
Applied Mathematics and Computation 219 (2012) 3993–4005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ePrints@Bangalore University
Contents lists available at SciVerse ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate/amc
Axisymmetric magneto-hydrodynamic (MHD) flow and heat transfer
at a non-isothermal stretching cylinder

K. Vajravelu a,⇑, K.V. Prasad b,1, S.R. Santhi b

a Department of Mathematics, Department of Mechanical, Material and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
b Department of Mathematics, Bangalore University, Bangalore 560001, India

a r t i c l e i n f o a b s t r a c t
Keywords:
Axisymmetric flow
Non-isothermal stretching cylinder
Variable thermal conductivity
Internal heat generation/absorption
Heat transfer
Finite difference method
0096-3003/$ - see front matter � 2012 Elsevier Inc
http://dx.doi.org/10.1016/j.amc.2012.10.034

⇑ Corresponding author.
E-mail address: kuppalapalle.vajravelu@ucf.edu

1 Present address: Department of Mathematics, Vi
An investigation is made to study the effects of transverse curvature and the temperature
dependent thermal conductivity on the magneto-hydrodynamic (MHD) axisymmetric flow
and heat transfer characteristics of a viscous incompressible fluid induced by a non-
isothermal stretching cylinder in the presence of internal heat generation/absorption. It
is assumed that the cylinder is stretched in the axial direction with a linear velocity and
the surface temperature of the cylinder is subjected to vary non-isothermally. Here the
thermal conductivity is assumed to vary linearly with temperature. Using a similarity
transformation, the governing system of partial differential equations is first transformed
into coupled non-linear ordinary differential equations with variable coefficients. The
resulting intricate non-linear boundary value problem is solved numerically by a second
order finite difference scheme for different values of the pertinent parameters for two
cases: (i) the prescribed surface temperature (PST case) and (ii) the prescribed heat flux
(PHF case). Numerical results are obtained for two different cases namely, zero and non-
zero values of the curvature parameter to get the effects on the velocity and temperature
fields. The combined effects of the curvature parameter and the thermal conductivity
parameter are examined. The physical significances of the numerical results are presented
for several limiting cases.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

The study of boundary layer flow and heat transfer at a stretching surface is important in manufacturing and technolog-
ical processes. For example, heat treated materials traveling between a feed roll and a wind-up roll, aerodynamic extrusion of
plastic sheets, glass fiber and paper production, cooling of an infinite metallic plate in a cooling bath, and manufacturing of
polymeric sheets, etc. (see Altan et al. [1], Fisher [2] and Tadmor and Klein [3]). In particular, extradite from a die is drawn
and simultaneously stretched into a sheet, which is then solidified through quenching or by gradual cooling by direct contact
with water. The quality of the final product depends on the rate of heat transfer at the stretching surface. In view of these
applications, Crane [4] was the first among others to obtain an elegant analytical solution to the boundary layer equations for
the two-dimensional flow due to a stretching surface in a quiescent incompressible fluid. Since then, many authors (Gupta
and Gupta [5], Rajagopal et al. [6], Siddappa and Abel [7], Grubka and Bobba [8] and Ali [9]) have considered various aspects
of the problem and obtained similarity solutions. A similarity solution is the one in which number of independent variables
are reduced, at least one, by a coordinate transformation. Despite the growth of the boundary layers with distance from the
. All rights reserved.
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Nomenclature

a radius of the cylinder
b stretching rate parameter
B0 uniform magnetic field
c1; c2; c3; c4 constants
cp specific heat at constant pressure
Cf skin friction coefficient
f dimensionless stream function
g dimensionless temperature in PHF case
kw thermal conductivity at the wall
k1 conductivity of the fluid far away from the cylinder
l reference length
M Kummer’s function
Mn magnetic parameter
m constant
Pr Prandtl number
qw surface heat flux
p0; q0; p1; q1 constants
Q dimensional heat generation/absorption
r radial coordinate
Rex local Reynolds number
s; t temperature exponent
T fluid temperature
Tw temperature of the cylinder surface
T1 ambient temperature
u axial velocity component
Uw stretching velocity
v radial velocity component
x axial coordinate

Greek symbols
aðTÞ temperature-dependent thermal diffusivity
a1 diffusivity far away from the wall
b heat source/sink parameter
c transverse curvature
g similarity variable
h dimensionless temperature in PST case
m kinematic viscosity
sw surface shear stress
q density
r electric conductivity
w stream function
e variable thermal conductivity

Subscripts
w conditions at the stretching sheet
1 condition at infinity

Superscript
0 differentiation with respect to g
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leading edge, the velocity and temperature profiles remain geometrically similar. The boundary layer flow and heat transfer
due to a stretching surface in a quiescent viscous fluid with hydromagnetic effects are considered by Sarpakaya [10], Pavlov
[11], Chakrabarti and Gupta [12], Prasad and Vajravelu [13], Abel et al. [14] and Cortell [15]. The results of these studies have
applications to polymer technology related to the stretching of plastic sheets. Also, many metallurgical processes involve the
cooling of continuous strips or filaments by drawing them through a quiescent fluid and while drawing these strips are
sometimes stretched. The rate of cooling can be controlled by drawing such strips in an electrically conducting fluid sub-
jected to a transverse magnetic field in order to get the final products of desired characteristics.
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All the above investigators restricted their analyses to two-dimensional flow and heat transfer problems over a stretching
sheet. But not much is being done for the much more intricate problem of the axisymmetric flow due to a stretching cylinder.
Flow over cylinders is considered to be two dimensional when the radius of the cylinder is large compared to the boundary
layer thickness. On the other hand, for a thin cylinder, the radius may be of the same order as the boundary layer thickness.
Therefore, the flow may be considered as axisymmetric instead of two-dimensional. In this case, the governing equations
contain the transverse curvature term which may affect the velocity and temperature fields. The effect of the transverse cur-
vature is important in certain technological applications such as hot rolling, wire or fiber drawing where accurate prediction
of flow and heat transfer is required and thick boundary layer can exist on slender or near slender bodies. In view of this,
Crane [16] studied the boundary layer flow due to a stretching cylinder. Wang [17] extended the work of Crane [16] to study
the flow of a viscous fluid at a stretching hollow cylinder in an ambient fluid at rest. The problem is governed by a third order
nonlinear ordinary differential equation that leads to an exact similarity solution for the Navier stokes equations. Pop et al.
[18] investigated the boundary layer flow past a moving longitudinal cylinder in a non-Newtonian power law fluid at rest.
Bachok and Ishak [19] analyzed the effects of the governing parameters on the flow and heat transfer over a horizontal cyl-
inder with prescribed surface heat flux. In all these studies, the thermo-physical properties are assumed to be constant. How-
ever, it is well known that these properties may change with temperature, especially the thermal conductivity. Available
literature on variable thermal conductivity (Chiam [20], Datti et al. [21], Prasad and Vajravelu [13]) shows that not much
work is being done for the axisymmetric flow over a stretching cylinder.

In view of this, the present authors study, in this paper, the effects of the temperature dependent thermal conductivity on
the axisymmetric magneto-hydrodynamic (MHD) flow and heat transfer over a non-isothermal stretching cylinder in the
presence of internal heat generation/absorption. In contrast to the work of Bachok and Ishak [19], here the thermal conduc-
tivity varies with temperature, as this is true in the case of polymer solutions; this leads to non-linearity in the boundary
value problem (Savvas et al. [22]). Also, in this study, we consider the following two different types of the non-isothermal
boundary conditions, namely:

(i). the surface with prescribed power law temperature distribution (PST case); and
(ii). the surface with prescribed power law heat flux (PHF case), varying linearly with the distance

In addition to this, we also consider the endothermic/exothermic chemical reactions (by including the effect of internal
heat generation/absorption in the energy equation). Due to the influence of the transverse curvature and the temperature
dependent thermal conductivity, the momentum and energy equations are coupled and highly non-linear. Using a similarity
transformation, the governing system of partial differential equations is first transformed into coupled non-linear ordinary
differential equations with variable coefficients. The resulting boundary value problem is solved numerically by a second
order finite difference scheme known as the Keller-box method.

2. Flow analysis

Let us consider a steady, the exterior viscous, incompressible and electrically conducting fluid flow due to the extrusion of
a long impermeable hollow horizontal cylinder with a constant radius a. The x-axis is measured along the axis of the cylinder
and r-axis is measured in the radial direction as shown in Fig. 1 (see Wang [17]). A uniform magnetic field of strength B0 is
applied in the radial direction. The magnetic Reynolds number is assumed to be small so that the induced magnetic field is
neglected in comparison with the applied magnetic field. Also, applied electric field, the Hall current and the Joule heating
are neglected. Under these assumptions, along with the usual boundary layer approximation, the governing equations for the
flow are
a

r,v

x,u

B0

Fig. 1. Physical model and co-ordinate system.
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where u and v are the fluid velocity components measured along x and r respectively. Here, m is the kinematic viscosity, r is
the electrical conductivity, B0 is the transverse magnetic field, and q is the density. The appropriate boundary conditions to
this problem are
u ¼ Uw; v ¼ 0 at r ¼ a and u! 0 as r !1: ð3Þ
Here Uw ¼ bðx=lÞ is the stretching velocity, b > 0 is the stretching rate and l is the reference length. The governing Eq. (2) in
terms of stream function w, where w satisfies ðu; vÞ ¼ 1
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The stream function w automatically satisfies the continuity Eq. (1). Following Ishak and Nazar [23], we define g and w as
g ¼ r2 � a2

2a
Uw

mx

� �1
2

; w ¼ ðmxUwÞ
1
2af ðgÞ; ð5Þ
where f is the dimensionless variable and g is the similarity variable. By defining g in this form, the boundary condition at
r ¼ a reduce to the boundary condition at g = 0, which is more convenient for numerical computations. From Eq. (5), we
obtain
u ¼ Uwf 0ðgÞ; v ¼ � a
r

mb
l

� �1
2

f ðgÞ; ð6Þ
here prime denotes differentiation with respect to g. Substituting Eqs. (5) and (6) in Eqs. (2) and (3), we obtain
ðð1þ 2gcÞf 00Þ0 � ðf 0Þ2 þ ff 00 �Mn f 0 ¼ 0 ð7Þ
and
f ð0Þ ¼ 0; f 0ð0Þ ¼ 1 and f 0ð1Þ ¼ 0: ð8Þ
The parameters c and Mn are the transverse curvature and the magnetic parameter respectively and they are defined by
c ¼

ffiffiffiffiffiffiffiffi
lm

ba2

s
and Mn ¼ rB2

0l
qb

: ð9Þ
Further we noticed that when c ¼ 0 (flat plate), Eq. (7) reduces to those considered by Crane [4] where the closed-form
solution is given by
f ¼ 1� e�mg

m
where m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þMn

p
; ð10Þ
where m is the constant. The skin friction coefficient Cf at the surface of the cylinder is given by
Cf ¼
2sw

q1U2
w

¼ 2f 00ð0ÞðRexÞ�1=2
; ð11Þ
where the surface shear stress is defined by sw ¼ l @u
@r

� �
r¼a ¼ lUw

ffiffiffiffiffi
Uw
mx

q
f 00ð0Þwith l is the dynamic viscosity and Rex ¼ Uwx=m is

the local Reynolds number. We now discuss the heat transport in the above axisymmetric flow due to a stretching cylinder.

3. Heat analysis

The energy equation for the fluid with variable thermal conductivity in the presence of internal heat generation / absorp-
tion for axisymmetric flow is given by Chiam [20]
u
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@x
þ v
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¼ 1

r
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þ Q

qcp
ðT � T1Þ; ð12Þ
where T is the temperature of the fluid, cp is the specific heat at constant pressure, and a(T) is the temperature dependent
thermal diffusivity, which is assumed to vary as a linear function of temperature. It is further assumed that the surface of the
cylinder is maintained at a variable temperature Tw and the ambient fluid temperature at T1. The last term containing Q in
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Eq. (12) represents the temperature-dependent volumetric heat source when Q > 0 and heat sink when Q < 0; dealing with
the situation of exothermic and endothermic chemical reactions, respectively. Here, the thermal boundary conditions de-
pend on the type of heating processes under consideration. We consider two different heating processes namely, (1) pre-
scribed surface temperature (PST) and (2) prescribed wall heat flux (PHF). The heat transfer analysis for these two
processes is carried out in Sections 3.1 and 3.2.

3.1. Prescribed surface temperature (PST case)

For this circumstance, the boundary conditions are
T ¼ Tw½¼ T1 þ c1ðx=lÞs� at r ¼ a and T ! T1 as r !1; ð13Þ
where c1 is the constant and s is the temperature exponent, we assume that thermal diffusivity aðTÞ in the form (Chiam [20]
and Datti et al. [21])
aðTÞ ¼ a1ð1þ ehðgÞÞ; e ¼ ðkw � k1Þ=k1 and hðgÞ ¼ ðT � T1Þ=ðTw � T1Þ; ð14Þ
where e is a small parameter depending on the nature of the fluid, a1 is the thermal diffusivity, kw is the thermal conduc-
tivity at the surface of the cylinder, k1 is the thermal conductivity of the fluid far away from the cylinder and h is the dimen-
sionless temperature. Using Eqs. (6) and (14), Eqs. (12) and (13) becomes
ð1þ 2gcÞðð1þ ehÞh0Þ0 þ 2ð1þ ehÞch0 � Prðsf 0h� f h0Þ þ Prbh ¼ 0; ð15Þ
and
hð0Þ ¼ 1 and hð1Þ ¼ 0: ð16Þ
Here, the parameters Pr and b are the Prandtl number, and the heat source/sink parameter, respectively and they are de-
fined as
Pr ¼ m
a1

and b ¼ Ql
bqcp

: ð17Þ
3.2. Prescribed heat flux (PHF case)

In this case, the boundary conditions are
�k1
@T
@r
¼ qw ¼ c2ðx=lÞt at r ¼ a and T ! T1 as r !1; ð18Þ
where c2 is the constant and t is the temperature exponent, we consider that thermal diffusivity aðTÞ in the form (Chiam [20]
and Datti et al. [21])
aðTÞ ¼ a1ð1þ egðgÞÞ; gðgÞ ¼ ðT � T1Þ=ðTw � T1Þ and Tw � T1 ¼ ðc2=k1Þðx=lÞt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mx=Uw

p
; ð19Þ
here g is the dimensionless temperature. Using Eqs. (6) and (19), Eqs. (12) and (18) becomes
ð1þ 2gcÞðð1þ egÞg0Þ0 þ 2ð1þ egÞcg0 � Prðtf 0g � gh0Þ þ Prbg ¼ 0; ð20Þ
subjected to the boundary conditions
g0ð0Þ ¼ �1 and gð1Þ ¼ 0; ð21Þ
Here g is the dimensionless temperature.

4. Exact solutions for some special cases

Here, we present exact solutions in certain special cases: Such solutions are useful and serve as baseline results for com-
parison with the solutions obtained via the numerical scheme.

4.1. Perturbation analysis in the absence of transverse curvature

We follow a perturbation expansion approach to solve Eq. (15) (PST case). Suppose
hðgÞ ¼ h0ðgÞ þ eh1ðgÞ þ e2h2ðgÞ þ � � � : ð22Þ
Substituting this into Eq. (15) and equating like powers of e ignoring quadratic and higher order terms in e, we obtain
h000 þ Prf h00 � Prðsf 0 � bÞh0 ¼ 0; ð23Þ
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with boundary conditions
h0ð0Þ ¼ 1; h0ð1Þ ¼ 0:
and
h001 þ Prfh01 � Prðsf 0 � bÞh1 ¼ �h0h
00
0 � h0

2

0 ; ð24Þ
with the boundary conditions
h1ð0Þ ¼ 0; h1ð1Þ ¼ 0:
Equation for h0 can be solved explicitly in terms of Kummer’s function (Abramowitz and Stegun [24]) and is given by
h0ðgÞ ¼ c3 expð�mðp0 þ q0Þg=2ÞMðp1; q1; zÞ;
where Mðp; q; zÞ denotes the confluent hypergeometric function,
1=c3 ¼ Mðp1; q1;�Pr=m2Þ; p1 ¼ ðp0 þ q0 � 2sÞ=2 and q1 ¼ 1þ q0:

p0 ¼ Pr=m2; q0 ¼ p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð4b=p0Þ

p
; z ¼ �ðPr=m2Þ expð�mgÞ;
A similar analysis can be carried out for Eq. (20) for the PHF case. We have
g0ðgÞ ¼ c4 expð�mðp0 þ q0Þg=2ÞMðp1; q1; zÞ

where gðgÞ ¼ g0ðgÞ þ eg1ðgÞ þ e2g2ðgÞ þ � � �

1=c4 ¼ ðmðp0 þ q0Þ=2ÞMðp1; q1;�Pr=m2Þ � ðp1Pr=q1mÞMðp1 þ 1; q1 þ 1;�Pr=m2Þ:
We now analyse Eq. (24) (PST case), which gives the first-order correction term eh1. Note that Eq. (24) is linear and inho-
mogeneous and therefore it is possible to obtain a power series solution for h1 However, it becomes very tedious to obtain
various values of h1 using this power series solution. Instead, we employ the second order finite difference scheme. Similar
procedure is applied to the PHF case also. The local wall heat flux can be expressed as
qw ¼ �k1
@T
@r

� �
r¼a

¼ �k1c1ðx=lÞs
ffiffiffiffiffiffiffi
Uw

mx

r
h0ð0Þ;
and the wall temperature Tw is obtained from Eq. (19) as
Tw � T1 ¼ ðc2=k1Þðx=lÞt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mx=Uw

p
gð0Þ:
5. Numerical method

The axisymmetric flow and heat transfer of the impermeable hollow horizontal cylinder is affected by non-dimensional
parameters, namely, the transverse curvature, the magnetic parameter, the internal heat source/sink parameter, the temper-
ature exponent parameter, the Prandtl number and the variable thermal conductivity parameter. The system of coupled non-
linear equations (7), (15), and (20) with variable coefficients subject to the boundary conditions (8), (16), and (21) is solved
numerically by an implicit finite difference scheme known as the Keller box method (see for details Cebeci and Bradshaw
[25], Keller [26] and Prasad and Vajravelu [13]). The numerical solutions are obtained in four steps as follows:

� reduce Eqs.(7), (15), and (20) to a system of first-order equations;
� write the difference equations using central differences;
� linearize the algebraic equations by Newton’s method, and write them in matrix–vector form; and
� solve the linear system by the block tri-diagonal elimination technique.

The step size Dg and the position of the edge of the boundary layer g1 are to be adjusted for different values of the param-
eters to maintain accuracy. For brevity, the details of the solution procedure are not presented here. It is also important to
note that the computational time for each set of input parametric values should be short. Because physical domain in this
problem is unbounded, whereas the computational domain has to be finite, we apply the far field boundary conditions for
the similarity variable g at finite value denoted by gmax. We ran our bulk of computations with the value gmax ¼ 12, which is
sufficient to achieve the far field boundary conditions asymptotically for all values of the parameters considered.

Here the boundary layer flow and heat transfer of the non-isothermal stretching cylinder is affected by the transverse
curvature parameter, the magnetic parameter, the internal heat source/sink parameter, the temperature exponent parameter
and the variable thermal conductivity parameter. The main focus of the present study is to bring out the effects of these ma-
jor parameters through the numerical solutions of the boundary value problem through the skin friction, the wall temper-
ature gradient in PST case and wall temperature in PHF cases. For numerical calculations, a uniform step size of Dg ¼ 0:01 is
found to be satisfactory and the solutions are obtained with an error tolerance of 10�6 in all the cases. The accuracy of the



Table 1
Comparison of some of the values of �f 00 ð0Þ for different values of Mn when c ¼ 0.

Mn = 0.0 Mn = 0.5 Mn = 1.0 Mn = 1.5 Mn = 2.0

Numerical solution by Keller-box method 1.000001 1.224745 1.414214 1.581139 1.732051
Analytical solution 1.000000 1.224745 1.414214 1.581139 1.732051

Table 2
Comparison of some of the values of wall temperature gradient in PST case and wall temperature in PHF case with the present results for e = 0, b = 0 and s ¼ 1:0 .

Pr c ¼ 0, PHF case c ¼ 1, PHF case

Elbashbeshy [27] Liu [28] Bachok and Ishak [19] Present values Bachok and Ishak [19] Present values

0.72 1.2253 1.2367 1.236657 0.8701 0.870057
1 1.0000 1.0000 1.000000 0.7439 0.743867
6.7 0.333303 0.3333 0.333304 0.2966 0.296555
10 0.2688 0.2688 0.268760 0.2442 0.244155

c ¼ 0, PST case

Grubka & Bobba [8] Ali [9] Ishak and Nazar [23] Present values

1 1.0000 0.9961 1.0000 1.00002
10 3.7207 3.7006 3.7207 3.72078

K. Vajravelu et al. / Applied Mathematics and Computation 219 (2012) 3993–4005 3999
numerical scheme has been validated by comparing the skin friction, the wall temperature gradient and wall temperature
with the available results in the literature, and found to be in very good agreement (Tables 1 and 2).

6. Results and discussion

The numerical computation has been carried out for different values of the magnetic parameter Mn, the transverse cur-
vature c, the Prandtl number Pr, the variable thermal conductivity parameter e; the temperature exponent parameter and the
heat source/sink parameter b. In order to get a clear insight into the physical problem, the horizontal velocity profiles and
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Fig. 2. (a) Transverse velocity profile for different values of c and Mn (b). Horizontal velocity profile for different values of c and Mn.
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temperature profiles for both PST and PHF cases are discussed. The numerical results are shown graphically in Figs. 2–7.
These figures depict the velocity profiles (Fig. 2(a) and (b)), and the temperature profiles (Figs. 3–7). Effects of the pertinent
parameters on the skin friction, the wall temperature gradient in PST case and the wall temperature in PHF cases are
tabulated in Tables 3 and 4.
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Fig. 2(a) and (b) illustrate the effects of the transverse curvature and the magnetic parameter Mn on the transverse veloc-
ity f ðgÞ and the horizontal velocity f 0ðgÞ: We notice from these figures that the transverse velocity profile decrease but the
horizontal velocity profile increase with increasing values of the transverse curvature. The effect of increasing values of the



Table 3
Numerical values of skin-friction �f ’’ð0Þ for different values Mn and c.

Mn c = 0.0 c = 0.25 c = 0.5 c = 0.75 c = 1.0

0.0 1.000001 1.091826 1.182410 1.271145 1.358198
0.5 1.224745 1.328505 1.427151 1.521975 1.613858
1.0 1.414214 1.523163 1.626496 1.725576 1.821302

Table 4
Numerical values of wall temperature gradient �h0ð0Þ in PST case and wall temperature hð0Þ in PHF case for different values of the physical parameters.

s Mn Pr e b �h0ð0Þ PST case h (0) PHF case

c = 0.0 c = 0.25 c = 0.5 c = 0.75 c = 1.0 c = 0.0 c = 0.25 c = 0.5 c = 0.75 c = 1.0

1.0 0.5 1.0 0.1 �0.5 1.14511 1.24475 1.33936 1.43022 1.51822 0.86578 0.79307 0.73465 0.68620 0.64505
0.0 0.87574 0.95685 1.04430 1.13157 1.21576 1.15389 1.04842 0.95485 0.87707 0.81209
0.2 0.64562 0.71658 0.83662 0.93926 1.03488 1.63855 1.44304 1.21260 1.06939 0.96419

1.0 0.5 1.0 0.0 �0.5 1.22475 1.32851 1.42715 1.52198 1.61386 0.81650 0.75273 0.70070 0.65704 0.61963
0.2 1.07758 1.17381 1.26505 1.35261 1.43738 0.91930 0.83624 0.77061 0.71683 0.67159
0.4 0.96882 1.05972 1.14569 1.22807 1.30775 1.04031 0.93146 0.84859 0.78246 0.72794

1.0 0.5 1.0 0.1 �0.5 1.14511 1.24475 1.33936 1.43022 1.51822 0.86578 0.79307 0.73465 0.68620 0.64505
2.0 1.69442 1.79278 1.88793 1.98020 2.06993 0.57424 0.54192 0.51397 0.48950 0.46785
3.0 2.11925 2.21712 2.31262 2.40582 2.49688 0.45565 0.43522 0.41698 0.40060 0.38579

1.0 0.0 1.0 0.1 �0.5 1.17758 1.27923 1.37459 1.46562 1.55345 0.84061 0.77069 0.71503 0.66899 0.62991
0.5 1.14511 1.24475 1.33936 1.43022 1.51822 0.86578 0.79307 0.73465 0.68620 0.64505
1.0 1.11978 1.21909 1.31341 1.40414 1.49213 0.88651 0.81062 0.74982 0.69946 0.65675

�1.0 0.5 1.0 0.1 �0.5 0.51407 0.61944 0.71840 0.81300 0.90457 2.06440 1.67376 1.42314 1.24565 1.11179
0.0 0.85480 0.95663 1.05278 1.14487 1.23399 1.18338 1.04839 0.94691 0.86680 1.80133
1.0 1.14511 1.24475 1.33936 1.43022 1.51822 0.86578 0.79307 0.73465 0.68620 0.64505
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Fig. 7. (continued)
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transverse curvature is to increase the horizontal velocity and thereby enhance the boundary layer thickness. That is, the
boundary layer thickness is higher for higher values of the transverse curvature, as clearly seen from Fig. 2(b). The velocity
profiles show that the rate of transport is considerably reduced with the increase of Mn. It clearly indicates that the trans-
verse magnetic field opposes the transport phenomena. This is due to the fact that variation of Mn leads to the variation of
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the Lorentz force due to magnetic field, and the Lorentz force produces more resistance to transport phenomena. In all the
cases considered, the velocity vanishes at some large distance from the surface of the tube.

The effects of the transverse curvature and the magnetic parameter on the temperature field in the boundary layer for
both PST and PHF cases are shown in Fig. 3(a) and (b), respectively. It is observed that the temperature distribution is unity
at the wall in PST case and is less than the unity at the wall in PHF case for all values of the transverse curvature. However,
the temperature distribution for both PST and PHF cases decreases asymptotically to zero as the distance increases form the
boundary layer. The effect of increasing the values of the transverse curvature parameter leads to accelerate the thermal
boundary thickness. This behavior is true even for all values of the magnetic parameter, which in turn causes the enhance-
ment of the temperature field. Figs. 4(a) and (b) exhibit the temperature distribution for different values of the curvature
parameter and the heat source/sink parameter b for PST and PHF cases, respectively. From these figures, we observe that
the temperature distribution is lower throughout the boundary layer for negative values of b (heat sink) and higher for
positive values of b (heat source). Physically b > 0 implies Tw > T1 i.e., the supply of heat to the flow region from the wall.
Similarly, b < 0 implies Tw < T1 i.e., the transfer of heat is from flow to the wall. The effect of an increase in the values of the
heat source/sink parameter b is to increase the temperature for both PST and PHF cases. This holds for all values of the
curvature parameter. The variations in the temperature for various values of the Prandtl number Pr are displayed in
Fig. 5(a) and (b) for PST and PHF cases, respectively. Both of these figures demonstrate that an increase in the Prandtl number
Pr results in a decrease in the temperature distribution, and tends to zero as the space variable increases from the wall. Also,
the thermal boundary layer thickness decreases as the Prandtl number Pr increases for both PST and PHF cases.

The effects of the thermal conductivity parameter e and the curvature parameter on the temperature are shown graph-
ically in Fig. 6(a) and (b) for PST and PHF cases, respectively. The profiles demonstrate quite clearly that an increase in the
value of e results in an increase in the temperature and hence the thermal boundary layer thickness increase as e increases.
This is due to the fact that the assumption of temperature-dependent thermal conductivity causes a reduction in the mag-
nitude of the transverse velocity by a quantity @aðTÞ=@r, as can be seen from heat transfer Eqs. (15) and (20). This phenom-
enon holds for PHF case; however, thickness of the thermal boundary layer is thinner in comparison with PST case. For fixed
values of the Prandtl number and the magnetic parameter, the effect of the surface temperature exponent parameter on the
temperature profile for both PST and PHF cases are shown graphically in Fig. 7(a) and (b). From the graphical representation
we observe that an increase in the temperature exponent parameter leads to decrease the temperature profile and hence the
thermal boundary layer thickness decrease. This is due to the fact that, when s > 0, heat flows from the stretching cylinder to
the ambient fluid and, when s < 0, the temperature gradient is positive and heat flows into the stretching cylinder from the
ambient fluid. This behavior holds for PHF case also, as shown in Fig. 7(b).

The values of �f 00ð0Þ which signify the local skin friction co-efficient, Cf , are recorded in Table 3 for different values of the
physical parameters c and Mn. From Table 3, we observe that the skin friction coefficient is negative for all values of the
transverse curvature and the magnetic parameter. Physically, negative values of f 00ð0Þ mean the surface exert a drag force
on the fluid. This is not surprising since in the present problem, we consider the case of a stretching cylinder, which induces
the flow. Since the Eqs. (7), (15), and (20) are uncoupled, the internal heat source/sink parameter, the temperature exponent
parameter, the Prandtl number and the variable thermal conductivity parameter and the non-isothermal boundary condi-
tions give no influence to the value of f 00ð0Þ: The absolute value of f 00ð0Þ increases as the transverse curvature and the mag-
netic parameter increases: This result in an increase in the magnitude of the wall temperature gradient in PST case as well as
in the PHF case for all the values of transverse curvature. Thus, the skin friction coefficient and the wall temperature gradient
in the PST and the wall temperature in PHF cases are larger at a cylinder compared to that at a flat plate, which is observed by
Grubka and Bobba [8] and Ali [9]. The effect of the magnetic parameter Mn is to increase the wall temperature gradient both
in the PST and PHF cases. This is due to the fact that the thermal boundary layer decreases as the magnetic parameter Mn
increases: This results in higher temperature gradient at the wall and hence higher heat transfer at the wall. The effect of
increasing values of the variable thermal conductivity parameter and the heat source/sink parameter is to increase the wall
temperature gradient; whereas the effect of the Prandtl number and the surface temperature exponent parameter is to de-
crease the wall temperature gradient. This observation is even true with wall temperature in the PHF case.

7. Conclusion

In this paper, we investigated the effect of transverse curvature on the axisymmetric flow and heat transfer of an electri-
cally conducting fluid over a non-isothermal stretching cylinder with temperature dependent thermal conductivity in the
presence of internal heat generation/absorption. The governing partial differential equations are transformed into a system
of nonlinear ordinary differential equations with variable coefficients and then solved numerically by a second order finite
difference scheme. A systematic study is made on the effects of the transverse curvature and the other physical parameters
controlling the flow and heat transfer characteristics. The temperature profiles are obtained for two types of heating pro-
cesses namely, the PST and the PHF cases for various values of the physical parameters. As expected, the transverse curvature
parameter has the effect to increase the horizontal velocity and the temperature fields. Also, an increase in the value of mag-
netic parameter leads to a decrease in the velocity boundary layer thickness. However, quite the opposite is true with the
thermal boundary layer thickness in both the PST and the PHF cases. It is worthy to note that the effect of increasing values
of the heat source/sink parameter is to increase the temperature field in both the PST and the PHF cases. Finally, we conclude



K. Vajravelu et al. / Applied Mathematics and Computation 219 (2012) 3993–4005 4005
that the thermal boundary layer thickness decreases with an increase in the Prandtl number and the surface temperature
exponent parameter in both the PST and the PHF cases.
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