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1 Introduction

In this paper I define extensive-form games of strategic complementarities and prove the

subgame-perfect equivalent of the basic result for Nash equilibria in normal-form games

of strategic complements: the set of subgame-perfect Nash equilibria (SPNE) is a non-

empty, complete lattice. This has strong implications; not only does it give a general

existence proof, it also allows the use of comparative statics techniques. 1 While this

seems to be a promising result, I also show that, in extensive-form games, the assumption

of strategic complementarities is—surprisingly—very restrictive.

Equilibria are usually analyzed by means of fixed-point methods. This has not been

the case for SPNE. A methodological contribution of this paper is the introduction of

a device, the “extended best-response correspondence”, with the property that the set

of SPNE of a game coincides with the set of fixed points of the extended best-response

correspondence. The model of extensive-form games that I use allows time to be contin-

uous, so the extended best-response correspondence can also be used to analyze SPNE

of continuous-time games.

Existence of SPNE in finite games (finite number of players, of actions, and of stages)

follows from Zermelo’s Theorem. Harris, Reny, and Robson (1995) present an example

of a game without an SPNE that is a two-stage game with a finite number of players and

where only one player has an infinite strategy space. Hence, existence of SPNE is not

guaranteed after a minimal departure from the hypothesis of Zermelo’s Theorem.

Here I show that the existence of SPNE follows from strategic complementarities;

concretely, that the set of SPNE of an game whose normal-form is a game of strategic

complementarities, is a non-empty, complete lattice.

Proofs of existence of SPNE in non-finite games are provided by Harris, Reny, and

Robson (1995) for games of almost-perfect information where a public randomization

device is present, by Harris (1985b), Harris (1985a) and Hellwig and Leininger (1987) for

1It can be shown that monotone comparative statics techniques would, among other things, eliminate
the need to focus on Markov-Perfect equilibria in many dynamic oligopoly models. I chose not to stress
this consequence of my results because, as will become clear, it has a very limited applicability.
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Figure 1: Optional Battle of the Sexes

games of perfect information; and by Fudenberg and Levine (1983) for classes of games

with strong “continuity at infinity” properties.

My results apply to continuous-time games and to games of imperfect information

that are not necessarily games of almost-perfect information. I am not aware of any

other existence result that applies to continuous-time games. I do not impose any struc-

ture on games beyond complementarities and conventional topological assumptions—the

important problem with my results is that the assumption of complementarities is very

strong.

Games of strategic complementarities were first studied by Topkis (1979) and intro-

duced into economics by Vives (1990). There are many examples of economic models

that are games of strategic complements (see Milgrom and Roberts (1990), Topkis (1998),

and Vives (1999)). By now it is fair to say that complementarities in normal-form games

is a very useful and common structure. Here I show that, while still very useful, comple-

mentarities in dynamic contexts are rare.

To illustrate the problem, consider the game in Figure 1. This is “Optional Battle

of the Sexes”. Here, player One chooses first to say Yes or No. If One says No then

payoffs are 1 each. If One says Yes then they play a Battle of the Sexes game: they

simultaneously choose an element of {O, B}. If the choice is (O, O) then player One gets

2 while Two gets 1. If they choose (O, B) or (B, O) then both get a payoff of 0. If the

outcome is (B, B) then payoffs are (1, 2)

It is easy to see that Battle of the Sexes (BoS, the simultaneous-move game that

follows after One chooses Yes) is a game of strategic complementarities. Player One’s
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best response to Two playing B is to play B and One’s response to Two playing O is to

play O. So, a change by Two from B to O makes One change in the same direction. This

is also true for player Two: a change by One from B to O makes Two change in the same

direction. Imposing an order on the players’ strategies, we can say that O is “larger”

than B. Then the best response of each player is increasing in the other player’s choice

of strategy, this is the crucial property of a game of strategic complementarities (indeed

it is easily seen that BoS satisfies the definition of a game of strategic complementarities

in e.g. Milgrom and Roberts (1990)).

Now, consider the extensive-form game Optional BoS and let us impose an order on

the set {No, Yes}. Let the action “Yes” at One’s initial decision node be larger than

“No”. Then the strategy No-O (say No at the initial node and plan to play O in Battle

of the Sexes) is smaller than Yes-O and No-B is smaller than Yes-B. But, when One

is playing No-B it is optimal for Two to play O, while if we increase One’s strategy to

Yes-B then it is uniquely optimal for Two to play B. This implies that Two’s strategy

is not increasing in One’s strategy choice. We could try to fix this by saying that B is

larger than O, but then the problem would arise when One increases the strategy from

No-O to Yes-O.

It turns out that it is possible to make Optional BoS a game of strategic comple-

mentarities. The solution is to say that the action Yes is smaller than No. This shows

that extensive-form games of strategic complementarities are not trivial. 2 But unfortu-

nately the simple solution in Optional BoS is not feasible in general. I shall show how

a complication of Optional BoS yields a game that cannot be transformed into a game

of strategic complementarities. I will argue also that most dynamic games of economic

interest cannot be transformed into games of strategic complementarities.

Section 2 presents definitions and notation. Section 3 introduces the extended best-

response correspondence and the main results of the paper. Section 4 show how comple-

mentarities are a restrictive assumption by discussing some examples.

2It is not true that they must be dominance-solvable, as might be suggested by the discussion above.
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2 Generalized Extensive-Form Games

2.1 Basic Definitions and Notation

A detailed discussion of the concepts defined in this subsection is in Topkis (1998). A set

X with a transitive, reflexive, antisymmetric binary relation � is a lattice if whenever

x, y ∈ X, both x ∧ y = inf {x, y} and x ∨ y = sup {x, y} exist in X. It is complete

if for every nonempty subset A of X, inf A, supA exist in X. For two subsets A, B of

X, say that A is smaller than B in the strong set order if a ∈ A, b ∈ B implies

a ∧ b ∈ A, a ∨ b ∈ B. The order-interval topology on a lattice is obtained by taking

the closed intervals [x, y] = {z ∈ X : x � z � y} as a sub-basis for the closed sets. All

lattices in the paper will be endowed with the order-interval topology. All products of

partially ordered sets are endowed with the product order. All products of topological

spaces are endowed with the product topology.

If X is a lattice, a function f : X → R is quasisupermodular if for any x, y ∈ X,

f(x) ≥ f(x ∧ y) implies f(x ∨ y) ≥ f(y) and f(x) > f(x ∧ y) implies f(x ∨ y) > f(y). 3

Let T be a partially ordered set. A function f : X × T → R satisfies the single-

crossing condition in (x, t) if whenever x ≺ x′ and t ≺ t′, f(x, t) ≤ f(x′, t) implies that

f(x, t′) ≤ f(x′, t′) and f(x, t) < f(x′, t) implies that f(x, t′) < f(x′, t′). The restriction

of a function f : X → Y to a subset X ′ ⊆ X is denoted f |X ′.

2.2 Definition of Generalized Extensive-Form Games

I present a definition of extensive-form games that has information sets, as opposed to

decision nodes, as primitives. It is really only a slight variation on the usual rules for

drawing game trees, but it results in a considerably more general framework because it

allows time to be continuous and does not impose perfect recall or partitioned information

structures. 4 I hope that the benefits of having results that apply to continuous-time

games are important enough to balance the cost of a slightly unfamiliar framework.

3Quasisupermodularity is an ordinal notion of complementarities, it was introduced by Milgrom and
Shannon (1994).

4See Fudenberg and Tirole (1991) and Osborne and Rubinstein (1994) for the two usual definitions.
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Figure 2: An extensive-form game of strategic complementarities

Besides its generality, this model of extensive-form games is more parsimonious than the

usual one, therefore the proofs are easier and sharper than they would be otherwise.

I shall use the simple game in Figure 2 to illustrate the concepts as they are introduced.

The game can be described as follows. First, player One selects an element in {L, R}. If

she selects L then the game “ends” and the payoffs are 2 to player One and 0 to player

Two. If she selects R then Two gets to choose between l and r. If he chooses l then she

gets 1 while One gets 0. If he chooses r then player One gets to choose an element in

{L′, R′}. Payoffs are (0, 0) and (3, 1) after One chooses L′ and R′, respectively. Let a1

be the first node at which player One moves, a2 be the second node at which she moves

and b be the node at which player Two moves.

A generalized extensive-form game will be described as follows. Let N = {1, . . . n} be

the set of players. Let H be a set; the elements of H will be referred to as “information

sets”. Let H = {Hα : α ∈ I} be a collection of subsets of H and {H i : i ∈ N} a partition

of H. The interpretation will be that player i is endowed with a collection H i of infor-

mation sets and that the elements of H = ∪n
i=1H

i are the information sets of the game.

For each α ∈ I , Hα ⊆ H should be interpreted as a “subgame” of H (this interpretation

is made precise below).

In the example in Figure 2, N = {1, 2}, H = {a1, a2, b}, H1 = {a1, a2} and H2 = {b}.
There are three subgames in the example, let I = {α0, α1, α2}, Hα0 = {a1, a2, b}, Hα1 =

{a2, b}, and Hα2 = {a2}; H = {Hα0, Hα1 , Hα2}.
I make two assumptions about H, the collection of “subgames”. First, that H itself

belongs to this class of subgames. Let α0 ∈ I satisfy H = Hα0. Second, if {Hα : α ∈ I ′} ⊆
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H is a subcollection of H such that any α, α′ ∈ I ′ satisfy either Hα ⊆ Hα′ or Hα′ ⊆ Hα,

then ∪α∈I′Hα ∈ H. That is, I assume that H is closed under increasing unions. For

every α ∈ I , {Hi : i ∈ N} induces a partition on Hα: let Hi
α = Hα ∩ Hi be the set of

player i’s information sets in subgame Hα. Note that Hi = {Hi
α : α ∈ I} is also closed

under increasing unions. It is easy to verify that the example in Figure 2 satisfies these

assumptions, as does any well-defined game tree.

The players choose actions at each of their information sets. For each h ∈ H, let

A(h) be the set of actions available to the player that moves at information set h.

Each A(h) is endowed with a Hausdorff topology. The set of all possible actions is

denoted by A = ∪h∈HA(h). Player i’s strategy space in subgame α ∈ I is Si
α =

{s : Hi
α →A : s(h) ∈ A(h) for all h ∈ H i

α} = Πh∈HαA(h). Let Sα = ×n
i=1S

i
α. Each player

is endowed with preferences over strategy profiles in subgame α ∈ I . These preferences

are represented by a collection of payoff functions ui
α : Sα → R.

In the example, A(a1) = {L, R}, A(b) = {l, r} and A(a2) = {L′, R′}, so that

A = {L, L′, R, R′, l, r}. The strategy space for player 1 for the whole game is S1
α0

=

{LL′, LR′, RL′, RR′}—where LL′ means that 1 plans to play L at her first decision node,

a1, and then L′ at her second decision node, a2, and so on. The strategy space for player

2 for the whole game is simply S2
α0

= {l, r}. The strategy spaces for the other subgames

are S1
α1

= {L′, R′}, S2
α1

= {l, r}, S1
α2

= {L′, R′} and S2
α2

= {∅}. The choice of ∅ for player

2 in subgame α2 formalizes that only 1 makes a choice in this subgame. The players’ pref-

erences in each subgame are immediate from Figure 2, u1
α0

(LL′, l) = 2,u2
α0

(LL′, l) = 0,

u1
α1

(L′, l) = 0, u2
α1

(L′, l) = 1, u1
α2

(L′, ∅) = 0, u2
α2

(L′, ∅) = 0, etc.

Definition 1 A collection of payoff functions {uα
i : i ∈ N, α ∈ I} is consistent if, for

every i ∈ N and α, α′ ∈ I, whenever Hα′ ⊆ Hα, s−i
α ∈ S−i

α , si
α, s̃i

α ∈ Si
α and zi

α′ ∈
Si

α′, the inequalities ui
α(s̃i

α, s−i
α ) ≤ ui

α(si
α, s−i

α ) and ui
α′(s

i
α|Hi

α′
, s−i

α |H−i
α′

) ≤ ui
α′(z

i
α′, s

−i
α |H−i

α′
)

imply that ui
α(s̃i

α, s−i
α ) ≤ ui

α(si
α|Hi

α\Hi
α′

, zi
α′, s

−i
α ). The collection of payoff functions satisfies

continuity if, for all α ∈ I, i ∈ N , and s−i
α ∈ S−i

α , si
α 7→ ui

α(si
α, s−i

α ) is an upper semi-

continuous function.
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Payoffs are consistent if, given opponents’ strategy s−i, whenever si
α performs better

than s̃i
α in subgame Hα ⊃ Hα′ and zi

α′ performs better than si
α in subgame Hα′, it must

be that the combined strategy that follows si
α in Hi

α\Hi
α′ and follows zi

α′ in Hi
α′ , cannot

perform worse than s̃i
α.

The payoffs in the example are consistent: Fix the strategy s2
α0

= l by player 2 in

subgame α0, the “whole” game. Given any strategy s1
α0

, player 1’s payoff is independent

of choices in node a2. In particular, choosing R′, the dominant strategy in subgame α2,

does not decrease the payoff to following s1
α0

. Now, consider s2
α0

= r. The only case

where the requirement consistency has bite is for the strategy LL′. In subgame α0, LL′

is preferred by 1 to RL′. But, in subgame α2, R′ is better than L′. Consistency then

requires that LR′ be preferred to RL′ in subgame α0—which is satisfied by the specified

payoffs.

The example illustrates why payoffs in any well-defined game tree are consistent.

Given i’s strategy si
α and opponents’ strategies s−i

α , if a subgame α′ is not reached then

i is indifferent among her choices in this subgame and she cannot do worse by picking

something that is better in the subgame. On the other hand, if subgame α′ is reached

then payoffs will be given by choices in α′. Choosing a better strategy in subgame α′ can

only improve the payoff to si
α.

The definition of a generalized extensive-form game is complicated enough to warrant

an enumeration of its components:

Definition 2 The sextuple Γ = {N, H, {Hα : α ∈ I} , {Hi : i ∈ N} , {A(h) : h ∈ H} ,

{ui
α : i ∈ N, α ∈ I}} is a generalized extensive-form game if:

• N = {1, 2, . . . n} is the set of players;

• H is a set of information sets;

• {H i : i ∈ N} is a partition of H;

• {Hα : α ∈ I} is a collection of subsets of H that is closed under increasing unions

and such that Hα0 = H for some α0 ∈ I;
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• {A(h) : h ∈ H} is a collection of action sets, each endowed with a Hausdorff topo-

logy and compact;

• {uα
i : i ∈ N, α ∈ I} is a collection of consistent payoff functions that satisfies con-

tinuity.

For any subgame α ∈ I , Γ induces naturally an extensive-form game Γα: let Hα be

the set of information sets of Γα, let the subgames γ ∈ I with Hγ ⊆ Hα be the subgames

of Γα; and let action sets and payoffs be defined as in Γ. I will use “subgame” to denote

both the set Hα and its corresponding extensive-form game Γα.

A strategy profile sα is a subgame-perfect Nash equilibrium (SPNE) in subgame

α ∈ I if, for every γ ∈ I such that Hγ ⊆ Hα and every i ∈ N ,

si
α|Hγ ∈ argmaxs̃i

γ∈Si
γ
uγ(s̃i

γ, s
−i
α |Hγ ).

I shall refer to the SPNE in subgame α0, the whole game, as simply SPNE. Note that a

strategy profile is a SPNE if and only if its restriction to any subgame is a SPNE in that

subgame.

Definition 3 A generalized extensive-form game Γ is an extensive-form game of

strategic complementarities if A(h) is a complete lattice for all h ∈ H and if, for

all α ∈ I and i ∈ N , si
α 7→ ui

α(si
α, s−i

α ) is quasisupermodular on Si
α, and ui

α satisfies the

single-crossing condition in (si
α, s−i

α ).

It is slightly cumbersome to show that the game in Figure 1, has strategic comple-

ments. I leave this for section 4.

2.3 Examples of Generalized Extensive-Form Games

2.3.1 Optional BoS

I shall present the current notation for the “Optional Battle of the Sexes” game from

the introduction. Let a1 be the initial node, b be the node at which player Two moves

and a2 be One’s information set after that Two has moved. Then, H = {a1, a2, b},
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H1 = {a1, a2}, H2 = {b}. There are two subgames, so I = {α0, α1}, Hα0 = {a1, a2, b}
and Hα1 = {b, a2}. Action spaces are A(a1) = {Yes, No}, A(b) = A(a2) = {O, B}.
Strategy spaces are S1

α0
= {YesO, YesB, NoO, NoB}, S2

α0
= S1

α1
= S2

α1
= {O, B}.

2.3.2 Battle of the Sexes in Continuous Time

The game is a Battle of the Sexes played in continuous time. As Anderson (1984) and

Simon and Stinchcombe (1989) point out, the map from strategies to outcomes might

not be well defined in continuous-time games, which implies that we cannot define the

payoffs resulting from different strategy profiles. I will not spell out the details in Simon

and Stinchcombe’s (1989) model of continuous-time extensive-form games, I only present

a simple example (that in fact falls within Simon and Stinchcombe’s framework).

To avoid problems with the map from strategies to outcomes, I impose that players

must switch infrequently from one action to the other. Time is indexed by t ∈ [0, 1].

Assume that players choose either O or B at time t = 0. Their decisions remain fixed

for a period δ ∈ (0, 1); at time t = δ they can choose to switch, represented by action 1,

or not to change their time 0 choice, represented by action 0. An any posterior time t,

players are allowed to choose 1 only if they have chosen 0 in [t− δ, t). That is, switches

are irreversible for a length of time δ. The players’ “flow” payoffs are as in BoS in the

introduction. If, at time t, they both choose O then One gets a payoff of 2 while Two

gets a payoff of 1; when they both choose B, then One gets 1 while Two gets 2. If they

choose different actions at time t then they both get a payoff of 0.

For any t ∈ [0, 1], the events until time t are described by a pair of vectors ht = (h1
t , h

2
t ),

with hi
t = (ti

1, . . . t
i
k) and where ti

l is the time of the lth switch by player i. By the

description above, we must have ti
l − ti

l−1 ≥ δ for l = 2, . . . k and ti
k ≤ t. Player i starts

with action O if ti
1 = 0, with action B if ti

1 > 0. Any feasible ht is called a time-t history.

Let Ht be the set of all time-t histories.

The set of all information sets is H = ∪t∈[0,1]Ht. Any history ht starts a subgame

Hht = {hτ ∈ H : t ≤ τ, hτ |t = ht}, where hτ |t = ht means that hτ and ht coincide on

9



switches before time t. For any history ht, the actions available to player i are {0, 1}
or, if she has switched recently (so t − tk < δ), {0}. I will show that the collection of

information sets is closed under increasing unions. Let
{
Hht : ht ∈ H̃

}
be an increasing

collection of subgames and let t = inf
{
t : ht ∈ H̃

}
. Then, all histories ht coincide on

switches up to t, let ht be this common history. It is immediate that Hht = ∪ht∈H̃Hht .

Similarly, the collection of information sets is closed under intersections.

Strategies are maps ht 7→ si(ht) ∈ Ai(ht), where Ai(ht) is {0} if the last switch in ht

was later than t − δ and Ai(ht) is {0, 1} else. A pair of strategies define, recursively, a

finite collection of switches. A finite collection of switches gives, through the definition

of flow payoffs above, the payoff associated to the strategy profile. Additivity of payoffs

(from flow payoffs) implies immediately that payoffs are consistent.

3 The Extended Best-Response Correspondence and

Strategic Complementarities

3.1 Main Results

In this paper I shall focus on subgame-perfect equilibria. In order to keep track of

the best responses to opponents’ strategies in each subgame, I need to introduce the

set S i =
{
si ∈ Πα∈IS

i
α : si

α0
|Hi

α
= si

α

}
. This is the set of lists si ∈ Πα∈IS

i
α so that the

component si
α ∈ Si

α that corresponds to subgame Hα coincides with the restriction of

si
α0
∈ Si

α0
—the strategy for the whole game—to subgame Hα. Let S = ×n

i=1S i. For

the example in Figure 2, recall that S1
α0

= {LL′, LR′, RL′, RR′}, S1
α1

= {L′, R′}, and

S1
α2

= {L′, R′}. So,

S1 = {(LL′, L′, L′), (LR′, R′, R′), (RL′, L′, L′), (RR′, R′, R′)} ,

which is really the same set as S1
α0

. In general Si and S i are isomorphic: identify si ∈ S i

with si
α0
∈ Si. In the rest of the paper I will frequently identify S and S.

Definition 4 Player i’s extended best-response correspondence βi : S � S i is

10



defined by:

βi(s) =
{
si ∈ S i : ui

α(si
α, s−i

α ) ≥ ui
α(ŝi

α, s−i
α ) for all ŝi

α ∈ Si
α, for all α ∈ I

}
.

The game’s extended best-response correspondence is β : S � S, defined as β(s) =

×i∈Nβi(s).

Player i’s extended best-response correspondence assigns a strategy that is a best

response in each subgame to her opponents’ strategy. A game Γ’s SPNE can be analyzed

by means of its extended best-response correspondence β. Lemma 1 shows the usefulness

of the extended best-response construction. The construction of β shows immediately

why Lemma 1 is true, so the lemma’s proof is omitted.

Lemma 1 The set of SPNE of a generalized extensive-form game equals the fixed points

of its extended best-response correspondence.

Lemma 2 shows that β is not a vacuous construction. The idea behind its proof is

simple. Given opponents’ strategies s−i
α0

, if si
α0

is a best response for player i in the whole

game Hα0, then si
α0

should prescribe a best response for subgames that are reached under

s−i
α0

. Also, i is indifferent between strategies on subgames that are not reached. Modifying

si
α0

to play a best response to s−i
α0

also on non-reached subgames yields, by consistency of

payoffs, a strategy that is still a best response to s−i
α0

in the original game Hα0. Repeating

this operation “subgame by subgame” we can obtain an element in β(s).

The reasoning “subgame by subgame” suggests a proof by induction. Even in simple

games (like infinitely repeated bimatrix games) the set of subgames is uncountable, so a

proof by induction is not possible. The proper tool turns out—expectedly—to be Zorn’s

Lemma.

Lemma 2 For all s ∈ S, β(s) is not empty.

Proof: Let s ∈ S and fix i ∈ N . For any α ∈ I , let βi
α(s−i) = argmaxsi∈Si

α
ui

α(si, s−i
α ).

Tychonoff’s Theorem implies that Si
α is compact, so βi

α(s−i) is nonempty because Si
α

11



is compact and payoffs are upper semi-continuous in the player’s own strategy. Let

Ω = {(si
α, Hi

α) : α ∈ I, si
α ∈ βi

α(s−i)} be the set of pairs of best responses and subgames.

Order Ω by �, where (si
α′, H

i
α′) � (si

α, Hi
α) if and only if H i

α′ ⊆ Hi
α and si

α|Hi
α′

= si
α′. It

is immediate to verify that � is a partial order on Ω.

Let Ω̃ ⊆ Ω be a linearly ordered subset of Ω. Say Ĩ ⊆ I is such that Ω̃ ={
(si

α, Hi
α) ∈ Ω : α ∈ Ĩ

}
. Let Ĥ = ∪α∈ĨH

i
α, since Hi is closed under increasing unions

Ĥ ∈ Hi. Let γ ∈ I satisfy H i
γ = Ĥ. For any h ∈ Hγ , there is α ∈ Ĩ such that h ∈ Hα;

construct si
γ ∈ Si

γ by setting si
γ(h) = si

α(h). Since Ω̃ is linearly ordered, si
γ is well defined.

I will show that (Hi
γ , s

i
γ) is an upper bound on Ω̃ in Ω. Clearly, H i

α ⊆ Hi
γ and

si
γ |Hi

α
= si

α for all α ∈ Ĩ. Let si
γ ∈ βi

γ(s
−i) and let

{
si

γ(α)
}

α∈Ĩ
be the net in Si

γ obtained

by si
γ(α)|Hi

α
= si

γ|Hi
α
, si

γ(α)|Hi
γ\Hi

α
= si

γ|Hi
γ\Hi

α
, and directing Ĩ by set inclusion. Note

that si
γ(α) → si

γ in the product topology. Fix any s̃i
γ ∈ Si

γ. Then si
γ ∈ βi

γ(s
−i) implies

that ui
γ(s̃

i
γ, s

−i
γ ) ≤ ui

γ(s
i
γ, s

−i
γ ). Now, si

γ|Hi
α

= si
α ∈ βi

α(s−i) implies that ui
α(si

γ |Hi
α
, s−i

α ) ≤
ui

α(si
γ|Hi

α
, s−i

α ). By consistency of payoffs, then, for any α ∈ Ĩ, ui
γ(s̃

i
γ, s

−i
γ ) ≤ ui

γ(s
i
γ(α), s−i

γ ).

But then ui
γ(s̃

i
γ , s

−i
γ ) ≤ ui

γ(s
i
γ, s

−i
γ ), as si

γ(α) → si
γ and payoffs are upper semi-continuous.

This shows that (Hi
γ, s

i
γ) ∈ Ω, so (Hi

γ , s
i
γ) is an upper bound on Ω̃.

The linearly ordered set Ω̃ was arbitrary. By Zorn’s lemma there is a maximal element,

say (H∗i
α , s∗iα ), of Ω. Suppose H∗i

α 6= Hi
α0

. Let si
α0
∈ βi

α0
(s−i). Define si

α0
∈ Si

α0
by

si
α0
|Hi

α0
\H∗i

α
= si

α0
|Hi

α0
\H∗i

α
and si

α0
|H∗i

α
= s∗iα . Now, (H∗i

α , s∗iα ) ∈ Ω implies that s∗iα ∈ βi
α(s−i).

Let s̃i
α0
∈ Si

α0
, then ui

α0
(s̃i

α0
, s−i

α0
) ≤ ui

α0
(si

α0
, s−i

α0
) and ui

α(si
α0
|H∗i

α
, s−i

α ) ≤ ui
α(s∗iα0

|H∗i
α

, s−i
α ).

By consistency of payoffs, ui
α0

(s̃i
α0

, s−i
α0

) ≤ ui
α0

(si
α0

, s−i
α0

). Hence, si
α0
∈ βi

α0
(s−i), so that

(Hi
α0

, si
α0

) ∈ Ω and (H∗i
α , s∗iα ) � (H i

α0
, si

α0
). But (H∗i

α , s∗iα ) 6= (Hi
α0

, si
α0

). Contradiction,

since (H∗i
α , s∗iα ) is maximal.

Construct s∗i ∈ S i by setting s∗iα = s∗iα0
|Hi

α
for all α ∈ I . It is then immediate that

s∗i ∈ βi(s) since, by construction, for all α ∈ I , s∗iα = s∗iα ∈ βi
α(s−i). �

Extended best-response correspondences translate the problem of finding SPNE to

a fixed point problem. By adding the assumption of strategic complementarities, fixed

points are obtained by a version of Tarski’s Fixed Point Theorem and the sets of SPNE
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can be analyzed by “lattice programming” techniques. Potentially, though, extended

best-response correspondences are useful in other classes of extensive-form games as well.

Theorem 1 If Γ is an extensive-form game of strategic complementarities, then its

SPNE form a non-empty, complete lattice.

Proof: I need to show that β is monotone increasing in the strong set order and takes

non-empty, closed values in order to apply Zhou’s (1994) version of Tarski’s fixed point

theorem. First I show that β is monotone increasing in the strong set order. Let s, z ∈ S
with s ≺ z. Let s′ ∈ β(s) and z′ ∈ β(z). By Theorem 4 in Milgrom and Shannon (1994),

for every α ∈ I , s′ i
α ∨ z′ i

α ∈ argmaxs∈Si
α
ui

α(s, z−i
α ) and s′ i

α ∧ z′ i
α ∈ argmaxs∈Si

α
uα

i (s, s−i,α).

Hence, s′∨z′ ∈ β(z) and s′∧z′ ∈ β(s), proving that β is increasing in the strong set order.

That β takes closed values is an immediate consequence of upper semi-continuity of

payoffs in each subgame. By Lemma 2, β takes non-empty values. Hence, by Zhou’s

version of Tarski’s fixed point theorem, the set of fixed points of β is a complete lattice.

Lemma 1 implies that the set of SPNE is a complete lattice. �

Theorem 1 implies that there is a smallest and a largest SPNE of any extensive-

form game of strategic complementarities. Note that the subgames of any extensive-form

game of strategic complements are also extensive-form games of strategic complements.

By Theorem 1, then, each subgame has a smallest and a largest SPNE strategy profile.

It turns out that the extremal SPNE of any subgame are obtained from the extremal

SPNE of the whole game. 5

The collection of subgames {Hα : α ∈ I} is closed under intersections if for any

α, α′ ∈ I , there is ξ ∈ I such that Hξ = Hα ∩Hα′. Any well-defined game tree has sub-

games that are closed under intersections (in fact subgames are either nested or disjoint,

so they are trivially closed under intersections).

Theorem 2 Let Γ be an extensive-form game of strategic complementarities with sub-

games that are closed under intersections; let s be its smallest SPNE and s its largest
5This has important consequences. It can be seen that, in multi-stage games, the extremal equilibria

are Markov-Perfect.

13



SPNE. If Hα with α ∈ I is any subgame, then s|Hα and s|Hα are, respectively, the smallest

and largest SPNE of the extensive-form game corresponding to Hα.

Proof: Suppose, by way of contradiction, that there is a subgame Hα with a smallest

SPNE strategy profile sα that is not equal to s|Hα. Let S̃ = {ŝ ∈ S : ŝα = sα}, by

repeating the arguments above we obtain that S̃ is a complete lattice. Let β̃ : S̃ � S̃ be

defined by β̃(s) =

{
ŝ ∈ S̃ : ui

γ(s
′ i
γ , s−i

γ ) ≤ ui
γ (̂s

i
γ, s

−i
γ ) for all s′ i

γ ∈ Si
γ, s

′ i
γ |Hα = si

α, i ∈ N, and γ ∈ I, Hγ * Hα

}
.

That β̃ is monotone increasing in the strong set order and closed-valued follows from

arguments similar to those proving that β is monotone increasing and closed-valued. That

β̃ has non-empty values can be proved by following the steps in the proof of Lemma 2,

and restricting the optimizing strategies to equal si
α on information sets that also belong

to Hα.

By Zhou’s version of Tarski’s Theorem, there is a fixed point s ∈ S̃ of β̃. I claim

that this is a SPNE of the whole game Hα0. Fix i ∈ N . For any γ ∈ I with Hγ ⊆ Hα,

sα0|Hγ = sα|Hγ . But si
α0
|Hγ ∈ βi

γ(s) since Hγ is a subgame of Hα and sα is a SPNE in

Hα. Let γ ∈ I with Hγ * Hα. Γ has subgames that are closed under intersections, hence

there is ξ ∈ I with Hξ = Hγ ∩Hα. Since Hξ is a subgame of Hα, sξ = sα|Hξ
so sξ ∈ βi

ξ(s)

because sα is a SPNE in subgame Hα. Then, si
γ ∈ βi

γ(s) because if there is ŝi
γ ∈ Si

γ with

ui
γ(s

i
γ, s

−i
γ ) < ui

γ(ŝ
i
γ, s

−i
γ ) it must be that ŝi

γ and si
γ differ on the subgame Hξ = Hγ ∩Hα.

But, using consistency of payoffs,

ui
γ(s

i
γ, s

−i
γ ) < ui

γ(ŝ
i
γ, s

−i
γ ) ≤ ui

γ(ŝ
i
γ|Hγ\Hα, si

ξ, s
−i
γ ),

impossible since s ∈ β̃(s). Hence, si
γ ∈ βi

γ(s) for any γ ∈ I so s is a SPNE.

By Theorem 1 there is a SPNE s̃ = s∧ sα0 because the set of SPNE is a lattice. Since

s and sα0 differ on Hα, s̃ is smaller than s, a contradiction. �

Once the structure of complementarities is present, comparative statics results for the

extremal SPNE follow from well-known results in Monotone Comparative Statics.
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Figure 3: Optional BoS II

Definition 5 Let T be a partially ordered set. The collection Γ(t) : t ∈ T is an increas-

ing family of extensive-form games if, for any t ∈ T , Γ(t) = {N, H, {Hα : α ∈ I} ,

{Hi : i ∈ N} , {At(h) : h ∈ H} , {ui
α t : i ∈ N, α ∈ I}} is an extensive-form game of strate-

gic complementarities; if for all h ∈ H, At(h) is increasing in the strong set order in t

and if, for all i ∈ N α ∈ I, ui
α t satisfies the single-crossing condition in (si

α, t).

Theorem 3 Let {Γ(t) : t ∈ T} be an increasing family of extensive-form games. Let

t, t′ ∈ T with t � t′. The smallest (largest) SPNE of Γ(t) is smaller, as an element of S,

than the smallest (largest) SPNE of Γ(t′).

Proof: Let βt and βt′ be the extended best-response correspondences of Γ(t) and Γ(t′),

respectively. An argument similar to the proof that the extended best-response function

is monotone increasing in the proof of Theorem 1 establishes that, for any s ∈ S, βt(s) is

smaller than βt′(s) in the strong set order. The result then follows from Theorem 2.5.2

in Topkis (1998). �

4 Restrictiveness of Complementarities

Optional BoS in the introduction is a game of strategic complementarities. Optional

BoS II in Figure 3 cannot be made into a game of strategic complementarities. First, say

that Yes is larger than No and repeat the argument from the introduction: An increase

in One’s strategy from No-OO to Yes-OO makes Two shift from B to O in the game

following Yes. Strategic complementarities requires then that the action O is larger than

B at this information set. But then, this gives a decreasing response when we shift
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L′ x x ∨ y
R′ x ∧ y y

s2

R L
L′ 0 2
R′ 3 2

r

R L
L′ 0 2
R′ 0 2

l

Figure 4: Payoffs to Player One in the game in Figure 2

from No-OB to Yes-OB. The solution in the introduction was to change the order on

{Yes, No}. But here this clearly gives rise to the same problem in the subgame following

No.

Since BoS is a game of strategic complementarities, Optional BoS II shows that the

property of having complementarities is not robust to the addition of an irrelevant move.

This is true also in normal-form games, not really the reason why complementarities are

especially restrictive in extensive-form games.

More importantly, off the path specified by a strategy profile, players are indifferent

between actions. This indifference makes the single-crossing property kick in. If the

information set h is off the path of a strategy profile (si, s−i) then player i is indifferent

between strategies that differ on A(h). Now, if s′−i is a larger strategy, and h is on the

path of (si, s′−i), then it must be that payoffs are such that, if a, a′ ∈ A(h) and a is smaller

than a′, then a is preferred to a′. That is, preferences have to coincide with the order

on actions for every strategy profile that has h “on its path”. This is the reason why

complementarities are specially restrictive in extensive-form games. An open question is

to characterize the set of extensive-form games with strategic complementarities. This

has not been done for normal-form games, and it seems that the dynamic strategic

interactions present special difficulties.

Finally, I will show that the game in Figure 2 is a game of strategic complementarities.

Order the actions so that L is larger than R, l is larger than r and L′ is larger that R′.

Consider Figure 4. The two matrices to the right show the payoffs to player One for each

of the eight possible strategy profiles in this game. The Figure is intended to illustrate

the lattice structure on strategies.
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Fix Two’s strategy s2 = r. We need to check that s1 7→ u1(s1, r) is quasisupermodular.

Here, u1(RL′, r) = 0 < u1(RL′ ∧ LR′, r) = u1(RR′, r) = 3, so the requirement in the

definition of quasisupermodularity is vacuous. Fix s2 = l, then u1(RL′ ∧ LR′, l) =

u1(RR′, l) = 0 and u1(RL′, l) = 0 so we need u1(LR′, l) ≤ u1(RL′ ∨ LR′, l). Which is

satisfied since u1(RL′ ∨ LR′, l) = u1(LL′, l) = 2 and u1(LR′, l) = 2. Now, we need to

check that the players’ payoffs satisfy the single-crossing property. Note from Figure 4

that, when s2 = r, no increase in a strategy by player One is profitable. Since r < l the

single-crossing property in player One’s payoffs is satisfied vacuously.

R L
L′ 0 0
R′ -1 0

s2

Figure 5: Gain from increasing Two’s strategy: u2(s1, l)− u2(s1, r).

To see that Two’s payoffs satisfy the single-crossing property, consider Figure 5. The

figure shows the gain to Two u2(s1, l)− u2(s1, r) from increasing his strategy from r to

l. It is seen directly from the figure that whenever u2(s1, l)− u2(s1, r) ≥ 0 and s1 < s1′

then u2(s1′, l) − u2(s1′, r) ≥ 0. This establishes that the game in Figure 2 is a game of

strategic complementarities.
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