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ABSTRACT

Suppose that there are two treatments for a condition.  One is the status quo, whose properties are
known from experience and the other is an innovation, whose properties are not known initially.  A
new cohort of persons presents itself each period and a planner must choose how to treat this cohort.
When facing situations of this kind, it has become common to commission randomized trials of limited
duration to learn about the innovation.  Rather than wait for the outcomes of interest to unfold over
time, surrogate outcomes that can be observed early on are used to judge the success of the innovation.
A close approximation to this process is institutionalized in the drug approval protocol of the U. S.
Food and Drug Administration.  This paper brings welfare-economic and decision-theoretic thinking
to bear on the problem of treatment choice, with application to drug approval.  I introduce the adaptive
minimax-regret (AMR) rule, which applies to each cohort the minimax-regret criterion using the knowledge
of treatment response available at the time of treatment.  The result is a fractional treatment allocation
whenever the available knowledge does not suffice to determine which treatment is better.  The rule
is adaptive because, as knowledge of treatment response accumulates, successive cohorts are allocated
differently across the two treatments.  I use the AMR idea to suggest an adaptive drug approval process
that permits partial marketing of new drugs while scientifically appropriate long-term clinical trials
are underway.  The stronger the evidence on health outcomes of interest, the more treatment would
be permitted, with a definitive approval decision eventually made when sufficient evidence has accumulated.
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1. Introduction

Suppose that there are two treatments for a condition.  One is the status quo, whose properties are

known from historical experience.  The other is an innovation, whose properties are not known initially.  A

new cohort of persons presents itself each period and a planner must choose how to treat this cohort.  The

outcome of interest unfolds over multiple periods.  For example, the treatments may be alternative cancer

therapies and the outcome may be life span.  Or the treatments may be alternative therapies for a chronic

disease and the outcome of interest may be quality-adjusted life years.

When facing situations of this kind, it has become common to commission randomized trials of

limited duration to learn about the innovation.  The experimental sample receiving the innovation is typically

a small fraction of the population, the size of this sample being determined by conventional calculations of

statistical power.  Rather than wait for the health outcomes of real interest to unfold over time, surrogate

outcomes that can be observed early on are used to judge the success of the innovation.  A statistical

hypothesis test is used to make this judgment, the null hypothesis being that the innovation is no better than

the status quo treatment and the alternative being that it is better.  If the null hypothesis is not rejected, the

status quo treatment continues in force and no one subsequently receives the innovation.  If the null is

rejected, the innovation replaces the status quo as the treatment of choice.  A close approximation to this

process is institutionalized in the drug approval protocol of the U. S. Food and Drug Administration (FDA).

Other approximations are institutionalized in the decision processes of public and private health insurance

entities about whether to cover the cost of new treatments.

The present FDA drug approval process is susceptible to two types of errors with long-term

consequences.  Type I errors occur when new drugs that actually are worse than status quo treatments in

terms of health outcomes of interest are approved because they appear superior when evaluated using

surrogate outcomes.  Type II errors occur when new drugs that actually are better than status quo treatments

are disapproved because they appear inferior when evaluated using surrogate outcomes.  These are not finite-
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sample statistical errors whose probabilities of occurrence can be reduced by recruiting larger samples of

subjects into randomized trials.  They are basic data errors that can be repaired only be improving

measurement of the outcomes of interest, which requires longer trials than those performed at present.

Public health researchers have often called attention to the difficulty of extrapolating from surrogate

outcomes to health outcomes of interest.  Fleming and Demets (1996), who review the prevalent use of

surrogate outcomes in FDA-required Phase 3 trials evaluating drug treatments for heart disease, cancer,

HIV/AIDS, osteoporosis, and other diseases, write (p. 605):

 “Surrogate end points are rarely, if ever, adequate substitutes for the definitive clinical outcome in

phase 3 trials.”

Sculpher and Claxton (2005), who consider decisions about whether new pharmaceuticals are sufficiently

cost-effective for reimbursement in collectively funded health-care systems, write (p. 441):

“Arguably the biggest challenge that reimbursement agencies have to face in terms of the uncertainty

surrounding existing evidence relates to costs and outcomes which have not been observed directly

in trials.  There are two frequent manifestations of this: linking intermediate outcomes to ultimate

measures of health gain, and extrapolating costs and benefits over a longer-term time horizon.”

From a scientific perspective, the obvious solution is to perform clinical trials of sufficient length

to measure the health outcomes of real interest.  However, this has been thought politically infeasible.  Pasty

et al. (1999) write (p. 789):

“One systematic approach is a requirement that, prior to their approval, new drug therapies for

cardiovascular risk factors should be evaluated in large, long-term clinical trials to assess their

effects on major disease end points.  The use of surrogate outcomes is avoided, and the major health

outcomes are known prior to marketing.  Such an approach would slow the time to drug approval

and may meet with resistance from pharmaceutical manufacturers.”
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Indeed, pharmaceutical firms eager for returns on investments and patient groups wanting access to new

drugs have often advocated shortening rather than lengthening the present time to approval.

This paper brings welfare-economic and decision-theoretic thinking to bear on the drug approval

problem.  Doing so suggests replacement of the present binary (up or down) approval process with an

adaptive process that permits partial marketing and insurance coverage of new drugs while scientifically

appropriate long-term clinical trials are underway.  In the new approval process, the prevalence of treatment

with a new drug would vary smoothly as empirical evidence accumulates.  The stronger the evidence on

health outcomes of real interest, the more treatment would be permitted.  Eventually, a definitive decision

would be made when sufficient evidence has accumulated on the safety and effectiveness of the new drug.

The adaptive process emerges from consideration of treatment choice from the minimax-regret

perspective.  The minimax-regret criterion, first suggested by Savage (1951), is a general principle for

decision making with partial knowledge of relevant outcomes.  Suppose that a decision maker must choose

from a set of alternatives, and that he wants to make a choice that maximizes welfare.  However, he does not

fully know the outcomes that would be produced by each alternative.  How should he behave?

The familiar Bayesian answer is that the decision maker should assert a subjective probability

distribution over the unknown outcomes and maximize expected welfare.  See Meltzer (2001) for

applications to medical decision making.  However, a subjective probability distribution is itself a form of

knowledge, and the decision maker may feel that he has no good basis for asserting one.  How then might

he behave?  The minimax-regret rule chooses an alternative that minimizes the maximum loss to welfare that

results from not having complete knowledge.

Specifically, the regret of an alternative at a given value for the unknown outcomes is defined to be

the difference between the maximum welfare that would be achievable given complete knowledge and the

welfare that is achieved by this alternative.  If one has complete knowledge, the best course of action

obviously is to choose an alternative that minimizes regret, setting it equal to zero.  In the absence of
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complete knowledge, the minimax-regret rule chooses an alternative that minimizes maximum regret across

all possible values of the unknown outcomes.

In previous work, I have studied minimax-regret treatment choice by a social planner who must

choose treatments for the members of a population and who has only partial knowledge of treatment

response; see Manski (2004, 2005, 2007a, 2007b).  A general finding is that when there are two treatments

and the available knowledge of outcomes does not suffice to determine which treatment is better, the

minimax-regret rule does not assign all observationally identical persons to the same treatment.  Instead, it

fractionally allocates these persons across the two treatments, with the fraction receiving each treatment

determined by the available knowledge.  In this manner, use of the minimax-regret criterion enables a planner

to socially diversify risks that are privately indivisible.

Choosing Treatments for X-Pox: A dramatic illustration of social diversification occurs in a hypothetical

problem of treatment choice considered in Manski (2007b, Section 11.7).  Suppose that a new viral disease

called x-pox is sweeping the world.  Researchers have proposed two mutually exclusive treatments, say a

a b a band b, which reflect alternative hypotheses, say H  and H , about the nature of the virus.  If H  (H ) is correct,

all persons who receive treatment a (b) survive and all others die.  A planner knows that one of the two

hypotheses is correct, but does not know which one.  The objective is to maximize the survival rate of the

population.

In this setting, the risk of death is privately indivisible.  An individual receives either treatment a or

b, and this person either lives or dies.  Yet society can diversify by having positive fractions of the population

receive each treatment.  Consider the rule in which a fraction ä 0 [0, 1] of the population receives treatment

b and the remaining 1 ! ä receives treatment a.  Then the fraction who survive is either ä or 1 ! ä.  A planner

who uses the minimax-regret criterion would set ä = 0.5, implying that half of the population survives and

half dies.   ~
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Social diversification is a central qualitative feature of minimax-regret treatment choice.  It is not

a general feature of Bayesian decision making.  For example, in the x-pox illustration, a Bayesian planner

allocates the entire population to the treatment with the higher subjective probability of success.

The difference between my earlier work and the present paper is that the earlier work considered

one-period planning problems where, as in the x-pox illustration, there is no opportunity for learning.  Drug

approval is a multiple-period planning problem, where performance of randomized trials with the innovation

creates an opportunity for social learning.  Indeed, randomized trials themselves implement fractional

treatment rules, with random samples of the population assigned to alternative treatments.  The objective is

to learn the distribution of treatment response, in order to make better treatment decisions in the future.

I show here that an adaptive minimax-regret treatment rule achieves both social learning and

diversification.  This rule applies to each cohort the minimax-regret criterion using the knowledge of

treatment response available at the time of treatment.  The result is a fractional treatment allocation whenever

the available knowledge does not suffice to determine which treatment is better.  The rule is adaptive because

knowledge of treatment response accumulates over time, so successive cohorts may receive different

fractional allocations.  Eventually, the planner may learn which treatment is better.  From this point on, he

assigns new cohorts entirely to the better treatment.

Section 2 formalizes the treatment choice problem, introduces the adaptive minimax-regret rule, and

gives numerical illustrations.  Section 3 proposes a drug approval process that incorporates important features

of adaptive minimax-regret treatment choice.  To keep the exposition simple, Sections 2 and 3 focus on the

problem created by use of surrogate outcomes and abstract from other important issues that arise in the

accumulation of knowledge for drug approval.  The concluding Section 4 discusses various such issues.

While drug approval is a leading case in which surrogate outcomes have been used to evaluate

innovations, the practice is widespread within medicine and in other realms.  The ideas developed here

should therefore have considerable application beyond drug approval. 
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Consider, for example, evaluation of educational interventions in early childhood.  The outcomes

of real interest may be years of schooling completed by adulthood and job performance in adulthood.  Not

wanting to wait for these outcomes to unfold over time, researchers have often used performance in the early

grades of school to judge the success of innovations, with binary implementation decisions in mind.  Here,

as with drug approval, it may be better to institute an adaptive process in which the scale of implementation

of an intervention varies as evidence accumulates.

2. Allocating a Sequence of Cohorts to a Status Quo Treatment and an Innovation

Section 2.1 sets out a formal problem of choice between a status quo treatment and an innovation.

Section 2.2 introduces the adaptive minimax-regret rule.  Section 2.3 gives numerical illustrations based on

hypothetical treatment-choice problems.

To keep attention focused on the problem of surrogate outcomes, I make several simplifying

assumptions here and in Section 3.  First, I assume that the members of the population are observationally

identical.  In practice, persons may have observable covariates, and a planner may be able to differentially

treat persons with different covariates.  In such cases, the present analysis can be applied separately to each

subpopulation of observationally identical persons.

Second, I assume that the randomized trial on the innovation is performed on a large enough random

sample of persons that finite-sample statistical error is a negligible concern.  Sample size sometimes is a

significant issue in the assessment of trials, so I will discuss the matter in Section 4.  However, the

fundamental present concern, the use of surrogate outcomes in treatment choice, is an entirely distinct issue.

Third, I assume that the trial is a classical randomized experiment.  In practice, trials used in the drug

approval process often depart substantially from the classical ideal.  First, trials typically are performed on
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convenience samples of volunteers rather than on random samples of the patient population of interest.

Analyses of findings usually presume, often without justification, that the distribution of treatment response

among the volunteers who participate in a trial is the same as in the relevant patient population.  Second,

some of the volunteers who participate in trials may not comply with their assigned treatments or may leave

the trial early, before their outcomes can be measured.  To cope with these problems, analyses often assume

that noncompliance and attrition are random or, alternatively, they apply intention-to-treat analysis.  Third,

trials are typically performed with blinded treatment assignment, even though treatments are observed in

ordinary clinical practice.  These features of present-day randomized trials for drug approval are problematic,

so I will discuss them in Section 4.

A final simplification, maintained throughout this paper, is that I consider choice between a specified

status quo treatment and innovation in isolation, without reference to how these alternatives were generated.

It would undoubtedly be interesting to envisage an innovation process, with new alternatives appearing from

time to time.  The nature of the innovation process might be affected by the prevailing treatment rule.  If so,

treatment choice and the innovation process should be considered jointly.

2.1. The Setting

I present here a multi-period extension of a one-period planning problem previously studied in

Manski (2005, 2007b) and elsewhere.  A planner must choose treatments in each of the time periods n = 0,

1, . . . . , N.  In each period, the set of feasible treatments is T = {a, b}, where treatment a is the status quo

and treatment b is the innovation.  The difference between the status quo treatment and the innovation is that

only the former was available historically; that is, for n < 0.  The latter first becomes available at n = 0.

nA new cohort appears each period and requires treatment.  Each member j of cohort n, denoted J ,

j j jhas a response function y (@): T 6 Y mapping treatments t 0 T into outcomes y (t) 0 Y.  Subscripting y (@) by
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j shows that treatment response may vary across the cohort.

Let P[y(@)] denote the distribution of treatment response across the cohort.  Observe that I have not

indexed P by n.  Thus, all cohorts share the same distribution of treatment response.  This assumption enables

social learning.  The planner can use observations of treatment outcomes in early cohorts to inform treatment

choice for later cohorts.

Observability of Outcomes

Whereas the members of cohort n receive their treatments in period n, their outcomes unfold over

jthe subsequent K periods.  Although this is not necessary to the analysis, I assume for simplicity that y (t)

has the time-additive form

                              K

j jk(1)         y (t)  =     3  y (t),
                            k = 1

                         

jkwhere y (t) is the component of the outcome that is realized k periods after person j receives treatment.

To illustrate, consider the cancer treatment example given in the introduction.  Here treatment t is

a therapy and the outcome of interest is life span.  Then a period may be a year, with K being a specified

jkhorizon of interest.  Hence, y (t) = 1 if person j would, in the event of receiving treatment t, be alive k years

jkafter treatment, and y (t) = 0 otherwise.

The Treatment Choice Problem

The planner’s problem is to allocate each cohort between the two treatments.  A treatment rule is a

n nvector ä / (ä , n = 0, . . . , N) that randomly assigns a fraction ä  of cohort n to treatment b and the remaining

n1 ! ä  to treatment a.  The feasible treatment rules are the elements of the hyper-rectangle [0, 1] .(N+1)

Let u(t) / u[y(t), t] denote the contribution to social welfare that occurs when a person receives
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treatment t and realizes outcome y(t).  I assume that the planner wants to choose a treatment rule that

maximizes mean welfare summed across cohorts.  Let á / E[u(a)] and â / E[u(b)] be the mean welfare that

would result if all members of a cohort were to receive treatment a or b respectively.  The quantities á and

â are not indexed by n because, by assumption, the distribution of treatment response is the same for all

cohorts.  The social welfare achieved by rule ä is

                         N                                                        N

n n n(2)   W(ä)  /    3 âä   + á(1 ! ä )  =  á  +  (â ! á)  3 ä .
                       n = 0                                                    n = 0

W(@) is an ordinary consequentialist social welfare function that aggregates individual contributions

to welfare in an additive manner.  A notable special case occurs when the function u(@) expresses private

preferences.  Then W(@) is the utilitarian social welfare function that weights all cohorts equally.  A slightly

broader definition of W(@) would permit the social welfare function to differentially weight cohorts that vary

in size or to express time discounting.  The present analysis extends easily to such cases.

nThe optimal treatment rule is obvious if (á, â) are known.  The planner should choose ä  = 1 for all

nn if â > á and ä  = 0 if â < á.  All values of ä yield the same welfare if â = á.  The problem of interest is

treatment choice when (á, â) is only partially known.  In particular, I shall consider situations in which á is

known but â is not.

It is often reasonable to suppose that á is known from historical experience.  All members of cohorts

n < 0 received the status quo treatment.  Hence, a planner can learn á empirically if he is able to observe the

outcomes experienced by cohort !K or an earlier cohort.

The innovation having been introduced at period 0, empirical evidence cannot reveal the value of

â before period K.  When the planner treats a cohort n < K, he can only observe the components of the

outcomes experienced to date by members of earlier cohorts who were assigned the innovation.  Thus, at n
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= 0, the planner has no empirical evidence.  At n = 1 he can observe first-period outcomes for those members

of cohort 0 who were assigned the innovation.  At n = 2, he can observe second-period outcomes for

members of cohort 0 who were assigned the innovation, as well as first-period outcomes for members of

cohort 1.  And so on.

2.2. The Adaptive Minimax-Regret Rule

The adaptive minimax-regret (AMR) rule extends the one-period minimax-regret (MR) rule to multi-

period planning problems.  I first review the one-period rule and then give the multi-period extension.

The One-Period Rule

0Let N = 0.  Then we have a one-period planning problem.  If the planner assigns a fraction ä  of

cohort 0 to the innovation and the remainder to the status quo, social welfare is

0 0(3)   W(ä )  =  á  +  (â ! á)ä .

0The problem is to choose ä  in the absence of empirical evidence on â.

Application of the MR criterion requires only that the planner be able to place â within some

L Ubounded interval [â , â ].  Such an interval always exists when the outcome is itself bounded.  Then, if the

L Uplanner knows nothing about the innovation, he can set â  and â  equal to the smallest and largest logically

L Upossible outcome values.  Or [â , â ] may be a subset of the logically possible outcomes, excluding values

the planner deems infeasible.

L UThe MR rule is a function of á, â , and â .  It assumes nothing about the position of â within the

L Uinterval [â , â ].  This contrasts with Bayesian planning, which requires assertion of a subjective probability
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distribution on the interval of feasible values.

By definition, regret is the difference between the maximum achievable welfare and the welfare

achieved with a specified treatment rule.  The maximum achievable welfare is max (á, â).  Hence, the regret

0 0of allocation ä  is max (á, â) ! [á + (â ! á)ä ].  Regret depends on the unknown value of â.  The MR rule

computes maximum regret over all feasible values of â and chooses a treatment allocation to minimize

maximum regret.  Thus, the MR criterion is

0(4)       min          max      max (á, â) ! [á + (â ! á)ä ].

0 L U        ä  0 [0, 1]    â 0 [â , â ]

MR MR U MR LIt is easy to see that the MR decision, denoted ä , is ä  = 0 if â  < á and ä  = 1 if â  > á.  In the

former (latter) case, the planner knows that the innovation is worse (better) than the status quo.  Our concern

L Uis with situations where the planner does not know which treatment is better; that is, where â  # á # â .

Manski (2007b, Section 11.3) shows that the MR decision then is

MR U U L(5)    ä   =  (â  ! á)/(â  ! â ).

Proof: Maximum regret across the feasible values of â is

0 0 L 0 U 0     max      (á ! â)ä @1[â < á] + (â ! á)(1 ! ä )@1[â > á]  =  max [(á ! â )ä , (â  ! á)(1 ! ä )].
L U  â 0 [â , â ]

Thus, the MR rule solves the optimization problem

L 0 U 0              min     max [(á ! â )ä , (â  ! á)(1 ! ä )].

0          ä  0 [0, 1]
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L 0 0 U 0 0The quantity (á ! â )ä  is increasing in ä , whereas (â  ! á)(1 ! ä ) is decreasing in ä .  The MR allocation

0is obtained by choosing ä  to equalize these two quantities.  This gives (5).               ~

L UObserve that the MR rule yields a fractional allocation when  â  < á < â .  The fraction of the cohort

L U MRassigned to the innovation depends on the location of á within the interval [â , â ], with ä  increasing

U L U Llinearly from 0 to 1 as á decreases from â  to â .  This behavior is sensible.  As á decreases from â  to â ,

the potential gain from choosing the innovation rises and the potential loss falls.

Observe that leading alternatives to the MR rule, including the maximin rule and Bayes rules,

generically do not deliver fractional treatment allocations when applied to this treatment-choice problem.

The maximin criterion chooses an allocation that maximizes welfare when â take its lowest feasible value.

Thus, the maximin criterion is

0(6)          max          min     [á + (â ! á)ä ].

0 L U           ä  0 [0, 1]    â 0 [â , â ]

0 L 0 LSolution of this problem yields ä  = 0 if â  < á and ä  = 1 if â  > á.

L UA Bayesian planner places a subjective probability distribution on the interval [â , â ], computes the

subjective mean value of social welfare, and chooses a treatment allocation that maximizes this subjective

mean.  Thus, the planner solves the optimization problem

ð 0(7)         max     á + [E (â) ! á]ä ,

0           ä  0 [0, 1]

ðwhere ð is the subjective distribution on â and E (â) = Iâdð is its subjective mean.  Solution of this problem
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 Manski and Tetenov (2007, Proposition 5) show that a Bayesian planner may make a fractional1

0treatment allocation if the social welfare function is changed to f[á + (â ! á)ä ], where f(@) is monotone and
continuously differentiable.  Then the Bayes problem is

0         max    If[á + (â ! á)ä ]dð.

0       ä  0 [0, 1]

ðSolutions to this problem are in the interior of the unit interval if E (â) > á and If(â)dð < f(á).  In particular,
this occurs if the function f(@) is sufficiently concave.

0 ð 0 ðyields ä  = 0 if E (â) < á and ä  = 1 if E (â) > á. 1

The Multi-Period Extension

Now let N > 0.  Extending the notation introduced above, suppose that at period n, the planner finds

Ln Unit credible to assert that â lies in a bounded interval [â , â ].  This interval may change over time, as

empirical evidence accumulates on the outcomes experienced by members of earlier cohorts who were

Ln Untreated with the innovation.  The interval [â , â ] will shrink with n in many cases, but we do not need to

presume this.

The adaptive minimax-regret rule applies the MR rule to each successive cohort, using the

knowledge of â available at the time.  Thus, the AMR decision at each n is

AMR(n) Un Un Ln Ln Un(8)    ä   =  (â  ! á)/(â  ! â )             if  â  # á # â ,

Un                     =  0                                            if â  < á,

Ln                     =  1                                            if â  > á. 

The AMR rule achieves the dual objectives of social learning and diversification.  Inspection of (8)

U0shows that the necessary and sufficient condition for learning to occur is â  > á.  This condition is sufficient

for learning because it implies that the planner assigns a positive fraction of cohort 0 to the innovation.

Evidence then accumulates over the next K periods, after which he fully observes their outcomes and knows
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the value of â.  Thus, performance of a randomized trial at N = 0 is an inherent consequence of the AMR rule

U0when â  > á.

U0 U0The condition â  > á is necessary for learning because, if â  # á, the planner assigns no one to the

innovation and, hence, never learns its outcomes.  The absence of learning has no consequence for welfare

in this case.  The planner knows from the beginning that the innovation cannot be better than the status quo

treatment and, hence, there is no need for a randomized trial.

The AMR rule diversifies each cohort’s treatment allocation in a manner that reflects the available

Ln Unknowledge of treatment response.  As empirical evidence accumulates and the interval [â , â ] changes,

AMR(n)the value of ä  varies accordingly.  Eventually, observation of outcomes under the innovation reveals

where â is larger or smaller than á.  From that point on, diversification is no longer warranted and the AMR

rule assigns all persons to the better treatment.

One caveat is warranted about the properties of the AMR rule.  Although this treatment rule

minimizes maximum regret for each cohort separately, given the evidence available at the time, it does not

necessarily minimize maximum regret in terms of the multi-period objective function (2).  Global

minimization of maximum regret in multi-period decision problems is a subtle matter that requires joint

consideration of all of the cohorts rather than sequential consideration of them one at a time.  Determination

of the global multi-period minimax-regret rule is an interesting subject for future research.

2.3. Numerical Illustrations

This section illustrates the AMR rule.  I present two hypothetical treatment-choice problems.  In each

case the presumed outcome of interest unfolds over multiple periods.  As empirical evidence accumulates,

the AMR treatment allocation changes accordingly.
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Treating a Life-Threatening Disease

When treating a life-threatening disease, the outcome of interest may be the number of years that a

patient survives within some time horizon.  For this illustration, I let the horizon be five years and I define

y(t) to be the number of years that a patient lives during the five years following receipt of treatment t, where

jkt is the status quo or the innovation.  Thus, y(t) has the time-additive form (1), with y (t) = 1 if patient j is

jkalive k years after treatment, y (t) = 0 otherwise, and K = 5.

jThe outcome gradually becomes observable as time passes.  At the time of treatment, y (t) can take

any of the values [0, 1, 2, 3, 4, 5].  A year later, one can observe whether patient j is still alive and hence can

j jdetermine whether y (t) = 0 or y (t) $ 1.  And so on until year five, when the outcome is fully observable.

Table 1 presents hypothetical data on annual death rates following treatment by the status quo and

the innovation.  The entries show that 20 (10) percent of the patients who receive the status quo (innovation)

die within the first year after treatment.  In each of the subsequent years, the death rates are 5 and 2 percent

respectively.  Overall, the entries imply that the mean numbers of years lived after treatment are á = 3.5 and

â = 4.3.  The former value is known at the outset from historical experience.  The latter gradually becomes

observable.

Assume that the planner measures welfare by a patient’s length of life; thus, u(t) = y(t).  Also assume

that the planner has no initial knowledge of â.  That is, he does not know whether the innovation will be

disastrous, with all patients dying in the first year following treatment, or entirely successful, with all patients

L0 U0living five years or more.  Then the initial bound on â is [â , â ] = [0, 5].  Applying equation (8), the initial

0AMR treatment allocation is ä  = 0.30.

In year 1 the planner observes that, of the patients in cohort 0 assigned to the innovation, 10 percent

died in the first year following treatment.  This enables him to deduce that P[y(b) $ 1] = 0.90.  The planner

L1 U1 1uses this information to tighten the bound on â to [â , â ] = [0.90, 4.50].  It follows that ä  = 0.28.

In each subsequent year the planner observes another annual death rate, tightens the bound on â, and
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2 3 4recomputes the treatment allocation accordingly.  The result is that ä  = 0.35,  ä  = 0.50, and ä  = 0.98.  In

5year 5 he learns that the innovation is better than the status quo, and so sets ä  = 1.

Treating a Chronic Disease of Aging

When treating a chronic disease of aging, the outcome of interest may be quality adjusted life years

(QALY) within a specified time horizon.  For this illustration, let the horizon be twenty years and let y(t) be

the number of QALYs experienced during the twenty years following receipt of treatment t, where t is the

jkstatus quo or the innovation.  Thus, y(t) is time-additive, with y (t) 0 [0, 1], and K = 20.

The welfare of a treatment is its benefit minus its cost.  In this illustration, let the status quo be a no-

program setting with zero cost and let the innovation cost $5000 per person.  The benefit of a treatment is the

benefit of one QALY multiplied by the number of QALYs that a person experiences.  I consider two values

for the social benefit of one QALY, $10,000 and $20,000.  Then u(a) = v@y(a) and u(b) = v@y(b) ! 5000, where

v = 10,000 or 20,000.  Moreover, á = v@E[y(a)] and â =  v@E[y(b)] ! 5000.

Table 2 presents hypothetical data on mean QALYs following each treatment.  Two columns show

kE[y (t)] for each k = 1, . . . , K and each value of t.  The entries describe a situation in which the innovation

never does harm relative to the status quo and raises the mean in in some years.  Overall, the entries imply that

the mean numbers of QALYs experienced during the twenty-year horizon are E[y(a)] = 13.28 and E[y(b)] =

13.57.  It follows that if v = 10,000, then á = 132,800 and â = 130,700; hence, the status quo is the better

treatment.  If v = 20,000, then á = 265,600 and â = 266,400; hence, the innovation is the better treatment in

this case.  

The value of E[y(a)] is known at the outset from historical experience, but E[y(b)] becomes

observable only gradually.  To compute the AMR treatment allocation, I suppose the planner initially knows

kthat treatment b never yields a result lower than E[y (a)] and that it may raise it by a maximum of 0.10.

1Consider, for example, the first and twelfth years after treatment.  The table shows that E[y (a)] = 0.98 and
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 See www.fda.gov/cder/handbook/develop.htm.2

12E[y (a)] = 0.80.  Hence, the corresponding values under the innovation are initially known to lie in the

intervals [0.98, 1] and [0.80, 0.90].  These bounds generate the bounds on E[y(b)] shown in Table 2.

The final columns of Table 2 show the AMR treatment allocations.  The patterns for the two values

n nof v are quite different.  If v = 10,000, then ä  = 0.65 in years 0 through 4, ä  slowly decreases to 0.59 in year

10, then quickly rises to 0.74 at year 12, and finally falls to zero in year 18, when it becomes known that the

nstatus quo is better than the innovation.  If v = 20,000, then ä  stays close to 0.83 through year 10 and then

rises to one in year 12, when it becomes known that the innovation is better than the status quo.

3. Revising the Drug Approval Process

3.1. The Present FDA Process

The present FDA process for drug approval begins with preclinical laboratory and animal testing of

new compounds by pharmaceutical firms.  Those that seem promising then go through three phases of trials

of increasing size and varying objectives.  Phase 1 trials, which typically take about a year and are performed

with twenty to eighty healthy volunteers, aim to determine the basic pharmacological action of the drug and

the safety of different doses.  Phase 2 trials, which usually take about two years and are performed with

several hundred volunteers who are ill with a specific disease, give preliminary evidence on the effectiveness

and short-term side effects of the drug.  Phase 3 trials, which usually take about three years and are performed

with several hundred to several thousand volunteers ill with the disease, give further evidence on effectiveness

and side effects.  Following completion of Phase 3, the firm files a New Drug Application and the FDA either

approves or disapproves the drug for prescription by physicians.2
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 See www.fda.gov/cder/regulatory/applications/postmarketing/surveillancepost.htm.3

Hypothesis tests are used to compare the innovation with the status quo treatment, with the status quo

given the privileged position of the null hypothesis.  Approval of a new drug normally requires one-sided

0rejection of the null hypothesis of zero average treatment effect {H : â = á} in two independent trials (Fisher

and Moyé, 1999).  This sets a high bar for approval, requiring that pharmaceutical firms demonstrate

“substantial evidence of effect” for their products (Gould, 2002). 

Two features of the FDA process stand out from the perspective of this paper.  First, although the

FDA protocol has multiple stages, it essentially expresses a binary rather than adaptive approach to treatment.

Prior to approval, a new drug is used to treat only those patients who volunteer to participate in a trial and who

are randomized into the appropriate treatment group.  Even in Phase 3 trials, this group is typically quite small

relative to the patient population in a country as populous as the United States.  Following approval, a new

drug may be used to treat the entire patient population.  Thus, the fraction of the patient population who

receive the treatment is close to zero prior to approval and may approach one following approval.

Second, the FDA regularly makes its approval decision using data on surrogate outcomes rather than

evidence on outcomes of interest.  As documented by Fleming and Demets (1996) and others, Phase 3 trials

commonly are too short in duration to measure the health outcomes of real concern.  The FDA has attempted

to compensate for the use of surrogate outcomes in drug approval by encouraging longer term scrutiny of

approved drugs through a process of “post-market surveillance.”  However, at present, the FDA post-market

surveillance program only aims to detect adverse side effects of approved drugs, not to better measure their

effectiveness in treatment. 3

3.2. A Drug Approval Process Blending the FDA Protocol and AMR Treatment Choice

A drug approval process implementing AMR treatment choice would differ in important ways from
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the present FDA process.  Approval would be an adaptive process rather than a binary one, with the

prevalence of treatment with a new drug varying smoothly as empirical evidence accumulates.  The empirical

evidence used to determine treatment allocations would mainly be data on outcomes of real interest rather than

surrogate outcomes.  A process implementing the AMR rule would eliminate the current sharp distinction

between approval of a new drug and post-market surveillance.  Instead, the planner would continually monitor

the available evidence and adjust the treatment allocation as appropriate.  In this way, society would achieve

both social learning and diversification.

Implementation of a close approximation to the AMR rule could be feasible in a society with a

socialized or single-payer health care system.  It seems unrealistic in the present American context, where

private pharmaceutical firms develop and market new drugs, and where treatment decisions arise from the

decentralized interaction of physicians, health insurance organizations, and patients.  However, an approval

process that revises FDA drug approval to incorporate important features of the AMR rule may be realistic

in the American context.

What I have in mind is a process that begins, as at present, with a pharmaceutical firm performing

preclinical testing followed by Phase 1 and 2 trials.  It seems prudent to continue these preliminary stages of

the approval process without substantial revision.  The changes would appear in the subsequent Phase 3 trials

and in the FDA decision process.  First, the duration of Phase 3 trials would be lengthened sufficiently to

measure health outcomes of real interest.  The specification of these outcomes would be decided by the FDA,

with input from relevant parties.  Second, the present binary approval decision following a Phase 3 trial would

be replaced by an adaptive process that monitors the trial while in progress and that periodically makes

limited-term partial approval decisions.

By “limited-term partial approval,” I mean that while a Phase 3 trial is underway, the FDA would give

a renewable license to the firm to market no more than a specified quantity of the new drug over a specified

time period.  The duration of the license would depend on the agreed schedule for reporting new findings in
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 This discussion presumes a relatively simple setting in which the members of the patient population4

are observationally identical and the innovation has use only for treatment of the specific disease being
studied in the Phase 3 trial.  If patients are observationally heterogeneous, the AMR rule may call for
different treatment allocations within different subpopulations.  If the innovation has uses for treatment of
multiple diseases, the distribution of the permitted sales across patients with different diseases may be a
concern.  I call attention to these issues here but do not attempt to resolve them.

the trial.  For example, if the firm reports updated outcome data to the FDA annually, then the licensing

decision would be updated annually as well.

On each iteration of the licensing decision, the maximum quantity of drug that the firm is permitted

to market would be set by the FDA with the assistance of an expert advisory board, similar to those now used

in drug approval.  This is where the AMR rule comes in.  To give the licensing decision transparency and

coherence, the FDA could be mandated to compute the AMR treatment allocation with a specified social

Ln Unwelfare function. The role of the expert advisory board would be to set lower and upper bounds [â , â ] for

treatment effectiveness that are scientifically appropriate given the available empirical evidence.

Finally, when the Phase 3 trial is complete and the specified outcomes of interest have been observed,

the FDA would make a long-term approval decision as at present.  If the drug is deemed safe and effective,

the firm would be permitted to market it with no quantity restriction.  Further marketing would be prohibited

otherwise.

The revised drug approval process differs from AMR treatment choice mainly in the method used to

allocate the population between the innovation and the status quo while the Phase 3 trial is underway.  The

AMR rule calls for randomized allocation of the entire patient population, thus ensuring that the distribution

of treatment response is the same in both treatment groups.  Here, randomized allocation would occur only

within the sample of persons who participate in a Phase 3 trial.  Otherwise, the pharmaceutical firm would

market its permitted quantity in the ordinary manner, presumably setting price to maximize profit subject to

the FDA-specified upper bound on sales.   The adaptive approval process would achieve social learning and4

diversification, with part of the population receiving the innovation and the remainder receiving the status quo
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while the Phase 3 trial is in progress.  However, it would not ensure that the distribution of treatment response

is the same in both treatment groups.

Although it seems unrealistic in the American context to mandate randomized treatment of the entire

patient population while Phase 3 trials are in progress, I would note that mandated randomization does have

precedent in American society.  Examples include random drug testing, calls for jury service, and the Vietnam

draft lottery.  In the medical arena, the FDA recently approved conduct of a sequence of studies in which

critically ill patients are to be randomized into treatment without consent; see Stein (2007).  Nevertheless, it

would be a major departure from current norms to broadly mandate randomized health care.

3.3. Discussion

Even if the proposed drug approval process must, for social acceptability, deviate to some extent from

AMR treatment choice, I believe that it would substantially improve the present FDA process.  As pointed

out in the Introduction, the present process makes an up or down decision using data on surrogate outcomes

and, hence, is susceptible to errors with long-term consequences.  Type I errors occur when new drugs that

actually are worse than the status quo are approved because they appear superior when evaluated using

surrogate outcomes, and Type II errors occur when new drugs that actually are better than the status quo are

disapproved  because they appear inferior when evaluated using surrogate outcomes.

These long-term errors would not occur under the proposed process, which would perform Phase 3

trials of sufficient length to reveal health outcomes of real interest.  In the present system, performance of

longer Phase 3 trials has been resisted because this would delay the FDA’s binary approval decisions.  By

permitting partial marketing of new drugs while Phase 3 trials are underway, the proposed process should

make it acceptable to increase the length of Phase 3 trials as appropriate.

It should be particularly appealing to use the AMR rule to adjust the permitted scale of marketing as
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evidence accumulates.  The minimax-regret criterion has a firm welfare-economic foundation—no other

decision rule yields a treatment allocation that is uniformly better across all feasible values of â.  The MR

criterion is arguably more objective than Bayesian treatment choice, where the allocation depends on the

subjective probability distribution placed on â.  Adaptive implementation of the MR criterion  treats each

cohort as well as possible given the available knowledge—it does not ask the members of one cohort to

sacrifice its own welfare for the benefit of other cohorts.  Finally, the AMR treatment allocation has the

remarkably simple form (8), which should be easy to explain heuristically, if not technically, to the general

public.

Although the AMR treatment allocation is simple in form, serious normative thought and empirical

Ln Unanalysis will be necessary to determine appropriate values for á and [â , â ].  The need for normative

thought arises when society, acting through the FDA, determines what social welfare function to use when

comparing treatments.  In the numerical illustrations of Section 2.3, I used life span in one case and a benefit-

cost form based on QALYs in the other.  The latter case requires decisions on how to measure QALYs and

their social benefits.

Ln UnWith the social welfare function chosen, empirical analysis is needed to determine á and [â , â ].

The numerical illustrations showed how to do this in situations where the outcomes of interest are time-

additive and the empirical evidence gradually reveals these outcomes.  Other cases may be more complex.

In particular, the available empirical evidence may include data on surrogate outcomes as well as on

the outcomes of interest.  Then the FDA will have to decide what the surrogate outcomes reveal about the

value of â.  This decision may have considerable impact on treatment allocations in the early periods, before

much is known about the outcomes of interest.  Of course appraisal of surrogate outcomes is not a new

task—the present approval process already requires extrapolation from surrogate outcomes to outcomes of

Ln Uninterest.  What will be new is appraisal of how data on surrogate outcomes should affect the interval [â , â ]

that the FDA uses to express partial knowledge of â.
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4. Treatment Choice and Drug Approval with Imperfect Data

Sections 2 and 3 focused on the problem created by use of surrogate outcomes and abstracted from

other issues that arise in the accumulation of knowledge for drug approval.  In particular, I assumed that

empirical evidence on outcomes of interest is obtained from a classical randomized experiment performed on

a large random sample of the population.  This concluding section discusses treatment choice and drug

approval when these assumptions do not hold.

Section 4.1 supposes that the available data are from a classical experiment with a finite sample of

subjects.  Section 4.2 considers settings in which the available empirical evidence does not attain the classical

experimental ideal.

Another issue, not considered here in detail, is that one may have only partial knowledge of outcomes

under the status quo treatment.  Minimax-regret treatment choice continues to be applicable in such situations.

L U L UManski (2007b, Complement 11A) gives the general result when it is known that á 0 [á , á ] and â 0 [â , â ].

L U L UThe treatment allocation is fractional whenever the intervals [á , á ] and [â , â ] overlap.

4.1. Experiments with Finite Samples of Subjects

 As mentioned in Section 3, FDA approval of a new drug presently requires one-sided rejection of

0the null hypothesis of zero average treatment effect {H : â = á}.  Hypothesis testing is difficult to motivate

from the perspective of treatment choice.  First, there is no decision-theoretic rationale for the standard

practice of handling the null and alternative hypotheses asymmetrically, fixing the probability of a type I

statistical error and seeking to minimize the probability of a type II error.  One should instead handle the two

errors symmetrically.  Second, error probabilities only measure the chance of choosing a sub-optimal rule.
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They do not measure the loss in welfare resulting from a sub-optimal choice.

From the perspective of this paper, an appropriate way to choose treatments with finite-sample data

is to apply the finite-sample version of the minimax-regret criterion, studied in Manski (2004, 2005), Manski

and Tetenov (2007), Stoye (2006), and Schlag (2007).  Manski and Tetenov (2007) is particularly relevant

to the present discussion.  Considering choice between an innovation and status quo treatment when outcomes

are binary, they compare the regret function of the finite-sample MR rule with that obtained when a hypothesis

test is used to choose treatments.  The MR rule is closely approximated by the “empirical success” rule, which

uses the sample success rate with the innovation to estimate â and then chooses treatments accordingly.  In

contrast, a standard hypothesis test is more likely to choose the status quo over the innovation.

The articles cited above all concern situations in which one has complete outcome data on the sampled

subjects.  In the context of this paper, this occurs K periods after initiation of the experiment.  Application

of the finite-sample AMR rule prior to period K requires determination of the finite-sample MR rule when

outcomes are not yet fully observed but have been observed to lie in certain intervals.  This is a subject for

future research.  A useful starting point may be Stoye (2007), who has studied finite-sample MR treatment

choice when outcomes are either fully observed or completely missing.

4.2. Non-Classical Experiments

In Section 2 I cited several reasons why the trials used in the drug approval process often depart from

the classical ideal.  First, trials typically are performed on convenience samples of volunteers rather than on

random samples of the patient population of interest.  Second, some of the volunteers who participate in trials

may not comply with their assigned treatments or may leave early, before their outcomes can be measured.

Third, trials are typically performed with blinded treatment assignment, even though treatments are observed

in clinical practice.
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AMR treatment choice is applicable in such situations.  Whatever the data problem may be, it will

Ln Unmanifest itself in a bound [â , â ] that the planner finds credible to assert in period n.  The AMR decision

in period n continues to be given by (8).  Thus, imperfect data generated by non-classical experiments creates

no conceptual problem.  It only requires that the planner determine the bound appropriate to the setting.

Indeed, AMR treatment choice is applicable when the only available data are surrogate outcomes.

The planner needs to determine the conclusions about â that he can draw by combining the available

surrogate-outcome data with credible assumptions that link these data to outcomes of interest.  This done, the

AMR rule may be applied.

Data from non-classical experiments do create a practical issue for drug approval.  The discussion of

Section 3 presumed that the FDA would eventually be able to make an up or down decision on a new drug,

certainly after K periods and perhaps earlier.  If the available data do not meet the classical ideal, the FDA’s

Ln Unexpert advisory board might never reach the point where it feels able to shrink the bound [â , â ] enough

to determine whether the innovation is better than the status quo.   In such a scenario, AMR treatment choice

calls for permanent fractional treatment assignment.  This is perfectly sensible in principle, but pharmaceutical

firms and patients may not be willing to accept a non-zero permanent limit on the degree to which a drug can

be marketed.  At some point, an up or down decision may be necessary in practice.
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Table 1: Treating a Life-Threatening Disease

year
(n or k)

death rate in k  year afterth

treatment
bound on â in year n AMR allocation in year n

Status Quo Innovation

0 [0, 5] 0.30

1 0.20 0.10 [0.90, 4.50] 0.28

2 0.05 0.02 [1.78, 4.42] 0.35

3 0.05 0.02 [2.64, 4.36] 0.50

4 0.05 0.02 [3.48, 4.32] 0.98

5 0.05 0.02 [4.30, 4.30] 1
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Table 2: Treating a Chronic Disease of Aging

year
(n or k)

mean QALY in k  year afterth

treatment
bound on E[y(b)]

in year n
AMR allocation in year n,

by social benefit of one QALY

Status Quo Innovation $10,000 $20,000

0 [13.28, 14.70] 0.65 0.82

1 0.98 0.99 [13.29, 14.69] 0.65 0.83

2 0.98 0.99 [13.30, 14.68] 0.65 0.83

3 0.98 0.99 [13.31, 14.67] 0.65 0.84

4 0.98 0.98 [13.31, 14.65] 0.65 0.84

5 0.98 0.98 [13.31, 14.63] 0.64 0.83

6 0.98 0.98 [13.31, 14.61] 0.64 0.83

7 0.95 0.96 [13.32, 14.57] 0.63 0.83

8 0.95 0.96 [13.33, 14.53] 0.62 0.83

9 0.90 0.92 [13.35, 14.45] 0.61 0.84

10 0.90 0.92 [13.37, 14.37] 0.59 0.84

11 0.80 0.90 [13.47, 14.37] 0.66 0.93

12 0.80 0.90 [13.57, 14.37] 0.74 1

13 0.50 0.50 [13.57, 14.27] 0.70 1

14 0.50 0.50 [13.57, 14.17] 0.65 1

15 0.40 0.40 [13.57, 14.07] 0.58 1

16 0.40 0.40 [13.57, 13.97] 0.48 1

17 0.10 0.10 [13.57, 13.87] 0.30 1

18 0.10 0.10 [13.57, 13.77] 0 1

19 0.05 0.05 [13.57, 13.67] 0 1

20 0.05 0.05 [13.57, 13.57] 0 1




