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Abstract

We study the MHD flow and also heat transfer in a viscoelastic liquid over a stretching sheet in the presence of radiation.
The stretching of the sheet is assumed to be proportional to the distance from the slit. Two different temperature conditions
are studied, namely (i) the sheet with prescribed surface temperature (PST) and (ii) the sheet with prescribed wall heat flux
(PHF). The basic boundary layer equations for momentum and heat transfer, which are non-linear partial differential equations,
are converted into non-linear ordinary differential equations by means of similarity transformation. The resulting non-linear
momentum differential equation is solved exactly. The energy equation in the presence of viscous dissipation (or frictional
heating), internal heat generation or absorption, and radiation is a differential equation with variable coefficients, which is
transformed to a confluent hypergeometric differential equation using a new variable and using the Rosseland approximation
for the radiation. The governing differential equations are solved analytically and the effects of various parameters on velocity
profiles, skin friction coefficient, temperature profile and wall heat transfer are presented graphically. The results have possible
technological applications in liquid-based systems involving stretchable materials.
� 2004 Elsevier Ltd. All rights reserved.

1. Introduction

An interesting fluid mechanical application is found
in polymer extrusion processes, where the object on
passing between two closely placed solid blocks is
stretched into a liquid region. The stretching imparts
a unidirectional orientation to the extrudate, thereby
improving its mechanical properties[1].
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The liquid is basically meant to cool the stretch-
ing sheet whose property as a final product depends
greatly on the rate at which it is cooled. It is impera-
tive therefore to consider two important aspects in this
physically interesting problem:

(i) Proper choice of cooling liquid.
(ii) Regulation of the flow of the cooling liquid, due

to the stretching sheet, to achieve a desired rate
of cooling appropriate for successfully arriving at
a sought final product.

The cooling liquid in earlier times was chosen to
be the abundantly available water, but this has the
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drawback of rapidly quenching the heat leading to
sudden solidification of the stretching sheet. From the
standpoint of desirable properties of the final prod-
uct (solidified stretching sheet) water does not seem
to be the ideal cooling liquid. A careful examination
of the needs in the system suggests that it is advanta-
geous to have a controlled cooling system. An electri-
cally conducting polymeric liquid seems to be a good
candidate for such an application situation because its
flow can be regulated by external means through a
magnetic field. Further, this arrangement does not in-
volve any moving parts and does not tamper with the
flow that we are investigating theoretically. The prob-
lem is a prototype for many other practical problems
also, akin to the polymer extrusion process (Fig. 1),
like

• drawing, annealing and tinning of copper wires,

Author/s Type of visco-elastic Nature of Remarks
liquid temperature

boundary condition

Rajagopal et al.[5] Second-order liquid — Heat transfer not considered
Andersson et al.[6] Walters’ liquid B — Heat transfer not considered
Siddappa and Subhash[7] Walters’ liquid B — Heat transfer not considered
Rajagopal et al.[8] Second-order liquid — Heat transfer not considered
McLeod and Rajagopal[9] Second-order liquid — Heat transfer not considered
Bujurke et al.[10] Second-order liquid PST —
Char and Chen[11] Walters’ liquid B PHF —
Dandapat and Gupta[12] Second-order liquid PST —
Chang[13] Second-order liquid — Heat transfer not considered
Rollins and Second-order liquid Variable PST and —
Vajravelu[14] variable PHF
Andersson and Dandapat[15] Second-order liquid — Heat transfer not considered
Lawrence and Rao[16] Second-order liquid — —
Andersson[17] Walters’ liquid B — Heat transfer not considered
Kelly et al. [18] Walters’ liquid B — Heat transfer not considered
Maneschy et al.[19] Second-order liquid — Heat transfer not considered
Bhatnagar et al.[20] Oldroyd-B liquid — Heat transfer not considered
Lawrence and Rao[21] Walters’ liquid B — Heat transfer not considered
Subhash and Veena[22] Walters’ liquid B PST and PHF —
Subhash et al.[23] Weak electrically PST and PHF —

conducting Walters’
liquid B

Sonth et al.[24] Walters’ liquid B PST and PHF —

(see also references therein).

• continuous stretching, rolling and manufacturing of
plastic film and artificial fibers,

• extrusion of a material and heat-treated materials
that travel between feed and wind-up rollers or on
conveyor belts.

The delicate nature of the problem dictates the fact
that the magnitude of the stretching rate has to be
small. This also ensures that the stretching material
released between the two solid blocks into the liquid
continues to be a plane surface rather than a curved
one. Mathematical manageability is therefore at its
best in the problem.
A number of works are presently available that fol-

low the pioneering classical works of Sakiadis[2],
Tsou et al.[3] and Crane[4]. The following Table lists
some relevant works that pertain to viscoelastic cool-
ing liquids:
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Fig. 1. Schematic of a polymer extrusion process.

In most of the investigations involving heat
transfer, we observe that either the constant pre-
scribed surface temperature (PST) or constant
prescribed wall heat flux (PHF) boundary con-
dition is assumed. It is a well-known fact that
constant PST and PHF assumed by many are dif-
ficult to realize (see[25]). Also if the final prod-
uct that is obtained after cooling needs to be
non-uniform in terms of properties warranted by
an application, then the physically realistic “vari-
able PHF” is the appropriate temperature boundary
condition.
Heat generation or absorption may become impor-

tant in weak-electrically conducting polymeric liquids
due to the non-isothermal situation they are in and
also due to the presence of cation/anion salts dissolved
in them. An example of such a liquid is polyethylene
oxide.
In all the stretching sheet problems (both hydro-

dynamic and hydromagnetic) mentioned earlier, radi-
ation effect has not been considered. We know that
the radiation effect is important under many non-
isothermal situations. If the entire system involving
the polymer extrusion process is placed in a ther-
mally controlled environment, then radiation could
become important. The knowledge of radiation heat
transfer in the system can perhaps lead to a desired
product with a sought characteristic. Radiation effect
on viscoelastic flows has been considered by Rap-
tis [26], and Raptis and Perdikis[27]. In this paper,
we consider the effect of radiation and temperature-
dependent heat source on the MHD viscoelastic flow
and convective heat transfer over a stretching sheet,
with variable PST/ PHF.

Fig. 2. Schematic of the two-dimensional stretching sheet problem.

2. Mathematical formulation and solution

We consider two-dimensional motion in thexy-
plane on the stretching sheet, as the flow in any
parallel plane is identical due to the assumptions dis-
cussed in the earlier section. Further, we discuss the
motion above the stretching sheet, as the flow on the
under side is essentially similar. Thex-axis is taken
along the plate in the direction of its motion andy-
axis perpendicular to it (seeFig. 2). We consider the
flow of an incompressible and electrically conducting
visco-elastic Walters’ liquid B model past the flat and
impermeable stretching sheet. The liquid is confined
to the half-spacey >0 above the sheet. By applying
two equal and opposite forces along thex-axis the
sheet is being stretched with a speed proportional to
the distance from the originx = 0. The assumptions
are such that they facilitate the use of boundary layer
theory (see[28]).
The axial and transverse velocitiesu andv for the

problem at hand are governed by the following ordi-
nary differential equation by virtue of the similarity
transformation[29]:

f ′′′ − f ′2+ ff ′′

=Qf ′ + k1{2f ′f ′′′ − f ′′2− ff ′′′′}, (1)

whereu= cxf ′(�) andv= −√
c�f (�) velocity com-

ponentsx andy-directions, respectively,� is the den-
sity of the liquid,� is the limiting viscosity at small
rates of shear,k0 is the first moment of the distribu-
tion function of relaxation times,� is the electrical
conductivity of the liquid and prime denotes differen-
tiation with respect to�. The non-dimensional param-
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eters appearing in the equation are defined below:

Q=
(
H 20

�
c�

)
, Chandrasekhar number(

√
Q is

called Hartmann number),

k1=
(
ck0

�

)
, viscoelastic parameter.

We note here that the equation for the stretching
sheet problem involving a second-order liquid can be
obtained from Eq. (1) by replacingk1 with −k1. In
deriving Eq. (1) it has been assumed that the fluid has
weak electrical conductivity. Since the cooling fluid is
poorly conducting, any charge that might be created
gets accumulated on the extrusion and is not a serious
factor because of the not-so-strong dynamics that is
prevalent around the sheet.
The assumed boundary conditions are:

f (0)= 0, f ′(0)= 1, (2)

f ′(∞) → 0 and f ′′(∞)= 0. (3)

The condition we have assumed onu andv signify
that there is a linear stretching of the sheet in thex-
direction and the stretching is such that it induces only
a weak transverse velocity component. Further, it is
assumed that the stretching of the sheet does not in-
duce dynamics at distances far away from the sheet.
In other words, fluid dynamics is restricted to the im-
mediate non-isothermal neighborhood of the sheet. It
is also important to mention here that Eq. (1) is higher
order than the Navier–Stokes equation and in general
would require would need additional boundary condi-
tions. It is because, we are working in an unbounded
domain we are able to add an asymptotic condition.
This issue cannot be overemphasized as a lot of er-
rors have been made on this account, singular pertur-
bation problems being treated as regular. This issue is
discussed at length in Rajagopal and Gupta[30], Ra-
jagopal and Kaloni[31], Rajagopal[32,33].
From the mathematics point of view, Eq. (1) is quite

interesting because one can reduce this fourth-order
differential equation to a third-order equation. Indeed,
using the transformationf ′ = Y , one can write

f ′′ = �Y
��

= �Y
�f

�f
��

= Ẏ Y.

Similarly, we can write

f ′′′ = Y 2Ÿ + Y Ẏ 2

and

f ′′′′ = 2Y 2Ẏ Ÿ + Y Ẏ 3+ Y 3
...

Y +2Y 2Ẏ Ÿ .
Substituting the above expressions forf ′, f ′′, f ′′′

andf ′′′′ into Eq. (1), we get a third-order ordinary dif-
ferential equation which may be solved numerically
or may be identified as being some well-known clas-
sical equation. In the present paper, we adopt a differ-
ent approach of seeking an exact solution of Eq. (1)
satisfying Eqs. (2) and (3).
Analyzing the nature off (�) at�=0 and as� → ∞,

it seems appropriate to take the following form forf:

f (�)= A1+ B1 exp[−��].
On using the boundary conditions (2) and (3),A1 and
B1 can be determined and the solution turns out to be
(see[9,12,34])

f = 1− exp[−��]
�

, �>0. (4)

At this point we call attention to the paper by Chang
[13]. He assumed the following form off (�):

f (�)= A0 + B0 exp[−��] cos(��),

whereA0, B0 and� are to be determined. We note
that this form also conforms to the nature off (�) at
�=0 and as� → ∞ provided the following conditions
hold:

A0 = −B0 = 1

�

and three other conditions involving� and�. This
proves the existence of another solution of Eq. (1),
in addition to the first one (Eq. (4)) derived earlier.
We may thus infer that the solution of Eq. (1) is not
unique and find ourselves in a situation of having to
make a decision on the appropriateness of one of the
solutions. This question was addressed by Lawrence
and Rao[21] who advocated, with proper physical
reasoning, that the solution (4) is themore realistic one
compared to the second solution. We abide by their
counsel and further the present analysis with this real-
istic solution.
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Substitution of Eq. (4) into Eq. (1) reveals that Eq.
(4) is a solution of the non-linear differential equation
(1) if

� =
√
1+Q

1− k1
(1��<∞). (5)

We note here that� is related to an important
non-dimensional quantity as will be seen in the next
section.
Using Eq. (4) in the expressions foru and v we

obtain

u= cx exp[−��] and

v = −√
c�

(
1− exp[−��]

�

)
, (6a,b)

where� is given by Eq. (5). Having obtained the ve-
locity distribution we now move on to find the skin
friction coefficient at the stretching sheet.

3. Skin friction

The wall shearing stress�w on the surface of the
stretching sheet can be easily calculated from the ex-
pression:

�w = −�
(

�u
�y

)
y=0

. (7)

Substituting Eq. (6a) in Eq. (7), we get

�w = �cx�

√
c

�
. (8)

The local skin-friction coefficient or frictional drag
coefficient is

Cf = �w
�cx

√
c/�

= �, (9)

where� is given by Eq. (5). In the next section we
discuss the heat transport in the aforementioned forced
convective flow due to a stretching sheet.

4. Heat transfer

The governing boundary layer heat transport equa-
tion with viscous dissipation, temperature-dependent

internal heat generation and radiation is

cx exp[−��]�T
�x

− √
c�

(
1− exp[−��]

�

)
�T
�y

= 	∗ �2T
�y2

+ �
�Cp

(
�u
�y

)2

+ Q∗

�Cp
(T − T∞)− 1

�Cp

�qr
�y

, (10)

whereT is the temperature of the liquid,	∗ is the ther-
mal diffusivity, Cp specific heat at constant pressure
andQ∗ uniform heat source. In writing Eq. (10), we
are aware that we are making a rather serious assump-
tion that the thermodynamic quantities associated with
a viscoelastic fluid are the same as a Newtonian fluid
and this in general is not true.
By using Rosseland approximation for radiation

(see[35]), the radiative heat fluxqr is given by

qr = −4�
∗

3k∗
�(T 4)
�y

, (11)

where�∗ is the Stefan–Boltzmann constant andk∗ is
the mean absorption coefficient.
We now expandT 4 in a Taylor series aboutT∞ as

follows:

T 4= T 4∞ + 4T 3∞(T − T∞)
+ 6T 2∞(T − T∞)2+ − − − − − − − − .

Neglecting higher-order terms in the above equation
beyond the first degree in (T − T∞), we get

T 4� − 3T 4∞ + 4T 3∞T . (12)

By employing Eqs. (11) and (12), Eq. (10) becomes

cx exp[−��]�T
�x

− √
c�

(
1− exp[−��]

�

)
�T
�y

=
(
	∗ + 16�

∗T 3∞
3�Cpk∗

)
�2T
�y2

+ �
�Cp

(
�u
�y

)2

+ Q∗

�Cp
(T − T∞). (13)
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From the above equation it is apparent that the
effect of radiation is to enhance the thermal
diffusivity.
The thermal boundary conditions for solving Eq.

(13) depend on the type of heating process under
consideration. We consider two different heating pro-
cesses, namely

(i) PST, and
(ii) PHF.

4.1. PST

The prescribed power law surface temperature is
considered to be a power ofx in the form

T = Tw = T∞ + A
(x
l

)s
at y = 0,

T → T∞ as y → ∞, (14a,b)

whereA is a constant,l is the characteristic length,
Tw is the wall (sheet) temperature,s is the variable
heat flux index andT∞ is the constant temperature far
away from the sheet.We now define a non-dimensional
temperature
(�) as


(�)= T − T∞
Tw − T∞

, (15)

where

T − T∞ = A
(x
l

)s

(�) and Tw − T∞ = A

(x
l

)s
.

Substitution of Eq. (15) in the energy equation (13)
leads to the following equation:

(1+NR)
′′ + Pr

�
(1− exp[−��])
′

− Pr(s exp[−��] − 	)


= −Pr E(xl)s−2�2 exp[−2��],

where prime denotes differentiation with respect to
� and the non-dimensional parameters are defined

as given below:

NR =
(
16�∗T 3∞
3kk∗

)
, radiation number,

P r =
( �
	∗

)
, Prandtl number,

	 =
(

Q∗

c�Cp

)
, heat source/sink parameter,

E =
(
c2l2

ACp

)
, Eckert number.

Obviously, we get anx-independent similarity equa-
tion from the above whens = 2 and this yields

(1+NR)
′′ + Pr

�
(1− exp[−��])
′

− Pr(2 exp[−��] − 	)

= −Pr E�2 exp[−2��]. (16)

The boundary condition in terms of
 can be
obtained from Eqs. (14) and (15) as


 = 1 at � = 0,

 → 0 as � → ∞. (17)

Eq. (16) is linear in
 and we now transform
the same into a confluent hypergeometric equation by
using the transformation

� = −R exp[−��], (18)

whereR=Pr/�2. Substituting Eq. (18) into Eq. (16),
we get

(1+NR)�
̈ + [4(1+NR)− R − �]
̇
+

(
2+ R	

�

)

 = −Pr E �

R2
, (19)

where overdot denotes differentiation with respect
to �.
The boundary conditions in Eq. (17), in terms of�

translate to


(� = −R)= 1 and 
(0)= 0. (20)
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The solution of Eq. (19) satisfying the conditions
(20) in terms of Kummer’s function (see[32]) is


(�)=
{1+ Pr E[4(1+NR)− 2R + R	]−1}

(−�
R

)(
�1+d1
2

)
F

[
�1+d1−4

2 , d1+ 1, �
]

F
[

�1+d1−4
2 , d1+ 1,−R

]
− Pr E[4(1+NR)− 2R + R	]−1

(
�
R

)2
, (21)

where

d1=
√

�21− 4�2, �1= R

1+NR
and �2= 	�.

The solution in Eq. (21) can be written in terms of� as


(�)=
{1+ Pr E[4(1+NR)− 2R + R	]−1}exp

[
−�

(
�1+d1
2

)
�
]
F

[
�1+d1−4

2 , d1+ 1,−R exp[−��]
]

F
[

�1+d1−4
2 , d1+ 1,−R

]
− Pr E[4(1+NR)− 2R + R	]−1 exp[−2��]. (22)

The non-dimensional wall temperature gradient de-
rived from Eq. (22) is


̇(0)= {1+ Pr E[4(1+NR)− R + R	]−1}
F

[
�1+d1−4

2 , d1+ 1,−R
]

×




−�
(

�1+d1
2

)
F

[
�1+d1−4

2 , d1+ 1,−R
]

+R�
2

(
�1+d1−4
d1+1

)
F

[
�1+d1−2

2 , d1+ 2,−R
]




+ 2�Pr E[4(1+NR)− 2R + R	]−1 (23)

and the local heat flux can be expressed as

qw = −k
(

�T
�x

)
y=0

= −kA
√
c

�

(x
l

)2

̇(0).

The expressions in Eqs. (22) and (23) are numer-
ically evaluated for several values of the parameters
E, k1, NR, P r,Q and	, and the results are discussed
in the last section.We nowmove on to discuss the case
of a temperature boundary condition involving a PHF.

4.2. PHF

The power law heat flux on the wall surface is con-
sidered to be a power ofx in the form

− k
�T
�y

= qw =D
(x
l

)s
at y = 0,

T → T∞ asy → ∞, (24)

whereD is a constant andk is the thermal conductivity.
We now define a non-dimensional temperatureg(�) as

g(�)= T − T∞
Tw − T∞

, (25)

where

T − T∞ = D

k

(x
l

)s√�
c
g(�) (26)

and

Tw − T∞ = D

k

(x
l

)s√�
c
.
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In spite of the fact thatg(�) in Eq. (25) is the same
as
(�) defined in Eq. (15) for PST case, we prefer to
use a different notation for the PHF case. Substitution
of Eq. (25) in the energy equation (13) leads to the
following equation:

(1+NR)g
′′ + Pr

�
(1− exp[−��])g′

− Pr(s exp[−��] − 	)


= −Pr Es(xl)s−2�2 exp[−2��].

Obviously, we get anx-independent similarity equa-
tion from the above whens = 2 and this yields

(1+NR)g
′′ + Pr

�
(1− exp[−��])g′

− Pr(2 exp[−��] − 	)g
= −Pr Es�2 exp[−2��]. (27)

The boundary conditions in terms ofg can be obtained
from Eqs. (24) and (25) as

g′(0)= −1 and g(∞)= 0, (28)

whereEs = (E/D)
√
c/� scaled Eckert number, prime

denotes differentiation with respect to� and all other
parameters are as defined in the PST case, but wher-
everA is involved in the equations of PST case it is to
be replaced byD of PHF. Substituting Eq. (18) into
Eqs. (27) and (28), we get

(1+NR)�g̈ + [4(1+NR)− R − �]ġ
+

(
2+ R	

�

)
g = −Pr Es

R2
�, (29)

ġ(−R)= − 1

R�
and g(0)= 0, (30)

where overdot denotes differentiation with respect to
�. Eq. (29) is a confluent hypergeometric equation and
the solution forg satisfying Eq. (30) is obtained in

terms of Kummer’s function (see[36]) as

g(�)=
[
1

�
+ 2Pr Es
(4(1+NR)− 2R + R	)

]

×
{

�1+ d1

2
F

[
�1+ d1− 4

2
, d1+ 1,−R

]

− RḞ

[
�1+ d1− 4

2
, d1+ 1,−R

]}−1

×
(−�
R

)(
�1+d1
2

)

× F

[
�1+ d1− 4

2
, d1+ 1,−�

]

− Pr Es

(4(1+NR)− 2R + R	)

(
�
R

)2
, (31)

where the functionḞ satisfies the relationship

Ḟ [a, b, z] = a

b
F [a + 1, b + 1, z]

and the other terms are as defined earlier. In terms of
�, the expression forg is

g(�)=
[
1

�
+ 2Pr Es

[4(1+NR)− 2R + R	]
]

×
{

�1+ d1

2
F

[
�1+ d1− 4

2
, d1+ 1,−R

]

− RF ′
[
�1+ d1− 4

2
, d1+ 1,−R

]}−1

× exp
[
−�

(
�1+ d1

2

)
�
]

× F

[
�1+ d1− 4

2
, d1+ 1,−R exp(−��)

]

− Pr Es exp(−2��)
[4(1+NR)− 2R + R	] . (32)

The wall temperatureTw is obtained from Eq. (26) as

Tw − T∞ = D

k

(x
l

)2√�
c
g(0). (33)

5. Results and discussion

In the paper, we investigate the MHD boundary-
layer flow and heat transfer in a viscoelastic liquid
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Fig. 3. Plot of � vs. visco-elastic parameter(k1) for different
values of Chandrasekhar number (Q).

Fig. 4. (a) Plot of axial velocity componentf ′(�) vs.� with Q=0
and for different values ofk1 and (b) plot off ′(�) vs. � with
k1 = 0.2 and for different values ofQ.

Fig. 5. Plot of transverse velocity componentf (�) vs. � for
different values ofk1 andQ.

over a stretching sheet in the presence of radiation.
The study encompasses within its realm both Walters’
liquid B and second-order liquid. Similarity solution is
used to obtain the velocity distribution which is gov-
erned by a non-linear differential equation. Heat trans-
fer in the presence of radiation is studied in the above
boundary layer flow due to a stretching sheet. Nega-
tive values ofk1 give us the results of a second order
liquid and positive values ofk1 give us the results of a
Walters’ liquid B model. The velocity, both transverse
as well as axial, is a decreasing function of� as it is
an exponential function with negative argument. It is
clear from Eq. (4) that�, which is a function of the
viscoelastic parameterk1 and Chandrasekhar number
Q, contributes to the slope of the above exponentially
decreasing velocity profiles. Thus� is an important
parameter in the present study. FromFig. 3 it is evi-
dent that� is an increasing function ofk1 andQ thus
implying that increasingk1 andQ gives us steeper
gradients in the axial and transverse velocity profiles.
This result is borne out inFigs. 4and5. Also it is ap-
parent from these figures that the transverse velocity
profile decays faster than the axial velocity profile for
increasing values ofk1 andQ.
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Table 1
Value of f ′(�) for different values of� and k1 andQ= 0.0

�

k1 0.28 0.64 1.11 2.47 4.70 6.32 8.38

−0.8 0.68683 0.42370 0.22554 0.03637 0.00183 0.00021 0.00002
−0.6 0.70175 0.44506 0.24560 0.04396 0.00262 0.00034 0.00003
−0.4 0.71798 0.46895 0.26892 0.05379 0.00385 0.00056 0.00005
−0.2 0.73585 0.49605 0.29643 0.06682 0.00581 0.00098 0.00011
−0.05 0.75057 0.51910 0.32065 0.07958 0.00809 0.00156 0.00018

(0.74870) (0.51640) (0.32050) (0.07950) (0.00800) (0.00150) (0.0001)
−0.01 0.75473 0.52562 0.32774 0.08355 0.00888 0.00174 0.00022

(0.75290) (0.52320) (0.32800) (0.08370) (0.00890) (0.01700) (0.0002)
−0.005 0.75526 0.52645 0.32865 0.08406 0.00898 0.00177 0.00022

(0.75350) (0.52410) (0.32900) (0.08420) (0.00900) (0.00180) (0.00020)
0.0 0.75578 0.52729 0.32955 0.08455 0.00909 0.00179 0.00022
0.005 0.75631 0.52813 0.33047 0.08510 0.00920 0.00182 0.00023
0.01 0.75684 0.52898 0.33139 0.08563 0.09312 0.00185 0.00023
0.05 0.76116 0.53591 0.33895 0.09004 0.01024 0.00211 0.00028
0.2 0.77846 0.56415 0.37053 0.10978 0.01494 0.00351 0.00056
0.4 0.80502 0.60912 0.42325 0.14759 0.02623 0.00748 0.00152
0.6 0.83771 0.66713 0.49558 0.20968 0.05117 0.01837 0.00450
0.8 0.88231 0.75110 0.60871 0.33138 0.12222 0.05923 0.02357

(Values inside parenthesis are those of Rajagopal et al.[5]).

It is apt to note here that the similarity equation (1)
is an important differential equation mathematically in
the sense that the order of the differential equation can
be reduced by one on using the transformationf ′ =Y

as discussed in Section 2 of this paper. The parameter
� is also important due to fact that it is nothing but the
skin friction coefficient at the stretching sheet. From
Fig. 3, we may conclude that viscoelasticity and ap-
plied magnetic field work in unison in increasing the
skin friction coefficient. This fact can be elicited by
seeking recourse to the Einstein formula for viscosity
of suspensions, viz.,� = �0[1 + 2.5], where is
the concentration of the suspended particles which
imparts non-Newtonian characteristics to suspensions
(see[37]). The above formula explains the enhanced
viscosity of suspensions compared to the carrier
liquids without suspended particles. The effect of
magnetic field is to provide rigidity to the electrically
conducting liquid. The observation on the skin fric-
tion coefficient for increasing values ofk1 andQ is
therefore not surprising.
We also note here that due to the assumption of

a homogeneous liquid, the temperature does not al-
ter the velocity profile and hence we do not see the

effects of viscous dissipation, internal heat gener-
ation and radiation on the velocity profiles. These
effects are noticed only on the temperature profile
due to one way coupling between temperature and
velocity.
The axial velocity distribution is tabulated in

Table 1for different values of� andk1 for the hydro-
dynamic case with the intention of comparing the re-
sults with the work of Rajagopal et al.[5] who solved
the problem using a regular perturbation technique.
From Table 1, it is clear that our results coincide
with those of Rajagopal et al.[5] up to the second
decimal digit. It can be shown by stability analysis of
the Taylor–Gortler type that the above-boundary layer
flow over a stretching sheet considered in the paper is
stable.
In the forced flow over a stretching sheet discussed

earlier we now analyse the heat transport in the pres-
ence of viscous dissipation, internal heat generation
and radiation. The viscous dissipation renders the heat
equation inhomogeneous and radiation enhances the
effect of thermal conductivity. The effect of internal
heat generation (source/sink) is to dampen or enhance
the heat transport in a linear fashion. The governing
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Fig. 6. (a) Plot of temperature distribution
(�) vs. � for dif-
ferent values ofE and (b) plot of temperature distributiong(�)
vs. � for different values ofEs . E—Eckert number,Es—scaled
Eckert number,k1—visco-elastic parameter,NR—radiation pa-
rameter,Pr—Prandtl number,Q—Chandrasekhar number,	—heat
source/sink parameter.

differential equation for heat transport in the presence
of radiation is a variable coefficients inhomogeneous
differential equation. In arriving at the governing equa-
tion use has been made of the Rosseland approxi-
mation for the radiative heat flux. Both the PST and
PHF boundary conditions are used for solving the heat
transport equation.Figs. 6–10are plots of the temper-
ature distribution for different values of the parameters
E (Es), k1, NR, Pr andQ. Fig. 6 indicates that effect
of increasingE (Es) is to enhance the temperature at
any point. This is true of both PST and PHF cases.

Fig. 7. (a) Plot of temperature distribution
(�) vs. � for different
values ofk1 and (b) plot of temperature distributiong(�) vs. �
for different values ofk1.

On comparing the temperature distribution of the PST
and PHF cases it is apparent that the PST boundary
condition succeeds in keeping the viscoelastic cool-
ing liquid warmer than in the case when PHF bound-
ary condition is applied. It may therefore be inferred
that the PHF boundary condition is better suited for
faster cooling of the stretching sheet. Qualitatively the
effects of the viscoelastic parameterk1, the radiation
parameterNR and Chandrasekhar numberQ on the
temperature are similar to that ofE. In contrast to the
effect ofE, k1, NR andQ on 
, the effect of increas-
ing Pr is to decrease the magnitude of
(�). In other
words, it means that the thermal boundary layer thick-
ness is a function of all the above parameters. These
results are depicted inFigs. 6–10.
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Fig. 8. (a) Plot of temperature distribution
(�) vs. � for different
values ofNR and (b) plot of temperature distributiong(�) vs. �
for different values ofNR .

Like the local skin friction coefficient for the ve-
locity it is equally important that we consider the ana-
log of this for the temperature that happens to be the
wall temperature gradient−
̇(0) (PST). On looking
at the results ofFigs. 6–10 in conjunction with those
of Table 2, we note that the parametersE, k1, NR, Pr
andQ have opposing influence on the skin friction co-
efficient and the wall temperature gradient. InTable
2 we have extracted information for the PST case on
the wall temperature gradient. Clearly in this case, the
effect of increasing the strength of the heat sink is to
decrease the wall temperature gradient and the oppo-
site behaviour is seen for a heat source. In the case
of the PHF boundary condition, the values of the wall
temperatureg(0) as a function of all the parameters of
the problem have also been tabulated inTable 2. The
variation of g(0) with all parameters is on expected

Fig. 9. (a) Plot of temperature distribution
(�) vs. � for different
values ofPr and (b) plot of temperature distributiong(�) vs. �
for different values ofPr.

lines except that ofPr. It seems that there is a critical
value ofPr, viz.,Prc, beyond which the wall temper-
ature increases with increase inPr.

6. Conclusion

1. The PHF boundary condition is better suited for
effective cooling of the stretching sheet.

2. Viscoelastic liquids with negligible viscous dis-
sipation must be chosen for a cooling liquid.
Further highly viscous liquids with mild vis-
coelasticity are ideally suited as a coolant.
However, Table 2 suggests that one will have
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Fig. 10. (a) Plot of temperature distribution
(�) vs.� for different
values ofQ and (b) plot of temperature distributiong(�) vs. � for
different values ofQ.

to exercise caution in choosing high viscosity
liquids. This is due to the fact that asPr in-
creases beyondPrc then the wall temperature is
increased.

3. In arriving at an appropriate polymer extru-
sion it is desirable that the operating tempera-
tures are as low as possible to ensure minimum
radiation.

4. The strength of the applied magnetic field should
be as low as is possible to realize.

5. Several earlier works form a limiting case of the
present study:

(a) lim
Q→0
NR→0

{Our results on both PST and PHF} →
{Results of Subhash and Veena[22]}

Table 2
Values of wall temperature gradient−
̇(0) (PST case) and wall
temperatureg(0) (PHF case) for different values ofE (Es), k1,
NR , Pr, Q and	

Ea k1 NR Pr Q 	 −
̇(0) g(0)

0.0 1.77006 0.63291
0.02 0.2 5.0 4.0 1.0 0.05 1.76473 0.63677
0.5 1.63671 0.72957

0.0 1.71087 0.71591
0.02 0.2 5.0 4.0 1.0 0.05 1.76473 0.63677

0.4 1.80387 0.57094

1.0 2.14202 0.63430
0.02 0.2 5.0 4.0 1.0 0.05 1.76473 0.63677

10 1.7088 0.63057

2.0 1.28704 0.74872
0.02 0.2 5.0 4.0 1.0 0.05 1.76473 0.63677

6.0 2.02431 0.66082

0.0 1.54899 0.87011
0.02 0.2 5.0 4.0 2.0 0.05 1.81435 0.55554

3.0 1.81543 0.53257

−0.1 1.80633 0.63565
−0.05 1.79452 0.63735

0.02 0.2 5.0 4.0 1.0 0.0 1.78148 0.63825
0.05 1.76473 0.63677
0.1 1.74889 0.63549

a(Es for PHF case).

(b) lim
Q→0
NR→0
E→0

{Our results on both PST and PHF} →

{Results of Rollins and Vajravelu[14]}.
6. On replacing the Chandrasekhar numberQ by the
porous parameterDa−1 (Da: Darcy number) we
get the results of porous media problem.

7. In the absence of radiation and viscous dissipa-
tion, the results of the problem for heat sink yield
the results of the analogous isothermal problem for
species concentration with first-order chemical re-
action.
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