
Finite Elements in Analysis and Design 44 (2008) 920 -- 932

Contents lists available at ScienceDirect

Finite Elements in Analysis andDesign

journal homepage: www.e lsev ier .com/ locate / f ine l

The use of parabolic arcs inmatching curved boundaries by point transformations for
some higher order triangular elements

H.T. Rathoda, K.V. Nagarajab,∗, V. Kesavulu Naidub, B. Venkatesudub

aDepartment of Mathematics, Central College Campus, Bangalore University, Bangalore 560001, India
bDepartment of Mathematics, Amrita School of Engineering, # 26 & 27, Kasavanahalli, Carmelram post, Bangalore 560035, India

A R T I C L E I N F O A B S T R A C T

Article history:
Received 27 September 2007
Received in revised form 18 June 2008
Accepted 4 July 2008
Available online 20 August 2008

Keywords:
Finite element method
Numerical integration
Triangular elements
Point transformations

This paper is concerned with curved boundary triangular elements having one curved side and two
straight sides. The curved elements considered here are the 6-node (quadratic), 10-node (cubic), 15-node
(quartic) and 21-node (quintic) triangular elements. On using the isoparametric coordinate transforma-
tion, these curved triangles in the global (x, y) coordinate system are mapped into a standard triangle:
{(�,�)/0��,��1,� + ��1} in the local coordinate system (�,�). Under this transformation curved
boundary of these triangular elements is implicitly replaced by quadratic, cubic, quartic and quintic arcs.
The equations of these arcs involve parameters, which are the coordinates of points on the curved side.
This paper deduces relations for choosing the parameters in quartic and quintic arcs in such a way that
each arc is always a parabola which passes through four points of the original curve, thus ensuring a good
approximation. The point transformations which are thus determined with the above choice of parame-
ters on the curved boundary and also in turn the other parameters in the interior of curved triangles will
serve as a powerful subparametric coordinate transformation for higher order curved triangular elements
with one curved side and two straight sides.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The finite element method applied to problems involving a en-
closed region R2, elements with straight sides, usually triangles or
quadrilaterals are perfectly satisfactory, if the original domain has
a polygonal boundary and suitable basis functions defined on these
elements are easy to construct. However, when the problem domain
is curved, elements with at least one curved side are desirable. This
is also the case when curved material interfaces are present in the
region. The curved element was introduced into structural analysis
by Ergatoudis et al. [1] and reference to it can be found in [2–6].
Mitchell [7] describes three approaches to this problem. One of these
involves a transformation of the entire domain onto some standard
shape and hence is really a global method as opposed to the stan-
dard finite element approach which is local. The other two meth-
ods, the isoparametric method and the direct method are local in
nature. In the direct method, the basis functions are constructed to
match the curved boundaries and integrations are carried out directly
in the original plane. This method has been developed with some

∗ Corresponding author. Tel.: +918026538093; fax: +918028439565.
E-mail address: nagarajaitec123@yahoo.com (K.V. Nagaraja).

0168-874X/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.finel.2008.07.001

success by Wachpress [8–10] and Mcleod and Mitchell [11] for tri-
angular elements. The main difficulty with this procedure is that
the basis functions in the triangles adjacent to the curved boundary
are, in all but a few special cases, no longer polynomials and so the
numerical work in these triangles is correspondingly more involved.
The major disadvantage of these methods lies in the fact that the
basis functions are usually rational functions making the integra-
tions much more difficult. The direct methods have the advantage
of being able to match curves more accurately than isoparametric
methods. The isoparametric method has advantage of simplicity in
defining of transformation and in the fact that the basis functions
are polynomials which make the numerical integration easier. In
the isoparametric method a triangle with one curved side and two
straight sides in global (x, y) space is mapped into a standard triangle
i.e. {(�,�)/0��,��1,� + ��1} in the local parametric space (�,�).
When the isoparametric coordinates are used to deal with curved
boundaries in the finite element method, the original boundary is
implicitly replaced by parabolic, cubic, quartic, quintic, etc., arcs.
The equations of these arcs involve parameters which are the coor-
dinates of points on the curved side. Mcleod and Mitchell [12] de-
termine equations of parabolic and cubic curves using isoparametric
coordinate transformations. Further, they also present a simple and
systematic procedure to choose the parameters of the cubic curves
so that the implicit equations of the curves always represent the
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parabola passing through four points of the original curves and so is
a reasonable approximation to it. The development is put to practical
use in the recent works of Rathod and Karim [13,14]. It is the purpose
of this paper to find equations for point transformation of quartic and
quintic arcs using isoparametric coordinate transformations and also
to choose the parameters (coordinates of the points on the curved
side) in a systematic way so that the implied curves are always a
parabola passing through four points (quartic and quintic arcs) of
the original curves.

2. Point transformations for triangular elements with one
curved boundary

We consider the triangular elements in which one of the sides is
curved and the other two sides are straight as shown in Figs. 1–4.
The Lagrange interpolants for the field variable u (say) governing the
physical problem are

u =
(n+1)(n+2)/2∑

i=1

N(n)
i (�,�)uei (n = 2, 3, 4, 5) (1)

where n = 2 refers to quadratic, n = 3 refers to cubic, n = 4 refers
to quartic and n = 5 refers to quintic order triangular elements, and

Fig. 1. Mapping of a 6-node quadratic curve triangle into isosceles triangle: (a) unmapped quadratic triangle, (b) mapped quadratic triangle.

Fig. 2. Mapping of a 10-node cubic triangle into isosceles triangle: (a) unmapped cubic triangle, (b) mapped cubic triangle.

N(n)
i (�,�) refers to the convential triangular element shape functions

of order n at the node i. These are listed in Appendix A. Hence the
transformation formulae between the physical (Cartesian) and the
local (natural) coordinate system are

t =
(n+1)(n+2)/2∑

i=1

N(n)
i (�,�)ti (t = x, y) (2)

It is well known that the nodes along the straight sides 3–1 and
3–2 in Figs. 1–4 are always equi-spaced, except for certain special
finite elements, like those required near the crack tip singularity in
fracture mechanics. Now if we use the standard formulae on dividing
a line segment in a given ratio from the plane analytic geometry to
the straight sides 3–1 and 3–2, then the Eqs. (2) reduces to

m(n)t(�,�) = m(n)t3 + m(n)(t1 − t3)� + m(n)(t2 − t3)� + a(n)11 (t)��

+ H(n − 3)
∑

i+j=n
(i�j)

a(n)ij �i�j

(1� i, j�n − 1,n = 3, 4, 5), (t = x, y) (3a)

where, t is nodal values of the triangular element and H(n−3) is the
well-known Heaviside step function or unit step function and it has
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Fig. 3. Mapping of a 15-node quartic curve triangle into isosceles triangle: (a) unmapped quartic triangle, (b) mapped quartic triangle.

Fig. 4. Mapping of a 21-node quintic curve triangle into right isosceles triangle: (a) unmapped quintic triangle, (b) mapped quintic triangle.

the meaning for the present as

H(n − 3) =
{
0, n<3 i.e. n = 2
1, n�3 i.e. n = 3, 4, 5

(3b)

m(2) = 1 for Quadratic curved triangular element

m(3) = 2 for Cubic curved triangular element

m(4) = 3 for Quartic curved triangular element

m(5) = 24 for Quintic curved triangular element (3c)

and the coefficients

(a(n)11 (t),n = 2(1)5)

(a(n)21 (t), a
(n)
12 (t),n = 3(1)5)

(a(n)31 (t), a
(n)
22 (t), a

(n)
13 (t),n = 4(1)5)

(a(5)41 (t), a
(5)
32 (t), a

(5)
23 (t), a

(5)
14 (t)) (3d)

are listed in Appendix B.

3. Triangles with one parabolic boundary

In the previous section, we have seen that the point transforma-
tion for the curved triangle with one curved side is expressed by

Eqs. (3a)–(3d). This transformation will reduce to two parametric
equations of the degree n (n = 2, 3, 4, 5) in local variate � or � along
the curved boundary for which � + � = 1. We would now like to ap-
proximate the curved boundary of the triangle by a parabolic arc i.e.
by two parametric equations for x and y by a quadratic polynomial
in � or �. This is possible only if we neglect the higher order terms in

Eq. (3a) i.e. the terms
∑

i+j=n
(i�j)

a(n)ij �i�j. Hence we may assume with-

out loss of generality that the point transformation over the curved
triangle is given by

t(�,�)=t3+(t1−t3)� + (t2 − t3)� + A(n)11 ��, t=x, y (n=2, 3, 4, 5) (4)

where A(n)11 = a(n)11 /m
(n) and m(n) are integral constant which are al-

ready defined in Eq. (3c).

4. Explicit form of point transformations and Jacobians

Wenote that Eq. (4) reduces to a pair of parametric equations for x
and y along the curved boundary and they are quadratic polynomials,
either in � or � (parametric variates, 0��,��1). Let us assume that
the given curved boundary can be approximated by a general conic
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[14], that is, the equation, (say)

f (x, y) = p00 + p10x + p01y + p20x
2 + p11xy + p02y

2 = 0 (5)

We have also from Eq. (4) the parametric equation along the curved
boundary is of the form (say):

x(�, 1 − �) = r0(t) + r1(t)� + r2(t)�
2

y(�, 1 − �) = s0(t) + s1(t)� + s2(t)�
2 (6a)

If we substitute from Eq. (6a) into Eq. (5), then on the curved bound-
ary f has the form:

f (�, 1 − �) = f0 + f1� + f2�
2 + f3�

3 + f4�
4 = 0 (6b)

Clearly Eq. (6b) is a polynomial in �, of degree four, since it has to pass
through the end points of the curved boundary, �=0, 1 are definitely
two of its roots. The other two roots in 0 <� <1, determine two in-
termediate points on the curved boundary. Thus, we can only deter-
mine the curved boundary by a parabolic arc which passes through
two intermediate points in 0 <� <1 and two end points at � = 0 and
1. If we have more than two intermediate points on the parabolic arc
of this curved boundary, then they will be all expressible in terms
of the two intermediate points which only lie on the original curved
boundary. We shall now determine the relations among the nodal
points along the curved boundary, if the curved triangle has more
than four nodes along the curved boundary.

Lemma. Let the point transformation for the curved triangle with one
parabolic curved boundary side and two straight sides are expressible as

t(�,�) = t3 + (t1 − t3)� + (t2 − t3)� + A(n)11 (t)�� (7a)

where

A(n)11 = a(n)11
m(n)

, t = x, y (n = 2, 3, 4, 5) (7b)

then it can be shown that
(i) Quadratic case (n = 2):

A(2)11 = a(2)11 = [4t4 − 2(t1 + t2)] (8)

(ii) Cubic case (n = 3):

A(3)11 = a(3)11
2

= 9
4
[(t4 + t5) − (t1 + t2)] (9)

(iii) Quartic case (n = 4):

A(4)11 = a(4)11
3 = 8

3
[(t4 + t6) − (t1 + t2)]

t5 = 1
6 [4(t4 + t6) − (t1 + t2)] (10)

(iv) Quintic case (n = 5):

A(5)11 = a(5)11
24

=

⎧⎪⎨
⎪⎩

75
24 {(t4 + t7) − (t1 + t2)}
OR
50
24 {(t5 + t6) − (t1 + t2)}

(11)

and

(t4 + t7) = 2
3 (t5 + t6) + 1

3 (t1 + t2)

(t5 + t6) = 3
2 (t4 + t7) − 1

2 (t1 + t2) (12)

Proof. The proof follows from the foregoing analysis of point trans-
formations to match the parabolic arc discussed in Section 3 of the
paper and alternatively it also follows from the global to local trans-
formation of coordinates and geometric considerations.

5. Analysis of point transformations

In the previous section, we have considered triangular elements
of order two to five with two straight sides and one curved side.
These triangles are spanned by a total of 6, 10, 15 and 21 nodes and
each of these have 3, 4, 5 and 6 nodes, respectively, along the curved
side. The physical (global/cartesian) and reference (local/natural) co-
ordinates of any node i are (xi, yi) and (�i,�i), respectively. The global
coordinates (x, y) and the local coordinates (�,�) under the subpara-
metric coordinate transformation which map these curved triangles
into-isosceles right triangles are as shown in Figs. 1(b)–4(b) and they
are related by Eqs. (3a)–(3d) as derived in the previous section. The
quadratic and cubic point transformations have been the subject of
intensive research in the earlier works by several authors [11–14].

The parametric equations of the curved side in Figs. 1(a)–4(a) can
be obtained by substituting � = 1− � in Eqs. (3a)–(3d). This leads to
equations of the form:

m(n)t(�, 1 − �) = �(n)0 (t) + �(n)1 (t)� + �(n)2 (t)�2 + · · · + �(n)k (t)�n

(n = 2, 3, 4, 5), (t = x, y) (13)

(�(n)k (t), k= 0, 1, 2, . . . ,n) can be obtained from a(n)ij (t) values as listed

in Appendix B. Let us now analyze each of the Eqs. (3a) for n=2, 3, 4, 5
one by one.

Quadratic case (n=2): In this case, the curved side of the triangle
is spanned by the coordinates (t1, t4, t2, t = x, y).

Hence on the curved side, we obtain the following equation on
substituting � = 1 − � in Eq. (3a)

t(�, 1 − �) = �(2)0 (t) + �(2)1 (t)� + �(2)2 (t)�2, t = x, y (14a)

Clearly Eq. (14a) describes the parametric form of equation of a
parabola passing through the points (ti, i = 1, 4, 2) and

t=t3+(t1 − t3)�+(t2 − t3)�+(4t4 − 2t1 − 2t2)��, (t=x, y) (14b)

Cubic case (n = 3):
In this case, the curved side of the triangle is spanned by the

coordinates (ti, i=1, 4, 5, 2). Hence on the curved side, we obtain the
following equation on substituting � = 1 − � in Eq. (3a):

2t(�, 1 − �) = �(2)0 (t) + �(2)1 (t)� + �(2)2 (t)�2 + �(3)3 (t)�3, t = x, y (15)

Clearly the parametric equation (15) describes a cubic curve passing
through the points (ti, i=1, 4, 5, 2). Since a cubic curve must possess
a double point, which may result in a cusp or a loop in the curve,
it is in general undesirable as an approximation to a simple smooth
curve [7]. However, the choice for location of points (ti, i=1, 4, 5, 2) to
make the cubic curve to reduce to a unique parabola can be achieved
by setting [11]:

�(3)3 (t) = 0, (t = x, y) (16)

That is to set: a(3)12 (t) − a(3)21 (t) = 0, and this implies

t4 − t5 = 1
3 (t1 − t2), (t = x, y) (17)

In addition, if we set

a(3)12 (t) + a(3)21 (t) = 0 (18)

then the choice

t10 = 1
12 (t1 + t2 + 4t3 + 3t4 + 3t5), (t = x, y) (19)

and the transformation formulae Eq. (3a) reduces to

2t = 2t3 + 2(t1 − t3)� + 2(t2 − t3)� + a(3)11 (t)��, (t = x, y) (20)
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where

a(3)11 (t) = 9
2 (t4 + t5 − t1 − t2), (t = x, y) (21)

and

t=t3+(t1 − t3)� + (t2 − t3)�+ 9
4 (t4 + t5 − t1 − t2)��, (t=x, y) (22)

Quartic case (n = 4):
In this case, the curved side of the triangle is spanned by the

coordinates (ti, i=1, 4, 5, 6, 2). The point transformation for this case
can be obtained from Eq. (3a). Hence, on the curved side, we obtain

3t(�, 1 − �) = �(4)0 (t)+�(4)1 (t)� + �(4)2 (t)�2+�(4)3 (t)�3+�(4)4 (t)�4 (23)

Now the choice for the location of points (ti, i = 4, 5, 6) to make the
quartic curve to a unique parabola, can be achieved by setting:

�(4)3 (t) = 0, �(4)4 (t) = 0 (24)

Now, Eq. (24) can be explicitly written as

− a(4)21 (t) + a(4)12 (t) + a(4)31 (t) − 2a(4)22 (t) + 3a(4)13 (t) = 0

− a(4)31 (t) + a(4)22 (t) − a(4)13 (t) = 0 (25)

Using the explicit relations for the coefficients a(4)ij (t) as listed in

Appendix B, in Eq. (25) above, we obtain

t4 − t6 = 1
2 (t1 − t2), 4(t4 + t6) − 6t5 = (t1 + t2) (26)

Using Eq. (13), we have

a(4)31 (t) = 1
2 (a

(4)
22 (t) − a(4)12 (t) + a(4)21 (t))

a(4)13 (t) = 1
2 (a

(4)
22 (t) + a(4)12 (t) − a(4)21 (t)) (27)

Using Eq. (27) in Eq. (3a), we obtain

3t = 3t3 + 3(t1 − t3)� + 3(t2 − t3)� + a(4)11 (t)��

+ a(4)21 (t)

(
�2� − �3�

2
+ ��3

2

)
+ a(4)12 (t)

(
��2 + �3�

2
− ��3

2

)

+ a(4)22 (t)

(
�2�2 + �3�

2
+ ��3

2

)
(28)

Now choose t13, t14 and t15 such that a(4)21 (t) = 0, a(4)12 (t) = 0 and

a(4)22 (t)=0, so that the above Eq. (28) simplifies to the quadratic form:

3t = 3t3 + 3(t1 − t3)� + 3(t2 − t3)� + a(4)11 (t)�� (29)

From Appendix B, on using explicit relations of a(4)21 (t), a
(4)
12 (t) and

a(4)22 (t) and further on account of Eq. (26), we suppose that the loca-
tion of all the points on the curved side is known. Hence, we obtain
the three additional equations from

a(4)21 (t) = 0, a(4)12 (t) = 0 and a(4)22 (t) = 0 as

14t13 + 2t14 + 10t15 = t5 + 2t6 − t1 − 4t3
− 14t13 + 10t14 + 2t15 = t5 + 2t4 − t1 − 4t3

4t13 − 2t14 − 2t15 = t3 − t5 (30)

The solution to the system of Eqs. (26) and (30) has three solutions
which depend on the relations:

t4 − t6 = 1
2 (t1 − t2) (31a)

8t4 − 6t5 = (3t1 − t2) (31b)

6t5 − 8t6 = (t1 − 3t2) (31c)

The first solution can be obtained from the relation of Eq. (31a) which
will locate t1, t4, t6 and t2 on the original curved boundary and then
t5 can be determined by the relation:

t5 = 1
6 (−3t1 + t2 + 8t4) (32a)

and the t5 thus determined may or may not lie on curved boundary.
Thus all points along the curved boundary are known in this man-
ner. The second solution can be obtained in a similar manner from
Eq. (31b) and the relation

t6 = 1
8 (−t1 + 3t2 + 6t5) (32b)

The third solution can be determined from Eq. (31c) and the relation

t4 = 1
2 (t1 − t2 + 2t6) (33)

The interior points t13, t14 and t15 can be then determined either
Eq. (30) or Eq. (29), which is further expressible as

t = t3 + (t1 − t3)� + (t2 − t3)� + 8
3 [(t4 + t6) − (t1 + t2)]�� (34)

Once the location of the points on the boundary is known, we have
from Eq. (34), we can determine the interior points from the follow-
ing:

t13 = t(1/4, 1/4), t14 = t(1/2, 1/4) and t15 = t(1/4, 1/2) (35)

Quintic case (n = 5):
In this case, the curved side of the triangle is spanned by the

coordinates (ti, i = 1, 4, 5, 6, 7, 2). The point transformation for this
case can be obtained from Eq. (3a). Hence, on the curved side, we
obtain the following equation on substituting � = 1 − � in Eq. (3a):

24t(�, 1 − �) = �(5)0 (t) + �(5)1 (t)� + �(5)2 (t)�2 + �(5)3 (t)�3 + �(5)4 (t)�4

+ �(5)5 (t)�5 (36)

Now, the choice for the location of point's ti, i=4, 5, 6, 7 to make the
above quintic curve to reduce to a unique parabola can be achieved
by setting:

�(5)3 (t) = 0, �(5)4 (t) = 0, �(5)5 (t) = 0 (37)

Now, Eq. (37) can be explicitly written as

− a(5)21 (t) + a(5)12 (t) + a(5)31 (t) − 2a(5)22 (t) + 3a(5)13 (t) + a(5)32 (t)

− 3a(5)23 (t) + 6a(5)14 (t) = 0

− a(5)31 (t)+a(5)22 (t)−a(5)13 (t) + a(5)41 (t) − 2a(5)32 (t) + 3a(5)23 (t) − 4a(5)14 (t)=0

− a(5)41 (t) + a(5)32 (t) − a(5)23 (t) + a(5)14 (t) = 0 (38)

We can equivalently express the Eq. (38) as

(a(5)41 (t) − a(5)14 (t)) − (a(5)32 (t) − a(5)23 (t)) = 0

(a(5)12 (t) − a(5)21 (t)) + (a(5)13 (t) − a(5)31 (t)) + (a(5)23 (t) − a(5)32 (t)) = 0

a(5)22 (t) − (a(5)31 (t) + a(5)13 (t)) − 3
2 (a

(5)
41 (t) + a(5)14 (t))

+ 1
2 (a

(5)
32 (t) + a(5)23 (t)) = 0 (39)

Using the explicit relations for the coefficients a(5)ij (t) as listed in

Appendix B, in Eq. (39) above, we obtain the solution:

t4 − t7 = 3
5 (t1 − t2) (40a)

t5 − t6 = 1
5 (t1 − t2) (40b)
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3(t4 + t7) − 2(t5 + t6) = (t1 + t2), (t = x, y) (40c)

We now suppose that on using the above Eqs. (40a)–(40c), all the
coordinate points along the curved boundary of the quintic triangular
element are known. We have at least two sets of solutions emerging
from the above equations. In the first solution, we can assume t4
and t7 to lie on the original curved boundary and the other two
points t5 and t6 may lie slightly off the curved boundary. In the
second solution, we can assume t5 and t6 to lie on the original curved
boundary and then the other two point's t4 and t7 may lie off the
curved boundary.

We shall now proceed to determine the interior points
t16, t17, t18, t19, t20, t21 of the quintic curved triangular element. It is
also clear by now that these interior points can be easily determined
from Eqs. (7a–b) and Eq. (11).

Using Eq. (39) in Eq. (3a), we can write

24t(�,�)=24t3 + 24(t1 − t3)� + 24(t2 − t3)� + a(5)11 (t)��

+ 1
2 (�

2� + ��2)(a(5)21 (t) + a(5)12 (t))

+ 1
2 (�

3� + ��3 + 2�2�2)(a(5)31 (t) + a(5)13 (t))

+ 1
2 (�

4� + ��4 + 3�2�2)(a(5)41 (t) + a(5)14 (t))

+ 1
2 (�

2�3 + �3�2 − �2�2)(a(5)32 (t) + a(5)23 (t))

+ 1
2 (−��2+�2�+�2�3−�3�2−�4� + ��4)(a(5)21 (t) − a(5)12 (t))

+ 1
2 (−��3 + �3� + �2�3 − �3�2 − �4� + ��4)(a(5)31 (t)

− a(5)13 (t)) (41)

Now, we choose the interior points t16, t17, t18, t19, t20, t21 so that
the quintic curve passing through the points t1, t4, t5, t6, t7, t2 degen-
erates into a unique parabola, this requires from the above Eq. (41)
that

a(5)21 (t) + a(5)12 (t) = 0, a(5)31 (t) + a(5)13 (t) = 0, a(5)41 (t) + a(5)14 (t) = 0

a(5)32 (t) + a(5)23 (t) = 0, a(5)21 (t) − a(5)12 (t) = 0

a(5)31 (t) − a(5)13 (t) = 0 (42)

Now on using Eq. (42) in Eq. (41), we obtain

24t = 24t3 + 24(t1 − t3)� + 24(t2 − t3)� + a(5)11 (t)�� (43)

It can be shown that the relations of Eq. (42), viz

a(5)21 (t) − a(5)12 (t) = 0, a(5)31 (t) − a(5)13 (t) = 0

lead us to

7(t1 − t2) + 11(t4 − t7) + 2(t5 − t6) − 60(t17 − t18)

+ 120(t19 − t21) = 0

(t1 − t2) − 3(t4 − t7) − (t5 − t6) + 16(t17 − t18)

− 27(t19 − t21) = 0 (44)

Now from Eqs. (40a–b) and Eq. (44), we obtain

t17 − t18 = 2
5 (t1 − t2), t19 − t21 = 1

5 (t1 − t2) (45)

The remaining relations of Eq. (42), viz

a(5)21 (t) + a(5)12 (t) = 0, a(5)31 (t) + a(5)13 (t) = 0

a(5)41 (t) + a(5)14 (t) = 0 and a(5)32 (t) + a(5)23 (t) = 0

further lead us to the following set of linear equations:

188t16 + 36t20 + 38(t17 + t18) − 114(t19 + t21) = k1
96t16 + 12t20 + 32(t17 + t18) − 66(t19 + t21) = k2

4t16 + 0t20 + 2(t17 + t18) − 3(t19 + t21) = k3
12t16 + 6t20 + 2(t17 + t18) − 9(t19 + t21) = k4 (46a)

where

k1 = (t1 + t2) + 44t3 + 13(t4 + t7)

k2 = (t1 + t2) + 20t3 + 9(t4 + t7)

k3 = 1
10 [(t1 + t2) + 8t3 + 5(t4 + t7)]

k4 = 1
10 [−5(t1 + t2) + 20t3 + 15(t4 + t7)] (46b)

The solution to the linear system of Eq. (46a–b) is

t16 = 1
40 [3(t1 + t2) + 24t3 + 5(t4 + t7)]

t17 + t18 = 1
20 [(t1 + t2) + 8t3 + 15(t4 + t7)]

t19 + t21 = 1
10 [(t1 + t2) + 8t3 + 5(t4 + t7)]

t20 = 1
10 [−(t1 + t2) + 2t3 + 5(t4 + t7)] (47)

Now,we present the two sets of solutions emerging from Eqs. (40a–c)
as explained earlier.

First solution: We determine the points t4 and t7 to lie on the
original curved boundary by using Eq. (40a). Then the points t5 and
t6 can be determined by Eq. (40b) and Eq. (40c). This gives us

t5 = 3
4 (t4 + t7) − 1

20 (3t1 + 7t2) (48a)

t6 = 3
4 (t4 + t7) − 1

20 (7t1 + 3t2) (48b)

Second solution: We determine the points t5 and t6 to lie on the
original curved boundary by using Eq. (45b). Then the points t4 and
t7 can be determined by Eq. (40a) and Eq. (40c). This gives us

t4 = 1
3 (t5 + t6) + 1

15 (7t1 − 2t2) (49a)

t7 = 1
3 (t5 + t6) + 1

15 (−2t1 + 7t2) (49b)

The interior points on the curved triangle in either case can be de-
termined by Eqs. (45) and (47). This gives us

t16 = 3
40 [(t1 + t2) + 3

5 t3 + 1
8 (t4 + t7)]

t17 = 1
40 [(9t1 − 7t2) + 1

5 t3 + 3
8 (t4 + t7)]

t18 = 1
40 [(−7t1 + 9t2) + 1

5 t3 + 3
8 (t4 + t7)]

t19 = 1
20 [(3t1 − t2) + 2

5 t3 + 1
4 (t4 + t7)]

t20 = −1
10 [(t1 + t2) + 1

5 t3 + 1
2 (t4 + t7)]

t21 = 1
20 [(−t1 + 3t2) + 2

5 t3 + 1
4 (t4 + t7)] (50)

Explicit form of the point transformations:

Theorem. The point transformation for the curved triangular elements
with one curved side and two straight sides can be expressed in terms
of the four points (ti, i = 1, 2, 3, 4), (t = x, y) as:

t(�,�) = t3 + (t1 − t3)� + (t2 − t3)�

+ n
(n − 1)

[nt4 − ((n − 1)t2 + t1)]�� (51)

where n = 2, 3, 4, 5 for the quadratic, cubic, quartic and quintic curved
triangular elements, respectively.

Proof. This follows from Lemma and the linear relation between the
nodal coordinates along the curved boundary derived in the previous
sections. �



926 H.T. Rathod et al. / Finite Elements in Analysis and Design 44 (2008) 920 -- 932

Explicit form of the Jacobians: By using the transformation Eq. (51),
the Jacobian J(�,�) can be expressed as

J(�,�) = �(x, y)
�(�,�)

= �x
��

�y
��

− �x
��

�y
��

, J(�,�) = �0 + �1� + �2� (52)

where

�0 = (x1 − x2)(y2 − y3) − (x2 − x3)(y1 − y3)

�1 = (x1 − x3)A
(n)
11 (y) − (y1 − y3)A

(n)
11 (x)

�2 = (y2 − y3)A
(n)
11 (x) − (x2 − x3)A

(n)
11 (y)

A(n)11 (t) = n
(n − 1)

[nt4 − ((n − 1)t2 + t1)]

t = x, y (n = 2, 3, 4, 5) (53)

6. Application example

6.1. Determination of points over the curved triangle

To determine the application of derived solutions of curved
boundary triangular elements, we consider a domain consisting of
the quarter ellipse defined by

x2

36
+ y2

4
= 1

The location of points along the curved boundary, which reduce
the isoparametric transformation to parametric equations of the
form: t = �(n)0 (t) + �(n)1 (t)� + �(n)2 (t)�2, (n = 2, 3, 4, 5) is discussed in
the previous sections of this paper in full detail. Further, the loca-
tion of the points in the interior of the curved triangle which reduce
the isoparametric transformations from cubic to quintic order to the
quadratic transformation is: t(�,�) = t3 + (t1 − t3)� + (t2 − t3)� +
A(n)11 (t)��, (n = 3, 4, 5) under the subparametric concept, is also fully
described in the previous sections. The determination of points over
the curved triangle i.e. the points along the curved boundary of the
triangle and the points located in the interior of the curved trian-
gle is of utmost importance for us to proceed with the application
of higher order curved triangular elements under the subparametric
transformation. Hence, we have tabulated these points for the quar-
tic and quintic order curved triangular elements in the various tables
listed in this paper, viz, Table 1a–c (quartic element) and Table 2a–c
(quintic element). We have also included a table of coordinates in
Table 3 for cubic triangle as derived in [14].

6.2. Determination of arc length for the curved triangle

Calculating the length of a given curve between two end points
is useful in many applications. Hence, to demonstrate further appli-
cation of the derived quadratic transformation of curved triangular
elements (quadratic, cubic, quartic and quintic), we propose to deter-
mine the arc length of the quarter ellipse (as triangular element). We
have shown that the parametric equations along the curved bound-
ary are: t(�, 1 − �) = �(n)0 (t) + �(n)1 (t)� + �(n)2 (t)�2, (n = 2, 3, 4, 5) i.e.

x(�) = �(n)0 (x) + �(n)1 (x)� + �(n)2 (x)�2

y(�) = �(n)0 (y) + �(n)1 (y)� + �(n)2 (y)�2, (n = 2, 3, 4, 5) (54)

We can find the arc lengths from the above equation as:

s = arc length =
∫ 1

0

√(
dx
d�

)2
+
(
dy
d�

)2
d� (55)

Table 1

Nodal points-i x-coordinate point xi y-coordinate point yi
x2i
36 + y2i

4

(a) First solutiona

4 5.468626967 0.822875655 0.999999999
5 4.291502623 1.430500873 1.023166375
6 2.468626967 1.822875655 0.999999999
13 1.822875656 0.607625218 0.184604203
14 3.645751311 0.715250436 0.497104202
15 2.145751311 1.215250437 0.497104202

(b) Second solutionb

4 5.527746982 0.777746981 0.999999999
5 4.370329309 1.370329308 0.999999999
6 2.527746982 1.777746981 0.967582326
13 1.842582327 0.592582327 0.182097054
14 3.685164655 0.685164654 0.494597054
15 2.185164655 1.185164654 0.483791163

(c) Third solutionc

4 5.333240943 0.842582327 0.967582326
5 4.110987924 1.456776436 0.999999999
6 2.333240943 1.842582327 0.999999999
13 1.777746981 0.614194109 0.182097054
14 3.555493962 0.728388218 0.483791163
15 2.055493962 1.228388218 0.494597054

aTable of the coordinate points ((xi , yi), i = 4, 5, 6) along the curved boundary
and the coordinate points ((xi , yi), i = 13, 14, 15) in the interior of the curved quartic
triangle: {(x, y)/x = 0, y = 0, x2/36 + y2/4�1}.

bTable of the coordinate points ((xi , yi), i = 4, 5, 6) along the curved boundary
and the coordinate points ((xi , yi), i = 13, 14, 15) in the interior of the curved quartic
triangle: {(x, y)/x = 0, y = 0, x2/36 + y2/4�1}.

cTable of the coordinate points ((xi , yi), i = 4, 5, 6) along the curved boundary
and the coordinate points ((xi , yi), i = 13, 14, 15) in the interior of the curved quartic
triangle: {(x, y)/x = 0, y = 0, x2/36 + y2/4�1}.

Table 2

i xi yi
x2i
36 + y2i

4

(a) First solutiona

4 5.641874854 0.680624847 0.999999999
5 4.862811813 1.220937271 1.029531364
6 3.662811813 1.620937271 1.029531364
7 2.041874542 1.880624847 0.999999999
16 1.410468636 0.470156211 0.110523481
17 4.231405907 0.610468635 0.590523431
18 1.831405907 1.410468635 0.590523431
19 2.820937271 0.540312423 0.294031242
20 3.241874542 1.080624847 0.583875030
21 1.620937271 0.940312423 0.294031242

(b) Second solutionb

4 5.6 0.666666666 0.982222222
5 4.8 1.2 1
6 3.6 1.6 1
7 2.0 1.866666666 0.982222222
16 1.4 0.466666666 0.108888888
17 4.2 0.6 0.58
18 1.8 1.4 0.58
19 2.8 0.533333333 0.288888888
20 3.2 1.066666666 0.568888888
21 1.6 0.933333333 0.288888888

aTable of the coordinate points ((xi , yi), i = 4, 5, 6, 7) along the curved boundary
and the coordinate points ((xi , yi), i=16, 17, 18, 19, 20, 21) in the interior of the curved
quintic triangle: {(x, y)/x = 0, y = 0, x2/36 + y2/4�1}.

bTable of the coordinate points ((xi , yi), i = 4, 5, 6, 7) along the curved boundary
and the coordinate points ((xi , yi), i=16, 17, 18, 19, 20, 21) in the interior of the curved
quintic triangle: {(x, y)/x = 0, y = 0, x2/36 + y2/4�1}.

We have described the parametric equations along the curved
boundary of the ellipse (under subparametric point transformation
and usual isoparametric point transformation) and the computed
values of the arc length in Table 4a,b for the various curved triangu-
lar elements (quadratic, cubic, quartic and quintic order elements).
We can also note that the theoretical value of the arc length s of a
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Table 3

Nodal points-i x-coordinate point xi y-coordinate point yi
x2i
36 + y2i

4

4 5.123105626 1.041035209 1
5 3.123105626 1.707701875 0.999999999
10 2.561552813 0.853850937 0.364530711

Table of the coordinate points ((xi , yi), i = 4, 5) along the curved boundary and the
coordinate point (x10, y10) in the interior of the curved cubic triangle:

{(x, y)/x = 0, y = 0, x2/36 + y2/4�1}.

quarter ellipse: x2/a2 + y2/b2 = 1 is given by the series expression

s = a
∫ �/2

0

√
1 − e2cos2 �d�, e2 = 1 − b2

a2

= a�
2

⎡
⎣1 −

∞∑
n=1

{
1.3.5 . . . (2n − 1)

2.4.6 . . . (2n)

}2
e2n

(2n − 1)

⎤
⎦ (56a)

Now we have for ellipse of the application example of this section,
namely:

x2

36
+ y2

4
= 1, e2 = 8

9
, a = 6, b = 2

and the value of s is

s = 3�

⎡
⎣1 −

14∑
n=1

{
1.3.5 . . . (2n − 1)

2.4.6 . . . (2n)

}2
e2n

(2n − 1)

⎤
⎦

s = 6.688222104 (56b)

We have then compared the theoretical value of arc length s as
found in Eq. (56b) with finite element approximation of s (expressed
as an integral): (i) by straight forward application of numerical inte-
gration and the usual isoparametric mapping and then (ii) by straight
forward application of numerical/analytical integration and the sub-
parametric mapping proposed in the present paper. These findings
are given in Tables 4a and b, respectively.

6.3. Determination of center of gravity (Centroid) of curved triangular
element

Mass property calculations are one of the earliest engineering
applications implemented into CAD/CAM systems. One of these prop-
erties is the centroid of an area bounded by a curve. Hence, to demon-
strate the further application of the derived quadratic transformation
formula of curved triangular elements we propose to determine the
centroid of the quarter ellipse (as a curved triangular element). Let
us consider the area A of one quadrant of the ellipse: x2/a2+y2/b2=1
then the centroid (x, y) of the area A is given by

x =
∫ ∫

A
xdxdy

/∫ ∫
A
dxdy, y =

∫ ∫
A
ydxdy

/∫ ∫
A
dxdy (57a)

∫ ∫
A
xdxdy =

∫ a

0

⎛
⎝∫ b/a

√
a2−b2

0
xdy

⎞
⎠dx = ba2

3

∫ ∫
A
ydxdy =

∫ a

0

⎛
⎝∫ b

a

√
a2−b2

0
ydy

⎞
⎠dx = ab2

3

∫ ∫
A
dxdy =

∫ a

0

⎛
⎝∫ b

a

√
a2−b2

0
dy

⎞
⎠dx = �ab

4
(57b)

From Eqs. (57a,b), we obtain

x = 4a
3�

, y = 4a
3�

(58)

For the application example, we have a= 6, b= 2 and from Eq. (58):

x = 2.546479089, y = 0.848826363,
∫ ∫

A
xdxdy = 24∫ ∫

A
ydxdy = 8,

∫ ∫
A
dxdy = 9.424777961 (59)

We shall now use the subparametric point transformations and ex-
plicit form of Jacobian derived in Eqs. (57)–(59) to obtain the above
physical quantities (theoretical):∫ ∫

A
dxdy = �0

2
+ (�1 + �2)

6
(60a)

∫ ∫
A
t dxdy = �0

⎡
⎣ t3

2
+ (t1 − t3)

6
+ (t2 − t3)

6
+ A(n)11 (t)

24

⎤
⎦

+ �1

⎡
⎣ t3

6
+ 2(t1 − t3)

24
+ (t2 − t3)

24
+ 2A(n)11 (t)

120

⎤
⎦

+ �2

⎡
⎣ t3

6
+ (t1 − t3)

24
+ 2(t2 − t3)

24
+ 2A(n)11 (t)

120

⎤
⎦ (60b)

where, t= x, y and n=2(1) 5 for quadratic, cubic, quartic and quintic
order curved triangle. We can then obtain the required integrals, viz,∫∫

Axdxdy,
∫∫

Aydxdy from Eq. (60b).
We have then compared the theoretical values of x, y and that of

the centroid found by two methods and these findings are tabulated
in Tables 4a and b.

7. Conclusions

This paper concerns the use of isoparametric coordinate trans-
formation to deal with the curved boundaries in the finite ele-
ment method. This involves the transformation of each triangle in
global/physical coordinate system (x, y) with one curved side and two
straight sides into a standard triangle: {(�,�)/0��,��1,� + ��1}
in the local or natural coordinate system (�,�). Isoparametric coor-
dinate transformation for each curved triangle is obtained through
point transformation of global (x, y) coordinates and so the original
curves are implicitly replaced by parabolic, cubic, quartic and quin-
tic curves depending on the degree of parametric coordinates. It is
shown in this paper to find equations of quartic and quintic curves
in terms of isoparametric coordinate transformations and to choose
the coordinate points on the curved sides in a systematic way so that
the implied curve is always a parabola passing through four points
of the original curved boundary and so is a reasonable approxima-
tion to it. We have also shown that the point transformations are
expressible as

t(�,�)=t3 + (t1−t3)� + (t2 − t3)� + n
(n−1)

[nt4−{(n − 1)t2 + t1}]��

(t = x, y), (n = 2, 3, 4, 5)

and the Jacobian required in the evaluation of integrals is also easily
expressed as

J = �0 + �1� + �2�

Finally we have considered an application example, which consists
of the quarter ellipse:{
(x, y)/x = 0, y = 0,

x2

36
+ y2

4
= 1

}

We take this as a curved triangle in the physical coordinate system
(x, y). We have demonstrated the use of point transformations to
determine the points along the curved boundary of the triangle and
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Table 4

Triangle order/ Location of points Parametric equations of the curved boundary Arc length s =
∫ 1

0

√(
dx
d�

)2

+
(
dy
d�

)2

d�

discretisation on type on boundary curve x(�) y(�)

(a)
Quadratic triangle
First solution x4 = √

3.6
y4 = √

3.6
1.589466384� + 4.4105336�2 2 + 1.589466384� − 3.589466384�2 6.520633016

Second solution x4 = 3
√
3

y4 = √
2

10.970562748� − 4.970562748�2 2 − 0.34314575� − 1.656854249�2 6.643436878

Third solution x4 = 3
y4 = √

3
6� 2 + 0.92820323� − 2.92820323�2 6.524585318

Fourth solution x4 = 3
√
3

y4 = 1
14.784609691� − 8.784609691�2 2 − 2� 6.985197369

Cubic triangle x4 = 5.123105626
y4 = 1.041035209
x5 = 3.123105626
y5 = 1.707701875

11.053975317� − 5.053975317�2 2 − 0.315341559� − 1.684658441�2 6.656076937

Quartic triangle
First solution x4 = 5.468626967

y4 = 0.822875655
x5 = 4.291502623
y5 = 1.430500873
x6 = 2.468626967
y6 = 1.822875655

11.166010491� − 5.166010491�2 2 − 0.277996507� − 1.722003493�2 6.673543003

Second solution x4 = 5.527746982
y4 = 0.777746982
x5 = 4.370329309
y5 = 1.370329309
x6 = 2.527746982
y6 = 1.777746981

11.481317237� − 5.481317237�2 2 − 0.518682763� − 1.481317237�2 6.666616598

Third solution x4 = 5.333240943
y4 = 0.842582327
x5 = 4.110987924
y5 = 1.456776436
x6 = 2.333240943
y6 = 1.842582327

10.443951696� − 4.443951696�2 2 − 0.172894256� − 1.827105744�2 6.566192725

Quintic triangle
First solution x4 = 5.641874854

y4 = 0.680624847
x5 = 4.862811813
y5 = 1.220937271
x6 = 3.662811813
y6 = 1.620937271
x7 = 2.041874542
y7 = 1.880624847

11.261715888� − 5.261715888�2 2 − 0.2460947065� − 1.753905294�2 6.688909768

Second solution x4 = 5.6, y4 = 2/3 11� − 5�2 2 − (1/3)� − (5/3)�2 6.647862862
x5 = 4.8, y5 = 1.2
x6 = 3.6, y6 = 1.6
x7 = 2.0
y7 = 1.866666666

Exact arc length s = 6.688222104

(b)
Cubic triangle x4 = 4, y4 = 1.490711985 6� 2 − 0.73764118� + 2.40640886�2 6.572261275

−3.66876767�3

x5 = 2, y5 = 1.885618083

Quartic triangle x4 = 4.5, y4 = 1.322875656 6� 2 + 0.5879269� − 5.3482509�2 6.604479265
+9.642078�3 − 6.881754�4

x5 = 3, y5 = 1.732050808
x6 = 1.5, y6 = 1.936491673

Quintic triangle x4 = 4.8, y4 = 1.2 6� 2 − 0.502628� + 4.261812�2 − 18.575792�3 6.620567528
+26.679724�4 − 13.863112�5

x5 = 3.6, y5 = 1.6
x6 = 2.4, y6 = 1.83303027
x7 = 1.2, y7 = 1.959591794

Exact arc length s = 6.688222104

(a) Parametric equations x(�), y(�) of the curved boundary and arc length for the triangle: {(x, y)/x= 0, y= 0, x2/36+ y2/4�1}: (Present theory (i.e., subparametric mapping)).
(b) Parametric equations x(�), y(�) of the curved boundary and arc length for the triangle: {(x, y)/x = 0, y = 0, x2/36 + y2/4�1}: (Isoparametric mapping).

also the points in the interior of the curved triangle. These findings
are tabulated in Tables 1 and 2. We have next demonstrated the use
of point transformation to determine the arc length of the curved

boundary and this is summarized in Tables 4a and b. An additional
demonstration that uses the point transformation and the Jacobian
is considered. We have thus evaluated certain integrals, for example,
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Table 5

Triangle order/ Location of points Explicit form of Explicit form of Jacobian x (centroid)
discretisation type on boundary curve parametric equations

x = a10� + a11�� J = �0 + �1� + �2� y (centroid)
y = b10� + b11��

(a)
Quadratic triangle x4 = √

3.6 a10 = 6 �0 = 12 A 8.1192885118
First solution y4 = √

3.6 a11 = −4.41053361 �1 = 21.5367983 Ix 18.0715731
b01 = 2 �2 = −8.821067232 Iy 6.88
b11 = 3.58946638 x 2.225758214

y 0.847364887
Second solution x4 = 3

√
3 a10 = 6 �0 = 12 A 9.313708499

y4 = √
2 a11 = 4.970562748 a1 = 9.941125498 Ix 23.58882251

b01 = 2 �2 = 9.941125498 Iy 7.8627417
b11 = 1.656854249 x 2.532635105

y 0.844211701
Third solution x4 = 3 a10 = 6 �0 = 12 A 8.92320323

y4 = √
3 a11 = 0 �1 = 17.56921938 Ix 20.78460969

b01 = 2 �2 = 0 Iy 7.785640646
b11 = 2.92820323 x 2.327972287

y 0.872027713
Fourth solution x4 = 3

√
3 a10 = 6 �0 = 12 A 8.92320323

y4 = 1 a11 = 8.784609691 �1 = 0 Ix 23.35692194
b01 = 2 �2 = 17.56921938 Iy 6.92820323
b11 = 0 x 2.61608314

y 0.775990762

Cubic triangle x4 = 5.123105626 a10 = 6 �0 = 12 A 9.369316877
y4 = 1.041035209 a11 = 5.053975317 �1 = 10.10795063 Ix 23.81079506
x5 = 3.123105626 b01 = 2 �2 = 10.10795063 Iy 7.937894674
y5 = 1.707701875 b11 = 1.684658441 x 2.541358711

y 0.847222351

Quartic triangle x4 = 5.468626967 a10 = 6 �0 = 12 A 9.44400699
First solution y4 = 0.822875655 a11 = 5.166010491 �1 = 10.33202098 Ix 24.1111986

x5 = 4.291502623 b01 = 2 �2 = 10.33202098 Iy 8.037066197
y5 = 1.430500873 b11 = 1.722003493 x 2.553068695
x6 = 2.468626967 y 0.851022898
y6 = 1.822875655

Second solution x4 = 5.527746982 a10 = 6 �0 = 12 A 9.308422982
y4 = 0.777746982 a11 = 5.481317237 �1 = 8.887903422 Ix 23.73872054
x5 = 4.370329309 b01 = 2 �2 = 10.96263447 Iy 7.7985505381
y5 = 1.370329309 b11 = 1.481317237 x 2.55024085
x6 = 2.527746982 y 0.837790181
y6 = 1.777746981

Third solution x4 = 5.333240943 a10 = 6 �0 = 12 A 9.308422975
y4 = 0.842582327 a11 = 4.443951696 �1 = 10.96263446 Ix 23.39551612
x5 = 4.110987924 b01 = 2 �2 = 8.887903392 Iy 7.912906838
y5 = 1.456776436 b11 = 1.827105744 x 2.513370544
x6 = 2.333240943 y 0.850080283
y6 = 1.842582327

Quintic triangle x4 = 5.641874854 a10 = 6 �0 = 12 A 9.50781059
First solution y4 = 0.680624847 a11 = 5.261715888 �1 = 10.52343176 Ix 24.36914204

x5 = 4.862811813 b01 = 2 �2 = 10.52343178 Iy 8.123047347
y5 = 1.220937271 b11 = 1.75390529 x 2.563065577
x6 = 3.662811813 y 0.854355192
y6 = 1.620937271
x7 = 2.041874542
y7 = 1.880624847

Second solution x4 = 5.6, y4 = 2/3 a10 = 6 �0 = 12 A 9.333333333
x5 = 4.8, y5 = 1.2 a11 = 5 �1 = 10 Ix 23.66666666
x6 = 3.6, y6 = 1.6 b01 = 2 �2 = 10 Iy 7.888888888
x7 = 2.0 b11 = 5/3 x 2.535714286
y7 = 1.866666666 y 0.845238095

Exact values: A = 9.424777961, Ix = 24, Iy = 8, x = 2.546479089, y = 0.848826363

Triangle order Location of points Explicit form of parametric equations Explicit form of Jacobian x (centroid)
y (centroid)

(b)

Cubic triangle x4 = 4
y4 = 1.490711985
x5 = 2,
y5 = 1.885618083

x = 6�
y = 2� − 6.193485324��

+11.12461182�2�
+7.4555844139��2

J = 12 − 37.16091194�
+66.74767092�2

+89.47012968��

A
Ix
Iy
x
y

9.096742596
23.12461092
7.377903058
2.542075988
0.811048898
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Table 5 (Continued)

Triangle order Location of points Explicit form of parametric equations Explicit form of Jacobian x (centroid)
y (centroid)

Quartic triangle x4 = 4.5
y4 = 1.322875656
x5 = 3
y5 = 1.732050808
x6 = 1.5
y6 = 1.93649167

x = 6�
y = 2� + 9.644828983��

−38.04483392�2�
−25.680546464��2

+46.851251712�2�2

+35.109361323�3�
+18.623644715��3

J = 12 + 57.8689739�
−228.2690035�2

−308.1665575��
+210.6561679�3

+232.5034189��2

+714.3943562�2�
−280.8748907�3�
+148.9891577��3

A
Ix
Iy
x
y

9.272290945
23.053301581
7.933060468
2.486257357
0.855566809

Quintic triangle x4 = 4.8
y4 = 1.2
x5 = 3.6
y5 = 1.6
x6 = 2.4
y6 = 1.83303027
x7 = 1.2
y7 = 1.959591794

x = 6�
y = 2� − 13.218408��

+84.021464�2�
+57.050476��2

−223.910981�2�2

−166.66666667�3�
−89.156544��3

+104.1666667�4�
+46.821848��4

+208.333333�3�2

+164.851634�2�3

J = 6[2 − 13.218408�
+84.021464�2

+114.10095��
−166.66667�3

−267.46963��2

−447.82196�2�
+104.16667�4

+187.28739��3

+416.6667�3�
+494.55489�2�2]

A
Ix
Iy
x
y

9.304387916
23.36086391
7.923785998
2.510736238
0.85161819

Exact values: A = 9.424777961, Ix = 24, Iy = 8, x = 2.546479089, y = 0.848826363

(a) Table of explicit form of subparametric point transformations and the Jacobian for the curved triangle A : {(x, y)/x = 0, y = 0, x2/36 + y2/4�1} and also the values of
integrals A = ∫∫

Adxdy, Ix = ∫∫
Axdxdy, Iy = ∫∫

Aydxdy, x = Ix/A = x-centroid, y = Iy/A = y-centroid.
(b) Table of explicit form of isoparametric point transformations and the Jacobian for the curved triangle A : {(x, y)/x=0, y=0, x2/36+y2/4�1} and also the values of integrals
A = ∫∫

Adxdy, Ix = ∫∫
Axdxdy, Iy = ∫∫

Aydxdy, x = Ix/A = x-centroid, y = Iy/A = y-centroid.

∫∫
At

� dxdy, (t = x, y,� = 0, 1) and found the physical quantities like
area and centroid of the curved triangular elements. These findings
are tabulated in Tables 5a and b. We hope that this study gives us
the required impetus in the use of higher order curved triangular
elements under the subparametric coordinate transformation.
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Appendix A

A.1. Quadratic (n = 2)

N(2)
1 = [−� + 2�2], N(2)

2 = [−� + 2�2]

N(2)
3 = [1 − 3� − 3� + 2�2 + 4�� + 2�2]

N(2)
4 = 4��, N(2)

5 = [4� − 4�� − 4�2], N(2)
6 = [4� − 4�� − 4�2]

A.2. Cubic (n = 3)

N(3)
1 = 1

2 [2� − 9�2 + 9�3], N(3)
2 = 1

2 [2� − 9�2 + 9�3]

N(3)
3 = 1

2 [2 − 11� − 11� + 18�2 + 36�� + 18�2 − 9�3

− 27�2� − 27��2 − 9�3]

N(3)
4 = 9

2 [−�� + 3�2�], N(3)
5 = 9

2 [−�� + 3��2]

N(3)
6 = 9

2 [−� + �� + 4�2 − 3��2 − 3�3]

N(3)
7 = 9

2 [2� − 5�� − 5�2 + 3�2� + 6��2 + 3�3]

N(3)
8 = 9

2 [2� − 5�� − 5�2 + 3��2 + 6�2� + 3�3]

N(3)
9 = 9

2 [−� + �� + 4�2 − 3�2� − 3�3], N(3)
10 = 27[�� − �2� − ��2]

A.3. Quartic (n = 4)

N(4)
1 = 1

3 [−3� + 22�2 − 48�3 + 32�4]

N(4)
2 = 1

3 [−3� + 22�2 − 48�3 + 32�4]

N(4)
3 = 1

3 [3 − 25� − 25� + 70�2 + 140�� + 70�2 − 80�3 − 240�2�

− 240��2 − 80�3 + 32�4

+ 128�3� + 192�2�2 + 128��3 + 32�4]

N(4)
4 = 1

3 [16�� − 96�2� + 128�3�]

N(4)
5 = 1

3 [12�� − 48�2� − 48��2 + 192�2�2]

N(4)
6 = 1

3 [16�� − 96��2 + 128��3],

N(4)
7 = 1

3 [16� − 16�� − 112�2 + 96��2 + 224�3 − 128��3 − 128�4]

N(4)
8 = 1

3 [−36� + 84�� + 228�2 − 48�2� − 432��2 − 384�3

+ 192�2�2 + 384��3 + 192�4]

N(4)
9 = 1

3 [48� − 208�� − 208�2 + 288�2� + 576��2 + 288�3

− 128�3� − 384�2�2 − 384��3 − 128�4]

N(4)
10 = 1

3 [48� − 208�� − 208�2 + 288��2 + 576�2� + 288�3

− 128��3 − 384�2�2 − 384�3� − 128�4]

N(4)
11 = 1

3 [−36� + 84�� + 228�2 − 48��2 − 432�2� − 384�3

+ 192�2�2 + 384�3� + 192�4]

N(4)
12 = 1

3 [16� − 16�� − 112�2 + 96�2� + 224�3 − 128�3� − 128�4]

N(4)
13 = 1

3 [288�� − 672�2� − 672��2 + 384�3� + 768�2�2 + 384��3]

N(4)
14 = 1

3 [−96�� + 480�2� + 96��2 − 384�3� − 384�2�2]

N(4)
15 = 1

3 [−96�� + 96�2� + 480��2 − 384��3 − 384�2�2]
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A.4. Quintic (n = 5)

N(5)
1 = 1

24 [24� − 250�2 + 875�3 − 1250�4 + 625�5]

N(5)
2 = 1

24 [24� − 250�2 + 875�3 − 1250�4 + 625�5]

N(5)
3 = 1

24 [24 − 274� − 274� + 1125�2 + 2250�� + 1125�2

− 2125�3 − 6375�2� − 6375��2 − 2125�3 + 1875�4

+ 7500�3� + 11250�2�2 + 7500��3 + 1875�4 − 625�5

− 3125�4� − 6250�3�2 − 6250�2�3 − 3125��4 − 625�5]

N(5)
4 = 1

24 [−150�� + 1375�2� − 3750�3� + 3125�4�]

N(5)
5 = 1

24 [−100�� + 750�2� + 500��2 − 3750�2�2

− 1250�3� + 6250�3�2]

N(5)
6 = 1

24 [−100�� + 750��2 + 500�2� − 3750�2�2

− 1250��3 + 6250�2�3]

N(5)
7 = 1

24 [−150�� + 1375��2 − 3750��3 + 3125��4]

N(5)
8 = 1

24 [−150� + 150�� + 1525�2 − 1375��2 − 5125�3

+ 3750��3 + 6875�4 − 3125��4 − 3125�5]

N(5)
9 = 1

24 [400� − 900�� − 3900�2 − 3750�2�2 + 7750��2

+ 12250�3 + 500�2� − 18750��3 + 6250�2�3

− 15000�4 + 12500��4 + 6250�5]

N(5)
10 = 1

24 [−600� + 2350�� + 5350�2 + 18750�2�2

− 17750��2 − 14750�3 − 3000�2�

+ 1250�3� + 33750��3 + 16250�4 − 18750�2�3

− 6250�3�2 − 18750��4 − 6250�5]

N(5)
11 = 1

24 [600� − 3850�� − 3850�2 + 17750��2 + 8875�3

+ 8875�2� − 26250��3

+18750�2�3−26250�2�2−8750�3� − 8750�4+12500�3�2

+ 12500��4 + 3125�4� + 3125�5]

N(5)
12 = 1

24 [600� − 3850�� − 3850�2 + 17750�2�

+ 8875�3 + 8875��2 − 26250�3� + 18750�3�2

− 26250�2�2 − 8750��3 − 8750�4 + 12500�2�3

+ 12500�4� + 3125��4 + 3125�5]

N(5)
13 = 1

24 [−600� + 2350�� + 5350�2 + 18750�2�2

− 17750�2� − 14750�3 − 3000��2

+ 1250��3 + 33750�3� − 18750�3�2 − 6250�2�3

− 18750�4� + 16250�4 − 6250�5]

N(5)
14 = 1

24 [400� − 900�� − 3900�2 − 3750�2�2

+ 7750�2� + 12250�3 + 500��2

− 18750�3� + 6250�3�2 − 15000�4 + 12500�4� + 6250�5]

N(5)
15 = 1

24 [−150� + 150�� + 1525�2 − 1375�2� − 5125�3

+ 3750�3� + 6875�4 − 3125�4� − 3125�5]

N(5)
16 = 1

24
[6000�� − 23500��2 − 23500�2� + 60000�2�2

+ 30000��3 + 30000�3� − 37500�3�2

− 37500�2�3 − 12500��4 − 12500�4�]

N(5)
17 = 1

24 [1000�� − 1000��2 − 8500�2� + 7500�2�2 + 20000�3�

− 12500�3�2 − 12500�4�]

N(5)
18 = 1

24 [1000�� − 1000�2� − 8500��2 + 7500�2�2 + 20000��3

− 12500�2�3 − 12500��4]

N(5)
19 = 1

24 [−3000�� + 6750��2 + 21750�2� − 41250�2�2

− 3750��3 − 37500�3� + 37500�3�2

+ 18750�2�3 + 18750�4�]

N(5)
20 = 1

24 [750�� − 4500��2 − 4500�2� + 26250�2�2

+ 3750��3 + 3750�3� − 18750�3�2 − 18750�2�3]

N(5)
21 = 1

24 [−3000�� + 6750�2� + 21750��2 − 41250�2�2

− 3750�3� − 37500��3 + 37500�2�3

+ 18750�3�2 + 18750��4]

Appendix B

B.1. Quartic (n = 4)

a(4)11 = [−22t1 − 22t2 − 96t3 + 16t4 + 12t5 + 16t6 + 288t13
− 96t14 − 96t15]

a(4)21 = [0t1 + 48t2 + 192t3 − 96t4 − 48t5 − 672t13 + 480t14 + 96t15]

a(4)12 = [48t1 + 0t2 + 192t3 − 48t5 − 96t6 − 672t13 + 96t14 + 480t15]

a(4)31 = [0t1 − 32t2 − 96t3 + 128t4 + 384t13 − 384t14]

a(4)22 = [0t1 + 0t2 − 192t3 + 192t5 + 768t13 − 384t14 − 384t!5]

a(4)13 = [−32t1 + 0t2 − 96t3 + 128t6 + 384t13 − 384t15]

B.2. Quintic (n = 5)

a(5)11 = [−250t1 − 250t2 − 1750t3 − 150t4 − 100t5 − 100t6
− 150t7 + 6000t16 + 1000t17 + 1000t18
− 3000t19 + 750t20 − 3000t21]

a(5)21 = [0t1 + 875t2 + 5500t3 + 1375t4 + 750t5 + 500t6
− 23500t16 − 8500t17 − 1000t18 + 21750t19
− 4500t20 + 6750t21]

a(5)12 = [0t1 + 875t2 + 5500t3 + 500t5 + 750t6 + 1375t7
− 23500t16 − 1000t17 − 8500t18 + 6750t19
− 4500t20 + 21750t21]

a(5)31 = [0t1 − 1250t2 − 6250t3 − 3750t4 − 1250t5
+ 30000t16 + 20000t17 − 37500t19 + 3750t20 − 3750t21]

a(5)22 = [0t1 + 0t2 − 11250t3 − 3750t5 − 3750t6 + 60000t16
+ 7500t17 + 7500t18 − 41250t19 + 26250t20 − 41250t21]
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a(5)13 = [−1250t1 + 0t2 − 6250t3 − 1250t4 − 3750t5 + 30000t16
+ 20000t18 − 3750t19 + 3750t20 − 37500t21]

a(5)41 = [0t1 + 625t2 + 2500t3 + 3125t4 − 12500t16
− 12500t17 + 18750t19]

a(5)32 = [0t1 + 0t2 + 6250t3 + 6250t5 − 37500t16 − 12500t17
+ 37500t19 − 18750t20 + 18750t21]

a(5)23 = [0t1 + 0t2 + 6250t3 + 6250t6 − 37500t16 − 12500t18
+ 18750t19 − 18750t20 + 37500t21]

a(5)14 = [625t1 + 0t2 + 2500t3 + 3125t7 − 12500t16
− 12500t18 + 18750t21]
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