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Abstract

Judging from the vast number of articles in the field of queuing simulation, that assumes i.i.d. in

one or more of the stochastic processes used to model the situation at hand, often without much

validation, it seems that sequence independence must be a very basic property of many real life

situation or at least a very sound approximation.

However, on the other hand, most actual decision making is based upon information taken from

the past - where else! In fact the only real alternative that comes into my mind is to let a pair of

dices fully and completely rule behaviour, but I wonder if such a decision setup is that widespread

in consequent use anywhere. So, how come that sequence independence is so relatively popular in

describing real system processes?

I can only think of three possible explanations to this dilemma - (1) either sequence dependence is

present, but is mostly not of a very significant nature or (2) aggregate system behaviour is in general

very different from just the summing-up (even for finite sets of micro-behavioural patterns) and/or (3)

it is simply a wrong assumption that in many cases is chosen by mere convention or plain convenience.

It is evident that before choosing some arrival processes for some simulation study a thorough

preliminary analysis has to be undertaken in order to uncover the basic time series nature of the

interacting processes. Flexible methods for generating streams of autocorrelated variates of any

desired distributional type, such as the ARTA method or some autocorrelation extended descriptive

sampling method, can then easily be applied. The results from the Livny, Melamed and Tsiolis

(1993) study as well as the results from this work both indicates that system performance measures

as for instance average waiting time or average time in system are significantly influenced by the

taken i.i.d. versus the autocorrelations assumptions. Plus/minus 35% in performance, but most



likely a worsening, is easily observed, when comparing even moderate (probably more realistic)

autocorrelation assumptions with the traditionally and commonly used i.i.d. assumptions.

Keywords: Autocorrelation, queuing systems, TES method, ARTA method, Descriptive/Selective

sampling, Simulation, Job/flow-shop, performance, control.
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INTRODUCTION

Judging from the vast number of articles in the field of queuing simulation, that assumes i.i.d. in one

or more of the stochastic processes used to model the situation at hand, often without much validation,

it seems that sequence independence must be a very basic property of many real life situation or at

least a very sound approximation.

However, on the other hand, most actual decision making is based upon information taken from

the past - where else! In fact the only real alternative that comes into my mind is to let a pair of

dices fully and completely rule behaviour, but I wonder if such a decision setup is that widespread

in consequent use anywhere. So, how come that sequence independence is so relatively popular in

describing real system processes?

I can only think of three possible explanations to this dilemma - (1) either sequence dependence is

present, but is mostly not of a very significant nature or (2) aggregate system behaviour is in general

very different from just the summing-up (even for finite sets of micro-behavioural patterns) and/or (3)

it is simply a wrong assumption that in many cases is chosen by mere convention or plain convenience.

To put this discussion further into perspective it can be noted, that methods for introducing

autocorrelation into a simulation study are in fact numerous. The ARTA-method suggested by Cario

and Nelson (1998), where ARTA denotes ”Auto-Regressive-To-Anything”, and the TES-method

developed by Jagerman and Melamed (1992,a & b), where TES denotes ”Transform Expand Sample”,

are nice representatives of the various methods for generating uniform variates, that incorporates

autocorrelation. Even finite sets of variates methods, as for instance ”selective” sampling originally

developed by Brenner (1963), or ”descriptive” sampling as originally described by Saliby (1989), may

at least in principle also be used to create autocorrelation patterns of almost any imaginable nature,

if only it is possible to devise a relevant ”scrambling” procedure with a resulting desired sequence

1



dependence.

There are, in my opinion, several good reasons for the need to look closer into the phenomenon of

process autocorrelation in general and in relation to queuing and job/flow shop systems in particular.

Autocorrelation is in my view, and I find it well supported by practical experience, a much more

predominant phenomenon in socio-economic systems, than is the case of independence. And results

presented by Livny, Melamed and Tsiolis (1993) corroborates this view that it is immensely important

to take proper account of any potential autocorrelation present, by showing that autocorrelation mostly

has a profound negative effect on the functioning of a simple queuing system.

One could also think of another situation where we quite deliberately chooses to introduce

autocorrelation into some event stream, namely whenever the ”Shortest Processing Time” rule, in

short the SPT-rule, is applied for prioritizing jobs in a queue. This is in contrast a situation where

autocorrelation is systematically introduced and utilized in order to explicitly improve the overall

system performance.

So autocorrelation has seemingly both the potential to introduce positive as well as negative effects

into the systems functioning and so it obviously has to be of interest to know more about the basic

anatomy of event streams with respect to autocorrelation and also how some given autocorrelation

phenomenon can be expected to propagate its way through for example a job/flow-shop system.

Let’s therefore approach the discussion of queuing systems and the relevance of autocorrelation

by first clarifying, that there can of course be good reason sometimes to assume independence in event

processes, typically arrival processes. From the Palm-Khintchine Theorem (1969) we know that under

fairly mild conditions on the individual (n’th) arrival source (sn), that the ”superposition process” that

results from the mixing of all the (sn) processes withn →∞ is known to converge towards a Poisson

process. This is popularly speaking sort of a ”Central Limit Theorem” for arrival processes, that kicks

in and govern the nature of mixtures of an infinity of independent sub-processes.

2



However, when the number of processes that is mixing is limited, or as it often will be the case in

reality, consists of only a few processes say 1 or 2, sequence independence of event inter-arrival times

of the mix-process is not guaranteed by any means. In fact, if the individual process components in

the mix process show sign of autocorrelation, then certainly also does the mix-process to some extent.

The present work will take its offset in the results presented by Livny, Melamed and Tsiolis (1993)

and start asking the question as to what extent these findings simply can be ascribed to the level

of the 1st order autocorrelation or if they are dependent on the characteristics of the whole TES-

setup? It will be tested by recomputing some of the Livny, Melamed and Tsiolis results with an

alternative, more flexible method for generating autocorrelated variates with comparable 1st order

autocorrelations, but otherwise significantly different ACF/PACF profile, where by the way ACF

denotes the ”AutoCorrelation-Function” and PACF denotes the ”Partial AutoCorrelation-Function”.

Livny, Melamed and Tsiolis (1993) themselves also investigates one alternative method for generating

autocorrelated uniform variates, called the Minification method, however, though the Minification

method is different from the TES method with respect to the ACF/PACF profiles, it is just as inflexible

as the TES method, with respect to the shaping of the full autocorrelation profile. The more flexible

”TES-deviating” setups, that will be considered in this work will be discussed in two variants, one

that obeys a certain distributional shape asymptotic (ARTA) and one that obeys a certain distributional

shape relative to a given finite sample exact distributional form (Extended Descriptive Sampling with

Autocorrelation). The last setup effectively separates, at least in principle, the autocorrelation effect

onto the performance in its most pure form.

Having, hopefully, by now established whether just a first order approach to autocorrelation in

event streams essentially is of importance or a more full approach is called for, this work will continue

by taking an analytical offset in the autocorrelation characteristics of some output stream of events

from a simple M/M/1 queuing system operated by some specific queuing discipline as for instance the

3



SPT-rule. The question that comes naturally in this situation is whether TES, ARTA etc. are methods

that can be fitted well enough to approximate/simulate the input to succeeding systems, that otherwise

typically would take the output from a few simple M/M/1-like queuing systems, operated, of course,

by some given queuing discipline, as input?

Autocorrelation in Event Streams

Whether an event process is autocorrelated or not can seldom be judged simply by looking at its

graphical appearance. Let for examplex be i.i.d. exponential distributed and letXn = Xn−1 + xn

be the n’thx-event time of occurrence (X0 = 0). Let furthery be not independent but still i.d.

exponential distributed and letYn = Yn−1 + yn be the n’thy-event time of occurrence (Y0 = 0).

Plotting the event streams for both these processes will look like the following, where each ”tic”

denoting an event

Figure 1: Occurrence of ”x”-events

Figure 2: Occurrence of ”y”-events

Clearly, the sample is too small to make any judgement at all, however, if on the other hand the

sample was larger the eye would not be able to see anything, but a mess of ”tics”.
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So, there is called for a more elaborate approach in order for example to uncover a possible first

order autocorrelation effect. A plot of x against its lagged value might give some insight.

Figure 3: x against lag(x)

Figure 4: y against lag(y)

However, despite the pictures does not give any conclusive information, due to a still too small a

sample size, they non the less appear to be of a distinctive different nature. Further performing a plot

of the autocorrelation as well as the partial autocorrelation functions for this very scarce sample size

does, as should be expected, not add significantly to the findings above, remembering that 5% of the

observations are to be expected to be significant by mere chance.

Finally, please observe that in both plots (Figure 5 & 6), as will also be the case whenever this
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type of ACF/PACF graphical representation is applied elsewhere in this paper, the ”Series 1”-label

denotes the ACF profile, the ”Series 2”-label denotes the PACF profile and the ”Series 3 & 4” denotes

the 95% confidence limits for both the ACF and the PACF profiles.

Figure 5: ACF and PACF for x

Figure 6: ACF and PACF for y

As a contrast to the above (lack of) findings, if we repeat the plotting of the autocorrelation as well

as the partial autocorrelation functions based now on 20000 observations, we get a whole lot of a very

different story told. The ACF and PACF plots in figure 7 & 8 tells us that thex-variate is clearly i.i.d.

whereas they-variate is most likely an AR(2)-process withρ1 ≈ 0.4 andρ2 ≈ −0.2. By the way, if

necessary, the parameters of the underlying AR(2)-process can easily be computed from theρ values

by exercising the socalled Yule-Walker equations (see for a full description).
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Figure 7: ACF and PACF for x

Figure 8: ACF and PACF for y

So, let us now turn our attention towards the output processes emanating from queuing systems,

which typically is the input to succeeding stages in a production flow. Let us begin by taking a

closer look in terms of autocorrelations at the stream of events flowing from a simple M/M/1 queuing

system governed by different queue priority rules such as for instance SPT and LPT, where LPT

denotes ”Largest Processing Time”. The different setups will be considered for different levels of

traffic intensity - say 0.25, 0.75 and 0.95.

The following six M/M/1 queuing system setups, which are ”x-rayed” below (figure 9 through 14)

for their autocorrelation properties, are all simulated for a pass-through of 20000 units, customers or

items of goods if you like.
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Figure 9: ACF and PACF for M/M/1/SPT output - traffic intensity=0.25

Figure 10: ACF and PACF for M/M/1/LPT output - traffic intensity=0.25

As should be expected the filtering effect of a given queue priority setup only kicks in for relative

high levels of utilisation. For traffic intensities of 0.75 and 0.95 we see a pronounced autocorrelation

generating effect by both the SPT and LPT rule. Negative autocorrelations for the SPT-rule, and

positive ones for the LPT-rule. It can also be noticed that in the SPT case the first order autocorrelation

coefficient is absolutely and almost solely dominant, whereas in the LPT case a much more slowly

decreasing full set of autocorrelation coefficients is the case.

The simulation results reported by Livny, Melamed and Tsiolis (1993) in their paper with the title

”The Impact of Autocorrelation on Queuing Systems” mainly tells us that it is autocorrelation in the

arrival process that hurts the most and definitely more than autocorrelation in the service process,

at least for M/M/1/FIFO systems. Both possitive as well as negative autocorrelation patterns has
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Figure 11: ACF and PACF for M/M/1/SPT output - traffic intensity=0.75

Figure 12: ACF and PACF for M/M/1/LPT output - traffic intensity=0.75

according to their findings a strong deteriorating effect on typical performance measures, such as for

example the average waiting times, whenever the system utilization level is moderate to high.

From the autocorrelation plots (Figure 11 & 13) for the M/M/1/SPT queuing system it seems clear

that the first order autocorrelation plays the dominant role which implies that it is important to be

able to model autocorrelation in arrival processes by the magnitude of this first order autocorrelation

relationship, but is this sufficient? Or is there a reasonable need for the ability to be able to model

higher order autocorrelation properties? The TES method, the one that is used by Livny, Melamed and

Tsiolis (1993), for generating uniformly distributed variates is computational extremely effective in a

simulation context, but allows only for the specification of the first order autocorrelation coefficient

9



Figure 13: ACF and PACF for M/M/1/SPT output - traffic intensity=0.95

Figure 14: ACF and PACF for M/M/1/LPT output - traffic intensity=0.95

by which the whole ACF/PACF structure is determined. It would of course, primarily due to the

computational aspect, be nice if TES-type autocorrelation processes could be viewed as sound and

generally applicable approximations, a kind of first order approximation, to any type of autocorrelation

present in a given analysis. This is unfortunately not the case! We consequently have to look broader.

The ARTA method for generating autocorrelation properties in event processes is much more flexible

in that it allows in principle the specification of the full spectrum of autocorrelation coefficients,

however confined to the class of covariance-stationary autoregressive time series models, where

the Yule-Walker equations constitutes a solid link between the autocorrelation coefficients and the

specification of the data generating AR-process. The ARTA method is in principle as computational

efficient and easy to use as the TES method.
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The following section will deal with and dig a little bit deeper into the differences between the

TES- and the ARTA methods as judged by their impact on typical performance measures relating to

the M/M/1/FIFO queuing system.

TES versus ARTA

The TES method is a very efficient method for generating autocorrelated uniform variates given by the

following transformation scheme that can be built into any good uniform random number generator.

U+
0 = Z0

U+
i =

〈
U+

i−1 + L + (R− L) · Zi

〉
U−

i = U+
i if i is even (1)

U−
i = 1− U+

i if i is odd

for i = 1, . . . , N

where theZi are i.i.d. uniform random variates and−0.5 < L < R ≤ 0.5 are the pair of

parameters that parameterise the TES method. The notation〈x〉 denotes modulo-1 arithmetic. The

two variatesU+
i andU−

i are respectively the positive and negative autocorrelated TES variates. Some

example of TES-ACF/PACF paths are illustrated in the figures 15 & 16.

The ARTA method (AutoRegressive-To-Anything) is a method based on the standard covariance

stationary autoregressive time series setup

Yi = const + α1 · Yi−1 + . . . + αn · Yi−n + εi (2)
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where εi are normally distributed. Due to the Yule-Walker equations a well defined relation

between the autocorrelation coefficients and the process parameters exists for this type of time series

processes, which makes them very well suited for generating variates of any type. TheY variate is

normally distributed and has consequently a known distribution function that takesY into the uniform

domain, and from there it is standard to transform to any other type of distribution. To make sure that

the desired autocorrelations prevail in the final distribution ARTA makes the necessary corrections to

the ”Yule-Walker” given AR parameters. Some example of ARTA-ACF/PACF paths are illustrated in

the figures 17 through 20.

Figure 15: ACF and PACF for TES(ρ1 = 0.4) generated arrival stream - Exponential distributed with

mean=1
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Figure 16: ACF and PACF for TES(ρ1 = −0.4) generated arrival stream - Exponential distributed

with mean=1

Figure 17: ACF and PACF for ARTA(a) generated arrival stream - Exponential distributed with

mean=1, (see table 1 for further specifications of the process-parameters (the head-column).)

Figure 18: ACF and PACF for ARTA(b) generated arrival stream - Exponential distributed with

mean=1, (see table 1 for further specifications of the process-parameters (the head-column).)
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Figure 19: ACF and PACF for ARTA(c) generated arrival stream - Exponential distributed with

mean=1, (see table 2 for further specifications of the process-parameters (the head-column).)

Figure 20: ACF and PACF for ARTA(d) generated arrival stream - Exponential distributed with

mean=1, (see table 2 for further specifications of the process-parameters (the head-column).)

The following M/M/1/FIFO system experiments will be conducted with only autocorrelation

present in the arrival stream and will be based on the same patterns as described in the figures 15

through 20. The service process will be standard i.i.d. exponential distributed.

The findings reported in table 1 & 2 (below) by and large tells us that positive first order

autocorrelations tends to deteriorate performance compared to the i.i.d. base case, whereas negative

first order autocorrelations in fact has the potential to improve performance compared to the i.i.d.
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base case, except for such extreme ACF-patterns, which are implied by the TES-method, that on the

contrary causes a very dramatic deterioration in performance. This is strongly in accordance with the

results in the Livny, Melamed and Tsiolis (1993) paper.

Traffic Intencity 0.25 0.75 0.95

I.I.D. 0.33 2.98 18.80

(0.33//0.33) (2.92//3.05) (17.18//20.42)

TES, 0.46 8.45 60.24

ρ1 = 0.4 (0.45//0.46) (8.25//8.65) (50.29//70.19)

ARTA(a), 0.36 3.60 22.08

ρ1 = 0.4, (0.36//0.36) (3.54//3.66) (19.90//24.26)

ρ2 = −0.00001

ARTA(b), 0.35 2.99 17.55

ρ1 = 0.4, (0.35//0.35) (2.95//3.04) (15.90//19.19)

ρ2 = −0.2

Table 1: Estimated M/M/1/FIFO Average System Time / Flow = 100000 units / Transient Period =

10000 / Replications = 10

It is also worth noting that the observed performance improvement caused in the cases ARTA(c)

and ARTA(d) very well can be and probably has to be attributed to significant higher order (> 2)

autocorrelation effects, that is in other words, the full ACF/PACF profile! The applied ARTA

specifications are in this study only specified up to the second order and as can be seen in the ARTA(d)

case (see table 2), thoughρ2 ≈ 0, figure 20 tells us thatρ3 ≈ 0.2 andρ4 ≈ −0.15! It clearly would be

interesting to get a more complete and systematic understanding of the full ACF/PACF patterns and
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Traffic Intencity 0.25 0.75 0.95

I.I.D. 0.33 2.98 18.80

(0.33//0.33) (2.92//3.05) (17.18//20.42)

TES, 0.31 5.72 141.32

ρ1 = −0.4 (0.31//0.31) (5.38//6.07) (104.47//178.17)

ARTA(c), 0.31 2.35 13.79

ρ1 = −0.4, (0.31//0.31) (2.32//2.39) (12.59//14.98)

ρ2 = 0.2

ARTA(d), 0.31 2.25 13.10

ρ1 = −0.4, (0.31//0.31) (2.22//2.29) (12.05//14.16)

ρ2 = 0.00001

Table 2: Estimated M/M/1/FIFO Average System Time / Flow = 100000 units / Transient Period =

10000 / Replications = 10

their systematic relation and influence on system performance in general.

Descriptive sampling with Autocorrelation

Descriptive or selective sampling is mostly known as a procedure for scrambling N numberszi

given by 1
2

(
2·i−1

N

)
wherei = 1, . . . , N , independently by picking numbers in a random fashion

based on some well behaved congruent mechanism, which then results in a finite set of independent

(truly)uniformly distributed variatesui wherei = 1, . . . , N .

Descriptive sampling is a method that is not accepted by all simulation analysts as being a sound

procedure - but I think it offers a method of last resort, in cases where the ARTA method is not able to
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suggest any generating method at all, given some observed set of data. The autocorrelated (extended)

descriptive sampling method can be made working on virtual any set of observed data, no strings

attached, which I think is quite a nice property.

A scrambling procedure, whereby some desired autocorrelation property can be incorporated into

exactly N numbersui is, however, not a stright foreward matter. Non the less, one scheme for

scrambling a finite set of figureszi given by 1
2

(
2·i−1

N

)
wherei = 1, . . . , N could be as follows:

• Generate or observe N successive values and perform a rescale down to the 0-1-interval,

resulting iny1, y2, . . . , yN .

• Now consider a nonlinear mathematical programming problem inN ×N binary variablesγi,j

given as follows

MIN Z =
N∑

i=1

Φ2
i

Subject to

Φi = yi −
N∑

j=1

γi,j · zj for i = 1, . . . , N

N∑
j=1

γi,j = 1 for i = 1, . . . , N (3)

N∑
i=1

γi,j = 1 for j = 1, . . . , N

all γi,j are binary

In essence the solution to this optimization problem will produce the best-fit permutation of the

z data in relation to the generatedy sample. Solution valuesγ∗i,j = 1 denotes the placement ofzj at

sequence indexi, that isui =
∑N

j=1 γ∗i,j · zj wherei = 1, . . . , N .
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Unfortunately, the above formulated optimization problem is quite cumbersome to solve exactly

in practice. However, an approximate solution method, based on a repeatedly pair-wise interchange

of z values in order to step-wise minimize
∑N

i=1 Φ2
i , has ”proven” in my experience to ”copy” enough

of the autocorrelation characteristics from they sample, in a manageable number of iterations, to

be a satisfactory procedure. But still this partial interchange method is not a computational very

efficient method and the computational effort increases byN2. The generation of 500 variates is still

manageable, but beyond this number it becomes rapidly quite impractically.

The results from using this method is showing the same general tendency as the results from the

TES and the ARTA method, when these specific characteristics are ”copied”, even on very small data

sets, but as the computational efficiency is very low, I will not continue to present any more detailed

analysis in this study based on this extended descriptive sampling method.

Concluding Remarks

In the Livny, Melamed and Tsiolis (1993) paper the conclusion is amongst others that TES should be

utilized whenever the analyst is in need for a conservative benchmark on the systems performance.

This makes sense because by comparing the results in this work especially figure 12 & 14 with figure

15 it can be seen that TES operated with a significant positive first order autocorrelation effect is

much the same as if the arrival generating process was another queue-sub-system ruled by the not

very efficient ”units with the largest processing time come first” or in short the LPT rule.

Now taking a summarising look at the autocorrelation patterns generated by a queue-sub-system

ruled by the SPT-rule it seems that much resemblance can be found when comparing the figures 11

& 13 with the figures 19 & 20. The performance results for these instants are also quite reassuring,

given common experience, and in addition they give a slightly deeper understanding of the reasons
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for the popularity of the SPT-rule in terms of autocorrelation patterns.

First order negative autocorrelation is obviously beneficial, however, from the figures 16 & 20 and

their corresponding table-results it is quite clear that full autocorrelation pattern is of vital importance

for the overall systems performance outcome.

It is evident that before choosing some arrival processes for some simulation study a thorough

preliminary analysis in order to uncover the basic time series nature of the interacting processes must

be undertaken. Having done so, flexible methods for generating streams of autocorrelated variates of

any desired distributional type such as the ARTA method or some autocorrelation extended descriptive

sampling method can more or less easily be applied, and as the results from the Livny, Melamed

and Tsiolis (1993) study as well as the results from this work indicates, the system performance

measures are heavily influenced by the i.i.d. versus the autocorrelations assumptions done. Plus/minus

35% in performance is easily observed even when comparing moderate and probably more realistic

autocorrelation assumptions with the traditionally and commonly used i.i.d. assumptions.
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