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Abstract

We study different dynamic Stackelberg solutions within a pollution control
problem framework. This study is made under the assumption of different infor-
mation structures, mainly we assume open-loop, feedback and closed-loop struc-
tures of information. Some of the numerical results may appear counterintuitive.
Hence, there exists some situations where the time consistent solution is optimal
in comparison of the time inconsistent one. Moreover, the perfect discretionary
solution is advantageous for everyone then to stay committed to the initial one.
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1 Introduction

When a firm pollutes while producing, this flow of pollution will negatively affect other
economic agents. If the firm is not liable to directly compensate these agents for the
nuisances it causes, the production and the associated pollution levels optimal for the
firm will not be optimal for society as a whole. One of the main problems in environ-
mental economics is to find ways for a regulator to force such a firm to make socially
optimal decisions, for example, through a proper use of taxes.

The problem has been extensively treated for the static case (see for example [10]).
However, regulatory taxes have both short and long term consequences on the social
welfare and on the firm’s behavior. Taking these properly into account makes an ex-
plicitly dynamic analysis imperative. As noted by Batabyal [5], among others, a natural
way to conduct such an analysis is to model the interaction between the regulator and
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the firm as a dynamic Stackelberg game with the regulator as the leader.

Depending on the information structure many dynamic Stackelberg solutions do
exist. In this paper, using a discrete time dynamic model of pollution control, we de-
rive three of them, that is the open-loop, feedback and global (closed-loop) Stackelberg
solutions and compare them. As simple as may seem the model, the derivation of the
different dynamic Stackelberg solutions are not straightforward.

It is well-know, since the seminal works of Kydland and Prescott [8], and Barro and
Gordon [2, 3], that open-loop Stackelberg solutions are time inconsistent. From this
literature, two others conclusions have been generally admitted. First, the discretionary
solution is worst for the follower than the open-loop one with commitment. Second,
the time consistent solution is suboptimal. Using numerical simulations, we show that
those two conclusions do not hold.

The plan of the paper is as follows. In the next section we define the pollution
control model. Then in section 3, we derive the different dynamic Stackelberg solutions
depending on the information’s structure facing each player in the following order: first
the open-loop one, second the feedback one, and third the global Stackelberg solution
(that is a closed-loop structure of information). In section 4, before concluding, using
two numerical simulations, we compare these solutions.

2 The pollution control

2.1 The general model

We consider a discrete time version of the continuous time model of pollution sug-
gested by Batabyal [5]. There are two players: the regulator (the leader,R) and a
monopolist (the follower,F ). The planning horizon isT periods, withT ≤ 20. There
is no discounting. The goal of the monopolist is to maximize its cumulated profits over
theT periods with respect to its choice of output. In each periodt, the monopolist’s
revenue is given byP (qt)qt, whereqt is its output in periodt, and whereP (qt) is the
inverse demand curves it faces.

Following Batabyal [5], the monopolist is facing three kinds of costs associated
with qt. First, a production costwqt that is assumed to be proportional to the output.
Second, the tax paid to the regulatorτtqt. And third, a costc(xt)qt that depends on
the current stock of pollution,xt. This last cost reflects the fact that the production
efficiency decreases as the environment becomes more polluted. It may be or not inter-
nalized by the firm.

The monopolist’s optimization problem is thus given by

JF =
T∑

t=1

P (qt)qt − wqt − τtqt − c(xt)qt → {qt}t∈[1,T ] max (2.1.1)
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We assume thatP
′
(qt) < 0 andP

′′
(qt) ≥ 0, and thatc

′
(xt) > 0, c

′′
(xt) < 0 and

c(0) = 0. Furthermore, we assumew > 0.
The regulator attempts to maximize, through its choice of tax rates, its cumulated

payoff. Again, following Batabyal [5] this payoff depends on three components. First,
a functionB(qt) that represents a social benefit when tithe firm produces at the level
qt. Second, a functionD(xt) which measures the damage from pollution. And finally
the amount of money given by the taxτtqt. So, the cumulated regulator’s payoff is

JR =
T∑

t=1

B(qt) + τtqt −D(xt) (2.1.2)

We assume thatB(.) andD(.) are respectively at leastC2 andC1 functions. Fur-
thermore,[B

′
(qt) > 0, B

′′
(qT ) < 0, D

′
(xt) > 0 andD

′′
(xt) > 0, that is the social

costs of pollution are increasing in the pollution stock at an ever increasing rate. The
strict concavity ofB(qt) + τtqt is needed in order to insure the existence and unique-
ness of a solution.

Finally, we suppose thatxt evolves according to

xt+1 = f(qt, xt) (2.1.3)

with x1 given, and wheref(qt) is a differentiable function, withf
′
(qt) > 0 and

f
′′
(qt) > 0. We also havef

′
(xt) > 0 andf

′′
(xt) > 0. Hence, the pollution stock in

t + 1 is increasing in the pollution stock and in the firm’s output int.

For the purpose of the paper, we more specifically assume1:

P (qt) ≡ a− bqt, (2.1.4)

c(xt) ≡ αxt, (2.1.5)

B(qt) ≡ γqt −
q2
t

2
, (2.1.6)

D(xt) ≡
δx2

t

2
, (2.1.7)

xt+1 ≡ βqt + β̃xt. (2.1.8)

where the coefficientsa, b, α, γ, β andβ̃ are supposed to be strictly positive and
with β < 1 andβ̃ < 1. The functional forms, as well as the hypotheses made earlier
on the different derivatives, are standard in economic theory and will not be further
justified here. The assumptioñβ < 1 captures the fact that there is a natural resorption
of the current pollution stock, at the rate(1− β̃).

We may now derive the different dynamic Stackelberg solutions.

1Some others specifications are possible, see Batabyal [4, 5]
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3 The different solutions

We assume that there is no uncertainty and that the regulator knows perfectly the dif-
ferent parameters of the monopolist’s profits, even his cost. Furthermore, the regulator,
our leader, is strong enough to force the monopole to take as given the level of taxation.

3.1 The open-loop Stackelberg solution

This solution was first introduced by Simaan and Cruz [12, 11] (for a more detail on
it, see Ba¸sar and Olsder [1]). To achieve the solution, the following steps are required.
First, for any fixed action of the leaderτt, the reaction function of the follower is
derived by maximizing the firm’s payoff under the state constraint (2.1.3). Then, inte-
grating this reaction function into the leader’s payoff and minimizing again under the
state constraint, gives the optimal action of the leader which induces an optimal action
for the follower. As noticed by Simaan and Cruz [11], latter by Kydland [7] and popu-
larized by Kydland and Prescott [8], this solution is time inconsistent.

Let the time interval be[1, T ]. For any fixedτt, t ∈ [1, T ] the firm solves

arg max
qt∈<∗

T∑
t=1

(a− bqt)qt −wqt − τtqt − αxtqt (3.1.1)

subject to

xt+1 =βqt + β̃xt (3.1.2)

Define the firm’s Hamiltonian asHF (qt, xt, p
F
t+1) ≡ JF

t +pF
t+1(βqt + β̃xt). Then

using the first order conditions for a maximization of this Hamiltonian, one may get
after some algebras

q =
a− w − τt − αxt + βpF

t+1

2b
(3.1.3)

xt+1 =
β(a −w − τt − αxt + βpF

t+1)
2b

+ β̃xt (3.1.4)

pF
t+1 =

−α(a− w − τt − αxt)
2b

+ (β̃ − αβ

2b
)pF

t+1 (3.1.5)

with initial and final conditionpF
T+1 = 0 andx1 given. The stock of pollution at

the periodT + 1, xT+1 is free. One reason to let it free is that the regulator may not
know what is or not an acceptable final level of pollution.

This above set of equations defines the reaction function of the monopole (follower)
to any announced tax path. Integration of (3.1.3) intoJL

t , we may solve the regulator’s
problem by defining the following Hamiltonian:
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HR(τt, p
L
t+1, p

F
t+1, xt, µt) ≡

(γ + τt)(a −w − τt − αxt + βpF
t+1)

2b

− 1
2
(
a −w − τt − αxt + βpF

t+1

2b
)2 − δx2

t

2

+ pR
t+1(

β(a − w − τt − αxt + βpF
t+1)

2b
+ β̃xt)

+ µt(
−α(a −w − τt − αxt)

2b
+ (β̃ − αβ

2b
)pF

t+1)

(3.1.6)

Then we know from Ba¸sar and Olsder [1] that the open-loop Stackelberg solution
is given by the resolution of the following first-order conditions:

∂HR
t

∂τt
=
−γ − τt − βpR

t+1 + αµt

2b

+
(a− w − τt − αxt + βpF

t+1)(1 + 2b)
4b2

= 0 (3.1.7)

xt+1 =
∂HR

t

∂pL
t+1

=
β(a − w − τt − αxt + βpF

t+1)
2b

+ β̃xt (3.1.8)

pR
t =

∂HR
t

∂xt
=

pR
t+1(2bβ̃ − αβ) − α(γ + τt) + α2µt

2b

+
α(a− w − τt − αxt + βpF

t+1)
4b2

− δxt,

(3.1.9)

pF
t =

∂HR
t

∂µt
=
−α(a −w − τt − αxt)

2b
+ (β̃ − αβ

2b
)pF

t+1

(3.1.10)

µt+1 =
∂HR

t

∂pF
t+1

=
(γ + τt)β + (2bβ̃ − αβ)µt

2b

+
β(βpR

t+1 − 2b(a−w − τt − αxt + βpF
t+1))

2b
(3.1.11)

with x0 given, andµ1 = 0 (3.1.12)

The boundary conditionµ1 = 0 is directly related topF
T+1 = 0. Furthermore, we

havepR
T+1 = 0. As known, the open-loop Stackelberg solution is time inconsistent,

since a reoptimization latter in time, at periodk for example, will give again to set
µk = 0 although initially calculated, at period1, we haveµk 6= 0.
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Anyway, these above necessary conditions,after some algebras and followingMedanic
[9] give us to solve an augmented discrete Hamiltonian matrix (i.e. with a tracking ma-
trix) of the form: [

x̃t+1

p̃t

]
=

[
A B
C A

] [
x̃t

p̃t+1

]
+

[
D
E

]
(3.1.13)

WhereA, B, C are some2 × 2 matrices,D is a 2 × 1 matrix andx̃t and p̃t are
some2× 1 vectors defined by:

A ≡
[

β̃ − βα
4b+1

− βα
4b+1

− βα
4b+1 β̃ − βα

4b+1

]
,

B ≡
[

β2

4b+1
β2

4b+1
β2

4b+1
β2

4b+1

]
,

C ≡
[

α2

4b+1 − δ α2

4b+1
α2

4b+1
α2

4b+1

]
,

D ≡
[

β(a−w+γ)
4b+1

β(a−w+γ)
4b+1

]
,

E ≡
[
−α(a−w+γ)

4b+1
−α(a−w+γ)

4b+1

]
,

x̃t ≡
[

xt

µt

]
, andp̃t+1 ≡

[
pR

t+1

pF
t+1

]
.

3.1.1 Resolution

To solve this tracking problem defined above we use the sweep method (see Bryson
and Ho [6]). That is, we assume a linear relation between the costate and the state
vectors:

p̃k = Skx̃k − gk (3.1.14)

Thus, using this into the augmented Hamiltonian matrix we first get an expression for
xk+1:

x̃k+1 = (I2×2 −BSk+1)−1(Ax̃k −Bgk+1 + D) (3.1.15)

Then using (3.1.15) and (3.1.14) into the definition ofpk+1 as given by the augmented
Hamiltonian matrix, and equating both sides we finally get the difference equations:

Sk = C + ASk+1(I2×2 −BSk+1)−1A, (3.1.16)

gk = ASk+1(I2×2 − BSk+1)−1(Bgk+1 −D) + Agk+1 −E, (3.1.17)

where the first equation is the so-called Riccati difference equation, and the second one
defines a tracking difference equation.
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The boundary conditions are:

x̃1 =
[

x1

0

]
, andp̃T+1 =

[
0
0

]
. (3.1.18)

And then

ST+1 = 02×2, andgT+1 = 02×1. (3.1.19)

From the boundary conditions we get

ST = C, and, gT = E. (3.1.20)

and so on. Once, the computation off line, backward in time, of the different values of
Sk andgk are made, the values ofx̃t andp̃t follows. From them we get the values of
xt, µt, pR

t andpF
t , for all t ∈ [1, T ]. The optimal open-loop Stackelberg actions are

directly given after by (3.1.7) and (3.1.3).

3.1.2 The optimal discretionary open-loop Stackelberg solution

As we said, the open-loop Stackelberg solution is time inconsistent. That is, for any
announced sequence of taxation{τ∗t }t∈[1,T ] made at timet = 1, it will not be optimal
to continue with this sequence at timet = 2. But rather, the regulator may solve the
problem starting at timet = 2 and finishing att = T in order to find a new announced
sequence of taxation{τ∗∗t }t∈[2,T ]. But again, this new sequence will be suboptimal at
t = 3. And so on untilt = T .

Let {τ∗t }i be the optimal open-loop sequence of taxation for the problem start-
ing at time t = i and finishing at timet = T . Define {τ∗t }1i as the first com-
ponent of this sequence (and also unique one for the case wherei = T ). Then,
the optimal discretionary sequence of taxation, realized expost, is{τd∗

t }t∈[1,T ] =
({τ∗t }11, {τ∗t }12, ..., {τ∗t }1T−1, {τ∗t }1T ).

In the economic literature, such a discretionary policy is generally assumed to be
worst for the follower regardless to the committed strategy that is{τ∗t }1. As we will
see this is not the case. Both players, monopolist and regulator, may gain by using
such a discretionary policy. Then the monopole may rationallyaccept to believe in a
sequence of taxation even if he knows that this sequence will be revised tomorrow.

3.2 The feedback solution

To solve the game, under the feedback structure of information assumption, we use the
dynamic programming method with appropriate value functions (see Ba¸sar and Olsder
for more details [1]). Recall that this solution is time consistent by construction.
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Let T be the last period of the problem. Then the level of pollutionxT+1 doesn’t
mind anymore, since its level is free. The reaction function of the monopolist is directly
given by: "arg maxqT∈< JF

T ". That is:

q∗T =
a−w − τT − αxT

2b
(3.2.1)

wherexT is a known fixed value. Then the problem facing the regulator is simply given
by:

arg max
τT∈<

B(q∗T ) + τT q∗T −D(xT ) (3.2.2)

whereq∗T is given by (3.2.1). The maximum is obtained when

τ∗T =
(1 + 2b)(a− w − αxt)− 2bγ

1 + 4b
(3.2.3)

After some algebras we get, for the last period, some specific definitions for the actions,
state and cost functions. Those definitions are generalized by resolving the problem at
the periodT − 1. The value functions for the periodT − 1 to T are defined by

V F (T − 1, T ) = [arg max
qT−1

JF
T−1] + JF

T , (3.2.4)

V R(T − 1, T ) = [arg max
τT−1

JR
T−1] + JR

T , (3.2.5)

whereJF
T andJR

T are known.
Using the definitionxT = βqT−1 + β̃xT−1 into JF

T and maximize the value func-
tion for any fixedτT−1 gives an optimal action for the monopole for the periodT − 1.
Integrating this into the value function of the regulator, using again the state equation
definition and maximizing over all possibleτT−1, we can write the results in some
general specific forms :

τt = Ktxt + kt, (3.2.6)

qt = K̃txt + k̃t, (3.2.7)

xt+1 = Ωtxt + βk̃t, (3.2.8)

JR
t = Ptx

2
t + ptxt + nt, (3.2.9)

JF
t = P̃tx

2
t + p̃txt + ñt, (3.2.10)

8



for all t ∈ [1, T ] and with

Kt =
−α + 2α(β2(Pt+1 + P̃t+1)− b) + 2ββ̃(P̃t+1 − 2b(Pt+1 − P̃t+1)− 2β2P̃ 2

t+1)

1 + 4b− 2β2(Pt+1 + 2P̃t+1)
,

(3.2.11)

kt =
−a− 2ab + 2bγ + 2bβpt+1 + 2aβ2Pt+1 − βp̃t+1(1 + 2b− 2β2Pt+1)

−1− 4b + 2β2(Pt+1 + 2P̃t+1)

+
2β2P̃t+1(a − γ − w − βpt+1 + βp̃t+1) + w − 2bw− 2β2wPt+1

−1− 4b + 2β2(Pt+1 + 2P̃t+1

(3.2.12)

K̃t =
α + 2ββ̃(Pt+1 + P̃t+1)

1 + 4b− 2β2(Pt+1 + 2P̃t+1)
, (3.2.13)

k̃t =
a + γ − w + β(pt+1 − p̃t+1)
1 + 4b− 2β2(Pt+1 + 2P̃t+1)

, (3.2.14)

Ωt = βK̃t + β̃, (3.2.15)

Pt =
−K̃2

t

2
+ KtK̃t −

δ

2
, (3.2.16)

pt = γK̃t − K̃tk̃t + Ktk̃t + K̃tkt, (3.2.17)

nt =
−k̃2

t

2
+ γk̃t + ktk̃t, (3.2.18)

P̃t = −bK̃2
t − αK̃t −KtK̃t, (3.2.19)

p̃t = aK̃t − 2bK̃tk̃t −wK̃t − αk̃t −Ktk̃t − K̃tkt, (3.2.20)

ñt = ak̃t − bk̃2
t −wk̃t − ktk̃t. (3.2.21)

whereKt andK̃T may be seen as some(1 × 1) matrices defined by the appropriate
scalar Riccati difference equations (3.2.16) and (3.2.19). The terminal conditions are

KT =
−(1 + 2b)αxT

1 + 4b
, (3.2.22)

kT =
(1 + 2b)(a−w)− 2bγ

1 + 4b
, (3.2.23)

K̃T =
−α

1 + 4b
, (3.2.24)

k̃T =
a− w + γ

1 + 4b
. (3.2.25)

One must solve off-line the set of equations (3.2.11)-(3.2.21) using the terminal
conditions, and then compute on-line the values ofτt, qt andxt.
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3.3 The global Stackelberg solution

Here, we assume that the structure of the information is a closed-loop one. That is,
the leader has a perfect knowledge of all the past and current values of the state and
controls. In such an information structure, the regulator may try to find an incentive
strategy such that he can reach his global optimum (i.e.optimum optimorum).

This optimum optimorumis assumed to be unique. Then there exists a couple
(q∗t , τ∗t ), ∀t ∈ [1, T ], such thatJR

t is maximized. Generally, following Ba¸sar and
Olsder [1], this pair of actions is directly given by "maxτ,q JR(q, τ)". But this is pos-
sible only if JR(q, τ) is strictly concave inq andτ and if there is no singularity. But
JR(q, τ) is singular inτ . Then a direct optimization is not possible.

In order to avoid this singularity, we need to add a constraint onτ or q. Obviously,
one should guess that this optimum optimorum will be reach when the profit of the
monopole will be zero (i.e.JF (τ, q) = 0).

Recall thatJF
t = (a − bqt)qt − τtqt − wqt − αxtqt. Then to requireJF

t = 0
involves that either

qt = 0, or qt =
a−w − αxt − τt

b
. (3.3.1)

Logically, qt = 0 is not the good choice and the other one will be chosen.

Let define the Hamiltonian-Lagrangian for the regulator as

LR
t = JR

t + pR
t+1(βqt + β̃xt) + λt(

a− w − αxt − τt

b
− qt) (3.3.2)

Then the maximization problem of the regulator, overτt andqt, give us to solve the
following set of first order conditions

∂LR
t

∂τt
= qt −

λt

b
= 0, (3.3.3)

∂LR
t

∂qt
= γ − qt + τt + βpR

t+1 − λt = 0, (3.3.4)

xt+1 =
∂LR

t

∂pR
t+1

= βqt + β̃xt, (3.3.5)

pR
t =

∂LR
t

∂xt
= −δxt + β̃pR

t+1 − αλt, (3.3.6)

∂LR
t

∂λt
=

a −w − αxt − τt

b
− qt = 0. (3.3.7)

After some algebras, we get

λt =
b(a−w + γ − αxt + βpR

t+1)
2b + 1

. (3.3.8)
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Using this, the following augmented Hamiltonian system has to be solved[
xt+1

pR
t

]
=

[
β̃ − αβ

2b+1
β2

2b+1

−δ + α2b
2b+1 β̃ − αbβ

2b+1

][
xt

pR
t+1

]
+

[
β(a−w+γ)

2b+1
−αb(a−w+γ)

2b+1

]
(3.3.9)

with the boundary conditions

pR
T+1 = 0, and x1 given. (3.3.10)

By assuming a linear relationship between the co-state and the state,pR
t = Ktxt−

gt, we get to solve off-line, backward in time, the scalar Riccati and tracking difference
equations

Kt = −δ +
α2b

2b + 1
+

(β̃ − αbβ
2b+1)Kt+1(β̃ − αβ

2b+1)

1− β2Kt+1
2b+1

,

(3.3.11)

gt =
αb(a− w + γ)

2b + 1
+

(β̃ − αbβ
2b+1

)Kt+1(
β2gt+1−β(a−w+γ)

2b+1
)

1− β2Kt+1
2b+1

+ (β̃ − αbβ

2b + 1
)gt+1. (3.3.12)

with the terminal conditions

KT = −δ +
α2b

2b + 1
, KT+1 = 0, (3.3.13)

gT =
αb(a− w + γ)

2b + 1
, gT+1 = 0. (3.3.14)

Once we found off-line these values, we may compute on-line, starting atx1, the op-
timal sequences{x∗t }t=1,.,T , {pR∗

t }t=1,.,T , {λ∗t }t=1,.,T , {τ∗t }t=1,.,T and{q∗t }t=1,.,T .
Recall that{τ∗t }t=1,.,T and{q∗t }t=1,.,T achieve the optimum optimorum of the regula-
tor, under the zero-profit constraint.

The problem facing the regulator is now to find an optimal incentive strategy, that
will be announced at the beginning of the game, such that the monopole implements
the sequence{q∗t }t=1,.,T . Following Başar and Olsder [1], such an incentive strategy,
call it θ, may be defined as

τt ≡ θt(qt) = τ∗t + kt(q∗t − qt) (3.3.15)

whereτ∗t andq∗t are the desired actions, from the viewpoint of the regulator, and are
some known values. Then we need to find{kt}t=1,.,T such that the monopole can-
not do better than{q∗t }t=1,.,T and such that the regulator will have also to choose
{τ∗t }t=1,.,T . Thus, if such a sequence of incentive strategies exists, the global Stackel-
berg solution is time consistent by hypothesis since it reaches the optimum optimorum.
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Sinceθt(qt) is a known function, the problem facing the monopole is only a simple
optimal control problem. As there is no uncertainty, the solution will be the same re-
gardless of what which information structure is facing the monopole (i.e. open-loop or
feedback). The solution for simplicity will be given under a feedback assumption for
the monopole.

Let the incentive strategy for the last period be

θT = τ∗T + kT (q∗T − qT ). (3.3.16)

Then the problem facing the monopole is only: "arg maxqT JF
T (qT , θT )". The first

order condition of this problem induces

qT =
a− τ∗T − kT q∗T −w − αxT

2b− 2kT
. (3.3.17)

Recall that we wantqT = q∗T . Letk∗T be such that this equality holds. Its value is given
by

k∗T =
−(a −w − αxT − τ∗T − 2bq∗T )

q∗T
. (3.3.18)

We may easily guess the sign ofk∗T . It should be positive since the couple(τ∗T , q∗T )
is defined under the non-profit constraint. That is, the monopole, givenτ∗T , should not
be able to produce more (i.e.qT ≥ q∗T ⇒ JF

T (τ∗T , qT ) < 0). Since the monopole may
only decide to produce less, a lower value ofqT should be associated to an increase of
the taxation in order to incent the monopole to chooseq∗T . Then obviously we need to
havek∗T > 0.

Furthermore, by using (3.3.18), one can easily check that the best choice for the
monopole is then to implementqT = q∗T . Then the payoff of the last period for the
monopole is given by

JF
T = (a − bq∗T )q∗T −wq∗T − αxT q∗T − τ∗T q∗T

= P̃T x2
T + p̃T xT + ñT , (3.3.19)

where

P̃T = 0,

p̃T = −αq∗T ,

ñT = (a− bq∗T )q∗T − wq∗T − τ∗T q∗T .

One may check thatθT (k∗T ) also induces the regulator to implementτ∗T . Assuming
this, we can write the payoff of the regulator as follows

JR
T = PT x2

T + pT xT + nT (3.3.20)
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with

PT =
−δ

2
,

pT = 0,

nT = γq∗T −
q∗2T

2
+ τ∗T q∗T .

Following a similar procedure that we used in order to derive the feedback solution
(that is by used of the dynamic programming method), we get the general forms

qt =
a−w − αxt + βp̃t+1 − τ∗t − ktq

∗
t

2b− 2kt
, (3.3.21)

k∗t =
−(a− w − αxt + βp̃t+1 − τ∗t − 2bq∗t )

q∗t
, (3.3.22)

xt+1 = βq∗t + β̃xt, (3.3.23)

JR
t = Ptx

2
t + ptxt + nt, (3.3.24)

JF
t = P̃tx

2
t + p̃txt + ñt. (3.3.25)

where

Pt =
−δ

2
,

pt = 0,

nt = γq∗t −
q∗2t

2
+ τ∗t q∗t .

P̃t = 0,

p̃t = −αq∗t ,

ñt = (a − bq∗t )q∗t − wq∗t − τ∗t q∗t .

Remark: it is possible that for some values of the parameters, we havek∗t = b for
somet. Then as easily seen from (3.3.17) or (3.3.21), the problem facing the monopole
becomes singular. In such a case, the optimal level of production may not be obtained
by (3.3.17) or (3.3.21). In fact the optimal level of production is given by

qt =


a− w − αxt + βp̃t+1 − τ∗t − ktq

∗
t

2b− 2kt
if k∗t 6= b,

q∗t if k∗t = b.
(3.3.26)

4 Numerical comparisons of the solutions

The results presented here were obtained for the following values of the parameters:

a = 150, b = 5, w = 2, α = 2, δ = 3, andγ = 5.
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The initial level of pollution is supposed to bex1 = 1.

We ran two different numerical simulations depending on the values ofβ andβ̃. In
the first one, we setβ = 0.4 andβ̃ = 0.5, andβ = 0.8 andβ̃ = 0.8 for the second one.

4.1 First case:β = 0.4 and β̃ = 0.5

Logically the best solution, from the regulator viewpoint, is the global one (table 1 and
figure 1), and it is the worst for the monopolist since its profits reduce to zero (table1
and figure 2). This solution involves the higher levels of pollution2, tax and production.
Recall that his global Stackelberg solution is time consistent.

Quite surprising is that the time consistent feedback solution does also better than
the open-loop one, with or without commitment (figure 1 and table 1). It is generally
assumed that the problem of the time consistent solution is its suboptimality in respect
of the discretionary one (cf. Kydland and Prescott [8], Barro and Gordon [2, 3]). What
we learn from this simple model it’s that there is no way it should be always the case
when the follower has a real payoff function and not a very restrictive one3.

Solutions JR
c JF

c

Open-loop (OL) 8.2256 103 3.7337 103

Optimal discretionary (OLd) 8.2363 103 4.1417 103

Feedback (Fd) 8.5344 103 3.9647 103

Closed-loop (CL) 1.3899 104 0

Table 1: Cumulated Payoffs

The level of pollution is directly related to the regulator’s welfare. And since all
others variables are connected each others, we found the same order of the solutions
in the figures. Hence, higher welfare will imply higher pollution, and so a higher price
and production.

As the global solution involves zero-profits for the monopole, one may wonder why
the monopole will still produce something ? Obviously, the regulator mayaccept some
profit for the monopole by allowing a little more pollution. That is our global solution
is based on a non-profit constraint. All constraints that will involve a level of pollution
between this one and the one obtained under the feedback solution will still allow the
global Stackelberg solution to be the first one.

2The reader is implicitly refereed to the corresponding graphics that are shown in appendix.
3These literatures are based on some specific Stackelberg games where the follower has a kind of cheating

aversion cost function.
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Figure 2: Evolution ofJF
t

The two time consistent solutions mainly differ because of the level of taxation, this
level is higher with the incentive solution (global Stackelberg) since the profit must be
reduce to zero.

Another important conclusion is that, in an open-loop information structure, the
discretionary solution is better for everyone than to stay committed to the initial an-
nouncement (figures 1 and 2 and table 1). In such a case, we don’t see any reason why
this discretionary solution should involve some loss of credibility, since the monopole
may be aware that to believe in a likely recalculated sequence of taxations will get him
in a better position after. Then he may optimally believe an initial sequence of taxation
knowing that the regulator will not continue with it latter.

4.2 Second case:β = 0.8 and β̃ = 0.8

The simulation provides the same kinds of comments. That is, and the more important
one, the monopolist will benefit from a not-committed regulator’s policy to the open-
loop initial solution (table 2 and figure 4).

For the regulator, the feedback time consistent solution is no more better than the
optimal discretionary one (figure 3 and table 2). But these solutions are very closed. Fi-
nally, it seems that the gain from not staying committed to an initial open-loop solution
(by using the optimal discretionary solution) is always quite small. So, the incentive to
deviate is not very strong (tables 1 and 2).

5 Conclusion

In this paper, we derived the different possible Stackelberg solutions of a leader-follower
pollution game. The different solutions are well-known, mainly because of the work of
Başar and Olsder [1]. But despite this fact, some misunderstandings still exist concern-
ing the comparison of these solutions. We underline the incorrectness of two of them:
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Solutions JR
c JF

c

Open-loop (OL) 3.2652 103 1.0727 103

Optimal discretionary (OLd) 3.2725 103 1.2848 103

Feedback (Fd) 3.1988 103 1.3525 103

Closed-loop (CL) 4.1890 103 0

Table 2: Cumulated Payoffs
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Figure 3: Evolution ofJR
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Figure 4: Evolution ofJF
t

the suboptimality of the time consistent solution, and the assuming increased cost on
the follower when the leader use a discretionary policy.

Hence, with one particular numerical simulation we presented, we found that the
time consistent solution is the best one for the leader. Moreover, it is possible to find a
simulation such as this conclusion also holds for the follower. The gain for both players
of using optimal discretionary solution was underlined. This result is closely related to
the fact that a cheating-by-second play strategy may also be a good strategy for both
players (see Vallée, Deissenberg and Ba¸sar [13]). Finally, we concluded on the very
small advantage of using such a solution.

Of course, those results were found with a very specific dynamic game model.
Another one may give opposite results. Some more theoretical understandings of the
different dynamic solutions are needed if we want, for example, to know exactly when
and why a time consistent solution may be suboptimal or not. Such a project is a
currently research.
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A Graphics

We use the following abbreviations and notations for the graphics:

• ol (—) Open-loop solution,

• old (o) Open-loop discretionary solution,

• fd (+) Feedback solution,

• cl (- -) Closed-loop solution (myopic and nonmyopic cases),

A.1 First simulation: β = 0.4, β̃ = 0.5

OL 
OLd
Fd 
CL 

0 5 10 15 20 25
1

2

3

4

5

6

7

8

9

Figure 5: Pollution stock
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Figure 6: Taxation’s level
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Figure 7: Price’s level
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Figure 8: Production’s level
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A.2 Second simulation:β = 0.8, β̃ = 0.8
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Figure 9: Pollution stock
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Figure 10: Tax’s level
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Figure 11: Price’s level
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Figure 12: Production’s level
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