and te Velde, V. (2007b): "Dynamic Pricing in the Airline
industry", Handbook on Economics and Information Systems, Ed: T.J.
Hendershott, Elsevier Handbooks in Information Systems, Volume 1.

[21] Parkes, D.C., and Singh, S. (2003): "An MDP-Based Approach to On-
line Mechanism Design", Proceedings of 17th Annual Conference on Neural
Information Processing Systems (NIPS 03)

[22] Pecaric, J.E., Proschan, F., and Tong, Y.L. (1992): Convex Functions,
Partial Orderings, and Statistical Applications, Academic Press: Boston.

[23] Puterman, M.L. (2005): Markov Decision Processes, Wiley: Hoboken, NJ

[24] Ross, S.M. (1983): Stochastic Processes, Wiley: New York.

[25] Talluri, K.T., and Van Ryzin, G. (2004): The Theory and Practice of Rev-
enue Managment, Springer: New York.

7 Appendix

Proof of Lemma 1. (= Assume that
Pn

i=1 pi�(i) �
Pn

i=1 pi�(i) for any
pn � pn�1 � ::: � p1: For each k = 1; 2; ::; n � 1 consider pk = (pk1 ; p

k
2 ; ::; p

k
n)

where pki = 1 for i = 1; 2; ::k; and p
k
i = 0 for i = k+ 1; k+ 2; ::n: Then, for each

k we obtain
nX
i=1

pki �(i) �
nX
i=1

pki �(i) ,
kX
i=1

�(i) �
kX
i=1

�(i)

and thus � � �:
=) Assume � � � and let pn � pn�1 � ::: � p1: Then we have the following

chain:

nX
i=1

pi[�(i) � �(i)] = pn

nX
i=1

[�(i) � �(i)] +
n�1X
i=1

(pi � pn)[�(i) � �(i)]

= pn

nX
i=1

[�(i) � �(i)] + (pn�1 � pn)
n�1X
i=1

[�(i) � �(i)]

+
n�2X
i=1

(pi � pn�1)[�(i) � �(i)]

= :::

= pn

nX
i=1

[�(i) � �(i)] +
n�1X
j=1

(pj � pj+1)(
jX
i=1

[�(i) � �(i)]) � 0
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The last inequality follows since: 1.
Pn

i=1[�(i)��(i)] =
Pn

i=1 �i�
Pn

i=1 �i =

0 by de�nition; 2. 8j; pj�pj�1 � 0 by de�nition; 3. 8j;
�Pj

i=1[�(i) � �(i)]
�
� 0

by majorization.
Proof of Theorem 2. By Theorem 1 we know that

d(
Pk

i=1 y
F
i (t))

dt
= ��(t)

Z 1

yFk (t)

(1� F (x))dx

d(
Pk

i=1 y
G
i (t))

dt
= ��(t)

Z 1

yGk (t)

(1�G(x))dx

De�ne �rst: HF (s) =
R1
s
(1 � F (x))dx and HG(s) =

R1
s
(1 � G(x))dx.

These are both positive, decreasing functions with HF (0) = HG(0) = �:
By SSD, for any s � 0 it holds thatZ s

0

F (x))dx �
Z s

0

G(x))dx,
Z s

0

(1� F (x))) dx �
Z s

0

(1�G(x))) dx

,
Z 1

s

(1� F (x))dx �
Z 1

s

(1�G(x))dx, HF (s) � HG(s)

where the second line follows becauseZ 1

0

(1� F (x))dx = �F = �G =
Z 1

0

(1�G(x))dx.

Thus, the curve HF is always below HG:
Consider now yF1 (t) and y

G
1 (t): These are, respectively, the solutions to the

di¤erential equations :

y0 = ��(t)HF (y) and y0 = ��(t)HG(y)

with boundary condition y(T ) = 0: Integrating the above equations from t to
T , and using the boundary condition, we get the integral equations:

y(T )� y(t) = �
Z T

t

�(s)HF (y(s))ds, y(t) =

Z T

t

�(s)HF (y(s))ds and

y(T )� y(t) = �
Z T

t

�(s)HG(y(s))ds, y(t) =

Z T

t

�(s)HG(y(s))ds

Because HF is always below HG and because these are decreasing functions,
we obtain yF1 (t) � yG1 (t).
Consider now yF1 (t) + y

F
2 (t) and y

G
1 (t) + y

G
2 (t) . These functions satisfy the

di¤erential equations:

y0 = ��(t)
Z 1

y�yF1 (t)
(1� F (x))dx and y0 = ��(t)

Z 1

y�yG1 (t)
(1� F (x))dx
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with boundary condition y0(T ) = 0: Integrating from t to T yields the equations:

y(t) =

Z T

t

�(s)

"Z 1

y(s)�yF1 (s)
(1� F (x))dx

#
ds =

Z T

t

�(s)HF [(y(s)� yF1 (s)] ds

y(t) =

Z T

t

�(s)

"Z 1

y(s)�yG1 (s)
(1�G(x))dx

#
ds =

Z T

t

�(s)HG[(y(s)� yG1 (s)] ds

We have :

8t; HF [(y(t)� yF1 (t)] � HF [(y(t)� yG1 (t)] � HG[(y(t)� yG1 (t)]

where the �rst inequality follows because yF1 (t) � yG1 (t) , y(t) � yF1 (t) �
y(t)�yG1 (t) and because the functionHF is decreasing, and the second inequality
follows becauseHF is always belowHG: This yields yF1 (t)+y

F
2 (t)� yG1 (t)+yG2 (t);

as required. The rest of the proof follows analogously.
2. The expected welfare terms from time t on if there are k objects left

are given by
Pk

i=1 p(i)y
F
i (t) and by

Pk
i=1 p(i)y

G
i (t), respectively. By point 1,

we know that for each k and for each t; ykF (t) = (yF1 (t); y
F
2 (t); ::y

F
k (t)) �w

(yG1 (t); y
G
2 (t); ::y

G
k (t)) := ykG(t): By Result 12.5 (b) in Pecaric et. al [22], for

each k and each t there exists a k�vector z(t) such that z(t) � ykG(t) and such
that zi(t) � ykFi ; 8i: We obtain then:

8k; t
kX
i=1

p(i)y
F
i (t) �

kX
i=1

p(i)zi(t) �
kX
i=1

p(i)y
G
i (t)

where the last inequality follows from Lemma 1

Proof of Theorem 5. 1. De�ne �rst HF (s) =
eB(�)

1� eB(�) R1s (1� F (x))dx and

HG(s) =
eB(�)

1� eB(�) R1s (1�G(x))dx . These are both decreasing functions and

HF (0) = HG(0) =
eB(�)

1� eB(�)�
Consider now yF1 and y

G
1 . These are, respectively, the solutions to the equations:

s = HF (s) and s = HG(s)

By SSD, for any s � 0 it holds thatZ s

0

F (x))dx �
Z s

0

G(x))dx,
Z s

0

(1� F (x))) dx �
Z s

0

(1�G(x))) dx

,
Z 1

s

(1� F (x))dx �
Z 1

s

(1�G(x))dx, HF (s) � HG(s)

Thus, the decreasing curve HF (s) is always below the decreasing curve HG(s)
and we obtain y1F � y1G. Consider now yF2 and yG2 which are de�ned by the
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equations:

yF2 + y
F
1 =

eB(�)
1� eB(�)

Z 1

yF2

(1� F (x))dx

yG2 + yG1 =
eB(�)

1� eB(�)
Z 1

yG2

(1�G(x))dx

Equivalently, yF2 + y
F
2 and y

G
2 +y

G
1 are, respectively, the solutions of:

s = HF (s� yF1 ) and s = HG(s� yG1 )

Recalling that yF1 � yG1 ; we obtain s� yF1 � s� yG1 ;8s: This yields:

HF (s� yF1 ) � HF (s� yG1 ) � HG(s� yG1 )

where the �rst inequality follows because the function HF is decreasing, and the
second inequality follows by SSD. Thus, the curve HF (s� yG1 ) is always below
the curve HG(s� yG1 ) and the result follows as above. The rest of the proof is
completely analogous.
2. The expected welfare terms from time t on if k objects left are given by

e��t
hPk

i=1 p(i)y
F
i

i
and by e��t

hPk
i=1 p(i)y

G
i

i
, respectively. The proof proceeds

exactly as that of Theorem 2-2.

Proof of Theorem 6. 1. Let HB(s) =
eB(�)

1� eB(�) R1s (1 � F (x))dx ; HE(s) =eE(�)
1� eE(�) R1s (1�F (x))dx where eB and eE are the respective Laplace transforms.
By the de�nition of the Laplace transform, and by the assumption B �Lt E,
we know that eB(�) � eE(�): This yields:

eB(�) � eE(�), eB(�)
1� eB(�) � eE(�)

1� eE(�) , HB(s) � HE(s)

The �rst equivalence follows because the function x
1�x is increasing on the in-

terval [0; 1) with limx!1
x
1�x =1 , and because Laplace transforms take values

in the interval [0; 1].
Thus, we obtained that the decreasing function HB(s) is always below the

decreasing function HE(s). Consider �rst yB1 and yE1 : These are, respectively,
the solutions to the equations

s = HB(s) and s = HE(s)

The rest of the proof continues analogously to the proof of Theorem 5-1.
2. This follows analogously to the proof of Theorem 2-2.

Proof of Theorem 7. If only one object with characteristic pi is available at
time t, then the expected revenue is given by

pi

Z T

t

y1;pi(s)h1;pi(s)ds
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where h1;pi(s) represents the density of the waiting time till the �rst arrival
of an agent with a value that is at least y1;pi(s). Note that this density is
equal to the density of the �rst arrival in a non-homogenous Poisson process
with rate �(s)(1� F (y1;pi(s)): The density of the time of the n�th arrival in a
non-homogenous Poisson process with rate �(s) is given by (see Ross [24])

gn(s) = �(s)e
�m(s)m(s)

n�1

(n� 1)! ; where m(s) =
Z s

t

�(z)dz (11)

Thus, in our case, we obtain

h1;pi(s) = �(s)(1� F (y1;pi(s))e�
R s
t
�(z)[1�F (y(z))]dz for t � s � T

and (3) follows.
If two objects are still available, the expected revenue is given by

Z T

0

[q2;2(t) +R (p1; t)]h2;2(t)dt+

Z T

0

[q1;2(t) +R (p2; t)]h1;2(t)dt (12)

Here h1;2(t) represents the density of the waiting time till the �rst arrival of
an agent with a value that is at least y1;2 (t) if no arrival of an agent with
value in the interval [y2;2 (t) ; y1;2 (t)) has occurred. Similarly, h2;2(t) represents
the density of the waiting time till the �rst arrival of an agent with a value in
the interval [y2;2 (t) ; y1;2 (t)) if no arrival of an agent with value in the interval
[y1;2 (t) ;1) has occurred. Since the arrival processes of agents with types in
the intervals [y2;2 (t) ; y1;2 (t)) and [y1;2 (t) ;1); respectively, are independent
non-homogenous Poisson processes (see Proposition 2.3.2 in Ross [24] ), using
(11) we obtain

h1;2(t) = � (1� F (y1;2 (t))) e�
R t
0
�[1�F (y1;2(s))]dse�

R t
0
�[F (y1;2(s))�F (y2;2(s))]ds

= � (1� F (y1;2 (t))) e�
R t
0
�[1�F (y2;2(s))]ds

and

h2;2(t) = � (F (y1;2 (t))� F (y2;2 (t))) e�
R t
0
�[F (y1;2(s))�F (y2;2(s))+1�F (y1;2(s))]ds

= � (F (y1;2 (t))� F (y2;2 (t))) e�
R t
0
�[1�F (y2;2(s))]ds

Finally, recall that incentive compatibility implies that

q2;2(t) = p2y2;2(t) and q1;2(t) = p2y2;2(t) + (p1 � p2) y1;2(t),

Plugging the expressions for q1;2(t); q2;2(t); h1;2(t) and h2;2(t) into the expression
for expected revenue (12) yields the required formula.
Proof of Claim 1. If only the object with characteristic pj is available, it
follows from Theorem 7 that the expected revenue at time t is given by

R (pj ; t) = pj

Z T

t

y1;pj (s)�(1� F (y1;pj (s))e
�
R s
t
�[1�F (y1;pj (z))]dzds.

34



Let H(s) =
R s
t
�[1� F (y1;pj (z))]dz. Then, we obtain

R (pj ; t) = pj

Z T

t

F�1
�
1� H

0(s)

�

�
H 0(s)e�H(s)ds.

This expression for revenue is appropriate for using a variational argument with
respect to the function H: The corresponding necessary condition for the vari-
ational problem (i.e., the Euler-Lagrange equation) is

� (H 0(s))
2
+ 2H 00(s) +

H 0(s)H 00(s)f 0
�
F�1

�
1� H0(s)

�

��
�
f
�
1� H0(s)

�

��2 = 0

Plugging back the expression for H(s) gives

��[1�F (y1;pj (s))]2�2f(y1;pj (s))y01;pj (s)�
[1� F (y1;pj (s))]f 0(y1;pj (s))y01;pj (s)

f(y1;pj (s))
= 0

This implies that for any s 2 [0; T ], the solution y1;pj (s) should satisfy

�y01;pj (s)�y
0
1;pj (s)

 
1 +

�
1� F (y1;pj (s))

�
f 0(y1;pj (s))�

f(y1;pj (s))
�2

!
= �

�
1� F (y1;pj (s))

�2
f(y1;pj (s))

(13)
Since for any t , and for any di¤erentiable y (t) it holds that

�y0 (t)
 
1 +

(1� F (y (t))) f 0(y (t))
(f(y (t)))

2

!
=
d

dt

�
1� F (y (t))
f(y (t))

�
,

we can rewrite the necessary condition as

y01;pj (s) + �

�
1� F (y1;pj (s))

�2
f(y1;pj (s))

=
d

ds

�
1� F (y1;pj (s))
f(y1;pj (s))

�
Taking now the integral between t and TZ T

t

y01;pj (s) ds+ �

Z T

t

�
1� F (y1;pj (s))

�2
f(y1;pj (s))

ds =

Z T

t

d

ds

�
1� F (y1;pj (s))
f(y1;pj (s))

�
ds

yields

y1;pj (T )� y1;pj (t) + �
Z T

t

�
1� F (y1;pj (s))

�2
f(y1;pj (s))

ds

=
1� F (y1;pj (T ))
f(y1;pj (T ))

�
1� F (y1;pj (t))
f(y1;pj (t))

.

Together with the boundary condition

y1;pj (T )�
1� F (y1;pj (T ))
f(y1;pj (T ))

= 0
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we get (4). The assumptions of increasing virtual valuation and �nite density
insure that a solution to (4) exists for any t.
To complete the proof and obtain the expression for revenue (5) note that

the expected revenue is given by R (pj ; t) = pjR (1; t) where

R (1; t) =

Z T

t

y1 (s)�(1� F (y1 (s))e�
R s
t
�[1�F (y1(z))]dzds

Di¤erentiating the above with respect to t gives

R0 (1; t) = �(1� F (y1 (t)) (R(1; t)� y1 (t))

It is then straightforward to verify that the function
R T
t

[1�F (y1(s))]2
f(y1(s))

ds satis�es
the above di¤erential equation with the boundary condition R (1; T ) = 0.
Proof of Claim 2. I. We consider �rst the case where p1 > p2. That is, the
seller needs to specify two di¤erent prices and hence two di¤erent cuto¤ curves,
y1;2(t) and y2;2(t). We can re-write the expected revenue given by Theorem 7
as Z T

0

�
p1F

�1
�
1� H

0(t)

�

�
+ p2R(1; t)

�
H 0(t)e�H(t)dt

+(p2 � p1)
Z T

0

�
F�1

�
1� G

0(t)

�

�
�R(1; t)

�
G0(t)e�H(t)dt

where Z t

0

� [1� F (y2;2(s))] ds : = H(t)Z t

0

� [1� F (y1;2(s))] ds : = G(t).

The necessary conditions for the variational problem (i.e., the Euler-Lagrange
equation) with respect to the functions H(t) and G(t); respectively, are:

� (p2 � p1)G0(t)
�
F�1

�
1� G

0(t)

�

�
�R(1; t)

�
� p1

1
� (H

0(t))
2

f
�
F�1

�
1� H0(t)

�

��
�2p1

1
�H

00(t)

f
�
F�1

�
1� H0(t)

�

�� + p2R0(1; t)� p1 1
�2
H 0(t)H 00(t)f 0

�
F�1

�
1� H0(t)

�

��
h
f
�
F�1

�
1� H0(t)

�

��i3 = 0

and

�
2 1�G

00(t)

f
�
F�1

�
1� G0(t)

�

�� �R0(1; t)� 1
�2
G0(t)G00(t)f 0

�
F�1

�
1� G0(t)

�

��
h
f
�
F�1

�
1� G0(t)

�

��i3
�H 0(t)

24� 1
�G

0(t)

f
�
F�1

�
1� G0(t)

�

�� + F�1�1� G0(t)
�

�
�R(1; t)

35 = 0.
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Plugging the expressions for H(t) and G(t) allows us to write the necessary
conditions in the following way:

� (p2 � p1)� [1� F (y1;2 (t))] (y1;2 (t)�R(1; t))� p1
� [1� F (y2;2 (t))]2

f (y2;2 (t))
(14)

�2p1y02;2 (t)� p2R0(1; t)� p1
y02;2 (t) [1� F (y2;2 (t))] f 0 (y2;2 (t))

[f (y2;2 (t))]
2 = 0

and

[1� F (y2;2 (t))]
�
1� F (y1;2 (t))
f (y1;2 (t))

� y1;2 (t) +R(1; t)
�
� 2y01;2 (t) (15)

�R0(1; t) +
y01;2 (t) [1� F (y1;2 (t))] f 0 (y1;2 (t))

[f (y1;2 (t))]
2 = 0

Next, we show that a solution to the system of di¤erential equations 14 and
15 is given by y1;2(t) = y1 (t) and y2;2(t) = y2 (t) where y1(t) and y2(t) solve the
system of equations:

y1 (t) =
1� F (y1(t))
f (y1(t))

+ �

Z T

t

[1� F (y1(s))]2

f (y1(s))
ds (16)

y2 (t) =
1� F (y2(t))
f (y2(t))

+ �

Z T

t

[1� F (y2(s))]2

f (y2(s))
ds�R (t) , (17)

Again, assumptions of increasing virtual value and �nite density guarantee the
existence of solutions for (16) and (17). Di¤erentiation of (16) with respect to
t gives

2y01 (t) = �y01 (t)
[1� F (y1 (t))] f 0 (y1 (t))

[f (y1 (t))]
2 � � [1� F (y1 (t))]

2

f (y1 (t))
.

Plugging the above expression into (15), and using the fact that

R0(1; t) = �y1(t)� (1� F (y1(t))) + � (1� F (y1(t)))R(1; t) (18)

yields"
�

Z T

t

[1� F (y1(s))]2

f (y1(s))
ds�R(1; t)

#
[� (1� F (y1(t)))� (1� F (y2;2 (t)))] = 0

where last equality follows from Claim 1. Thus, we have showed that y1;2(t) =
y1(t) solves (15) for any y2;2(t): We still need to show that y1;2(t) = y1(t) and
y2;2(t) = y2(t) solve equation 14. Di¤erentiation of (17) with respect to t gives

2y02 (t) = �y02 (t)
[1� F (y2 (t))] f 0 (y2 (t))

[f (y2 (t))]
2 � � [1� F (y2 (t))]

2

f (y2 (t))
�R0(1; t):
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Plugging this equality into (14), we have to show that

� (p2 � p1)� [1� F (y1;2 (t))] (y1;2 (t)�R(1; t))� (p2 � p1)R0(1; t) = 0:

For y1;2 (t) = y1(t), this equality holds by (18).
II. We now consider the case with p1 = p2 = p. Since R (p; t) = pR(1; t),

Theorem 7 implies that we can rewrite the expected revenue as

p

Z T

0

(y2;2 (t) +R (1; t))� (1� F (y2;2 (t))) e�
R t
0
�(1�F (y2;2(s)))dsdt.

The proof that the revenue maximizing cuto¤ curves are given by y1(t) and
y2(t) as above is analogous to the above case, and we omit it here.
Theorem 7 implies then that

R(f1; 1g; t) =
Z T

t

(y2(s) +R (1; s))� (1� F (y2(s))) e�
R s
t
�(1�F (y2(z)))dzds.

Di¤erentiation with respect to t yields

R0(f1; 1g; t) = � (1� F (y2(t))) (R(f1; 1g; t)� y2(t)�R (1; t)) . (19)

Recall that y2(t) solves

y2(t) +R (1; t) =
1� F (y2(t))
f (y2(t))

+ �

Z T

t

[1� F (y2(s))]2

f (y2(s))
ds (20)

Using equation (20), it is easy to verify that R(f1; 1g; t) given by equation (7)
satis�es di¤erential equation (19) with the boundary condition R(f1; 1g; T ) = 0.

Proof of Theorem 9. We start with the proof for i = 1. From Theorem 8
we know that

yo1(t) =
1� F (yo1(t))
f (yo1(t))

+ �

Z T

t

[1� F (yo1(s))]
2

f (yo1(s))
ds

while from Theorem 1 we know that

�ye01 (s) = �
Z 1

ye1(s)

(1� F (x))dx

and that ye1(T ) = 0: Integrating both sides of the above di¤erential equation
between t and T and using the boundary condition, yields:

ye1 (t) = �

Z T

t

"Z 1

ye1(s)

(1� F (x))dx
#
ds.

First, we will argue that

1� F (yo1(t))
f (yo1(t))

> 0 for any t 2 [0; T ] . (21)
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Assume that there exists t� such that

1� F (yo1(t�))
f (yo1(t

�))
= 0 (22)

Then since f (x) < 1 for any x, (22) implies that F (yo1(t
�)) = 1. That is, the

probability that an agent who arrives at time t has a type above yo1(t
�) is zero.

By Theorem 8, we can assume that p = 1. This yields

0 < R(1; t�) < yo1(t
�): (23)

Consider then decreasing yo1(t
�) to R(1; t�) + � where yo1(t

�)� R(1; t�) > � > 0
(inequality (23) implies that such � exists). This change matters only if at t�

some agent arrives. But, in this case the proposed change increases the revenue,
since the object can be sold to that agent at the price R(1; t�) + �, while prior
tot the change the change the probability of a sale was zero. This yields a
contradiction that yo1(t

�) was chosen optimally.
In order to complete the proof for the one object case, it is enough (given

inequality 21) to show that

8y; (1� F (y))
2

f (y)
�
Z 1

y

(1� F (x))dx

This follows fromZ 1

y

(1� F (x))dx =
Z 1

y

1� F (x)
f (x)

f (x) dx � 1� F (y)
f (y)

(1� F (y))

where the last inequality follows by the IFR assumption.
We now proceed to the proof for two objects. After plugging in the expression

for R(1; t); we know from Theorem 8 that yo2(t) solves

yo2(t) =
1� F (yo2(t))
f (yo2(t))

+ �

Z T

t

"
[1� F (yo2(s))]

2

f (yo2(s))
� [1� F (y

o
1(s))]

2

f (yo1(s))

#
ds

By Theorem 1 we know that

�ye02 (s) = �
Z ye1(s)

ye2(s)

(1� F (x))dx

Integrating again both sides between t and T yields

ye2 (t) = �

Z T

t

"Z ye1(s)

ye2(s)

(1� F (x))dx
#
ds.

By Theorem 1 we also know that ye2 (t) < ye1 (t) : Together with the result for
the one object case (see proof above) we obtain that ye2 (t) < y

o
1(t).

Let ye2 (t) be the solution to

y (t) = H(y (t))
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and let yo2(t) be the solution to

y (t) = G(y (t)).

We are now going to show that G (y (t)) > H(y (t)) for any y (t) < yo1(t):
Together with ye2 (t) < y

o
1(t); this will complete the proof. Note that

H(y (t)) =

Z T

t

"Z ye1(s)

y(s)

(1� F (x))dx
#
ds (24)

=

Z T

t

"Z ye1(s)

y(s)

1� F (x)
f (x)

f (x) dx

#
ds

�
Z T

t

1� F (y (s))
f (y (s))

([1� F (y (s))]� [1� F (ye1 (s))]) ds

=

Z T

t

 
(1� F (y (s)))2

f (y (s))
� (1� F (y (s))) (1� F (y

e
1 (s)))

f (y (s))

!
ds

�
Z T

t

 
(1� F (y (s)))2

f (y (s))
� (1� F (y

o
1(s)))

2

f (yo1(s))

!
ds < G(y (t))

The third line follows from IFR assumption, and the fourth line follows from IFR
together with the assumption y (t) < yo1(t) and y

e
1 (s) < y

o
1(t). The last inequal-

ity follows from the same argument as in the one object case since 1�F (y
o
2(t))

f(yo2(t))
> 0.

In addition, note that the IFR assumption implies that G is a decreasing func-
tion.
Assume now, by contradiction, that there exists some t such that ye2 (t) >

yo2 (t). Then

ye2 (t) = H (y
e
2 (t)) < G (y

e
2 (t)) < G (y

o
2 (t)) = y

o
2 (t) ,

where the �rst inequality follows from (24), while monotonicity of G implies the
second inequality. Therefore, we got that ye2 (t) < y

o
2 (t) ; which is a contradic-

tion. The proof for n > 2 follows analogously.
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