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In Ely, Fudenberg and Levine [2005], hereafter EFL, we defined an action to 

vulnerable to a temptation if conditional on participation by the short-run players, the 

temptation lowers the probability of all “bad” signals, and increases the probability of all 

other signals. EFL’s first bad reputation result requires an exit minmax condition. If the 

temptation satisfies the stronger property that the relative probability of the other signals 

remains constant, then the assumption of exit minmax can be weakened. We define a 

strong temptation:  

Definition 3S: An action �  is vulnerable to a strong temptation relative to a set of signals 

�
�

if there exists a number �� �  and an action �  such that 

1) If � �� , � ��
��  then ( | , ) ( | , )y d b y a bρ ρ ρ≤ −� �  

2) If � ��  and �� �� � � �� �
�

 then 
( | , ) ( | , )
( '| , ) ( '| , )

ρ ρ
ρ ρ

=y d b y a b
y d b y a b

. 

3) For all � �� , ��� ���� �	 � � 	 � �� . 

The action � is called a strong temptation. 

    
This condition lets us prove an analog of  lemma 3 in EFL which we prove here. 
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Lemma 3S: In a participation game, if ���� �
� �� � or ���� �
� �� �  and 
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Proof: The derivation of equation (1.5) is unchanged 
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 (1.5) 

Since the good signals are changed proportionately by the temptation, it follows that  
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for each \y Y Y∈
�

.  Thus, 
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where �� � �
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�

 is the expected continuation value after playing f and observing a 

signal in \Y Y
�

.  Substituting into (1.5),  
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From the fact that d reduces the probability of every bad signal by a positive amount,  
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where the second line uses the fact that ��� �
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�
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 Because �  lowers the probability of all bad signals by at least ρ , it raises the 

total probability of the remaining signals by at least Y ρ
�

, that is,  
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.  This and the fact that the numerator 

on the right hand side of the previous inequality is non-negative gives 
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Finally, we conclude:  
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The conclusion of the proof is now identical to that of Lemma 3: if 0λ =  then 
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