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In the present paper, an exact solution for the two-dimensional boundary layer viscous
flow over a semi-infinite flat plate in the presence of magnetic field is given. Generalized
similarity transformations are used to convert the governing boundary layer equations into
a third order nonlinear differential equation which is the famous MHD Falkner–Skan equa-
tion. This equation contains three flow parameters: the stream-wise pressure gradient (b),
the magnetic parameter (M), and the boundary stretch parameter (k). Closed-form analyt-
ical solution is obtained for b ¼ �1 and M ¼ 0 in terms of error and exponential functions
which is modified to obtain an exact solution for general values of b and M. We also obtain
asymptotic analyses of the MHD Falkner–Skan equation in the limit of large g and k. The
results obtained are compared with the direct numerical solution of the full boundary layer
equation, and found that results are remarkably in good agreement between the solutions.
The derived quantities such as velocity profiles and skin friction coefficient are presented.
The physical significance of the flow parameters are also discussed in detail.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The study of two-dimensional magnetohydrodynamic boundary layer flows of a viscous fluid have attracted large number
of researchers during the last decade because of their increasing applications in engineering and technology, such as MHD
power generators, MHD flow meters and pumps, polymer industry, spinning of filaments, etc. In industrial applications,
when sheets or filaments are subjected to cooling through quiescent fluid, these essentially get stretched, but this cooling
of the sheets could be managed by applying the magnetic field, so that we can expect the final products with desired char-
acteristics. Because of such important applications, many investigators have modeled the behavior of a MHD boundary layer
flow. Kumaran et al. [1] have investigated MHD boundary layer flow of an electrically conducting fluid past a quadratically
stretching sheet, and have shown that magnetic field makes the streamlines steeper which results the boundary layer thin-
ner. Joneidi et al. [2] undertook the study of heat and mass transfer of a viscous and electrically conducting fluid in the pres-
ence of the magnetic field, and have shown that magnetic field decreases the velocity profiles. Su and Zheng [3] have used
the differential transform method to investigate the MHD Falkner–Skan flow over a permeable plate in the presence of a
transverse magnetic field, and have discussed the effects of various physical parameters on the boundary layer flow. Explor-
ing a Chebyshev pseudospectral differentiation matrix method, Guedda et al. [4] have investigated two-dimensional mixed
convection boundary layer flow over a flat plate which is embedded in porous medium in the presence of applied magnetic
field.
. All rights reserved.
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However, the fundamental equations for MHD flow over a semi-infinite flat plate are essentially complicated and highly
non-linear in nature. Most of the studies on MHD boundary layers in the literature have been using numerical (shooting
methods or Keller-box finite difference methods, etc.) methods for their solutions. Although few almost approximate ana-
lytical methods have been reported for MHD Falkner–Skan equation, but no exact solutions are available. Abbasbandy
and Hayat [5] have used recently developed homotopy analysis method for the solution of MHD Falkner–Skan equation
for all physical parameters. This study has been extended by Hendi and Hussain [6] by including more general boundary con-
ditions and solved again by homotopy analysis method. Parand et al. [7] have developed Hermite functions pseudospectral
method for the solution of MHD Falkner–Skan equation for various values of pressure gradient and magnetic parameters. In
any case they have compared their results with that of direct numerical solution (DNS) of the problem. Nevertheless, no ex-
act solution is reported in the literature. The present paper contributes to this line of enquiry by giving exact solution of the
MHD Falkner–Skan equation for all involved parameters.

In this present paper, we have made an attempt to give an exact solution of MHD Falkner–Skan equation for general value
of b, Hartman number M and boundary stretch parameter k. This has been achieved through the method pioneered by Sach-
dev et al. [8] for solution of the Falkner–Skan equation. We obtain a closed-form solution of the MHD Falkner–Skan equation
for b ¼ �1 and M ¼ 0 which is expressed in the form of error and exponential functions. We exploit the nature of the known
closed-form solution for b ¼ �1 and M ¼ 0. This solution can be rewritten, for convenience, in the form
f ðgÞ ¼ gþ d� d
GðgÞ ; ð1Þ
where d is the displacement thickness of the boundary layer, and the new stream function GðgÞ shall be defined later in the
paper. The above form has been utilized to obtain the exact solution for all values of b and M. Exploring the above form,
Kudenatti and Awati [9] and Kudenatti [10] have given an exact solution of the Falkner–Skan flow over a semi-infinite flat
plate in absence of the magnetic field, and their results are remarkably agreeing to the DNS of the problem.

Rest of the paper is organized as follows. The two-dimensional MHD laminar boundary layer equations and corre-
sponding similarity transformations are given in Section 2, and derived MHD Falkner–Skan equation with relevant
boundary conditions. However, this derivation is just an extension of Sachdev et al. [8] for including the magnetic field,
but to make this paper self-contained, it is derived in the present paper. An exact solution of the MHD Falkner–Skan
equation for b ¼ �1 and M ¼ 0 is also given in Section 2. In Section 3, we give an exact solution of the MHD Falk-
ner–Skan equation for all general values of pressure gradient parameter b and magnetic number M. In Section 4, two
asymptotic solutions for large k and large g are also given. In the former, the MHD Falkner–Skan equation can be exactly
linearized about f 0ðgÞ ! 1 as g!1. In the case of latter, we use different transformation for MHD Falkner–Skan equa-
tion wherein it turns into other family of boundary layer equation, we use the Dirichlet series; highly efficient technique,
for its solution. In Section 5, we compare the results obtained by our exact method with that of the DNS. We also com-
pare the results of Dirichlet series method with that of the DNS. The concluding section summarizes the major results of
the present study.

2. Formulation of the problem

The model consists of the MHD laminar boundary layer flow of a viscous and incompressible fluid over a flat plate moving
with a constant velocity UwðxÞ in the presence of magnetic field �BðxÞ. Strength of induced electric field due to polarization of
charges is negligible along with Reynolds number is also too small. The x-axis is taken along the boundary layer flow, and y-
axis is normal to it. Under these approximations, the governing boundary layer equations are given by
@u
@x
þ @v
@y
¼ 0; ð2Þ

u
@u
@x
þ v @u

@y
¼ UðxÞ @UðxÞ

@x
þ m

@2u
@y2 �

rB2ðxÞ
q
ðu� UðxÞÞ; ð3Þ
where u and v are the velocity components in the x and y directions, m is the kinematic viscosity of the fluid, r is the electrical
conductivity, q is the fluid density, and the magnetic field is given by BðxÞ ¼ �Bxðm�1Þ=2, UðxÞ is the velocity at the edge of the
boundary layer which obeys the power law relation UðxÞ ¼ U1xm, where x is the distance measured from the onset of the
boundary layer, U1 and m are constants. The relevant boundary conditions for the above model are
at y ¼ 0 : u ¼ UwðxÞ; v ¼ 0; and

as
y
d
!1 : u! UðxÞ; ð4Þ
where UwðxÞ is the stretching surface velocity which obeys the power-law relation UwðxÞ ¼ U0wxm. Introducing the stream-
function wðx; yÞ as
u ¼ @w
@y

; v ¼ � @w
@x

;
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where the similarity transformation wðx; yÞ is given by
w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mxUðxÞ
1þm

r
f ðgÞ; g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þmÞUðxÞ

2mx

r
y; b ¼ 2m

mþ 1
ð5Þ
into the above nonlinear system (2)–(4), we get the MHD Falkner–Skan equation as
f 000ðgÞ þ f ðgÞf 00ðgÞ þ bð1� f 02ðgÞÞ �M2ðf 0ðgÞ � 1Þ ¼ 0; 0 ¼ d
dg

ð6Þ
with the boundary conditions
f ð0Þ ¼ 0; f 0ð0Þ ¼ �k; f 0ðþ1Þ ¼ 1: ð7Þ
Here f ðgÞ is the non-dimensional stream-function, and g is a new similarity variable, and k ¼ � Uw
U1

� �
is the ratio of free stream

velocity to boundary velocity, k > 0 and k < 0 correspond to moving plate in opposite and in the same direction to the free-
stream velocity, whereas k ¼ 0 is the case for fixed plate, b is the stream-wise pressure gradient parameter, b > 0 represents
favorable pressure gradient, and b < 0 is the adverse pressure gradient, whereas b ¼ 0 is the Blasius flow over a flat plate. The

parameter M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2r
qU1ðmþ1Þ

q
B

� �
is the magnetic (Hartmann number) parameter which is the ratio of electromagnetic force to

the viscous force.
Integration of (6) and (7) with b ¼ �1 and M ¼ 0 gives the Riccati type equation:
f 0ðgÞ þ f 2ðgÞ
2
¼ g2

2
þ dg� k; ð8Þ
where d ¼ f 00ð0Þ. The solution of (8) is given by
f ðgÞ ¼ gþ d� de�
g2

2 þdg
� �

1�
ffiffiffip
2

p
d
2 eð

d2
2 Þ erf gþdffiffi

2
p
� �

� erf dffiffi
2
p
� �� � ð9Þ
provided d ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ð1þ kÞ

p
. The axial velocity gradient at the wall is given by
f 00ð0Þ ¼ d ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ð1þ kÞ

p
: ð10Þ
From Eq. (10), it follows that, the MHD Falkner–Skan equation with b ¼ �1, and M ¼ 0 exhibits dual solutions for k < 0 and
no solution for k > �1. For k ¼ 1, a trivial solution of the Falkner–Skan equation is f ðgÞ ¼ g, which seems to demarcate the
solution nature. The above solution (9) can be taken directly from Sachdev et al. [8], but, for ease of completeness, and fur-
ther use in the present paper, it has been given again.

This present paper devices a method that helps in obtaining a new exact solution of the MHD Falkner–Skan equation (6)
and (7) for general values of b and M. The solution recovers the known closed-form solution as a special case.

3. Exact solution for general b and M

Note that an exact solution of the MHD Falkner–Skan system (6) and (7) for b ¼ �1 and M ¼ 0 has been already obtained
that can be rewritten, for convenience, in modified form
f ðgÞ ¼ gþ d� d
GðgÞ ; ð11Þ
where GðgÞ is given by
GðgÞ ¼ e�
d2
2 þ

ffiffiffiffi
p
2

r
d
2

erf
dffiffiffi
2
p
� �� �

e
ðgþdÞ2

2 �
ffiffiffiffi
p
2

r
d
2

e
ðgþdÞ2

2 erf
gþ d

2

� �
: ð12Þ
The stream function GðgÞ in Eq. (11) easily generalizes the solution of the system (6) and (7) for all values of b and M. Substi-
tuting the form (11) into the system (6) and (7), we get another nonlinear ordinary differential equation in GðgÞ which con-
tains the parameters b and M, as
G2G000 � ð6G0 þ d� ðgþ dÞGÞGG00 � ð2bþM2ÞG2G0 þ ðdð2� bÞ � 2ðgþ dÞGÞG02 þ 6G03 ¼ 0; ð13Þ
and the boundary conditions become
Gð0Þ ¼ 1; G0ð0Þ ¼ d
2
; Gðþ1Þ ¼ 1: ð14Þ
The exact analytical solution of (13) and (14) for b ¼ �1 and M ¼ 0 is given by Eq. (12). The error and exponential functions
in Eq. (12) are entire functions. These functions may be expanded in Taylor series about g ¼ 0 which have an infinite radius
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of convergence. Therefore, the series representation of the above solution for b ¼ �1 and M ¼ 0 becomes main clue for fur-
ther similar analysis for other values b and M. Thus, motivated by the series representation of (12), we let
GðgÞ ¼
X1
n¼0

angn; ð15Þ
for general b and M. Substituting (15) into (13) and equating the coefficients of gn to zero, we get
a0 ¼ 1; a1 ¼
d
2
;

a3 ¼
d

24
ð2M2 þ 4bþ ð�3þ bÞd2 þ 24a2Þ;

a4 ¼
1

96
ð2ð1þ 3M2 þ 6bÞd2 þ ð�5þ 2bÞd4 þ 4a2ð�2þ 2M2 þ 5d2 þ 2bð2þ d2Þ þ 24a2ÞÞ ð16Þ
and in general the recurrence relation is given by
anþ3 ¼
�1

ðnþ 1Þðnþ 2Þðnþ 3Þ
Xn�1

m¼0

Xn�m

k¼0

ðmþ 1Þðmþ 2Þðmþ 3Þakan�m�kamþ3

 

þ
Xn

m¼0

ð�dÞðmþ 1Þððmþ 2Þan�mamþ2 � ð2� bÞðn�mþ 1Þamþ1an�mþ1Þ

�
Xn

m¼0

Xm

k¼0

ðkþ 1Þðm� kþ 1Þð2dan�m � 6ðn�mþ 1Þan�mþ1Þakþ1am�kþ1

þ
Xn

m¼0

Xn�m

k¼0

ððmþ 1Þðmamþ1 þ dðmþ 2Þamþ2 � 2bamþ1 �M2amþ1Þakan�m�k

� kþ 1Þð6ðmþ 1Þðmþ 2Þamþ2 þ 2ðn�m� kÞamÞakþ1an�m�kÞð
!

ð17Þ
for n ¼ 1;2;3; . . .. It is obvious from the above coefficients and the recurrence relation that all coefficients an can be expressed
in terms of two known parameters b and M, and two free parameters a2 and d. The constant a2 which characterizes the coef-
ficient of skin friction remains unknown because of the last condition at (14) which must be found such that the derivative
boundary condition at far distance is satisfied. Thus, the unknown a2 is related to f 00ð0Þ through the following
a2 ¼
f 00ð0Þ þ d3

2

� �
2d

: ð18Þ
It is worth mentioning here that we need to find the unknown a2 of the series (15) or f 00ð0Þ of the MHD Falkner–Skan system
(6) and (7). On the other hand, the other unknown constant d expressed in Eq. (10) was known only for b ¼ �1 and M ¼ 0. To
find this d for other values of b and M, we patch the series expansion of (12) with that of general series (15) for b ¼ �1 and
M ¼ 0, surprisingly we get the same constant: d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ð1þ kÞ

p
. The other constant a2 or f 00ð0Þ can be determined from the

following integral relation:
Z 1

0
ðf 0ðgÞ � f 02ðgÞÞdgþ b

Z 1

0
ð1� f 02ðgÞÞdg�M2

Z 1

0
ðf 0ðgÞ � 1Þdg ¼ f 00ð0Þ: ð19Þ
Both left and right hand side of the above relation (19) involves f 00ð0Þ, it is natural solve for f 00ð0Þ iteratively with suitable
initial condition. Furthermore, in order to effectively describe the iteration method used to determine the skin friction coef-
ficient f 00ð0Þ, we rewrite for convenience the above integral relation as
Z gmax

0
ðf 0ðgÞ � f 02ðgÞÞdgþ b

Z gmax

0
ð1� f 02ðgÞÞdg�M2

Z gmax

0
ðf 0ðgÞ � 1Þdg ¼ f 00ð0Þ; ð20Þ
where gmax is the maximum value of g at the edge of the boundary layer. The solution of the above asymptotic integral rela-
tion is too complicated by the fact that the boundary condition is specified at infinity. Therefore, in our computations, ‘infin-
ity’ is numerically approximated by the large value of independent variable (i.e. gmax). Giving too small numerical value for
gmax would not assure a uniformly valid convergent solution. And selecting too large value for gmax results either in asymp-
totic divergent series or in slow convergence of the series. Hence, a method must be modified to logically estimate the value
of gmax to get f 00ð0Þ up to required accuracy. During iteration operation, the initial approximation of f 00ð0Þ is taken from the
known exact analytical solution (9) for all other parameter b and M which serves a good initial estimate for f 00ð0Þ, and also it
ensures the fast convergence. For small value of gmax, the series is well behaved and can be integrated. So, in the process, once
f 00ð0Þ is assumed, and the Pade’ approximants which extend the region of validity of convergence, are used to sum the series,
the integral relation can be numerically integrated using Simpson’s 1

3rd technique without any difficulty to determine a
nearly correct value of f 00ð0Þ. With fewer iterations, f 00ð0Þ can be obtained up to any desired accuracy. All of our simulations
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indicate that the form (11) through series (15) gives convergent solution via Pade approximants. The results thus obtained
for various values of b and M by the present method are seen to agree with those produced by the DNS of the MHD Falkner–
Skan equation. The results obtained by the method described above have been presented in terms of velocity profiles in fig-
ures, and of the skin friction coefficient in tables.

4. Asymptotic solutions

4.1. Asymptotics for k!1

In this section, we investigate the behavior of large k asymptotics of the MHD Falkner–Skan equation. Interestingly, under
the transformations f ðgÞ ¼ k1=2HðzÞ, g ¼ k�1=2z and M ¼ k1=2M�, the systems (6) and (7) convert into another version of
boundary layer equation:
H000ðzÞ þ HðzÞH00ðzÞ � bH02ðzÞ �M�2H0ðzÞ ¼ 0; ð21Þ
and corresponding boundary conditions become
Hð0Þ ¼ 0; H0ð0Þ ¼ �1; H0ð1Þ ¼ 0 ð22Þ
as k! þ1. Now primes denote differentiation with respect to z. Note that two systems (6), (7) and (21), (22) look mathe-
matically similar, but their physical significance is entirely different. This aspect can be made clear later in the paper. The
systems (21) and (22) describe a viscous boundary layer flow due to constant shrinking sheet where the velocity on the
boundary is towards the origin or a fixed point, and this is relatively new in the boundary layer theory. The problems of
shrinking sheet have been extended to discuss the various aspects of flow and heat transfer phenomenon with and without
MHD by large number of investigators. Using numerical techniques, Fang [11] investigated the boundary layer flow over a
continuously shrinking sheet with a power-law surface velocity, and observed that the velocity overshoot near edge of the
boundary layer for certain solution branches. Bachok et al. [12] have numerically illustrated an unsteady viscous flow over a
continuously permeable shrinking surface, and for a small range of physical parameters, they found dual solutions for shrink-
ing sheet. Sajid and Hayat [13] have used homotopy analysis method to solve MHD two-dimensional and axisymmetric
shrinking sheet. Because of the significant applications, the shrinking sheet problem has been studied in different aspects,
examples include second-grade fluid (Hayat et al. [14]), sheet with slip in micropolar fluid (Das [15]), unsteady porous sheet
with variable viscosity (Nadeem and Awais [16]), MHD heat transfer analysis (Javed et al. [17]), etc. Guedda and Ouahsine
[18] have investigated a two-dimensional MHD boundary layer flow over a permeable surfaces and shown that existence of
solution that leads to multiple solutions for some model control parameters.

A close examination of the derivative boundary condition at infinity motivates us to look for the Dirichlet series solution
which ideally suits for particular boundary condition. This method computes the derived quantities such as velocity profiles
and skin friction without much difficulty. Kravnchenko and Yablonskii [19] were the first to adopt the Dirichlet series for
solving third order nonlinear boundary value problem wherein derivative boundary condition at infinity is zero. Recently,
Kudenatti et al. [20] have used the Dirichlet series to analyze a class of boundary layer equations over nonlinearly stretching
surface. All the problems were provided with skin friction values (H00ð0Þ). Exploring the Dirichlet series (different from (23)
below) they successfully solved and compared with numerical results and found that results are in agreement. A general dis-
cussion of the convergence of the Dirichlet series may be found in Riesz [21]. We choose the base function for the above Eq.
(21) in the form
HðzÞ ¼ B1

B0
þ 6B1

X1
n¼1

bnBn
2e�nB1z; ð23Þ
where B0;B1 and B2 are unknown constants to be determined, and are functions of b and M�. Note that solution always exists
when B1 > 0 and jB2j < 1 conditions satisfy. Note that the above base function automatically satisfies the last condition in
(22). Substituting function (23) into the boundary value problem (21), we get the following recurrence relation:
� 6B4
1

X1
n¼1

n3bnBn
2e�nB1z þ 6

B4
1

B0

X1
n¼1

n2bnBn
2e�nB1z þ 36B4

1

X1
n¼2

Xn�1

k¼1

k2bn�kbkBn
2e�nB1z � 36bB4

1

X1
n¼2

Xn�1

k¼1

kðn� kÞbn�kbkBn
2e�nB1z

þ 6M�2B2
1

X1
n¼1

nbnBn
2e�nB1z ¼ 0: ð24Þ
For n ¼ 1, the above recurrence relation gives
B0 ¼
B2

1

B2
1 �M�2 : ð25Þ
It pointed out from our extensive simulation below that B1 – M�. Therefore, we rewrite the above recurrence relation (24) as
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bn ¼
6B2

1

nðn� 1ÞðnB2
1 þM�2Þ

Xn�1

k¼2

ðk� bðn� kÞÞkbkbn�k ð26Þ
for n ¼ 2;3;4; . . .. We know that the radius of convergence of the Dirichlet series can be obtained, and our computations

show that, if jb1j < 1, then the series converges absolutely for z > � ln lim j bn
bnþ1
j

� �
� ln jB2j

� �
. Detailed convergence criterion

of the above series can be found in Riesz [21]. An important physical quantity of interest is the skin friction coefficient H00ð0Þ
which is defined as
H00ð0Þ ¼ 6B3
1

X1
n¼1

n2bnBn
2: ð27Þ
Furthermore, we are now in the process of finding the two unknown constants B1 and B2. For this, we make use of other two
initial conditions in (22) namely:
Hð0Þ ¼ B2
1 �M�2

B1
þ 6B1

X1
n¼1

bnBn
2 ¼ 0; ð28Þ

H0ð0Þ ¼ �6B2
1

X1
n¼1

nbnBn
2 ¼ �1: ð29Þ
With few terms in the Dirichlet series, we use Newton’s method for nonlinear system of equations to determine these un-
known parameters up to required accuracy for all values of b and M�. The obtained results are compared with those produced
by the numerical solution of the boundary value problem (21) and (22) and are presented in Table 3. From this table, the skin
friction value H00ð0Þ compares well with that of numerical solution for all values of b and M�. Once the constants B1 and B2 are
determined, it is important to investigate the behavior of the velocity profiles for different values of pressure gradient
parameter b and M�. Note that, the direct quantitative comparison of solution by the Dirichlet series with that of solution
obtained in the previous section is almost not possible, since the numerical value for parameter k used in the former method
completely disappears in the latter case, and also exact value for k cannot be predicted because the system (21) and (22) is
derived in the limit of asymptotically large k.

On the other hand, for k! �1, the MHD Falkner–Skan problem (6) and (7) under transformations f ðgÞ ¼ ð�kÞ1=2HðzÞ,
g ¼ ð�kÞ�1=2z and M ¼ ð�kÞ1=2M�, we still get the same Eq. (21) but with following different boundary conditions:
Hð0Þ ¼ 0; H0ð0Þ ¼ 1; H0ð1Þ ¼ 0: ð30Þ
Thus, following a similar procedure as discussed before, the asymptotic problem (21) along with modified boundary condi-
tions (30) has been solved using the Dirichlet series, and results presented in Table 4.

4.2. Large g asymptote: far field behavior

In the present section, we give the asymptotic expansion of large g for the MHD Falkner–Skan equation. Thus, it is enough
to study large g behavior around jf 0ðgÞ � 1j � 1 as g!1. Therefore, we write
f ðgÞ � gþ EðgÞ ð31Þ
which satisfies the derivative condition at infinity, and it is assumed that E0ðgÞ � 1. Also, it is instructive to compare the solu-
tions of (31) with those of our exact solutions for all values. Substituting (31) into the MHD Falkner–Skan system (6) and (7),
and upon linearizing the resulting ordinary differential equation, we get
E000ðgÞ þ gE00ðgÞ þ ð2bþM2ÞE0ðgÞ ¼ 0; 0 ¼ d
dg

ð32Þ
and boundary conditions take the form
Eð0Þ ¼ 0; E0ð0Þ ¼ �ð1þ kÞ; E0ðþ1Þ ¼ 0: ð33Þ
Solution of Eq. (32) subjected to the conditions (33) is given by
E0ðgÞ ¼ �ð1þ kÞF �b�M2

2
;
1
2
;�g2

2

 !
þ ð1þ kÞ W

2
ffiffiffi
2
p gF

1� 2b�M2

2
;
3
2
;�g2

2

 !
; ð34Þ
where W ¼ Cð1=2Þ
Cð3=2Þ

C 1þ2bþM2
2

� �
C 1

2þbþM2
2

� � ;C is the Gamma function and Fðea; eb;gÞ is the confluent hypergeometric function. The solution in

terms of f ðgÞ is given by f 0ðgÞ ¼ 1þ E0ðgÞ The skin friction is given by
f 00ð0Þ ¼Wð1þ kÞffiffiffi
22
p : ð35Þ
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Table 3 compares the values of skin friction f 00ð0Þ obtained by exact solution in Section 3 and with those given by (35). The
results are quite remarkable.
5. Results and discussion

In this paper, we have developed an exact solution of the MHD Falkner–Skan equation for general values of pressure gra-
dient parameter b and magnetic parameter M. The known exact solution for b ¼ �1 and M ¼ 0 which is in terms of error and
exponential functions, has been exploited and rewritten, for convenience, to obtain exact solution for general values of b and
M. The present method embeds the known exact solution as a special case. We have presented large k and g asymptotics for
the problem in discussion, and obtained corresponding solutions. The Dirichlet series solution is particularly useful when the
derivative boundary condition at infinity is zero. In any case, representative results for the velocity profiles (f 0ðgÞ) and skin
friction coefficient (f 00ð0Þ and H00ð0Þ) have been obtained by assigning the numerical values to the different parameters (b;M
and k) encountered in the problem. Again, in order to verify our results and accuracy of the presented solutions, we have
compared our results for the skin friction coefficient f 00ð0Þ with those produced by the DNS of the problem. Also, to validate
our analytical results and to understand the physical behavior, we present the velocity profiles in Figs. 1–6, and skin friction
coefficient in Tables 1–4.

Ranges of parameter space which proved to be the most interesting from the physical dynamics of the problem have been
investigated through the velocity profiles and studying their behavior as a function of coordinate distance.

Fig. 1 describes the velocity profiles f 0ðgÞ as a function of g for an exact solution for b ¼ �1 and M ¼ 0 for different wall
stretching parameter k. It is clearly seen that all velocity curves asymptotically satisfy their derivative condition at infinity
(i.e. f 0ðgÞ ! 1 as g!1). It is also observed that the velocity curves first increase to peak level for some distance and start to
decrease as they move along the boundary layer. However, the velocity curves in Fig. 2 behave differently when we plotted
Fig. 1. Variation of velocity profiles f 0ðgÞ with g for b ¼ �1 and M ¼ 0 for different values of k.

Fig. 2. Variation of velocity profiles f 0ðgÞ with g for different values of pressure gradient parameter b < 0 with Hartman number M ¼ 0:5. Note that
f 0ð0Þ ¼ �k.



Fig. 3. Variation of velocity profiles f 0ðgÞ with g for different values of pressure gradient parameter b < 0 with Hartmann number M ¼ 1:5. Note that
f 0 ð0Þ ¼ �k.

Fig. 4. Variation of velocity profiles f 0ðgÞ with g for different values of magnetic parameter M with b ¼ 1:8. Note that f 0ð0Þ ¼ �k.

Fig. 5. Variation of velocity profiles f 0ðgÞ with g for different values of b > 0 with a Hartman number M ¼ 1:0. Note that f 0ð0Þ ¼ �k.
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them for different values of decelerated flow parameter b ð< 0Þ for fixed k ¼ �1:3. For all values of b investigated except
b ¼ �2:5, all the curves first decrease and cross their boundary region which represents undershoot (f 0ðgÞ < 1 for some g)
but eventually, they satisfy their end condition. Whereas for b ¼ �2:5, surprisingly, the curve experiences both overshoot
(f 0ðgÞ > 1 for some g) first to attain a maximum value and it undershoots suddenly, but, at the end it satisfies end condition.
These curves are similar to oscillations however far from the standard trigonometric oscillations. As pointed out by Hastings



Fig. 6. Variation of velocity profiles H0ðzÞwith z for different values of b for two values of M� . All the curves are obtained by the Dirichlet series solution (27).

Table 1
Comparison of the results of skin friction f 00ð0Þ obtained by an exact solution (11) and (15) with the DNS of the MHD Falkner–Skan equation.

b ¼ 0:5 b ¼ 1:2 b ¼ 2:2

k Analytical
solution

Numerical
solution

k Analytical
solution

Numerical
solution

k Analytical
solution

Numerical
solution

M = 0.5
�1.2 �0.279478 �0.27949 �1.2 �0.36887 �0.36971 �1.2 �0.47049 �0.47049
�1.4 �0.578654 �0.57866 �1.4 �0.76417 �0.76379 �1.4 �0.97321 �0.9711
�1.8 �1.2277 �1.23213 �1.8 �1.62035 �1.62057 �1.8 �2.05668 �2.05722
�2.3 �2.14503 �2.14417 �2.3 �2.81037 �2.81048 �2.3 �3.56228 �3.56236
�2.5 �2.53658 �2.53654 �2.5 �3.33078 �3.32096 �2.5 �4.2091 �4.20731
�2.8 �2.53349 �2.53654 �2.8 �4.1237 �4.12162 �2.8 �5.19228 �5.21817
�3 �3.59277 �3.58162 �3 �4.6778 �4.67786 �3 �5.91903 �5.92007

M = 1
�1.2 �0.32776 �0.32774 �1.2 �0.40794 �0.40793 �1.2 �0.50125 �0.50124
�1.4 �0.67318 �0.67222 �1.4 �0.83807 �0.838 �1.4 �1.03081 �1.03082
�1.8 �1.40866 �1.40906 �1.8 �1.7611 �1.76112 �1.8 �2.16634 �2.1704
�2.3 �2.41444 �2.41443 �2.3 �3.02554 �3.02554 �2.3 �3.73527 �3.73558
�2.5 �2.93242 �2.84133 �2.5 �3.57451 �3.56369 �2.5 �4.40299 �4.40284
�2.8 �3.50702 �3.50701 �2.8 �4.40288 �4.40391 �2.8 �5.44559 �5.44562
�3 �3.96754 �3.96716 �3 �4.97537 �4.98537 �3 �6.16656 �6.16785

Table 2
Comparison of the results of skin friction f 00 ð0Þ obtained by an exact solution (11) and (15) with asymptotic solution (26) of the MHD Falkner–Skan equation in
the limit of large g.

b ¼ 0:5 b ¼ 1:2 b ¼ 2:2

k Analytical
solution

Asymptotic
solution

k Analytical
solution

Asymptotic
solution

k Analytical
solution

Asymptotic
solution

M = 0.8
�1.2 �0.30464 �0.29619 �1.2 �0.39011 �0.3781 �1.2 �0.48771 �0.471685
�1.4 �0.62883 �0.59237 �1.4 �0.80332 �0.75619 �1.4 �1.00344 �0.943371
�1.8 �1.32675 �1.18474 �1.8 �1.69515 �1.51239 �1.8 �2.11664 �1.88674
�2.3 �2.2882 �1.92521 �2.3 �2.92415 �2.45763 �2.3 �3.6544 �3.06595
�2.5 �2.69876 �2.22139 �2.5 �3.4482 �2.83573 �2.5 �4.31013 �3.53764
�2.8 �3.3422 �2.66567 �2.8 �4.27144 �3.40287 �2.8 �5.33755 �4.24517
�3 �3.78655 �2.96186 �3 �4.84121 �3.78097 �3 �6.05009 �4.24517
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and Troy [22] for classical Falkner–Skan equation, solutions in the current problem for MHD Falkner–Skan flow also oscillate
a finite number of times, but eventually tend to the prescribed boundary condition. This typical phenomenon is true even for
increasing magnetic parameter M and k (absolute) which is shown in Fig. 3.

The effects of magnetic parameter M on horizontal velocity f 0ðgÞ are shown in Fig. 4 when other fixed parameters held
constant (b > 0). It is observed that the velocity monotonically tends to 1 when the distance moves along the boundary. Also,



Table 3
Comparison of the results for skin friction H00 ð0Þ obtained by the Dirichlet series (27) with numerical solution of asymptotic problem (21) and (22).

M� b ¼ 0 b ¼ 0:5

B2 B1 Dirichlet Numerical B2 B1 Dirichlet Numerical

2 0.0498 1.7452 1.91352 1.91689 0.0524 1.7390 1.82609 1.82688
3 0.0199 2.8318 2.94406 2.94448 0.0203 2.8301 2.88695 2.88707
4 0.0108 3.8743 3.95825 3.95837 0.0109 3.8736 3.91588 3.91591
5 0.0068 4.8996 4.96664 4.96668 0.0068 4.8993 4.93293 4.93295

b ¼ 1:5 b ¼ 2:5

B2 B1 Dirichlet Numerical B2 B1 Dirichlet Numerical

2 0.0591 1.7241 1.63168 1.63152 0.0682 1.7054 1.42205 1.40808
3 0.0212 2.8266 2.76857 2.76848 0.0222 2.8227 2.64553 2.6445
4 0.0112 3.8722 3.82959 3.82957 0.0115 3.8707 3.74143 3.74124
5 0.0069 4.8986 4.86478 4.86476 0.00709 4.8979 4.79569 4.79557

Table 4
Comparison of the results for skin friction H00 ð0Þ obtained by the Dirichlet series (27) with numerical solution of asymptotic problem (21) and (30).

M� b ¼ 0 b ¼ 0:5

B2 B1 Dirichlet Numerical B2 B1 Dirichlet Numerical

2 �0.03563 2.24446 �2.08321 �2.08316 �0.03443 2.24012 �2.16095 �2.16093
3 �0.01723 3.16507 �3.05554 �3.05551 �0.01694 3.16365 �3.10936 �3.10935
4 �0.00999 4.12434 �4.04166 �4.04161 �0.00989 4.12371 �4.08259 �4.08256
5 �0.00649 5.09966 �5.03333 �5.03324 �0.00645 5.09934 �5.06628 �5.06623

b ¼ 1:5 b ¼ 2:5

B2 B1 Dirichlet Numerical B2 B1 Dirichlet Numerical

2 �0.03231 2.23226 �2.30877 �2.30883 �0.03049 2.22535 �2.44613 �2.44796
3 �0.01640 3.16095 �3.21433 �3.21435 �0.01589 3.15841 �3.31603 �3.31607
4 �0.00971 4.12251 �4.16323 �4.16326 �0.00952 4.12135 �4.24236 �4.24245
5 �0.00636 5.0987 �5.13155 �5.13155 �0.00629 5.09809 �5.19600 �5.19601
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velocity decreases for increasing values of magnetic parameter. Furthermore, the momentum boundary layer thickness de-
creases as magnetic parameter M increases. This is due to the fact that as M increases, the boundary layer flow acquires more
magnetization that leads to the variation in Lorentz force which opposes the flow. Finally, we should also point out explicitly
that the presence of a magnetic field in the model has both qualitative and quantitative effects on the boundary layer flow
compared to the results for M ¼ 0 (Sachdev et al. [8]). Fig. 5 illustrates the effects of pressure gradient parameter b on the
velocity profiles when other parameters held constant. Here for b ¼ 0 and M ¼ 0 case represents the flow on the flat plate
which is the famous Blasius equation and hence no comments are made. It is observed that as analogous to results in the
previous discussion, pressure gradient parameter b increases the boundary layer thickness. In these figure, it is observed that
all curves experience neither overshoot or undershoot for these parameters.

Table 1 compares the values for the skin-friction coefficient f 00ð0Þ obtained by exact solution with that of the DNS of the
problem for various values of b and M. We see that there is an excellent agreement between two solutions for all values pre-
sented in table. Also as the wall stretching parameter increases (in absolute sense), skin-friction coefficient also increases.
Also, as both b and M increase, it again increases. Comparison of the skin-friction coefficient obtained by solving linearized
version of the problem for large g asymptotics (Section 4.2) with that of solution obtained by our exact method (Section 3) is
presented in Table 2 for various values of b. It is that the results are just accurate as the results of linearized differential equa-
tion deviate away from the exact solution, however the physical intuition can be drawn from the results. If we allow the
solutions of the linear equation to use for further analyses (to compute the velocity profiles or skin friction, etc.), eventually
the results of the linear theory will become invalid, because the results are not accurate enough especially for large b and M.
Then solution will be defined by the nonlinearities in the MHD Falkner–Skan equation. Therefore, we should rely on the most
accurate exact solution method such as the method developed in the previous section (Section 3). This difference between
these solutions becomes clear upon inspecting the results in Table 2.

Nevertheless, in contrast to the results of Table 2, we present results of the asymptotic solution for the case of k! þ1 in
Table 3 and that of k! �1 in Table 4, the results of the Dirichlet series are remarkably in good agreement with the DNS of
the asymptotic problem. In fact we could compare the above results with that of exact solutions obtained for general b and M
by new method presented in Section 3 in the limit of large k, but in the system (21), (22) and (21), (30), the parameter k
disappears explicitly. Instead we have compared the results with the DNS of the problem as our exact solution method also
compares equally well with numerical solutions. Further, Fig. (6) depicts the variation of horizontal velocity profiles H0ðzÞ for
different values of pressure gradient parameter b for two values of M�. We use the Dirichlet series solution (23) to plot these
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curves. It is observed that the effects of pressure gradient is decrease thickness of the boundary layer. Again, boundary layer
thickness decreases further for increasing values of M�. Therefore, we anticipate that the effects of b and M� are to decrease
the velocity as a result momentum boundary layer thickness reduces.

6. Conclusions

We have developed a new exact method for the solution of MHD Falkner–Skan equation which describes a two-dimen-
sional MHD boundary layer flow over a semi-infinite flat plate in the presence of a uniform magnetic field. This equation
exhibits a closed form solution only for b ¼ �1 and M ¼ 0. This closed form solution has been exploited to obtained an exact
solution of the problem for all values of b and M. Further, two asymptotic solutions in the limit of large k and g, also have
been obtained and solved for various physical parameters. The Dirichlet series is particularly useful when one of the bound-
ary conditions at infinity is zero. In any case, all the results thus obtained are compared with DNS of the problem, and found
that the results agree quite well up to required accuracy. Further, it is shown that the effects of pressure gradient b and mag-
netic parameter M are to decrease the velocity and to decrease the momentum boundary layer thickness.
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