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REPUTATION AND EQUILIBRIUM SELECTION IN GAMES
WITH A PATIENT PLAYER

By DREw FUDENBERG AND DAvID K. LEVINE!

A single long-run player plays a simultaneous-move stage game against a sequence of
opponents who play only once, but observe all previous play. Let the “Stackelberg
strategy” be the pure strategy to which the long-run player would most like to commit
himself. If there is positive prior probability that the long-run player will always play the
Stackelberg strategy, then his payoff in any Nash equilibrium exceeds a bound that
converges to the Stackelberg payoff as his discount factor approaches one. When the stage
game is not simultaneous move, this result must be modified to account for the possibility
that distinct strategies of the long-run player are observationally equivalent.

KEYWORDS: Reputation, inference, Stackelberg equilibrium.

1. INTRODUCTION

CONSIDER A GAME in which a single long-run player faces an infinite sequence of
opponents, each of whom plays only once, but who observes all previous play.
While such a game will often have multiple equilibria, a common intuition is that
the “most reasonable” equilibrium is the one which the long-run player most
prefers. This paper shows that “reputation effects” provide a foundation for that
intuition, -and it also identifies an important way in which the intuition must be
qualified.

More specifically, imagine that players move simultaneously in each period.
Let the “Stackelberg outcome” be the long-run player’s most preferred pure
strategy profile of the stage game under the constraint that the short-run player
chooses a best response to the long-run player’s strategy. The ‘“Stackelberg
strategy” is the corresponding strategy of the long-run player. Now suppose that
with nonzero prior probability the long-run player is a “type” who always plays
his Stackelberg strategy. When the discount factor is sufficiently near to one, any
Nash equilibrium must give the long-run player almost his Stackelberg payoff.
This result depends on the assumption that the short-run players observe the
long-run player’s strategy in each stage game. As we will see, the result must be
modified in sequential-move games where, for example, some actions by the
short-run player may preclude the long-run player from acting at all.

Our work builds on that of several previous authors, most directly that of
Kreps-Wilson (1982), Milgrom-Roberts (1982), and Fudenberg-Kreps (1987) on
reputation effects in the chain-store paradox. These papers considered a long-lived
incumbent facing a succession of short-lived entrants, and showed that if there
was a small chance that the incumbent was “tough,” it could deter entry by

! This paper benefited from conversations with Matt McCarter, Paul Milgrom, John Riley, Jean
Tirole, an editor, and two referees. National Science Foundation Grants SES 85-09697, SES 85-09484,
SES 87-08616, the Sloan Foundation and UCLA Academic Senate provided financial support. Part of
this research was conducted while the second author was at the University of Minnesota.
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maintaining a reputation for toughness. Our result improves on theirs in several
ways, all of which stem from the fact that our results apply to all of the Nash
equilibria of the repeated game. First, our results are robust to further small
changes in the information structure of the game. The earlier arguments depend
on the restriction to sequential equilibria which, as Fudenberg-Kreps-Levine
(1988) have argued, is not robust to such changes.

Second, our proof is much simpler, and provides a clearer understanding of the
reputation-effects phenomenon. The key observation is that a feasible strategy for
the long-run player is to always play the Stackelberg strategy. This need not be
the long-run player’s optimal strategy, but the optimal strategy must give him at
least as high a payoff. Consequently, our technique is to find a lower bound on
the payoff to always playing Stackelberg that is uniform across all of the Nash
equilibria of the game. The bound results from the fact that since the short-run
players are myopic they play as Stackelberg followers in any period in which they
attach a high probability to the long-run player playing his Stackelberg strategy.
This fact implies that if the long-run player chooses his Stackelberg strategy in
every period, there is an upper bound on the number of times the short-run
players can fail to play as Stackelberg followers. This argument is much simpler
than the earlier ones, which obtained bounds on the long-run player’s payoffs by
characterizing the set of sequential equilibrium strategies.

Third, because our proof is simpler, we are able to study a broader class of
games. We consider arbitrary specifications of the stage game, as opposed to the
special case of the chain store, and we consider a more general form of
incomplete information: Where the earlier papers specified that the long-run
player had two or three types, our result covers all games in which the “Stackel-
berg type” has positive probability. In addition, our results extend to non-sta-
tionary games and to games where the long-run player has private information
about his payoffs in addition to knowing whether or not he is a “Stackelberg
type.”

Our work on games with a single patient player is also related to that of
Kreps-Milgrom-Roberts-Wilson (1982) and Fudenberg-Maskin (1986) on reputa-
tion effects in games where all of the players are long-lived, and, more closely, to
that of Aumann-Sorin (1987). Kreps-Milgrom-Roberts-Wilson considered the
effects of a specific sort of incomplete information in the finitely-repeated
prisoner’s dilemma, and showed that in all sequential equilibria the players
cooperated in all but a few of the periods. Fudenberg-Maskin showed that for
any given individually rational payoffs of a repeated game there is a family of
“nearby” games of incomplete information each of which has a sequential
equilibrium which approximates the given payoffs. Our result does not apply to
these games because long-run players balance short-run losses against long-run
gains. Consequently, unlike the short-run players we consider, long-run players
need not play a short-run best response to the anticipated play of their oppo-
nents. The work of Aumann-Sorin is closer to ours in developing bounds on
payoffs that hold uniformly whenever the incomplete information puts probabil-
ity on a sufficiently broad class of preferences. To obtain this sort of result with
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several long-run players, Aumann-Sorin require very strong assumptions: The
only stage games considered are those of “common interest,” and the preferences
of the “crazy” types must be represented by “finite automata with finite memory.”

2. THE SIMPLE MODEL

We begin with the simplest model of a long-run player facing a sequence of
opponents. The long-run player, player one, faces an infinite sequence of different
short-lived player two’s. Each period, player one selects a strategy from his
strategy set S,, while that period’s player two selects a strategy from S,. In this
section we assume that players one and two move simultaneously in each period,
and that at the end of the period each player learns what strategy his opponent
used during that period. Section 5 considers the complications that arise when the
stage game has a nontrivial extensive form. For the time being we will also
assume that the S; are finite sets; Section 7 considers the technical issues involved
when the S; are allowed to be any compact metric spaces. Corresponding to the
strategy spaces S; are the space X; of mixed strategies.

The unperturbed stage game is a map

g: S; XS, R?,

which gives each player i’s payoff g; as a function of the realized actions. In an
abuse of notation, we let g(o) = g(o;, 0,) denote the expected payoff correspond-
ing to the mixed strategy o.

In the unperturbed repeated game G(8), the long-run player maximizes the
normalized discounted value of expected payoffs using the discount factor 4,
0 <& <1. Specifically, the sequence of payoffs gi,..., g/... has normalized
present value

o0
(1-8) ) &%
t=0

The normalizing factor 1 — 8 is chosen so that payoffs in the repeated game are
measured in the same units as those of the stage game. Each period’s short-run
player acts to maximize that period’s payoff.

Both long-run and short-run players can condition their play at time ¢ on the
entire past history of the game.? Let H, denote the set of possible histories of the
game through time ¢, H,=(S; X S,)". A pure strategy for player one is a
sequence of maps si: H,_; — S}, and a pure strategy for a period ¢ player two is
a function s5: H,_; - S,. Mixed (behavior) strategies are o: H,_; > 2.

This class of games has been studied by Fudenberg-Kreps-Maskin (1988). We
summarize their results here for the convenience of the reader.

2 We have in mind a situation where the short-run players can learn about previous play without
being physically present, either through word-of-mouth or perhaps from written sources. Note that if
the short-run players could not condition their play on previous outcomes every equilibrium of the
repeated game would be a sequence of static equilibria.
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Let B: X, 3 X, be the correspondence that maps mixed strategies by player
one in the stage game to the best responses of player two. Because each short-run
player cares only about the period-¢ outcome, in any equilibrium of G(8) each
period’s play must lie in the graph of B.

Fudenberg-Kreps-Maskin prove that a kind of “folk theorem” obtains for
games with a single long-run player. Specifically, let V; be the set of payoffs for
player one attainable in the graph of B when player one is restricted to pure
strategies. Let v, be player one’s minimax value in the game in which moves by
player two that are not best responses to some play by player one are deleted.
Then any payoff in ¥V that gives player one more than v; can be attained in a
sequential equilibrium if & is near enough to one.

The point of this paper is to argue that if the game G(8) is perturbed to allow
for a small amount of incomplete information, then there is a far narrower range
of Nash equilibrium payoffs. Roughly speaking, in the perturbed game the
long-run player can exploit the possibility of building a reputation to pick out the
equilibrium he likes best.

Specifically, define

(1) g = max min g(s;,0,)
51 €S 0, €B(sy)

and let s* satisfy

1 % = o*
azgg(nsl*)gl(sl ,0y) =g
We call g* player one’s Stackelberg payoff and s;* a Stackelberg strategy. Note
that there can be several Stackelberg strategies. These definitions differ slightly
from the usual formulation, because when player two has several best responses
we choose the best response that player one likes least. In the usual definition of
Stackelberg equilibrium, the follower is assumed to play the best response that
the leader most prefers. This is natural in many games with a continuum of
strategies, because the leader can make the follower strictly prefer the desired
response by making a small change in his strategy. In our finite setting, player
one cannot break player two’s indifference in this way, so to have a lower bound
on player one’s payoff, we need to allow for the case where player two is
“spiteful” and chooses the best response that player one prefers least. On the
other hand, in generic finite games there are no ties, and our definition coincides
with the usual one.

In the next section we show that if there is positive prior probability that
player one is a type that is certain to play s;* in every period, then player one’s
worst Nash equilibrium payoff is not much lower than g;* when § is close to one.
Because definition (1) limits player one to pure strategies, for some kinds of
games the bound g;* is not useful. For example, in matching pennies, where the
winning payoff is 1, g*= —1, while each player can guarantee himself 0.
Moreover, as shown by Fudenberg-Kreps-Maskin (1988), if we allowed mixed
strategies in (1), not only could the resulting Stackelberg payoff be increased, it
might actually exceed the highest payoff of any Nash equilibrium of the unper-
turbed game.
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Our (1988) paper extends our results here to show that player one can in fact
maintain a reputation for playing a mixed strategy if the corresponding ““Stackel-
berg type” has positive probability.

3. THE PERTURBED GAME

This section introduces the perturbed game and gives the first version of our
bounds on the long-run player’s Nash equilibrium payoff. Section 4 gives exam-
ples to show that this bound cannot in general be improved on, and that there are
generally many Nash equilibria.

In the perturbed game, player one knows his own payoff function, but the
short-run players do not. We represent their uncertainty about player one’s
payoffs using Harsanyi’s (1967) notion of a game of incomplete information.
Player one’s payoff is identified with his “type” w € £2. It is common knowledge
that the short-run players have (identical) prior beliefs about w, represented by a
probability measure p on . In this section we restrict attention to perturbed
games with a countable number of types, so that = {wg, w, w,,...} is a
measure space in the obvious way. Section 7 allows for an uncountable number
of types.

The period payoffs in the perturbed game are the same as in the unperturbed
game, except that player one’s period ¢ payoff g;(s;, s,, w) may now depend on
his type. A pure strategy for player one in the perturbed game is a sequence of
maps s{: H,_; X £ — §,, specifying his play as a function of the history and his
type; a mixed (behavior) strategy is o{: H,_; X £ — Z,. Otherwise the definition
of the perturbed game is the same as that of the unperturbed game. The
perturbed game is denoted G (4, p) to emphasize its dependence on the long-run
player’s discount factor and on the beliefs of the short-run players.

Let type w, have the preferences corresponding to the unperturbed game G(4),
so that if player one is type w, then

81(31’ S35 “)0) = 81(31, 32)-

In some cases it will be most natural for u(w,) to be near to unity; in others it
will not. The magnitude of p(w,) is inessential for our argument, but we do
require that it be strictly positive.

For any action s; € S}, let the event w(s;) be a type w such that playing s, in
every period is strictly dominant in the repeated game.? If repeated play of s, is
strictly dominant in the repeated game, Nash equilibrium requires that (if w(s;)
and h, have positive probability) si*!(h,, w(s;)) =s;. The event w* = w(s*)

i s; was merely dominant in the stage game, it would not necessarily be dominant in the
repeated game. In the prisoner’s dilemma, for example, defection is dominant at each stage, but
certainly is not a good strategy against a tit-for-tat opponent. To ensure that s, is dominant in the
repeated game, let the stage-game payoffs for type w(s;) be:

81(31: $25 ‘*’(51)) = gl(slv 52, ‘*’(sl)) > 81(5'17 53, “’(sl))
for all 5 #E8 and $3,5,.

In other words, player one’s payoff is independent of player two’s action if he plays s,, and is strictly
more than he can get if he plays any other strategy.
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means that player one strictly prefers to play the “Stackelberg strategy” s;*. We
will say that this event corresponds to player one being the Stackelberg type.

Each (possibly mixed) strategy profile (o, 0;) induces a probability distribu-
tion 7 over (5] X S,)® X 2. Notice that this probability distribution contains
many null events corresponding to deviations from the support of these strate-
gies. Let h* be the event s{=s* for all 7. Let #,* be the random variable
aw(s; =s*|h,_,), that is, the probability attached by the short-run players to the
Stackelberg strategy being played after h,_;. Let n(w* <7) be the number
(possibly infinite) of the random variables «,* for which #,* < #. This is clearly a
random variable.

The following lemma about statistical inference is at the heart of our results. It
asserts that if s;* is always played, there is a fixed finite bound on the number of
periods in which player two will believe s;* is unlikely to be played.

LeMMA 1: Let 0 <7 <1. Suppose p(w*)=pu* >0, and that (o{,0;) are such
that w(h*|w*)=1. Then

7 [n(7* <7) > logp*/log m|h*] =0,

and for any infinite history h such that the truncated histories h, all have positive
probability and such that si* is always played, w(w*|h,) is nondecreasing in t.

ReEMARK: The lemma does not show that u(w*|h,) converges to 1. In other
words, the short-run players need not become convinced that the long-run player
is type w*, even if the long-run player plays s* in every period. Rather, the
short-run players become convinced that the long-run player will play as if he
were type w*.

PrOOF:* Because the strategy spaces are finite and A* has positive probability
we may restrict attention to histories 4, that occur with positive probability, and
such that player one has always played s;*. Fix such a history and for 1 <7 <1,
let k., be the history 4, truncated at time .

Observe that by Bayes law

77((’"*Iht—l)"T(htl“')*, ht—l)
W(htlhx—l)

) m(w*|h,) =

Moreover, since given h,_; the choices of players one and two are independent,
(3)  wlhlhy) =a(hl hih, ) =7 (Bilh, )7 (kR ).

Since player two’s choice at ¢ depends on player one’s play only through &,_;,
and 7(w*, h,_{) >0,

(4) w(h?h,_y) =m(h?|w*, h,_,).

4 We are grateful to Paul Milgrom for suggesting a simplified exposition of this proof, which
resulted as well in a better bound.



REPUTATION AND EQUILIBRIUM SELECTION 765

Also, since 7(h*|w*) =1, w(h}|w* h,_;)=1, so
(5) 'n'(hflw*,h,_l)='rr(h,|w*,h,_1).
Substituting (5) into (4) into (3) into (2) yields
m(w*|h,_,)

"7(h1r|hx—1) .

Since A! is distinguished from hl_, by the occurrence of the event s =s*,
a(hilh,_;) = w(s{ =s*|h,_;) = m*. 1t follows that

O (e = =

m

(6) m(w*|h,) =

where 7(w*|h_;) is defined to be w(w*). Consequently, 7(w*|k,) is non-decreas-
ing, and increases by a factor of at least 1 /7 whenever 7,* < 7. Since 7(w*) = p*
is positive by assumption and 1 > w(w*|h,), we conclude that n(w* <) <k,
almost surely (given A;*), provided

(8) u*/mh>1.
Taking logs yields the conclusion of the lemma. Q.E.D.

Since the perturbed game has countably many types and periods, and finitely
many actions per type and period, the set of Nash equilibrium pay-offs is a closed
nonempty set. This follows from the standard results on the existence of mixed
strategy equilibria in finite games, the assumption that the long-run player
discounts future utilities, and the limiting results of Fudenberg and Levine (1983,
1986). Consequently, we may define V;(8, ., w,) to be the least payoff to a player
one of type w, in any Nash equilibrium of the perturbed game G(§, n). (This
minimum is taken over all mixed strategy equilibria.) Our main theorem says that
if the long-run player is patient relative to the prior probability u(w*) that he is
“tough,” then he can achieve almost his Stackelberg payoff. Moreover, the lower
bound on the long-run player’s payoff is independent of the preferences of the
other types in £ to which p assigns positive probability.

THEOREM 1: Assume p(wy) >0, and that p(w*)=p*>0. Then there is a
constant k(p*) otherwise independent of (2, 1), such that

Vi(8, 1, wp) = 8%)g* + (1 — §%*) ) min g,.
1 0 1 1

ProOF: Consider the strategy for player one of always playing s*. We will
show that player one can assure himself of at least the bound in the theorem, so
he must get at least this much in any Nash equilibrium.

Since the reaction correspondence B(o,) is upper hemicontinuous we know
that each element of B(g{) is near to an element of B(s;*) when «,* is sufficiently
near to one. Moreover, since player two has a finite number of pure strategies, if
0, is near to an element of B(s;*) then it must place probability close to one on
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pure strategies that are contained in B(s;*). Since player two must be indifferent
between all strategies that he is willing to assign positive probability, we conclude
there is a probability # <1 such that B(o{) is contained in B(s;*) whenever
m* > 7.

Set k(p*) =logu*/log 7. In any Nash equilibrium type w* will play s;* on the
equilibrium path. It then follows from Lemma 1, that if type w, plays s;* always,
there are at most k(p*) occasions where player two plays outside of B(s*),
corresponding to the events «,* < 7. In the worst case these events occur at the
beginning of the game where they are discounted least. This gives the desired
bound. Q.E.D.

The same proof holds immediately for finitely-repreated games, including the
case where 8 = 1: If there are enough periods, player one’s average payoff cannot
be much below the Stackelberg level.

While we have assumed that player two’s payoffs are common knowledge, a
simple extension allows us to interpret each player two’s choice of s, as a choice
of a strategy mapping his privately-known type into an action. Under this
interpretation, player one’s Stackelberg strategy s;* is the one that maximizes
player one’s expected payoff, given that each type of player two chooses a
short-run best response. In the chain-store game, for example, if there is a
sufficiently high probability that player two is a type which will enter whether or
not player one is expected to fight, then player one’s Stackelberg action is to
acquiesce. (See Milgrom-Roberts (1982) and Fudenberg-Kreps (1987).)

It is also unimportant that player one’s payoff be common knowledge in the
unperturbed game. Let player one’s possible types in the unperturbed game be
0 € 0, with g, =g(sy, s,,0) and g, independent of 6. Now construct a per-
turbed game with type space {2, and assume that © is contained in 2. For each 8,
let s;*(6) be that type’s Stackelberg action, that is, its most preferred action in
the graph of B, and assume that each of the events w(s;*(8)) has positive prior
probability. Theorem 1 shows that each 6 can attain nearly its Stackelberg payoff
g:¥(0) when § is near to one.

For notational reasons, we assumed that types in the perturbed game have
stationary payoffs independent of time and history. As can be seen from Lemma
1, this assumption is irrelevant. Indeed, even the w* type(s) can have nonstation-
ary payoffs, provided that playing s* forever is strictly dominant for the repeated
game.

More strongly, even the unperturbed game need not be stationary. In a
nonstationary game we may define the Stackelberg payoff to be the greatest
average present value obtainable when the short-run player plays a static best
response in every period. The nature of the best response may, however, be time
dependent. In this case, the Stackelberg strategy may also be time-dependent,
and the Stackelberg type is one who has the Stackelberg strategy as dominant in
the repeated game. The argument is similar to that above, except that now the
critical probability # will be indexed by time. Provided only that it is bounded
uniformly away from one, that is, 7, <7 <1 for all 7, Lemma 1 implies Theorem
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1 remains valid. An application along these lines may be found in Example 2
below.

David Kreps has pointed out an alternative interpretation of our results for
those who are uncomfortable with the assumption that the Stackelberg type has
strictly positive probability. Instead, we could suppose that there is a fixed finite
subset of £’ of 2. Each type ' € £ has some strategy s{ as a dominant strategy
in the repeated game. Then type w, can compute its payoff from committing
itself to play any s{, and our proof shows that if 8 is close to unity then type w,
can approximate the payoff to the s/ it most prefers.

Along these lines, we note that it is not essential that the types ' being
imitated have dominant strategies s{ in the repeated game. It is enough to prove
that they play s/ in every equilibrium. We can exploit this observation to show
that our results follow from weaker assumptions on g, combined with refine-
ments of Nash equilibrium. If, for example, we are willing to restrict attention to
sequential equilibria, it is sufficient to prove that the type w’ will play s/ in every
sequential equilibrium. It then follows if the probability of type ' is fixed and
greater than zero, any other type that is sufficiently patient can do almost as well
in any sequential equilibrium as he could by publicly committing to s;.

One aspect of Theorem 1 that deserves emphasis is that given p*, the bound on
the long-run player’s payoff is independent of the prior probabilities of other
types. This allows, for example, there to be types that try to “trick” the short-run
player by playing Stackleberg for a few periods and then switching to another
strategy. Since the bound has greatest significance as § — 1, uniformity is of some
importance. One interpretation of 8 increasing towards one is that the time
periods become very short. In this interpretation, it is not very natural to hold the
probability distribution over types fixed: If some type plays a certain way for a
year and then switches, the number of periods until it switches will increase as
0 — 1. Theorem 1 shows that our bound obtains even if we adjust the relative
probability of the non-Stackleberg types as § — 1 to account for this effect.

Finally, it is natural to ask whether Theorem 1 extends to the case in which s*
is a mixed strategy by the long-run player. In Fudenberg-Levine (1988), we show
that a similar bound does obtain. The major difference is that Lemma 1 does not
hold. Since the short-run players do not know if the long-run players actually
played s;*, the probability of w* is not nondecreasing. Instead, it can be shown to
follow a special sort of supermartingale, and in place of Lemma 1 we can show
that if s* is always played, for every &> 0, there exists a k so that the
probability that player two fails to play a best response more than k times is no
more than e. Consequently, a very patient player can insure that he gets almost
g:* with very high probability.

4. EXAMPLES

We now present some examples to illustrate the power and the limitations of
our result. Example 1 explores the values of p* and 7 in the original chain store
game. Example 2 uses some variants of the chain store game to illustrate the
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advantage of our technique of proof: We obtain asymptotic results without the
need to explicitly solve for the sequential equilibria. Example 3 shows that
the equilibria need not be unique.

ExaMPLE 1: To understand how our payoff bound depends on § and p*, we
examine a simple simultaneous move version of Selten’s (1977) celebrated chain
store paradox. In this game the short-run player may choose to be in or out; the
long-run player to acquiesce or fight. If the short-run player stays out, he gets 0
and the long-run player gets 3; if the short-run player is in, and the long-run
player acquiesces, the long-run player gets 1, the short-run player 2. If the
short-run player is in, and the long-run player fights, the long-run player gets 0
and the short-run player —1 (the sequential move version of this game is in
Figure 4).

Let minmax g; be the minmax value for the long-run player given that the
short-run player is playing a best response to some mixed strategy by the
long-run player. In this example, minmax g, =1, and g*=3. Let g,(8) be
the bound in Theorem 1. Then (g,(6) — minmax g;)/(g;* — minmax g;) is a
natural measure of the tightness of our bound: It measures how much the
long-run player is assured of gaining relative to the most he can gain from
precommitment. Alternatively, we subtract this ratio from one to obtain a
measure of player one’s loss relative to g*, obtaining

g —&(8)  (1-8")(gf—ming,) kr(gt—ming,)
g;* — minmax g, g* — minmax g; g;* — minmax g;

where r is the interest rate, and 8 =1 — kr for 8 near 1.

In the example g* = 3, min g; = 0 and minmax g, = 1, so the loss is kr-3/2.
Moreover, if 7, the probability of a fight, exceeds 2/3, it is strictly best for the
short-run player to stay out. Our bound k on the number of periods of entry is
log u/log 7 so that p* =a*=(2/3) It is interesting to note that this bound,
taken over all Nash equilibria of all finite or infinite horizon perturbed games
with a prior p* of always fight, is the same as that obtained by Kreps-Wilson
(1982) and Milgrom-Roberts (1982) for the finite-horizon sequential equilibria of
the game with two types. Because our bound is logarithmic in p*, the p* required
to guarantee no more than k periods of entry falls quite rapidly in k. If we wish
“the loss to be less than 12%, so kr < .08, and the game is played monthly with
annual discount factor 12%, an 8 month wait means a loss of no more than 10%.
On the other hand (2/3)% = 0.04, so a 4% chance of facing a Stackelberg long-run
player means it will require at most 8 periods to establish a Stackelberg reputa-
tion.

ExaMPLE 2: Consider the following infinitely-repeated version of the chain-
store game. Each period, a short-run entrant decides whether or not to enter and
the long-run incumbent chooses whether to fight or to acquiesce. For conformity
with the assumptions of Theorem 1, we assume that these choices are made
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entrant size gain to fighting instead of acquiesing
big 4p-2
medium 3p-1
small (5p-1)/2
FIGURE 1

simultaneously, and that at the end of the period the incumbent’s choice is
revealed, whether or not entry in fact occurred. The entrants differ in two ways.
First, each period’s entrant is either “strong” or “weak.” Strong entrants always
enter, weak ones have payoffs described below. Each period’s entrant is weak
with probability p, independent of the others, and being strong or weak is private
information. Second, each entrant is one of three “sizes,” big, medium, or small.
Each entrant has probability z, of being big, z,, of being medium-sized, and z, of
being small, and the entrants’ sizes are public information. To preserve a
stationary structure, we imagine that the incumbent learns the period ¢ entrant’s
size at the start of period z. Each weak entrant receives 1 if it stays out, O if there
is a fight, and 2 if it enters and the incumbent acquiesces. Thus weak entrants
enter if the probability that they will be fought is less than 1/2. The incumbent
receives 2 if it acquiesces and 4 if no entry occurs. The incumbent receives 3 /2 if
it has to fight a small entrant, 1 if it has to fight a medium one, and 0 if it has to
fight a large one. Thus in the unperturbed game, there is an equilibrium in which
all entrants enter and the incumbent acquiesces to all entry. The previous papers
on the chain-store game had only one size of entrant, and so the possible
“reputations” the incumbent would want (that is, the possible Stackelberg
actions) to establish are to always fight and to always acquiesce.

To find the Stackelberg strategy here, we compute in Figure 1 the difference in
payoffs between fighting and acquiescing, given that the entrants play their best
response. If, for example, 1/3 <p <1/2, the Stackelberg strategy is to fight the
small and medium-sized entrants, and acquiesce to the large ones. If the only
types of the incumbent are the original one w,, and a type w; that will always
fight, then this reputation need not be credible: The first time the incumbent
concedes to a large entrant he reveals that he is not type w,. But if there is a
nonzero prior probability that the incumbent is a type that acquiesces only to
large entrants, then the incumbent can develop a reputation for playing in this
way.

We can modify Example 2 in several ways. First, let us consider how our result
extends to nonstationary environments. Imagine that there are only medium size
firms and that p =0.01 in odd-numbered periods, and p = 0.60 in even-num-
bered periods. Player one’s constant Stackelberg strategy is then to always
acquiesce, because the cost (—0.97) of fighting in the odd periods outweighs the
potential gain (0.80) from entry deterrence in the even ones. However, if we allow
player one the opportunity to maintain a reputation for nonstationary play, he
can do much better by fighting in the even periods and acquiesing in the odd
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L R

U [ 0,0
D 0,0 | 10,l10

FIGURE 2

ones. If the prior distribution on 2 assigns positive probability to player one
fighting in even periods and acquiescing in the odd ones, the proof of Theorem 1
extends in the obvious way to show that the long-run player can maintain the
desired reputation.

ExaMpLE 3: Consider the 2 X 2 game in Figure 2. If p(w = w,) is near to one,
then, regardless of 8, the game G (9, p) has several sequential equilibria, all of
which satisfy our bound. For concreteness, suppose that 0 <& <1/11, and that
puts weight 1 — & on w,, weight ¢ on w* (the player who always plays D), and no
weight on any other types. One equilibrium of this game has the short-run
players playing R regardless of history, and both types of player one playing D
regardless of history. Another equilibrium has the first period’s player two
playing L, and type w, of player one playing U in the first period. Play from the
second period on matches that in the first equilibrium. Neither player one nor the
first period’s player two has an incentive to deviate, as the first-period actions are
a static Nash equilibrium, and not deviating gives player one his highest possible
payoff from period two on. There is no point in player one imitating the w* type
in the first period since he will do just as well beginning next period anyway.

Yet a third equilibrium has type w, starting with U and reverting to D after
period T, with player two switching to R at (T + 1) or whenever player one plays
D. This is an equilibrium provided T is large enough and & is small enough that
1—-87>108(1 —8771). In this case, the loss to player one of playing D in
period one (of 1 — &) exceeds the potential gain from convincing two that w = s*
(of 106 — [(8 — 87) + 1087]. Moreover, once player one has revealed in period
one (by playing U) that he is not type w*, he cannot later build a reputation for
being this type.

5. GENERAL DETERMINISTIC STAGE GAMES

We now consider nonsimultaneous move stage games. We start with an
example showing the long-run player may do much less well than predicted by
the simultaneous-move theory. This may seem surprising, because the chain-store
game considered by Kreps-Wilson (1982) and Milgrom-Roberts (1982) has se-
quential moves and not simultaneous ones. We will see that their positive results
are due to the particular nature of the payoffs in the chain-store game.

ExaMPLE 4: This example has the same extensive form as the sequential-move
version of the chain store game, but different payoffs. Player two begins by
choosing whether or not to purchase a good from player one. If he chooses not to
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not buy (0,0)

(L
high

(3,-1)
FIGURE 3.—A quality game.

buy, both players receive zero. If he buys, player one can produce high quality or
low. High quality gives each player 1, while low quality gives player one a payoff
of 3 and player two a payoff of —1 (see Figure 3). The Stackelberg outcome here
is for player one to “promise” to choose high quality, so that all the customers
will purchase. Thus if Theorem 1 extended to this game it would say that if there
is a positive prior probability p* that player one is a type that always produces
high quality, then if & is near enough to unity, player one’s payoff must be very
close to 1 in any Nash equilibrium.

This extension is clearly false. Take p* = .01 and p(w,) = .99, and consider the
following strategies. The high quality type w* produces high quality, and the
“sane” type w, is to produce low quality as long as no more than a single
short-run player has made a purchase, and produces high quality beginning with
the second time a short-run player purchases. The short-run players do not
purchase unless a previous short-run player has, in which case they purchase as
long as every previous purchaser except the first gets high quality. Otherwise they
revert to not purchasing. Given the play of the long-run player, the short-run
players are correct to not buy and so player one does not have the opportunity to
demonstrate that he will produce high quality. Moreover, the first time a
short-run player purchases, the long-run player will optimally produce low
quality, because future players will purchase regardless of the quality that the
first purchaser receives. While constructing a Nash equilibrium would be suffi-
cient to show that Theorem 1 does not extend, it is interesting to note that these
strategies form a sequential equilibrium when combined with the following
beliefs p(w*|[h"). The beliefs are: u(w*|h’) = .01 if no purchase has been made,
p(w*|h") =0 if low quality has ever been purchased, and p(w*|h’) =1, other-
wise. Facing these strategies a single long-run customer might be tempted to
purchase once or twice to gather information, but myopic customers will not
make this investment. Thus we see that for general stage games it is not true that
player one can ensure almost his Stackelberg payoff. This poses a potential
problem for the analysis of Kreps (1984), who uses a similar example to argue
that firms may arise precisely to serve as a vehicle for this type of reputation.

Let us explain why the problem raised in Example 4 does not arise in the chain
store paradox (Figure 4). There, the one action the entrant could take that would
“hide” the incumbent’s strategy is precisely the action corresponding to the
Stackelberg outcome: Whenever the entrant does not play like a Stackelberg
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(3,0)

(1,2)
acquise

(0,-1)

FIGURE 4. —The classical chain store paradox.

follower, the incumbent has a method of demonstrating that the entrant’s play is
“mistaken.” The proof of Theorem 1 invoked Bayesian inference only in those
periods where s; does not belong to B(s;*); whether the incumbent’s strategy is
revealed in periods where s} € B(s;*) is irrelevant.

We have two responses to the problem posed by this example. The first is to
follow Fudenberg-Maskin (1986) and Fudenberg-Kreps-Levine (1988) and exam-
ine perturbations with the property that every information set of the stage game
is reached with positive probability. (See Fudenberg-Kreps-Levine for an expla-
nation of the perturbations involved.) In this case by playing his Stackelberg
action s;* in every period, player one ought to eventually force play to the
Stackelberg outcome.

Our second response is to weaken Theorem 1. As we just saw, if the stage-game
is not simultaneous-move, the long-run player may not have the opportunity to
develop the reputation he would desire. Let the stage-game be a finite extensive
form of perfect recall without moves by Nature. As in the example, the play of
the stage game need not reveal player one’s choice of normal-form strategy s.
However when both players use pure strategies the information revealed about
player one’s play is deterministic. Let O(s,, s,) be the subset of S, corresponding
to strategies s{ of player one such that (s, s,) leads to the same terminal node as
(84, 5,). We will say that these strategies are observationally equivalent. In the
example, player one’s Stackelberg action s* was to produce high quality but,
given that player two chooses not to risk dealing with him, player one had no way
of establishing a reputation for Stackelberg play. The problem was that while “do
not buy” was not a best response to s;*, “do not buy” is a best response to “low
quality” and high and low quality are observationally equivalent when player two
does not purchase.

This suggests the following generalization of Theorem 1: For any s,, always
playing s, should eventually force player two to play a strategy s, which is a best
response to some s{ in O(sy, s,). That is, for each s, let W(s,) satisfy

9) W (s,) = {s,|for some o{ with support in O(sy, s,), s, € B(o{)}.

In other words, W(s,) is the set of pure strategy best responses for player two to
beliefs about player one’s strategy that are consistent with the information
revealed when that response is played. Then if § is near to one, player one should
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be able to ensure approximately

(10) g*=max min g(s;,s,).
s S€EW(s)

Notice that the fact that W is defined to contain only the pure strategy best
responses by the short-run player does not effect the min g,(s;, 0,). As before, let
s;* be a strategy that attains g*, and let w* be the event that player one’s best
strategy in G(8, p) is to always play s;*. Note that if the stage-game is simultane-
ous move, W(s;) consists of the pure strategy points in B(s;), and the definitions
of g* and s* reduce to those we gave earlier.

THEOREM 2: Let g be as described above. Assume p(wy)> 0 and that p(w*) =
p* > 0. Then there is a constant k(p*), independent of p, such that

Vi(8, 1, wp) = 8%W)gx 4+ (1 — 8% ) min g,.
1 0 1 1

Before giving the proof, let us observe that this result, while not as strong as
the assertion in Theorem 1 that player one can pick out his preferred payoff in
the graph of B, does suffice to prove that player one can develop a reputation for
“toughness” in the sequential-move version of the chain store game. Consider
the extensive form in Figure 4 above. In this game B(fight) = {out} and
B(acquiesce) = {in}. Also, O(fight,out) = O(acquiesce, out) = {acquiesce, fight},
while O(fight, in) = {fight} and O(acquiesce, in) = {acquiesce}.

First, we argue that W(fight) = B(fight). To see this observe that W(fight) is at
least as large as B(fight) = {out}. Moreover, “in” is not a best response to
“fight”, and “acquiesce” is not observationally equivalent to *“fight” when player
two plays “in.” Consequently, no strategy placing positive weight on “in” is in
W(fight).

Finally, since player one’s Stackelberg action with observable strategies is fight,
and W(fight) = B(fight), the fact that only player one’s realized actions, and not
his strategy, is observable does not lower our bound on player one’s payoff.

PROOF OF THEOREM 2: If s, & W(s;*), then there is a 7 (s,) such that s, is not
a best response to any of which places weight at least # on O(s;*,s,). Let
7 = max 7(s,). Each time player two plays an s} outside of W(s;*), the observed
outcome will be one that had prior probability less than 7. The proof then
follows from Lemma 1. Q.E.D.

6. GENERAL FINITE STATE GAMES

This section extends the basic argument of Theorem 1 to the case with several
interacting short-run players in each period.
The stage game is now a finite n-player simultaneous move game

g: §; X§,X -+ XS, - R",
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with player one the only long-run player. Since each of the short-run players
must play a short-run best response, in equilibrium each period’s outcome must
lie in the best response sets of all of the short-run players, that is, it must be a
Nash equilibrium in the (n — 1) player game induced by fixing a (possibly mixed)
strategy by player one. Consequently, we let B: 2, 3 3, X - -+ XX, be the Nash
correspondence. This definition of B(g;) agrees with our previous definition for
the case of a single short-run player. The corresponding definition of g* is
(11) g =max min g(s,0_,).

s O6_1€B(s)
As before, let s;* be a Stackelberg action for player one, that is, an action that
attains g;*.

This situation is much the same as with a single short-run player, and as one
would expect, the approach of Theorem 1 can be readily extended. There is only
one minor complication: in the proof of Theorem 1 we argued that since the set
B(s;*) contained all the best responses to s;*, then there was a probability 7 <1
such that if player one was expected to play s;* with probability exceeding T,
player two would choose an action in B(s*). With several short-run players, the
Nash correspondence B(-) need not be constant in the neighborhood of s*, but
it is still upper hemi-continuous. Thus, when player one plays s* and his
opponent plays a Nash equilibrium for some o; near to s;*, the lowest player
one’s payoff can be is approximately g;*.

As before, let w, be the type whose payoffs are as in the unperturbed game,
and w* = w(s;*) be the event that player one has “s* forever” as a dominant
strategy.

THEOREM 3: Fix a game G(8) with several short-run players and consider a
perturbed version G(8, p). Assume p(w,) >0, and that p(w*) = p* > 0. Then for
all € >0, there is a § <1 such that for all § € (8,1)

Vi(8,p,00) > (1 —e)gf* +eming,.

Moreover, 8 depends on p. only through p*.
Proor: For any 7 € (0,1] let B(w, s;*) be the set of all Nash equilibria for the

short-run players given any strategy for player one that puts probability at least
7 on §;*:

(12) B(m, si*) = {o_,|for some o, with 0,(s*) >7,0_, € B(0,)}
and let
(13) d(m) = min _ g,(s*,0_;)

0_,€B(m,s{*)

be the function that bounds how low player one’s payoff can be when he plays s*
and the short-run players choose actions in B(, s;*). By definition d(1) = g;*.
Moreover, d(m) is clearly nondecreasing. We further claim that d() is continu-
ous in a neighborhood of 1. To see this, suppose to the contrary that there is an
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€ >0 and a sequence 7" — 1 such that for all n, d(7") < g* — &. Then there is a
sequence ¢”; € B(7", s;*) such that g,(s*,0",) <g* — e Extracting a conver-
gent subsequence from the ¢”;, and using the upper hemicontinuity of B(-), we
conclude that there is a o_, € B(s;*) with g;(s;*,6_;) < g* — & which contra-
dicts the definition of g;*.

To prove the theorem, fix an &£>0, and choose # such that d(7)>
(1 —-¢/2)g* + (¢/2)min g,. From Lemma 1 if player one chooses the strategy of
always playing s;*, there is a bound k(p*, ), independent of 8, on how many
times the short-run players can choose actions that are not in B(, s;*). Then in
all but k(p* 7) periods, the long-run player gets at least (1 —e¢/2)g* +
¢/2min g,. This yields a bound of

8*g* (1~ ¢/2) + 8%(e/2) min g; + (1 — %) min g,.

The theorem now follows by choosing § close enough to one that §*> (1 —¢)/
1 —-¢/2). Q.E.D.

7. GAMES WITH A CONTINUUM OF STRATEGIES

We turn attention now to the case where players have a continuum of
strategies in each period. Two complications arise in the analysis. First, it is no
longer true that merely because the short-run player puts a large probability
weight on the Stackelberg strategy, he must play a best response to it. However,
he must play an e-best response, and this is sufficient for our purposes. Second, it
is not sensible to suppose that a priori the short-run player places positive weight
on the Stackelberg strategy: instead we assume that all neighborhoods of the
Stackelberg strategy have positive probability. Nash equilibrium, then, does not
require the short-run player to optimize against the Stackelberg type, since that
type occurs with probability zero. Instead, we must work with a sequence of
types that converge to the Stackelberg type.

We return to the basic simultaneous move model. Our description of the
perturbed and unperturbed game is unchanged with two exceptions. First, S; and
S, are now assumed to be compact metric spaces, rather than finite sets, and £
may be an arbitrary measure space. Second, the payoff maps g;: S; X S, X2 - R
and g,: S;XS,—> R are assumed to be continuous on S; X S,. Next, the
definitions of the Stackelberg payoffs and strategies must be changed. Because we
are working with a continuum of types, it is no longer reasonable to assume that
a single type w, has strictly positive probability. Instead, we must consider types
w, belonging to a positive probability set {,, with a different Stackelberg payoff
g:¥(wy) and Stackelberg strategy s;*(w,) for each w,. Thus we define for each w,

(14) gi*(wo) = sup min g (s1,0,, w).

s €S, 2EB(s)
Recall that in the previous sections we defined g* as the maximum over a
set of responses as opposed to the supremum. In the present setting with a con-
tinuum of actions, we must use the supremum because the function
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min,, ¢ p(s,)8(S1, 02, wy) need not be continuous. To see the problem, suppose
that the short-run player has two strategies H and L, and that the long-run
player chooses s, € [0,1]. If the short-run player plays H, the long-run player gets
1 + s,; if the short-run player plays L, the long-run player gets s;. On the other
hand, the short-run player’s payoff to H is s;, and his payoff to L is 2s; — 1.
Consequently, if s; <1, the unique best response for the short-run player is H; if
s, =1, he is indifferent between H and L. Thus min, ¢ p,81(51, 0,) is equal to
1+, if 5, <1 but equal to 1 if s; =1. However, we shall show that the
supremum is obtainable in the limit.

With the definition of the type w, Stackelberg payoff in hand, the definitions of
the Stackelberg strategies is straightforward. Since S is by assumption compact,
we let 5*(w,) be a limit of a sequence si" such that min, ¢ p(m) 81(51, 62, wp) =
8*¥(wy). We also need to consider e-best responses by player two. Define B,:
2, 3 3, to be the correspondence that maps mixed strategies by player one in
the stage game g to e-best responses of player two. That is, if o, € B,(0;), then
8,(0;,0,) + € > g,(0,,07) for all o; € X,. Let d denote the distance metric. We
define
(15) g (e, 5,0) = min g(s{,0,,).

0, €B(s{)

d(s{,s)<e
In other words, we allow e-best responses to strategies that differ from s, by up
to &. This function has one key property:

LEMMA 2: lim, _, (g (&, 51, wy) = 81 (0, 51, wp).

REMARK: Because of the discontinuity discussed above, g*(0, s;*, w,) need not
equal g*(w).

Proor: If the lemma fails, there exist sequences ¢” — 0, s" — s, and &™-best
responses o," to s such that lim g;(s{", 05", w,y) < g:*(0, 51, wy). Since S, is
compact, X, is weakly compact, and we may assume ¢;" — 6,. Since g; is weakly
continuous lim g,(sy", 65", w,) = g,(83, 03, wy) < g:*(0, 54, wy). From the definition
of g*(0, s;, wy) it is clear that o, cannot be a best response to s;; that is, there
exists 6, with g,(s;,6,) = g,(s;,0,) +¢& for some &> 0. However, since g, is
weakly continuous, we have g,(s", 6,) = g,(s1, 0,) and g,(s7", 65") = g,(s;, 6,).
This implies for large enough m

8:(51".8,) > 8,(s7",05") +¢/2 2 8,(s7", 03") + €™,
contradicting the fact that ¢,” is an ¢"-best response to s;". Q.E.D.

To prove that as § — 1, the long-run player can get nearly the Stackelberg
payoff, we must describe our assumption on p, the distribution over types. Recall
that w(s,) is the type that has s, as a dominant strategy. As we remarked at the
beginning of this section, we do not wish to assume that the Stackelberg type
corresponding to w, has positive probability. Instead we will assume that there is
positive probability near w(s*(w,)). More precisely, let p*(d’, s;) denote the
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probability that p assigns to the types w(s{) corresponding to the strategies s{
that are within distance d’ of s;. We say that a subset 2, of 2 has positive
Stackelberg probability if for each w, € £, there exists a d’(w,) > 0 such that for
all s; with d(sy, s7*(w,)) < d’'(w,) and all d” >0, p*(d”, s;) > 0. This condition
will be satisfied if p has a positive density over all types of the form w(s;).

THEOREM 4: If §, has positive Stackelberg probability, then for almost all
wy € £ and all € > 0 there exists a 8§ <1 such that for all 8 € (§,1)

Vi(8, 1, w0) = (1—€)g*(wo) + emin g, (w).
Moreover, 8 depends on u only through u(-).

PrOOF: The reason that the theorem holds only for almost all w, € 2, is that
type wy’s equilibrium payoff V;(8, u, w,), a conditional expectation, is only
defined for almost all w,. Fix an w, for which V; is defined, and choose 5, so that
181" (0, 51, wo) — gr*(wp)| < &(g*(w) — min gy(wy))/3 and d(5;, si*(wy)) <
d'(w,). This is possible by the definition of s*(w,). Choosing a small number ¢’
notice that the probability of the set of s; with d(s;, 5;) <& is positive by
assumption. It follows that for some s, with d(s;, 5;) <¢, player two must
respond optimally following the history 4, that results when s; is played
repeatedly. In particular, since of the types w(s{) with d(s{, s;) < ¢, it is almost
surely true in equilibrium that only type w(s,) will actually play s,, we can
choose s; so that after observing s, played, the type w(s;) will have positive
conditional probability. It is clear that Lemma 1 continues to hold with infinite
action spaces. Consequently, we conclude that for every 7 < 1 there is a k such
that if player one always plays 5, there is probability zero that = (s} = 5;|h,_;) <7
more than k times. Next, for each a, there is some 7 <1 such that player two
will play an action in B,(5;) whenever «(s{ = 5,|h,_;) > 7. It follows that

Vi(8, 1y w9) = 8%g* (@, 51, @) + (1 — %) min g, (w,)
where k depends only on a. By Lemma 2, we may choose a so that
|8 (@, 51, @) — 8*(0, 51, wo) | < e(g7* (wp) — min 81(wo)) /3.
We conclude that for some k,
8%g* (wo)(1 — 2¢/3) + 8%(2¢/3) min g;(w,) + (1 — 8*%) min g, (w,).

The theorem now follows by choosing § close enough to 1 that §*>(1—¢)/
1 —-2¢/3). Q.E.D.

Let us conclude by observing that Theorem 4 can be extended along the lines
of Section 5 to cover general stage games. This simply involves replacing the set
B,(s,) with the set W,(s,) of strategies of player two that are a e-best response to
beliefs that are consistent with the information revealed when that response is
played.
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ExaMPLE 5: The observation that general stage games with a continuum of
actions may be treated this way enables us to examine the sequential play of the
Kreps-Wilson (1982) two-sided predation game, which was analyzed in Fuden-
berg-Kreps (1987). The stage game is played on the interval [0,1], with each
player choosing a time to concede if the other player is still fighting. If the
short-run players are unlikely to be “tough,” the Stackelberg action for the
long-run player is to commit to fight until the finish (#=1), which induces
the “weak” short-run players to concede immediately. This game is not a
simultaneous move: If the first player two concedes immediately, the others will
not learn how long player one would have been willing to fight. However, as in
the simple predation game, this does not pose additional complications. When-
ever a short-run player does not play as a Stackelberg follower, the long-run
player will have a chance to demonstrate that he is “tough.” We conclude that if
the long-run player is patient he can do almost as well as if he could commit
himself never to concede.
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