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Abstract: We study a prototypical class of exchange economies with private information

and indivisibilities. We establish an equivalence between lottery equilibria and sunspot

equilibria and show that the welfare and existence theorems hold. To establish these

results, we introduce the concept of the stand-in consumer economy, which is a standard

convex, finite consumer, finite good, pure exchange economy. With decreasing absolute

risk aversion and no indivisibilities, we prove that no lotteries are actually used in

equilibrium.  We provide a simple numerical example with increasing absolute risk

aversion in which lotteries are necessarily used in equilibrium.  We also show how the

equilibrium allocation in this example can be implemented in a sunspot equilibrium.
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1 Introduction

There is consideranle empirical evidence that, unlike in the standard complete

markets model, individuals bear substantial idiosyncratic risk. See Kreuger [18] for a

survey and discussion.  Both incomplete markets models, such as those of Geanakoplos

[13], and models of individual rationality constraints, such as those of Kehoe and Levine

[15, 16], Kocherlakota [17], and Alvarez and Jermann [1], have been used to study

idiosyncratic risk bearing. None of these models can explain a strong concentration of

individual portfolios in a narrow range of assets. Why, for example, does Bill Gates hold

largely Microsoft equity, or does a car dealer’s portfolio consist largely of the dealership’s

inventory? While individuals with such undiversified portfolios are a small fraction of the

population, they hold a large percentage of wealth.

Moral hazard is an obvious explanation for such undiversified portfolios, and

recently there has been a resurgence of interest in introducing this feature into general

equilibrium theory.  Bennardo [3], Bennardo and Chiappori [4], and Bisin and Guaitoli

[5] have been such efforts. The point of departure has been Prescott and Townsend [19,

20], who introduce both the idea that incentive constraints can be introduced into general

equilibrium theory in a sensible way and the idea that lotteries play a potentially

important role in the resulting theory. Although their theory has been widely used to study

indivisibilities in the aggregate economy by Hansen [13], Rogerson [22], Cole and

Prescott [9], and others, until recently little effort has been made to study incentive

constraints from this point of view.2 The idea of using lotteries to study asset markets

remains controversial.

This paper studies a prototypical class of incentive constrained environments in an

effort to clarify a number of issues. One issue is how lottery equilibria are to be

implemented. In the indivisibility case with a finite number of households, Shell and

Wright [23] show that there is a close connection between lottery equilibria and sunspot

equilibria, a connection that is made tight in Garratt et al. [12].3 Here we show that

                                                
2 A recent exception is Prescott and Townsend’s [21] model of the firm.
3 Shell and Wright [23] consider a model with complete information and a continuum of consumers.  They
show that every lottery equilibrium allocation can be decentralized as a sunspot equilibrium.  In a model
with complete information and a finite sunspot state space, Garratt [11] shows that, while every lottery
equilibrium allocation can be decentralized as a sunspot equilibrium, not every sunspot equilibrium
allocation is a lottery equilibrium allocation.  Garratt et al. [12] establish the equivalence, in general
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similar results hold in the case of incentive constrained economies with a continuum of

households. In the important case of decreasing absolute risk aversion and no

indivisibilities, we show that lotteries are not actually needed in equilibrium. We provide

a simple numerical example with increasing absolute risk aversion in which lotteries are

necessarily used in equilibrium.  We also show how the equilibrium allocation in this

example can be implemented in a sunspot equilibrium. The proofs of theorems, the

analysis of the example, and the computation of equilibria in these sorts of economies are

greatly facilitated by the notion of the stand-in consumer economy. Overall, we argue that

the Prescott and Townsend framework represents a sensible and useful framework for

analyzing moral hazard and adverse selection in general equilibrium theory.

In recent related work, Cole and Kocherlakota [9] consider an environment like

ours with private information over endowments.  They show that, if storage is possible

and unobservable by other housholds, then the equilibrium allocation is the same as that

in an economy with an incomplete markets economy with a single asset that pays the

same in all states.

2 A Simple Insurance Problem

There is a continuum [ , ]0 1  of households who are ex ante identical. There are two

goods j = 1 2, . Let cj  denote consumption of good j. Utility is given by v c v c1 1 2 2( ) ( )+ ,

where each vi ( )⋅  is strictly concave and strictly increasing. The endowment of good 1 is

risky, while good 2 has a certain endowment. Each household has an independent 50

percent chance of being in one of two states, s g b∈{ , } . The endowment of good 1 is

state dependent and can take on one of the two values ω1g  and ω1b , where ω ω1 1g b> ,

while the endowment of good 2 is fixed at w 2 .

Viewed in the aggregate, after the state is realized, half of the population has the

good endowment, and half the bad endowment. After the state is realized, there are gains

from trade, as the bad endowment households want to purchase good 1 and sell good 2.

Before the state is realized, there are additional gains from trade since households want to

purchase insurance against the bad state. In fact, since all households are ex ante identical

and utility is strictly concave, the best symmetric allocation is that in which households

                                                                                                                                                
complete information economies, of the set of lottery equilibrium allocations and the set of sunspot
equilibrium allocations based on a continuous sunspot randomization device.



3

consume ( ) /ω ω1 1 2g b+  of good 1, and w 2  of good 2. Following the mechanism design

literature, we refer to this allocation as the first best.

Suppose that the realization of the idiosyncratic risk is private information known

only to the individual household. In this case, the first best allocation is not incentive

compatible. In the first best allocation, bad endowment households receive an insurance

payment of ( ) /ω ω1 1 2g b− , while good endowment households must make a payment of

the same amount. Consequently, good endowment households would misrepresent their

endowment in order to receive a payment rather than make one.

One approach to modeling equilibrium is to prohibit trading in insurance

contracts, and consider only trading that takes place ex post after the state is realized. This

is an example of an incomplete markets model. The resulting competitive equilibrium

leads to an equalization of marginal rates of substitution between the two goods for the

two types of households, but there are unrealized gains from ex ante trade in insurance

contracts.

A second approach to modeling equilibrium is to observe that it is possible to

trade in insurance contracts provided that no household buys a contract that would later

lead it to misrepresent its state. If endowments can be made public, but only voluntarily,

then the good endowment household can imitate the bad endowment type, but not

conversely. Suppose that a household attempts to purchase ( , )x xb b1 2  in state b in

exchange for ( , )x xg g1 2  in state g. In the good endowment state, utility will be

v x v xg g g1 1 1 2 2 2ω ω+ + +2 7 ( ). In this case, the good endowment household may want to

pretend that the state is actually the bad endowment state, state b. To avoid detection, it

must make the same spot market purchases that a bad endowment household would

make, ( , )x xb b1 2 . This results in utility v x v xg b b1 1 1 2 2 2ω ω+ + +2 7 2 7 . Therefore the incentive

compatibility constraint is

v x v x v x v xg g g g b b1 1 1 2 2 2 1 1 1 2 2 2ω ω ω ω+ + + ≥ + + +2 7 2 7 2 7 2 7.
If this constraint is satisfied, the good endowment household has no incentive to lie about

its private information.

We now establish that, if trading in insurance contracts is prohibited, there are

incentive compatible gains to allowing this trade. Let ( $ , $ , $ , $ )x x x xg g b b1 2 1 2  denote net trades

by a household in an equilibrium in which trading in insurance contracts is prohibited.
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Since a bad endowment household cannot imitate a good endowment household, it faces

no incentive constraints. Since the good endowment household could have purchased the

net trade of the bad endowment household and had income left over, it strictly prefers its

own net trade to that of the bad endowment household,

 v x v x v x v xg g g g b b1 1 1 2 2 2 1 1 1 2 2 2( $ ) ( $ ) $ $ω ω ω ω+ + + > + + +2 7 2 7 .
We already know that (~ , ~ , ~ , ~ ) ( ( ) / , , ( ) / , )x x x xg g b b g b g b1 2 1 2 1 1 1 12 0 2 0= − − −ω ω ω ω  would be

the equilibrium trades of insurance if there were no incentive constraints and would yield

strictly higher ex ante utility than ( $ , $ , $ , $ )x x x xg g b b1 2 1 2  because utility is strictly concave.

Consider the net trade

( , , , ) (( ) $ ~ ,( ) $ ~ ,( ) $ ~ ,( ) $ ~ ).x x x x x x x x x x x xg g b b g g g g b b b b1 2 1 2 1 1 2 2 1 1 2 21 1 1 1= − + − + − + − +θ θ θ θ θ θ θ θ

If θ  is small enough, then good endowment household still has no incentive to

misrepresent, but ex ante utility is strictly higher. Therefore, there are additional incentive

compatible gains to trade that are not realized when trading in insurance contracts is

prohibited.

 Suppose, more generally, that households trade goods contingent on

announcements. No household will ever deliver a bundle that is not incentive compatible.

Every household knows this fact, and so only incentive compatible bundles can be traded.

Notice, however, that this stronger argument does not guarantee that all incentive

compatible bundles actually can be traded unless these contracts prohibit ex post trade: If

a good endowment household can receive an insurance payment by claiming a bad

endowment and then turn around and trade the insurance payment of good 1 for

additional units of good 2, it will prefer this to admitting a good endowment. The contract

must specifically prohibit households claiming to have a bad endowment from trading

good 1 for good 2.

Contracts that preclude other trade are often referred to as exclusive contracts.

Contracts of this type are common in insurance markets. Often insurance contracts

specify that the insurance payment can be used only for a specific purpose, such as

replacing a structure on a specific location. We consider only exclusive contracts in this

paper.

Let X  denote the space of all net trades that satisfy the incentive constraint. Our

program is to restrict households to trading plans in X and then do ordinary competitive
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equilibrium theory. There are two complications with this program. First, fixing ( , )x xg g1 2 ,

the set of ( , )x xb b1 2  that satisfies the incentive constraint fails to be convex, so X is not a

convex set. This means that Pareto improvements may be possible by using lotteries.

Second, we can use lotteries to weaken the incentive constraints; that is, contingent on its

announcement s, the household receives net trades ( , )x xs s1 2 that are random.

Consequently, the incentive constraint need only hold in expected value. If we let Ei

denote the expectation conditional on the announcement of state i  the incentive

constraint becomes

E v x v x E v x v xg g g g g b g b b1 1 1 2 2 2 1 1 1 2 2 2ω ω ω ω+ + + ≥ + + +2 7 2 7> C 2 7 2 7> C .

For these two reasons, once we introduce incentive constraints into general equilibrium,

we also introduce lotteries.4

3 The Environment

Households are of I types i I= 1, ,K . There is a continuum of ex ante identical

households of each type. An individual household is denoted by h Hi i∈ = [ , ]0 λ , where

λi > 0  is the size of the population of type i households.  A household’s type is commonly

known. There are J traded goods j J= 1, ,K . There are also two sources of uncertainty: a

commonly observed sunspot and household specific idiosyncratic risk. A “sunspot” is a

random variable σ  uniformly distributed on [0,1]. Idiosyncratic risk is represented by

specifying that each household of type i consumes in one of a finite number of states

s S i³ . Each state has probability π s
i > 0 where π s

i
s Si =∈∑ 1. This probability has two

interpretations: First, from the perspective of the individual household, it is the

probability of being in the state s. Second, as we explain below, from the perspective of

the entire population of households of type i, it represents the fraction of households in

state s.

We assume that households can contract for delivery of goods contingent on the

sunspot and the individual state of the household.5 We write x hjs
i ( , )σ ∈ℜ  for the net

                                                
4 In addition to Prescott and Townsend [1984a, 1984b], such other authors as Arnott and Stiglitz [2] have
remarked on the potential of lotteries to improve welfare.
5 Strictly speaking, we should allow households to base contracts on the idiosyncratic states of other
households. In the type of equilibrium we will consider contracts based on other household’s idiosyncratic
states do not serve any purpose. We omit them to avoid notational complication.  This point is discussed
further in Section 4.
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amount of good j delivered to household h of type i when the idiosyncratic state is s and

the sunspot state is σ . The distribution of idiosyncratic shocks and sunspots are assumed

to be independent. The idiosyncratic shocks are such that the aggregate net trade of all

type i households of good j when the sunspot is σ  is given by

y x h dhj
i

s
i

s S js
i

i( ) ( , )σ π σ= I∑ ∈
,

which is the assumption that π s
i is the fraction of households of type i in state s.  There

are several justifications for this assumption. The easiest assumption is that idiosyncratic

shocks are independent across households. It is known that this is inconsistent with

aggregate net trades defined by Lesbesgue integration and a space of consumers on the

unit interval; this is discussed in Boylan [6]. Alternatively, we could define aggregate net

trades by the Pettis integral, as in Uhlig [24]. Or we could simply allow idiosyncratic

states to be correlated across individuals. We prefer to avoid these technical issues,

however, and simply justify the definition of aggregate consumption given as the limit of

aggregate net trades in finite household economies with shocks independent across

households. This, after all, is the purpose in introducing continuum economies in the first

place.

Trading takes place before any uncertainty is realized. Then the idiosyncratic

states are realized and announcements of states are made. Next, sunspots are realized.

Finally, deliveries are made, no further trade is allowed, and consumption takes place.

Notice that at this point we do not allow ex ante sunspots that are realized prior to the

realization and announcement of individual states. A more general model would allow

both ex ante and ex post sunspots. Later, we show that equilibria in the more general

model are equivalent to equilibria in the ex post model we consider here.6

Fix household h of type i. For each announcement of the idiosyncratic state s and

the sunspot s  this household realizes a net trade x hs
i J( , )σ ∈ℜ . We assume that this net

trade must belong to the feasible net trade set Xs
i . Notice that endowments are

incorporated directly into the feasible net trade set and are not specified separately; we

allow Xi  to depend on s so that endowments may be idiosyncratic state contingent. In a

                                                
6 In a model with only ex ante sunspots, equilibrium can be changed by adding ex post sunspots, because
lotteries conditional on private information may be used to separate households with different risk
preferences. This was originally pointed out by Cole [7].
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standard endowment economy, with endowments ω s
i , we have X x xs

i
s
i

s
i

s
i= ≥ −{ | }ω . Utility

is given by u Xs
i

s
i: → ℜ . We use the notation

x hi JSi

( , )σ ∈ℜ

for the set of net trade vectors corresponding to different idiosyncratic states and

 u x h u x hi i
s
i

s
i

s
i

s Si( ( , )) ( ( , ))σ π σ=
∈∑

for expected utility.

We next consider incentive constraints. These are derived from requiring that

households not want to misrepresent private information about their own state. Private

information about states is specified by sets of feasible reports F Ss
i i⊆ . These sets

represent the reports that a household can make about his state when his true state is s

without being contradicted by either public information or physical evidence.

Consequently, a set of feasible reports must satisfy two assumptions:

Feasible Truthtelling: For all s Si∈ , s Fs
i∈ .

Feasible Misrepresentation: If s Fs
i’∈ , then X Xs

i
s
i

’ ⊆ .

The second assumption requires that it is not possible to report a net trade set that is

infeasible with respect to the true net trade set. This assumption rules out more

complicated possibilities, such as situations where the feasibility of trading plans can only

be discovered ex post and punishment imposed for violating contracts. In such a case,

feasible reports would depend on the particular contract offered.

The notion of feasible reports that satisfy these two assumptions leaves substantial

flexibility in building model economies. We provide two examples of classes of

economies that satisfy our assumptions:

Public Endowments: The endowments ω s
i  are publicly observed, but preferences us

i  are

not. Then F ss
i

s
i

s
i= =’| ’ω ω< A.

Voluntary Public Endowments: A household with endowment ω s
i  may publicly display

any portion of its endowment. Preferences us
i  are private. By requiring that an

endowment be displayed in order to be reported, we obtain F ss
i

s
i

s
i= ≤’| ’ω ω< A. In other

words, households claiming a particular endowment can be required to display the
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claimed endowment, preventing households with smaller endowments from

misrepresenting that they have larger endowments.

Notice that we treat sets of feasible reports as data. This avoids the deeper and more

difficult question of how sets of feasible reports are generated from underlying

fundamentals. Notice in particular that we could use the sets F ss
i

s
i

s
i= ≤’| ’ω ω< A even in

the case of public endowments. It is apparent that this would lead to smaller set of

feasible allocations than making full use of the public information and taking

F ss
i

s
i

s
i= =’| ’ω ω< A. A caveat to the results reported in this paper is that efficiency is

conditional on a particular set of feasible reports.

A sunspot contingent trading plan x hi ( , )σ  is called incentive compatible if for all

s F si’ ( )∈

u x h d u x h ds
i

s
i

s
i

s
i( ( , )) ( ( , ))’σ σ σ σ− ≥II 0.

We do not assume that Xs
i  is convex or that us

i  is concave or non-decreasing. We

do assume:

Closed and Bounded Trades: Xs
i  is closed and bounded below.

Voluntary Trade: 0 ∈Xs
i .

Cheaper Point: For every i and some s Si∈  and xs
i < 0 , x Xs

i
s
i∈Convex Hull{ } .

Continuity: us
i  is continuous.

Non-satiation: From some state s and all x Xs
i

s
i∈  there exists ~x Xs

i
s
i∈  such that

u x u xs
i

s
i

s
i

s
i(~ ) ( )> .

Boundary: If xs
i → ∞ , then lim ( ) /u x xs

i
s
i

s
i = 0.

With the exception of the boundary condition, these assumptions are self-explanatory.

The boundary condition requires marginal utility to asymptote to zero; it says that

eventually utility increases slower than any linear function.7

                                                
7 Notice that nothing in these assumptions rule out indivisibilities, nor is it necessary to, as the literature on
lotteries with indivisibilities discussed in the introduction shows.
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An important fact about the non-satiation condition is that it implies non-satiation

for incentive compatible net trades.

Lemma 3.1: If x Xi

s S s
i

i∈×
∈

 is incentive compatible, then there is an incentive compatible
~x Xi

s S s
i

i∈×
∈

 such that π πs
i

s
i

s
i

s S s
i

s
i

s
i

s S
u x u xi i(~ ) ( )∈ ∈∑ ∑> .

Proof: By the non-satiation assumption there is a state s and ~xs
i  with u x u xs

i
s
i

s
i

s
i(~ ) ( )> . In

other states s’, if ~
’x Xs

i
s
i∉  or if ~

’x Xs
i

s
i∈  and u x u xs

i
s
i

s
i

s
i

’ ’(~ ) ( )≤ , take ~
’ ’x xs
i

s
i= ; otherwise, take

~ ~
’x xs
i

s
i= . Clearly, π πs

i
s
i

s
i

s S s
i

s
i

s
i

s S
u x u xi i(~ ) ( )∈ ∈∑ ∑>  because π s

i > 0.

We now argue that ~x i  is incentive compatible. Suppose s Fs
i" ’∈ . Since

u x u xs
i

s
i

s
i

s
i

’ ’ ’ "( ) ( )≥ , it follows that u x u xs
i

s
i

s
i

s
i

’ ’ ’ "(~ ) (~ )≥  holds if ~
" "x xs
i

s
i= . If ~

" "x xs
i

s
i≠  then

~ ~
"x xs
i

s
i= . If u x u xs

i
s
i

s
i

s
i

’ ’ ’ "( ) (~ )≥ , since u x u xs
i

s
i

s
i

s
i

’ ’ ’ ’(~ ) ( )≥ , the incentive constraint holds. If

u x u xs
i

s
i

s
i

s
i

’ ’ ’ "( ) (~ )< , we have u x u x u xs
i

s
i

s
i

s
i

s
i

s
i

’ ’ ’ " ’( ) (~ ) (~ )< = , implying that ~ ~
’x xs
i

s
i= . By our

construction of ~
’xs
i , again the incentive constraint holds.

ã

Three points to emphasize about the model are

• Types are commonly known; the idiosyncratic states may or may not be private

information. It is important that contracting takes place prior to learning any private

information. If contracting is possible only after learning private information, or, what

amounts to the same thing, if types are private information, then incentives to

misrepresent information will depend on the net trades of rival households. This

represents an externality that may invalidate the welfare theorems.8

• Households do not care about the private information of rival households. This

assumption could be relaxed, but it would then be necessary to allow contracting

based upon the announcements of the relevant rivals.

• We have implicitly assumed that contracts are exclusive – that is, that trading is not

possible after deliveries are made. As we noted in the example, equilibrium with non-

exclusive trading is quite different than with exclusivity. As pointed out by Prescott

and Townsend [19], the welfare theorems can fail without exclusivity.

                                                
8 Prescott and Townsend [1984b] give an example in which the first welfare theorem holds, but the second
fails. In other examples, such as those in Prescott and Townsend [1984a], both welfare theorems fail and
equilibrium may not exist.
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We conclude this section by illustrating how the example of the previous section fits

into this framework. In the example I J S g b b g= = = = = =1 2 1 1 21 1 1 1, , , { , }, /λ π π . The net

trade sets are those net trades that exceed the negative of the endowment

X x x x xs s s s s s
1

1
1

2
1

1
1

1 2
1

2= ≥ − ≥ −{( , )| , }ω ω .

The utility function for net trades is derived from the utility of consumption according to

u x x v x v x

u x x x x u x x u x x

s s s s s s

g g b b g g g b b b

1
1
1

2
1

1 1 1
1

2 2 2
1

1
1
1

2
1

1
1

2
1 1

1
1

2
1 1

1
1

2
11

2

1

2

( , ) ( ) ( )

( , , , ) ( , ) ( , ).

= + + +

= +

ω ω

The feasible reporting sets reflect the fact that X Xb g
1 1⊂ ,

F b F g bb g
1 1= ={ }, { , } .

There is one incentive constraint, corresponding to a good endowment state reporting a

bad endowment:

u x h d u x h dg g g b
1 1 1 1 0( ( , )) ( ( , ))σ σ σ σ− ≥II .

4 Equilibrium with Sunspots

A sunspot allocation is a measurable map for each type from households to

individual trading plans; that is x h Xs
i

s
i( , )σ ∈ . An allocation is socially feasible if for

each sunspot realization σ

λ π σi
s
i

s
i

s Si

I
x h dhi ( , ) ≤I∑∑ ∈=

0
1

.

Notice that this definition incorporates public free disposal; we do not assume individuals

can secretly dispose of goods. We say that an allocation has equal utility if for each type

u x h d u x h di i i i( ( , )) ( ( ’, ))σ σ σ σI I=  for almost all h h, ’.

Let e denote the idiosyncratic states of all households of all types; e i h( , )  is the

idiosyncratic state of household h of type i. Then the Arrow-Debreu commodity is a

delivery of j goods contingent on ( , )e σ . Arrow-Debreu prices are q e
J

( , )σ ∈ℜ+ . Because

there is no aggregate risk, we restrict attention to Arrow-Debreu equilibria in which prices

are independent of e; that is, q qe( , ) ( )σ σ= . With these prices, the cost to a household h of

type i to purchase xs
i  at σ  is

q x de q x de q xee e i h s s
i

e e i h s s
i

s
i

s
i

( , ){ | ( , ) } { | ( , ) }
( ) ( )σ σ π σ

= =I I⋅ = ⋅ = ⋅ .
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We refer to a non-zero measurable function q J( )σ ∈ℜ+  as a price function.

A sunspot equilibrium with transfers consists of a socially feasible sunspot

allocation $x  together with a price function $q . For all types i and almost all h i∈[ , ]0 λ ,

$ ( , )x hi ⋅  must maximize u x h di i( ( , ))σ σI  over sunspot contingent trading plans x hi ( , )⋅

satisfying the sunspot budget constraint

π σ σ σ π σ σ σs
i

s S s
i

s
i

s S s
i

i iq x h d q x h d∈ ∈∑ ∑II ⋅ ≤ ⋅$( ) ( , ) $( ) $ ( , ) ,

and the incentive constraints u x h u x h d s F ss
i

s
i

s
i

s
i i( ( , )) ( ( , )) , ’ ( )’σ σ σ− ≥ ∈I 0 . The

transfers themselves must satisfy the equal treatment condition that they depend only on

types:

π σ σ σ π σ σ σs
i

s S s
i

s
i

s S s
i

i iq x h d q x h d∈ ∈∑I ∑I⋅ = ⋅$( ) $ ( , ) $( ) $ ( ’, )  for almost all h h, ’.

A sunspot equilibrium is a sunspot equilibrium with transfers in which the

transfers are zero:

π σ σ σs
i

s S s
i

i q x h d∈∑I ⋅ =$( ) $ ( , ) 0 for almost all h .

Finally, a sunspot allocation is Pareto efficient if there is no alternative socially feasible

allocation satisfying the incentive constraints in which almost all households have no less

utility and a positive measure of households have strictly more utility.

An immediate consequence of the fact that the transfers satisfy the equal treatment

condition is the conclusion that the equilibrium allocation must be an equal utility

allocation.  If it were not, then a positive measure of type i could increase their utility by

switching to a consumption plan used by others of the same type.

Lemma 4.1 A sunspot equilibrium allocation with transfers is an equal utility allocation.

Our main goal is to establish the main theorems of competitive general

equilibrium theory for the sunspot economy

Theorem 4.2 (First Welfare Theorem) Every sunspot equilibrium allocation with

transfers is Pareto efficient.

Theorem 4.3 (Second Welfare Theorem) For every Pareto efficient allocation x  with

equal utility there are prices q such that ( , )x q  are a sunspot equilibrium with transfers.

Theorem 4.4 (Existence Theorem) There is at least one sunspot equilibrium.
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The first welfare theorem is a relatively direct consequence of the non-satiation

assumption and the standard proof of the first welfare theorem. The remaining results

follow from equivalence theorems below.

5 Equilibrium with Lotteries

A probability distribution µ s
i  over X s

i  is referred to as a lottery. We define

u u x d xs
i

s
i

s
i

s
i

s
i

s
i( ) ( ) ( )µ µ= I

as the expected utility from the lottery. From the point of view of individual utility, all

trading plans that induce the same set of lotteries

µ µi
s
i

s Si=
∈< A

yield the same utility, and the incentive constraints can also be computed directly from

the lottery. The aggregate resources used by a set of lotteries are

y x d xi i
s
i

s
i

s
i

s
i

s S i= I∑ ∈λ π µ ( ) .

 Notice that with a continuum of households we need not distinguish between realized

and expected net trades. This distinction is important in decentralizing lotteries in the

indivisible case with a finite number of households, as can be seen in the work of Garratt

[11] and Garratt et al. [12].

To illustrate our notation we apply it our insurance example. In the example, there

are two states S g b1 = { , } , and two net trading sets X s
1  consisting of net trades that are at

least as great as the negative of the endowment. The set of lotteries has one lottery

corresponding to each state µ s
1 . The lotteries µ s

1  are each non-negative measures that

satisfy

d xs sµ1 1 1( ) =I .

We now consider the Prescott and Townsend perspective, in which households

trade directly in lotteries. Our goal is to show that this formulation is equivalent to the

sunspot formulation.
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A lottery allocation is a vector of sets of lotteries, µ µ µ= ( ,..., )1 I , where the set

of lotteries µ i  assigns lotteries µ s
i  to type i  in each idiosyncratic state.9 Notice that this

requires all households of a given type to purchase the same lottery. Because preferences

are convex over lotteries, it makes sense to impose this restriction and we demonstrate in

the next section that there is no loss of generality in this. A set of lotteries is socially

feasible if

 λ π µi
s
i

s S s
i

s
i i

i

I

i x d x
∈= ∑I∑ ≤( ) 0

1
.

This says that in the aggregate the expected net trades used by the lottery allocation is

non-positive.

A lottery allocation is Pareto efficient if no socially feasible, incentive compatible

Pareto improvement is possible. A lottery equilibrium with transfers consists of a socially

feasible lottery allocation $µ  together with non-zero price vector $p J∈ℜ+ . For all types i,

$µ i  must maximize

 π µs
i

s S s
i

s
i

i u∈∑ ( )

over lotteries µ i  satisfying the lottery budget constraint

$ ( ) $ $ ( )p x d x p x d xs
i

s S s
i

s
i

s
i

s
i

s S s
i

s
i

s
i

i i⋅ ≤ ⋅∈ ∈∑I ∑Iπ µ π µ ,

and the incentive constraints u u s F ss
i

s
i

s
i

s
i i( ) ( ) , ’ ( )’µ µ− ≥ ∈0 . A lottery equilibrium is a

lottery equilibrium with transfers in which the transfers are zero

$ ( )p x d xs
i

s S s
i

s
i

s
i

i⋅ =∈∑I π µ 0.

Notice that in this formulation, lotteries are priced according to the aggregate

resources they use. This is a no-arbitrage condition: two lotteries that use the same

aggregate resources must have the same price. If one lottery uses aggregate resources y

and another $y , and if the cost of buying y and $y  separately exceeds the cost of buying

y y+ $ , it would be profitable to buy the joint lottery y y+ $  and sell the pieces, while in the

opposite case, the pieces should be bought separately, then packaged and sold. Only

                                                
9 We could have equally well followed the formalism of defining a trade vector µ µ µ= ( ,..., )1 I , and
restricting households of type i  to the trade sets in which the lottery vectors for all other types put
probability 0 on all trades.  The notation followed here has the advantage of being less cumbersome, but has
the disadvantage of implicitly having different trade spaces, and underlying commodity spaces, for different
household types.
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linear pricing in the aggregate resources guarantees that there are no arbitrage

opportunities.10

Let k Fi
s
i

s Si= −∈∑ (# )1 denote the number of incentive constraints. There are four

basic features of lotteries that are worth emphasizing:

Lemma 5.1

(a) A convex combination of incentive compatible sets of lotteries is incentive compatible.

(b) Let y yi i, ~  be the resources used by the sets of lotteries µ µi i, ~  and let 0 1≤ ≤α .

Then the set of lotteries αµ α µi i+ −( )~1  uses aggregate resources α αy yi i+ −( )~1 .

(c) For any incentive compatible set of lotteries µ i  there is another incentive compatible

set of lotteries ~µ i  using the same aggregate resources, yielding the same utility, and

each lottery ~µ s
i  having support on k Ji + + 2  points.

(d) Let yi be the resources used by the incentive compatible set of lotteries µ i , and

suppose ~y yi i> . Then there is an incentive compatible set of lotteries ~µ i  using no

more resources than ~y i  that yields strictly more utility than µ i .

Proof: (a) and (b) are immediate. The proof of (c) is largely mathematical, and is

provided in the Appendix. To prove (d), first apply (c) to find an incentive compatible

lottery ~~µ i  with finite support yielding the same utility as µ i . Because this lottery has

finite support, it follows from Lemma 3.1 that there is an incentive compatible net trade

xi  with π π µ π µs
i

s
i

s
i

s S s
i

s
i

s
i

s S s
i

s
i

s
i

s S
u x u ui i i( ) (~~ ) ( )> =∈ ∈ ∈∑ ∑ ∑ . Let ~µ s

i  be the degenerate

lottery with point mass on xs
i . Then for all 0 1< ≤α , the set of lotteries ( ) ~1− +α µ αµi i

is incentive compatible by (a) and yields strictly more utility than µ i . As α  approaches

0, however, the aggregate resources used by this set of lotteries approach yi  and,

therefore, for α sufficiently small, are less than ~y i .

ã

                                                
10 Much of the literature on lotteries studies production economies in which firms can repackage lotteries
into different lotteries using the same resources; what we refer to as a no-arbitrage condition follows in that
setting from profit maximization by firms. Our approach follows Hansen [1985].
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We will establish the main theorems of competitive general equilibrium theory for

the lottery economy, as well as the sunspot economy.

Theorem 5.2 (First Welfare Theorem) Every lottery equilibrium allocation with

transfers is Pareto efficient.

Theorem 5.3 (Second Welfare Theorem) For every Pareto efficient allocation there are

prices forming a lottery equilibrium with transfers.

Theorem 5.4 (Existence Theorem) There is at least one lottery equilibrium.

In Prescott and Townsend [20], these theorems are proved directly; we give alternative

proofs below. Our results on sunspot equilibria then follow from showing that lottery and

sunspot allocations are equivalent.

6 Sunspot Equilibrium versus Lottery Equilibrium

Sunspot allocations and lottery allocations are different descriptions of

randomization. For example, suppose that there are two identical types, and one good,

automobiles, for which the consumption vector is either one automobile or zero. Suppose

moreover, that each type is endowed with one half an automobile per capita. From the

lottery perspective, the situation is simple: there can be no trade between the two types, so

each household should receive an automobile with probability 1/2. In other words, in

equilibrium, each household of each type purchases a lottery with a 50 percent chance of

1 automobile, and a 50 percent chance of 0 automobiles.  In our notation, µ i ( / ) /1 2 1 2=

and µ i ( / ) /− =1 2 1 2  where ω i = 1 2/  and ω i ix+  is equal to 1 or 0 for both household

types i = 1 2, .

This lottery can be implemented in many ways by means of sunspots. For

example, we could imagine that the individual lotteries are independent,11 and that in the

aggregate the strong law of large number leads to social feasibility. An alternative

formulation would be to have a simple sunspot allocation in which when the sunspot

variable satisfies σ ≤ 1 2/ , the first type receives all the cars and, when σ > 1 2/ , the

second type receives all the cars. From an individual point of view it makes no difference

which of these methods is used to allocate cars.

                                                
11 Subject to usual caveat about a continuum of independent random variables; see the discussion above.
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A sunspot allocation may induce different lotteries for different households. To

get a single set of lotteries for each type, as required for a lottery allocation, we average

together the household specific lotteries. Begin with a sunspot allocation ~( , )x h σ . For

each household, there correspond lotteries µ s
i

s
ix h(~ ( , ))⋅ . We can then average these

lotteries over households to get a mean lottery for the entire type
~ (~ ( , )) /µ µ λs

i
s
i

s
i ix h dh= ⋅I . Notice that the resources used by this lottery are equal to the

expected resources used by the sunspot allocation; that is,

x d x x h dhds
i

s
i

s
i

s
i i~ ( ) ~ ( , ) /µ σ σ λI I= .

Moreover, by definition, in an equal utility sunspot allocation households of type i must

be indifferent between the allocations ~ ( , )x hi ⋅  and ~ ( ’, )x hi ⋅  for almost all h h, ’. Since

their utility is linear in probabilities, this means they must be indifferent between ~ ( , )x hi ⋅

and the mean set of lotteries ~µ i  for almost all h. In a similar vein, since the incentive

constraints hold for almost all individual sets of lotteries and are also linear in

probabilities, the mean set of lotteries must satisfy the incentive constraint. Consequently,

the mean set of lotteries corresponding to a sunspot equilibrium allocation is a natural

candidate to be an equilibrium of the lottery economy.   We provide an example of

averaging of lotteries in Section 10.

If q ( )σ  is a price function in the sunspot economy, we can in a similar way

define the mean price q q d= I ( )σ σ . Although it is not obvious, we will show below

that the mean price is in fact a correct way to price the mean lottery in the lottery

economy.12

To appreciate the possibility of q( )σ  not being constant, consider a variant of our

automobile example.  Again there are two identical types, but now there are two goods,

clothes washers and dryers.  Households of each type are endowed with 1/2 unit each of

washers and dryers and can consume only 1 or 0 of each of these goods.  Furthermore,

these goods are optimally be consumed in fixed proportions:

u x x x xi i i i i i i( , ) min[ , ].1 2 1 1 2 2= + +ω ω

                                                
12 Alternatively, we could simply require that in a sunspot allocation each household of a type have the same
lottery. While this restriction seems natural in the context of the lottery model with a representative
household, it does seem as natural in the sunspot model. Fortunately, we can show that only the mean
lottery and mean price matter.
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 It is easy to check that one equilibrium is where q q( ) ( , )σ = = 1 0  and

x h1
1 2 1 2 1 2

1 2 1 2 1 2
( , )

( / , / ) /

( / , / ) / ,
σ

σ
σ

=
≤

− − >
%&'

         if 

   if 

with the opposite allocation to households of type 2.  Another equilibrium has the same

allocation but the price vector q q( ) ( , )σ = = 0 1 .  Yet another equilibrium would have

q( )
( , ) / /

( , ) / .
σ

σ σ
σ

=
≤ >

< ≤
%&'

1 0 1 4 3 4

0 1 3 4

   if  or  

   if 1 / 4

The possibility of prices q( )σ  that vary with the sunspot σ  arises because there is more

that one constant price vector that can support an allocation.  Notice, in our example, that

the mean price q = ( / , / )1 2 1 2  is also an equilibrium price.  In Theorem 6.2, we prove

that this is true in general.  In our example, in which the role for sunspots arises because

of indivisibilities, the possibility of more than one constant price vector supporting an

allocation is degenerate in that it disappears if we perturb the endowments.  In economies

where the role for sunspots arises because of incentive constraints, however, there is no

need for equilibria with more than one supporting price to be degenerate.

We define a sunspot allocation to be equivalent to a lottery allocation if for each

type the mean set of lotteries of the sunspot allocation is equal to the corresponding set of

lotteries in the lottery allocation. We define sunspot prices to be equivalent to a lottery

price if the mean price of the sunspot prices is equal to the lottery price. By definition,

there is only one lottery allocation and price that is equivalent to a given sunspot

allocation and price function. As we have already noted, however, there is not a unique

way to construct a sunspot allocation (or prices) from a lottery allocation. Nevertheless,

there is one important construction that plays a key theoretical role in moving from lottery

economies to sunspot economies. For a given lottery price p  we define the constant

function q p( )σ =  to be the canonical sunspot price function13. For a given lottery

allocation µ  we define the canonical sunspot allocation to be a particular allocation in

which the aggregate resources used by each type are independent of the sunspot state.

Specifically, corresponding to the lottery µ s
i  is a random variable ~ ( )xs

i σ .  Recall that

                                                
13 Garratt et al. [12] call these prices constant probability adjusted prices.  They show that in economies
with complete information all sunspot equilibrium allocations can be supported by prices that are collinear
with probabilities if the sunspot randomization device is continuous.
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a bmod  is the remainder of a divided by b. We define the canonical sunspot allocation as

x h x hs
i

s
i i( , ) ~ (( ) mod )σ σ λ= + .14 Notice that at this canonical allocation, the aggregate net

trades by all households of a type is independent of the realization of the sunspot.

These simple constructions show that for every lottery allocation and price there is

at least one equivalent sunspot allocation and price. Because the construction of the

lottery allocation preserves utility, social feasibility and the incentive constraints, we can

draw an immediate conclusion about Pareto efficiency.

Theorem 6.1 An equal utility allocation is Pareto efficient in the sunspot economy if and

only if any (or all) equivalent allocations in the lottery economy are Pareto efficient.

Moreover, the socially feasible, incentive compatible equal utility set in the sunspot

economy is the same as the socially feasible incentive compatible utility set in the lottery

economy.

Less immediately obvious is the equivalence of equilibria in the two economies.

Theorem 6.2 An allocation and price are an equilibrium with transfers in the lottery

economy if any (or all) equivalent allocation and price functions are an equilibrium with

transfers in the sunspot economy. An allocation and constant price function are an

equilibrium with transfers in the sunspot economy if the equivalent allocation and price

function are an equilibrium with transfers in the lottery economy. In both cases the size of

the transfers is the same in the two economies.

Proof: Consider a sunspot allocation $x  and price function $q  and an equivalent lottery

allocation $µ  and price $p . Suppose first that $q  is constant (in particular, that $( ) $q pσ = )

and that $ , $µ p  are an equilibrium with transfers in the lottery economy. Since households

care only about their individual lottery and since $( ) $q pσ = , $, $x q  are an equilibrium with

transfers in the sunspot economy. Since in both cases each type pays only for the

aggregate resources used, which is the same in both economies, the transfers must be the

same in both cases.

Now suppose instead that $, $x q  are an equilibrium with transfers in the sunspot

economy, and that possibly $q  is not constant. We must show that $ , $µ p  are a lottery

                                                
14 There are many ways of mapping a lottery allocation into a sunspot allocation involving different ways of
correlating outcomes across individuals. See Shell and Wright [23] and Garratt et al. [12] for discussions.
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equilibrium with transfers. To show this we must show that for each type i any set of

lotteries µ i  that yield more utility than $µ i cannot be afforded at the prices $p  and that

$µ i  can be purchased at those prices.

First, we show that for each type i, any set of lotteries µ i  that yield more utility

than $µ i cannot be afforded at the prices $p . Suppose that µ i  is in fact affordable and

yields more utility than $µ i . Notice that since they are equivalent, the utility from $µ i  is

the same utility $xi  gives almost all households. We use µ i  to construct a sunspot plan

that is affordable at prices $q  yielding the same utility as $µ i ; this will be the desired

contradiction. Consider the canonical sunspot allocation xi  corresponding to µ i . This

gives every household in i more utility than $xi . It is also constructed so that x h dhs
i ( , )σI

is independent of σ .  By construction it is affordable at prices q p( ) $σ = ; because $p  is

the average of $( )q σ and x h dhs
i ( , )σI  is independent of σ , it is therefore affordable at

prices $( )q σ . It follows that for a positive measure set of household h, x hi ( , )⋅  is also

affordable at prices $( )q σ . This gives the desired contradiction, since x hi ( , )⋅  gives the

same utility as µ i  for all h.

To conclude the proof, we show that $µ i  can be purchased at prices $p . Suppose

for some i this is not the case, that $µ i  costs more than the transfer to that type. Then

since $µ  is socially feasible, for some other type i’ expenditure on $ ’µ i  must be less than

the transfer payment. But by Lemma 5.1, such a type could use the extra income to

purchase a better lottery than $ ’µ i , which we have shown cannot happen.

ã

7 The Stand-in Consumer Economy

We now prove the welfare theorems and the existence of an equilibrium.  From

the equivalence of the sunspot and lottery equilibria, it is sufficient to do so in either of

the two types of economies. Each approach, however, poses its own complications. The

sunspot economy has a net trade set that is complicated and non-convex. The lottery

economy has a net trade set that is convex but infinite dimensional. One approach is that

of Prescott and Townsend [20], which is to work directly with theorems for infinite

dimensional economies. The alternative pursued here leads to finite dimensional and

mathematically simpler proofs by observing that the household problem of maximizing

utility subject to a budget constraint can be broken in two parts. The first part, since the
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cost of a set of lotteries is simply the cost of the expected net trades it uses, is to think of

the household as purchasing an expected net trade vector. The second part is to think of

the household as choosing the set of lotteries that maximizes utility subject to this

expected net trades constraint. This utility depends only on the expected net trade vector,

which is finite dimensional, so in effect reduces the economy to a finite one.

Specifically, we consider net trade vectors yi J³§ . The set of interest are net

trade vectors that are consistent with feasible trading plans of type i households:

Y y x X y xi i J
s
i

s
i i

s
i

s S s
i

i≡ ∈ℜ ∃ ∈ = ∈∑Closure(ConvexHull{ | , })π .

Given that a bundle y Yi i³  has been purchased, how much utility can a type i household

get? The answer is given by

U y u x d xi i
s
i

s S s
i

s
i

s
i

s
i

i( ) sup ( ) ( )= ∈∑I π µ

subject to support µ s
i

s
iX⊆ , λ π µi

s
i

s S s
i

s
i

s
i i

i x d x y∈∑I ≤( ) , u u s F ss
i

s
i

s
i

s
i i( ) ( ) , ’ ( )’µ µ− ≥ ∈0 .

This construct will be most useful if we can replace the sup with a max, so that there is at

least one lottery that actually yields the utility U yi i( ).

Lemma 7.1 If the boundary condition holds, then

U y u x d xi i
s
i

s S s
i

s
i

s
i

s
i

i( ) max ( ) ( )= ∈∑I π µ  subject to support µ s
i

s
iX⊆ , π µs

i
s S s

i
s
i

s
i i

i x d x y∈∑I ≤( ) ,

u u s F ss
i

s
i

s
i

s
i i( ) ( ) , ’ ( )’µ µ− ≥ ∈0 .

Proof: By Lemma 5.1 we can assume that there is a sequence of sets of lotteries with each

lottery having support at k Ji + + 2 points converging to the sup. Let xs
i

s
il l, µ  be the points

and probabilities in this sequence. This has a convergent subsequence on the extended

real line. Because Xs
i  is bounded below, any component of xs

il  that converges to ∞  has

corresponding probability converging to zero. By the boundary condition the limit of

expected utility for such a point is also zero. So the limit set of lotteries places weight

only on finitely many points, and gives the same utility and satisfies the feasibility and

incentive conditions. It is the optimal set of lotteries.

ã

We now study trade in the economy, by considering I consumers with utility

functions Ui  and consumption sets Yi . We refer to consumer i  as the stand-in consumer,
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as he represents all households of type i. The stand-in consumer makes purchases on

behalf of the ex ante identical households he represents, then allocates the purchases to

individual households by means of an optimal lottery. Notice the role played here by the

assumption that all households of a given type are ex ante identical: there is no ambiguity

about how a lottery should be chosen to allocate resources among individual households.

In the stand-in consumer economy, an allocation y is a vector y Yi i³  for each

type.  The allocation is socially feasible if yi

i
�Ê 0 . A stand-in consumer equilibrium

with transfers consists of a non-zero price vector $p J∈ℜ+ , and a socially feasible

allocation $y .  For each type i, yi  should maximize U yi i( ) subject to $ $ $p y p yi i⋅ ≤ ⋅ ,

y Yi i³ . An endowment equilibrium and Pareto efficiency are defined in the obvious way.

Notice that equilibria in the stand-in consumer economy are equivalent to equilibria in the

lottery economy in a direct and simple way. Given a lottery equilibrium $ , $µ p , we can

compute the expected resources used by the equilibrium lottery

y x d xi i
s
i

s S s
i

s
i

s
i

i= ∈∑Iλ π µ ( ) . Clearly $, $y p are a stand-in consumer equilibrium.

Conversely, given a stand-in consumer equilibrium $, $y p, we can use Lemma 7.1 to find

for each stand-in consumer an optimal set of lotteries $µ i , and it is clear that $ , $µ p  are a

lottery equilibrium.

To prove the welfare and existence theorems for the sunspot economy and lottery

economy, it suffices to prove them for the stand-in consumer economy. As this is a finite

dimensional pure exchange economy, this follows from verifying standard properties of

utility functions and consumption sets.

Lemma 7.2 Utility Ui  is continuous, concave, and, if non-satiation holds, strictly

increasing. The net trade set has 0³Yi and is closed, convex and bounded below. If the

cheaper point assumption holds, then there is a point 0 > ∈y Yi i .

8 Exclusivity and Incentive Constraints

We have already pointed out that incentive constraints demand exclusivity of

contracts: although households of a particular type are ex ante identical, ex post they

realize different values of the idiosyncratic shocks, and would want to trade with one

another. The use of sunspots or lotteries introduces another dimension in which

households are ex post different: even households who realize the same idiosyncratic
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shock will have different ex post net trades, as some win and some lose in the lottery.

This raises the question of whether even households with the same idiosyncratic state will

want to trade in equilibrium. The answer is that, in the absence of incentive constraints,

for example, when there are indivisibilities, households do not want to trade.

Consequently, it is only in economies with incentive constraints that we require

exclusivity.

For simplicity, we limit attention to lotteries that have countable support. This

will be the case if the consumption sets are discrete, as they may be with indivisibilities.

From the proof of Lemma 7.2, we also know that for any lottery equilibrium, there is

another lottery equilibrium yielding exactly the same utility and with each type

consuming the same aggregate resources, in which the support of the lottery is finite. The

result we prove holds more generally, but the proof of the most general case is more

technical.

Lemma 8.1: Assume that for all s Si∈ , F ss
i = { } , so that there are no incentive

constraints. Suppose that p supports the upper contour set of Ui  at yi , support µ s
i

s
iX⊆ ,

π µs
i

s S s
i

s
i

s
i i

i x d x y∈∑I ≤( )  and, u x d x U ys
i

s S s
i

s
i

s
i i i

i∈∑I =( ) ( ) ( )µ , and that support µ s
i  is

countable. Let x Xs
i

s
i∈  be such that µ s

i
s
ix( ) > 0 . Then p supports the upper contour set of

us
i  at xs

i .

Proof: Suppose conversely to the Lemma that there is ~x Xs
i

s
i∈  with u x u xs

i i i
s
i(~ ) ( )> , and

p x xs
i

s
i⋅ − ≤(~ ) 0. Consider ~µ s

i  defined by

~ ( )

( )

(~ ) ( )

, ~

~
µ

µ

µ µ
s
i

s
i

s
i

s
i

s
i

s
i

s
i

s
i

s
i

s
i

s
i

s
i

s
i

s
i

s
i

z

z

x x

z x x

z x

z x

=
+

≠
=
=

%
&K
'K

0

For s s’≠  take ~
’ ’µ µs

i
s
i= . Set w x d xi

s
i

s S s
i

s
i

s
i

i= ∈∑I π µ) )~ ( ), where 
)
xs

i  is the dummy variable of

integration. Then p w yi i⋅ − ≤( ) 0 and u w u yi i i i( ) ( )> , a contradiction.

ã

9 Risk Aversion and Lotteries

While in principle lotteries may be useful when there are incentive constraints, in

many practical examples, equilibrium lotteries are degenerate. This is not a necessary

conclusion: Cole [7] gives a robust example in which lotteries are used to sort high
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marginal utility from low marginal utility states. Cole’s example has the odd feature,

however, that the high marginal utility households, who we would generally think of as

having low endowments, are less risk averse than low marginal utility households. In this

section, we show that in the more plausible case of decreasing absolute risk aversion,

equilibrium lotteries are in fact degenerate. This is the case in our initial example.

We now specialize to the case of an economy in which there are no

indivisibilities. We assume that each household of type i in state s has an endowment of

ω s
i J∈ℜ++ , and a utility function for consumption v cs

i
s
i( )  that is strictly increasing and

concave. The net trade set X x xs
i

s
i

s
i

s
i= ≥ −| ω< A  allows no indivisibilities, and the utility

function u x v xs
i

s
i

s
i

s
i

s
i( ) ( )= +ω . In this setting, given a lottery µ s

i  over net trades, we

define the certainty equivalent cs
i

s
i J( )µ ∈ℜ++  to be the fraction of the expected

consumption from the lottery that is equivalent to the expected utility from the lottery,

c x d xs
i

s
i

s
i

s
i

s
i

s
i

s
i( ) ( )µ θ ω µ= + I4 9 , where

v x d x v x d xs
i

s
i

s
i

s
i

s
i

s
i

s
i

s
i

s
i

s
i

s
i( ( ) ) ( ) ( )θ ω µ ω µ+ = +I I4 9

and, since utility is assumed concave, 0 1< ≤θ s
i .

State Independent Preferences: v c v cs
i

s
i i

s
i( ) ( )=

Decreasing Absolute Risk Aversion: If zs
i > 0 , then

v z c v z x d xi
s
i

s
i

s
i i

s
i

s
i

s
i

s
i

s
i( ( )) ( ) ( )+ < + +Iµ ω µ .

This says that the certainty equivalent is an increasing function of consumption, or

equivalently, that the risk premium is declining. It is straightforward to check that in the

case of a single good, this is equivalent to the usual definition.

We will show that, if (for all types) preferences are state independent and exhibit

non-increasing absolute risk aversion, then there is always an equilibrium with degenerate

lotteries. It is convenient to prove this using a weaker condition that does not require state

independent utilities.

Generalized Decreasing Risk Aversion: If s Fs
i’∈  then

v c v x d xs
i

s
i

s
i

s
i

s
i

s
i

s
i

s
i

s
i

s
i( ( ) ) ( ) ( )’ ’ ’ ’ω µ ω ω µ+ − < +I
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From the assumption of feasible misrepresentation this definition makes sense, since

X Xs
i

s
i⊇ ’  means that µ s

i
’  is in fact a lottery in X s

i ; this assumption combined with state

independent decreasing absolute risk aversion also implies generalized decreasing risk

aversion. Basically, this assumption says that a household that actually has state s’  is

more risk averse than a household that is masquerading as state s’ .

Theorem 9.1 With generalized decreasing absolute risk aversion (and no indivisibilities),

every solution to the stand-in consumer problem is a point mass on a single point for

each s.

Proof: Let $µ s
i  be lotteries that solve the stand-in consumer problem. Consider the

alternative degenerate lottery in that puts mass one on cs
i

s
i

s
i( $ )µ ω− . This lottery consumes

no more resources than $µ s
i  since vs

i  is concave, and, if households tell the truth, they

yield exactly the same utility. Moreover, the generalized decreasing risk aversion

condition means that any incentive constraint satisfied under $µ s
i  is satisfied as well under

the new plan. Finally, if any of the $µ s
i  are non-degenerate, then, since the risk premium is

assumed strictly positive, strictly fewer resources are consumed by the degenerate

alternative, which contradicts Lemma 5.1.

ã

10 An Example

Having shown that decreasing absolute risk aversion leads to degenerate lotteries,

we turn now to an example in which increasing absolute risk aversion leads to non-

degenerate examples. As in Cole [7], we focus on the case where there are two states, a

single good and a single type. For notational convenience, we omit the superscript i . With

two states, which we denote g b, , and a single good, we denote the endowments as

ω ωg b> . In addition, we assume voluntary public endowments. This means that

households can optionally reveal their endowments. Consequently, the sets of feasible

reports are F g bg = { , }, F bb = { }.

Let { }xsξ  be a finite set of points on which µ s  puts weight. Stand-in consumer

utility is then given by

max ( ) ( )µ ξ ξξ π ω µs s s s ss S
v x x+∑∑ ∈
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subject to

 π µξ ξ ξss S s s s
ix x∑∑ ∈ ≤( ) 0

 v x x v x xg g g g g b g b( ) ( ) ( ) ( )ω µ ω µξ ξξ ξ ξξ+ − + ≥∑ ∑ 0

µ ξξ s sx( ) =∑ 1

µ ξs sx( ) ≥ 0 .

This is a linear program that can be solved on any grid { }xsξ . Lemma 5.1(c) says that

there will be a solution that places weight on at most 4 different points for each µ s . As

the grid is refined, the set of approximate solutions will approach the set of exact

solutions to the problem; if the original grid is carefully chosen, it is be possible to find an

exact solution on the grid.  Notice that this is the general sort of linear programming

problem that we need to solve to find the optimal lottery allocation for a household type

in the stand-in consumer economy. In the general case, there are J resource constraints,

which replace the 0 on the right-hand side with yj
i , and ki  incentive constraints.

To have non-degenerate lotteries requires increasing absolute risk aversion. A

convenient family with this property is that of quadratic utility functions. Consider the

quadratic utility function 2( ) 78v c c c= −  with endowments ω ωg b= =30 10,  and

probabilities π πg b= = 1 2/ . It can be verified that a solution to the linear programming

problem defining the stand-in consumer utility is a degenerate lottery in the good state

with µ g ( )− =1 1, and in the bad state the non-degenerate lottery

µ µb b( ) / , ( ) /7 1 2 5 1 2= − = . The mean transfer in the good state is −1, with the mean

transfer in the bad state of +1. The transfer in the bad state involves a large gamble

between +7 and –5, however, and the well-endowed household prefers to avoid this risk.

There are multiple solutions to this example. For example, µ g ( )− =1 1,

µ µ µb b b( ) / , ( ) / , ( ) /1 7 16 9 9 32 7 9 32= = − =  is also a solution.

To verify that all solutions to our example involve non-degenerate lotteries, we

provide a sufficient condition under which a non-degenerate lottery improves welfare, so

that the solution to the stand-in consumer problem will necessarily be non-degenerate. If

there is only one good, then the only degenerate lottery that satisfies the incentive

constraint and does not lower welfare is autarky: µ µg b( ) , ( )0 1 0 1= = .  We now search for

conditions under which a small lottery can improve welfare while satisfying the incentive
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constraint.  Suppose that we replace µ b ( )0 1=  with a small lottery x  with mean x  and

variance σ x
2 .  To be specific, let µ b x( ’)  be a lottery with mean 0 and variance 1 (for

example, µ b ( ) /1 1 2=  and µ b ( ) /− =1 1 2), and let x x xx= +σ ’ . We set µ g gx( ) ,= 1

where, to maintain social feasibility, we require that

x xg
b

g

= − π
π

.

The incentive constraint holding exactly can be written

v x Ev xg
b

g
g( ) ( ).ω π

π
ω− = +

To second order, this constraint can be written approximately as

v v x v x

v v x v x

g g
b

g
g

b

g

g g g x

( ) ’( ) ’’( ) ( )

( ) ’( ) ’’( )( ).

ω ω π
π

ω π
π

ω ω ω σ

− +

= + + +

1

2

1

2

2 2 2

2 2

Using this equation we can now solve, at least to second order, for the variance of the

lottery for which the incentive constraint is satisfied as a function of the mean of the

lottery:

σ
ω

π ω
π π

πx
g

g g

g b

g

x
v

v
x x2

2 2

2
22

( )
’( )

’’( )
.= − −

−

A second order Taylor series expansion allows us to approximate the ex ante utility of a

small lottery that satisfies the incentive constraint as a function of its mean:

V x v v x v x

v v x v x x

g g g
b

g
g

b

g

b b b b x

( ) [ ( ) ’( ) ’’( )( ) ]

[ ( ) ’( ) ’’( )( ( ) )].

= − +

+ + + +

π ω ω π
π

ω π
π

π ω ω ω σ

1

2

1

2

2 2

2 2

Differentiating with respect to x , we find

V v v
v v

vb b g
b

g

g b

g

’( ) ( ’( ) ’( ))
’( ) ’’( )

’’( )
0 = − −π ω ω π

π
ω ω

ω
.

If this expression is strictly positive, as it is in our numerical example, then introducing a

small lottery with a positive mean and a variance just large enough to make the incentive
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constraint hold increases welfare.  Consequently, the degenerate lottery cannot be the

solution to the stand-in consumer problem, and a non-degenerate lottery must be used in

equilibrium.

It is worth pointing out two features of this example and our calculations.  First,

notice that, if utility exhibits decreasing absolute risk aversion, then

− > −v

v

v

v
b

b

g

g

’’( )

’( )

’’( )

’( )

ω
ω

ω
ω

and it is impossible for V’( )0  to be positive at a small non-degenerate lottery.  Even if

there is increasing absolute risk aversion, however, there may not be non-degenerate

lotteries: for this, increasing absolute risk aversion is necessary but not sufficient.

Second, notice that, if utility is quadratic, then the formula we obtain for V x( ) is exact,

and not just a good approximation for small lotteries.  In fact, it has been by maximizing

this function that we have obtained the numerical example.

The intuition for the presence of multiple equilibria in our numerical example is

simple: The function V x( ) is maximized by a lottery in the bad state with mean 1 and

variance 36.  This pins down expected utility in both states, but there is an infinite

number of lotteries in the bad state with this mean and variance, which is all that matter

for a quadratic utility function.  The trick is to make the consumer in the good state

indifferent between reporting the good state and making a transfer of 1 and reporting the

bad state and receiving the transfer.

 We can use our numerical example to illustrate some issues related to sunspot

allocations.  One sunspot allocation, equivalent to the lottery allocation µ g ( )− =1 1  and

µ µb b( ) / , ( ) /7 1 2 5 1 2= − =  is x hg ( , )σ = −1 and

x h
h

hb ( , )
( ) mod /

( ) mod / .
σ

σ
σ

=
+ ≥
+ <

%&'
 7    if

-5    if

1 1 2

1 1 2

This allocation is far from unique, however, since any way of relating the sunspot

variable σ to the index of the household h that results in each household receiving +7

with probability 1/2 and –5 with probability 1/2 works just as well. Yet another optimal

sunspot allocation is
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x h

h h

h h

h h

h h

h h

b ( , )

( ) mod / /

( ) mod / /

) mod / /

) mod / /

) mod / .

σ

σ
σ
σ

σ
σ

=

+ ≤ ≤
+ > ≤
+ − ≤ >

< + − ≤ >
+ − >

%

&
KKK

'
KKK

 7    if  and 

-5    if  and 

    if (  and 

      if 7 / 16 (  and 

 -     if 23 / 32 < (  and 

2 1 1 2 1 2

2 1 1 2 1 2

1 2 1 1 7 16 1 2

9 2 1 1 23 32 1 2

7 2 1 1 1 2

This is an example of the sort discussed in Section 6 in which the sunspot allocation

induces different lotteries for different households.  In this example, the mean lottery is
~ ( ) / ,µ b 7 1 4=  ~ ( ) / ,µ b − =5 1 4  ~ ( ) / ,µb 1 7 32=  ~ ( ) / ,µb 9 9 64=  ~ ( ) / ,µb − =7 9 64  which is

also a solution to the stand-in consumer problem.

11 Ex Ante Lotteries

We have studied a model in which sunspots occur after households announce their

state. From Cole [7] we know that the model in which sunspots occur before households

announce their states is quite different. The more general case allows for both types of

sunspots. See Fellingham, Kwon, and Newman [10] for a discussion.  Specifically, let

( , ) [ , ]σ σ0 1
20 1∈  be uniform independent sunspots occurring before and after the

announcement of the idiosyncratic state. We know that there is a 1-1 continuous (and

therefore measurable) map from m:[ , ] [ , ]0 1 0 1 2→ , the Peano curve is an example of such

a map. So we can define σ σ σ= −m 1
0 1( , ) . In this way, we can map prices and allocations

in the two-sunspot model to prices and allocation in the ex post sunspot model; we

assume that the probability distribution over sunspots is that induced by m−1 . Our final

result shows that if the price/allocation pair form an equilibrium in the two-sunspot

model, the corresponding price/allocation pair is an equilibrium in the ex post sunspot

model

Theorem 11.1: If $( , ), $( , )x qσ σ σ σ0 1 0 1 are an equilibrium in the two-sunspot model, then

$( ( )), $( ( ))x m q mσ σ  is an equilibrium in the ex post sunspot model.

Proof: This is really just a matter of checking that the incentive constraints remain

satisfied in the ex post model – the ex post joint distribution of net trades and prices is the

same as in the two-sunspot model by construction, so utilities and budget constraints are

the same. Since, however, the incentive constraint must hold for each σ 0  in the two-

sunspot model, and must hold only when averaged over σ 0  in the ex post sunspot model,



29

the incentive constraints in the ex post model follow from those in the two-sunspot

model.

ã
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Appendix

Lemma 5.1 (c) For any incentive compatible set of lotteries µ i  there is another

incentive compatible set of lotteries ~µ i  using the same aggregate resources, yielding the

same utility, and each lottery ~µ s
i  having support on k Ji + + 2  points.

Proof: Define a map

z X
s S s

i k J
i

i

: × → ℜ
∈

+ +3 8 1

taking the first k i  components equal to the benefit to telling the truth u x u xs
i

s
i

s
i

s
i( ) ( )’−  for

s F s ss
i’ , ’∈ ≠ ; the next J components equal to the aggregate resources used

λ πi
s
i

s
i

s S
xi∈∑ ,

the k Ji + +1  component equal to utility

π s
i

s
i

s
i

s S
u xi ( )∈∑ .

 Define the set

Z z X
s S s

i
i= ×

∈3 8 ,

and consider probability measures η  on Z. Let $η  be the measure derived by treating the

set of lotteries µ s
i< A  as independent to induce a probability distribution on ×

∈s S s
i

i X , then

mapping to Z by z. Consider the linear equation in η zd z zd zη η( ) $ ( )= II . This implies

that zd z$ ( )ηI  is in the convex hull of Z. Consequently, by Caratheodory’s Theorem for

l K= + +1 2, ,k Ji  there are points z Zl ∈  and non-negative weights ηl  such that

z zd zl l

l
η η∑ I= $ ( ) .

For each l  choose

( ) ( )x z zs
i

s Si
l l

∈
−∈ 1 .

Then ~ ( )µ s
i

s
ix l  equal the sum of probabilities ηl  such that xs

il  is chosen is the desired

measure.

ã
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