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Abstract

In this paper we estimate actuarial loss functions based on a symmetrized version of
the semiparametric transformation approach to kernel smoothing. We apply this method
to an actuarial study of automobile claims. The method gives a good overall impression
while estimating actuarial loss functions, since it is capable of estimating both the initial
mode and the heavy tail that is so typical for actuarial and other economic loss distribu-
tions. We study the properties of the transformation kernel density estimation and show
the differences with the multiplicative bias corrected estimator with variable bandwidth.
We add insight into the kernel smoothing transformation method through an extensive
simulation study with a particular view to the performance of the estimation at the tail.

KEY WoRDS: Loss models; Transformation; Skewness; Weighted integrated squared error.

1 Introduction

One of the main concerns in actuarial science is to study a group of risks. There are two
important reasons for this study, firstly the solvency question regarding the companies ability
to keep the business in a good shape after bad year with many expensive claims, secondly the
question of profitability. It is by now a well known fact from the financial literature that nobody
wishes to take on unnecessary risk, this can also be stated as risk has a price. It is important
for a given company that it does not take over a risk at the wrong price. Exactly for the same
reasons as it is important for a financial dealer that he does not buy an asset for more than the
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arbitrage free price. The insurance market is however in many ways much more diverse than
the financial market since all kinds of risks are insured at all kinds of conditions.

An insurance policy is the agreement between the insured and the insurer that fixes the con-
ditions for receiving a financial compensation in the random future time if the loss occurs. The
insurer has to make sure that the consumers believe this promise by transmitting confidence
on the grounds of past experience by showing that claims have been paid and that the insurer
will stay solvent. Therefore the solvency of the insurer is important also when it comes to the
marketing possibilities of the company. The actuaries have to come up with solvency consid-
erations that give confidence to all the people with interest in the company, the management,
the stock-holders and the customers.

Several unknown sources of randomness are present in insurance contracts: whether the
loss will occur or not and if it occurs, when it will occur. Additionally, severity is also random
and so is the financial compensation to be paid. All the policyholders having a similar kind of
insurance contract are usually referred to as a portfolio. It is often the case that a portfolio is
reinsured in such a way that the loss on one particular portfolio of the company can not exceed
a certain level.

The compensation received by the insured person in the event of a loss covered by the
insurance contract is called the payment or the single claim amount. Loss distributions describe
the payments to the insured, which may or may not exclude payments of zero (Hogg and
Klugman 1984; Klugman, Panjer and Wilmot 1998).

The actuarial literature is abundant in studies of how to estimate the amount of a single
claim (the loss distribution, or, equivalently, loss function), because it is the basis for the
development of the insurance system that in turn gives the information of the solvency situation
and of the price of risk. The loss distribution is the probability distribution of the amount to
be paid to the insured for the damage. In the day-to-day business insurers need to estimate
loss distributions for the obvious reasons, namely to be able set the right price of risk, to
make provisions and furthermore to write reinsurance to reduce unwanted risk. The usual
practice in the insurance industry is to face risk up to a certain level using the company’s own
financial resources and to reinsure the rest (reinsurance may be written using the excess of loss
method or the aggregate stop-loss method, among others). In order to make decisions on the
kind of reinsurance, the insurer has to evaluate the probability that a certain claim amount
exceeds a fixed limit. Upper quantiles are important in this context because the occurrence of
a large claim may cause insolvency or at least threaten the financial equilibrium of a firm. It is
also interesting to calculate the probability of losses within a given interval for risk assessment
(Daykin, Pentikiiinen and Pesonen 1994, pp. 127-130). In practise the study of loss distributions
is combined with the study of the random number of claims generated by a policy or a portfolio
over a fixed period of time. In this paper we will however restrict ourselves to the question of
loss distributions.

Traditional methods for loss distributions use parametric models. Two of the most popular
shapes are based on the lognormal distribution and the pareto distribution. The impression
seems to be that while the pareto distribution is best to estimate in the tail, then the lognormal
has the best overall shape. It has been suggested that a useful approach to model loss data is
nonparametric smoothing, since this ideally should be able to get the advantages of both the
lognormal distribution and the pareto distribution. This approach is typically most suitable
when the number of observations is large, as in the actuarial practice where the size of insurance



portfolios sometimes is very large. The standard actuarial curriculum considers kernel density
estimation as a fundamental topic (Klugman et al. 1998). Actuaries, however, have not made
an extensive use of nonparametric methods in this field. Our opinion is that actuaries will only
use a method that is particularly good at estimating the density at the tails, a question that
classical kernel smoothing fails to do. On the other hand, if nonparametric methods are to be
widely accepted by practitioners, both actuaries and economists, there should be a rather simple
way to produce the estimates. In this paper we show that a slightly adjusted version of the
semiparametric transformed method of Wand, Marron and Ruppert (1991) is indeed suitable to
study loss distributions. We show that the estimation is easy to implement (including the often
complicated question of choosing the amount of smoothing) and that this method provides
good and smooth estimates of the upper tail. Parametric models have often been justified due
to their simplicity and their ability to solve the problem of lack of smoothness of the empirical
approach. We now feel that we provide actuaries with a simple nonparametric alternative to
their traditional parametric estimation techniques.

Actuaries are interested in having good estimates at all the values in the domain range:
small losses because they are very frequent, medium losses causing a dramatic increase of ex-
penses (demanding liquidity) and large losses that may mean that reinsurance contracts should
be reconsidered. In this paper we estimate several actuarial loss function of automobile claims
using nonparametric methods. We focus on our version of the semiparametric transformation
approach to kernel smoothing introduced by Wand et al. (1991) and compare it with the
standard kernel estimator and the multiplicative bias correction method (Hjort and Glad 1995;
Jones, Linton and Nielsen 1995). We advocate in this paper that the semiparametric trans-
formation method behaves excellently when it comes to estimating actuarial loss functions. It
is a very suitable approach when estimating functions with a lognormal type of shape and a
pareto type of tail. Loss functions have typically one mode for the low loss values and then a
long heavy tail. We show by a simulation study that the method is able to estimate all three
possible kind of tails, as defined in Embrechts, Kliippelberg and Mikosch (1999, p. 152), namely
the Fréchet type, the Weibull type and the Gumbel type. This makes this method extremely
powerful for actuaries at all levels, i.e. the non-life actuary calculating the risk of his auto
claims, when a life actuary consider the risk of a group life insurance, or when these actuaries
consider the relevant price for a reinsurance contract, where the reinsurer takes over the risk
corresponding to the tail of the distribution. Besides, when the actuary calculates the total
risk of a portfolio, perhaps using the famous recursion formula of Panjer (1981) or some more
recent generalization of this formula, then the loss function of the individual claims is needed.

We show that our version of the semiparametric transformation principle of Wand et al.
(1991) also is able to estimate the risk of a heavy-tailed distribution beyond the data. A
heavy-tailed distribution is here of pareto shape. When we use our non-parametric estimator
to fit the closest possible Pareto distribution in the tail we see, that at least for the estimator
we tried out in our simulations, then our method is much better than the Hill estimator (Hill
1975), that is widely used in actuarial science and finance, see Embrechts et al. (1999, p. 330)
and Danielson and Vries (1997). On top of this our estimation technique does not have to
bother about where the tail begins such as the Hill estimator has to. This is often a difficult
question and fatal errors leading to massive losses of insurance or reinsurance companies may
happen. The beginning of the tail can be estimated by a methodology that can be compared
to the trade-off between bias and variance in kernel density estimation, but the only (to our



knowledge) published method on this (Hall 1990) involves sub-bootstrapping, that is hard
to understand and implement for the practitioner. For an expert implementation of Hill’s
method in the important field of estimating extreme values in finance, see Danielson and Vries
(1997). Recently another method has appeared that so far has not reached the attention of
an actuarial audience, namely the semiparametric robust estimator of Feuerverger and Hall
(1999). Compared to this estimator, our estimator has the advantage of being directly linked
to the non-parametrically estimated loss function. The connection between the loss function
and the tail index is therefore immediate in our estimator of the tail index. We consider this
to be a considerable competitive advantage of our method when it comes to the application
in the fields of actuarial and financial loss models. We believe that our method is a big jump
forward for the practitioner, whether it is an actuary or a financial analyst, to get a quick and
easily understandable estimate of the loss distribution.

When it comes to the actual implementation of the method of Wand et al. (1991), we
do deviate slightly since we only consider transformations that give a symmetric distribution.
Firstly, we asked ourselves the question: ”Why is it possible to estimate beyond the data in
density estimation, when this is impossible in related estimation areas, such as regression and
hazard estimation?” (Embrechts et al. 1999). The answer to this question seems to be that the
density integrates to one. So, even if we do not have information on the tail, the restrictions
on the density estimator provide us with valuable information. Acknowledging this logic, we
decided to estimate the entire density at once using the method by Wand et al. (1991) but
forcing the transformation to result in a symmetric density. Our simulation study shows that
the approach has many advantages. We emphasize that our purpose in this paper has been
to construct a good overall method for actuaries and financial analysts to use both for the
entire domain of the loss function and for its tail. Therefore, we present a general method
for practitioners to be used in a wide variety of situations, at least for a preliminary analysis
of data. In our simulations we have used the Integrated Squared Error (ISE) and another
Weighted Integrated Squared Error (WISE) that is more fit to evaluate the performance of
actuarial loss functions in the tail. The weighted version penalizes the deviation at the tail,
which corresponds to large claims (large amounts of money). In this regard, we do not follow
the classical point of view that studies tail behavior using only the observations in the tail.
We recommend the applied book of Reiss and Thomas (1997) for a solid introduction to the
practical aspects of loss function estimation in insurance and finance. Embrecths et al. (1999)
gives a more theoretical introduction to the area.

In sections 2 and 3, we study the properties of the transformation kernel density estimation
and show the differences with the multiplicative bias corrected estimator with variable band-
width. Section 4 describes the use of the shifted power transformation family. We apply these
techniques to the automobile claims data, that are described in section 5. Section 6 presents
the results, showing how to estimate actuarial loss distributions in practice. Finally, in section
7 we compare the transformation method to the standard kernel estimator (with boundary
correction) and to the multiplicative bias correction estimator in a simulation study.



2 Use of a fixed transformation in kernel density esti-
mation

We assume that we observe n independent identically distributed stochastic variables X7, .., X,
with density f(-) on the positive real line. The traditional nonparametric kernel estimator is:

f(x):nliblK{b (x—X)}—n 12Kb (r — X5),

where b is the bandwidth and the kernel K is a density. Now let F' be some transformation
function that is at least two times continuously differentiable. F’ does not have to be a cumulated
density function. Then the estimator based on estimating the standard kernel density estimator
of the transformed data and then transforming back is

flz,F) = ”ZKb{F F (X))

We show below that this estimator has a close approximation to the multiplicatively bias
corrected estimators with variable bandwidth b{F’ (z)} " (for the fixed bandwidth case, see
Hjort and Glad 1995). This estimator is

P (z)
P (X))

fu(z, F) = _IZKb {F' (z) (x — Xi)}
Following Hjort and Glad (1995) we get that

nb | far(z, F) — E{fu(x, F)}| = N{0, F' (2) f (z) a(K)}
and
E{fu(x,F)} - f(x) = %ksz {F'(@)} " {f(2)/F'(2)}" + Op(b"),

where a(K) = [T [K()]* dt and ky = [T2° 12K (t)dt. Hjort and Glad (1995) did assume that F
was a probability distribution, but this condition is not necessary. We only need that F”(z) > 0.
The variable bandwidth multiplicative estimator has the important weakness that it does not
integrate to one. This can be expected to be of considerable importance when estimating the
tail. We show below that the transformation method makes a clever local adjustment to the
variable bandwidth multiplicative correction method such that it integrates to one.

Consider the bias term of the transformed estimator using that:

B{f@.F)} = F (@) [ Ko {F (2) = F (5)} f(y)dy
We define F' () — F (y) = F' (z) (z — yo) and substitute variable y, then,
B{f )} = F @) TR AF () (&~ )} 5 F(5)dyo
— B {fule, F)} + F () [ Ky {F (@) (0 — o)} {ngf;) "L\ (1) e

The difference between the bias of the variable bandwidth multiplicative blas correction and
the transformation method is therefore a subtle local shift of the key fraction-L +v assuring that
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the estimator integrates to one. This shift does also imply a slightly changed asymptotic bias.
We analyze this by considering the second term above. Note that

(Lo ool (%) ) — o),

where y* is between yo and y and that

(0= ) = 5 (oo (2~ "

where z*is between x and yy and x** is between yg and y. This gives us the result that

{ fo)  fw) }: <%>'(y*>iﬂ)(m_%)2_

F'(y)  F (y) 2F" (z*
Now let
h(z) = <i>/ (@L@)
F 2{F' (x)}*
Finally,

~

E{f(@,F)} = E{fu(z,F)} - kb*h(x)+ op(t*)

1 £\ 1
= —kb? || = —_ b?).
9 2 l<F1> (x){F' (:E)}] +0P( )
It is in addition easy to see that the asymptotic variances of F { f (x, F )} and F {fM(x, F )}
are asymptotically equivalent, such that,

nb |f(z, F) = E{f(z,F)}| = N{0,F' () f (x) a( K)} .

3 Transformations in kernel density estimation

In this section we consider the question of estimating a suitable transformation and then use
the same type of approach as above. Let

F:{F9| 86@}

be a set of twice continuously differentiable transformations. F could be a set of cumulated
distribution functions or some other suitable set of functions. © can correspond to a parametric
family of transformation functions as in Wand et al.(1991) and also in Yang and Marron (1999)
or it can correspond to a bigger nonparametric class of functions as in Ruppert and Cline (1994)
and Hossjer and Ruppert (1995). For a given 6 the transformed density can be written as, see
Wand et al. (1991),

~

Fw,0) = Fy o) 30 K3 (o () — Fo (X0},

where we have assumed that the transformations are differentiable.



Now let @ be some suitable estimator for 0, then the resulting transformed density can be
stated as

fla,0) = Ei(z)n? iKb {ng\ (z) - F5 (XZ-)} :

Now assume that 6 is a square-root-n_consistent estimator of §. Then it is straightforward to
notice that the asymptotic theory of f(z,0) equals the asymptotic theory of f(z,#), so we get

B {f(,0)} = %/@bz K%) (m)m]/ + op(B?).

And for the asymptotic variance we get

~

nb | f(@,0) = E{f(@,0)}] = N{0,Fj(x) f (z) a(K)} .

Remark 1 It has been pointed out in Jones (1990) and Wand and Jones (1995, p. 44) that
an argument based on Taylor expansion shows that the transformation method is related to
both the known types of variable bandwidth methods, see Jones (1990), and that it can be
considered as somewhere in between these two methods. While this is certainly correct, this
approach gives no insight into the ability of the purely nonparametric transformation method to
improve the rate of convergence of the resulting bias of the estimator, see Hossjer and Ruppert
(1995), since the only variable window method that can reduce the rate of convergence of the
bias is based on a variable bandwidth that is equal to the square root of the inverse density.
Our interpretation says that the bias reducing property comes from the relation between the
transformation method and multiplicative bias correction, see Hjort and Glad (1995) and Jones
et al. (1995). Moreover the transformation method turns out to approrimate to a variable
bandwidth version of multiplicative bias correction.

4 The shifted power transformation family

Transformed kernel estimation used here is based on a transformation of the observations of
X1, .., X,. The purpose of this transformation is to obtain a new set of variables whose pdf’s
are approximately symmetric as in the normal distribution. The reason for this approach is
three-fold. First, a transformation that results in a symmetric distribution is bound to have had
a significant influence on a possible heavy tail of the original distribution. Secondly, it makes
it quite reasonable to use a simple rule of thumb bandwidth selection rule while estimating
the density of the transformed distribution. Thirdly, the boundary problem will more or less
disappear since the transformed distribution can be expected to level off slowly. Therefore we
do not bother about boundary kernels or other forms of correcting at the boundary (Jones and
Signorini 1997; Zhang, Karunamuni and Jones 1999).

The reason for restricting ourselves to transformations resulting in symmetric functions is
therefore not based on asymptotic properties, but rather that is seems practical from the point
of view of applying the method to real data. The strategy of non-parametric statistics and
model selection is to find natural and useful restrictions that do not bias the estimator to
much, but help removing variability. We think the symmetry restriction lives up to the point.



Our approximation to this symmetry consideration is based on the estimated skewness that we
force to be zero.
The shifted power transformation family used by Wand et al. (1991) is

o . (£E+)\1)/\2 if )\27&0
y—g,\(m)—{ In(z+XA) ifd=0"

where A = (A A2) with A; > —min(Xy,..,X,,) and Ay < 1 (for right-skewed distributions).
The parameters (A A\2) will be called the transformation parameters. The density for the
transformed variable is therefore:

LN = ot ) (50) W)

For a given pair (A; A2) the transformed density, f,, can be estimated by the standard
kernel density estimator and the following estimator of the original density f is:

]?(%)\) = g\ (2) fy(?b A) =g\ (z ZKb gx (7) — gx (X3)).

As mentioned in the introduction, there are three classes of density tail, the Weibull (with
light tail), the lognormal (with medium sized tail) and the Pareto (with a heavy tail) belong
to each of the three classes, see Embrechts et al. (1999, p. 330). Note that the Pareto tail
shape actually belongs to our class of transformations. Combining this fact with the asymptotic
theoretical properties of our transformed estimator makes us expect that our estimator behaves
extremely well in the tail of distributions of heavy tails. Our simulation study in section 7
confirms our beliefs.

To implement the transformation approach, a method to select the transformation parame-
ters and the bandwidth is necessary. Our purpose is the following: firstly, we restrict ourselves
to the set of A\ parameters that approximately give zero skewness for the transformed data
Y1, .., Y, (which have also been scaled to have the same variance as the original sample, see

3
Wand et al. 1991). We define skewness as 7, = {n1 > (Y; —7)3} / {n1 > (Y; —7)2}2 ,
=1 i=1

where Y is the sample mean.
To select the A parameter vector, we aim at minimizing the mean integrated square error

(MISE) of f(x, ), which can be approximated by:
5

> ootk 5, (1), M

where (3, ( f;’) = [T [ Iy (y,)\)rdy (Wand et al. 1991). Minimizing (1) with respect to

the transformation parameters is equivalent to minimizing 3, ( Iy ) Hall and Marron (1987)
suggested the following estimator:

By (f))=n"n—1) ZZC5K*K{_1(Y;~—Y]-)}, (2)

i=1 j=i+1

where ¢ is the bandwidth used for this estimation and can be estimated by minimizing the
mean square error (MSE) of 3, ( Iy ) When it is assumed that f, is a normal distribution c
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can be estimated by ¢ = 7, <_40\2/1§n2>

Wand et al. 1991).

Once the transformation parameters have been estimated, we have to make the selection
of the bandwidth that is going to be used for the transformation. Here we simply use the
rule-of-thumb developed by Silverman (1986, p. 45) for a standard normal density. Since
our transformation aims at a transformed density with zero skewness, this approach seems
very plausible. The final estimator of the bandwidth b is therefore, b = 1.0595,n~% and the
corresponding transformation estimator will be called f(z, A;b).

, where o, = /n~! i (Y; — Y)? (Park and Marron 1990;
i=1

5 Automobile claims data

In this section we present two data sets that will be used for the estimation of loss functions.
In the first one, we use data pooled from several insurance companies in The Netherlands. We
use these data to show the performance of the different kernel density estimation methods. In
the second one, we use data on claims that were provided by a Spanish insurance company. We
will use this application to compare the shape of the loss function in subpopulations.

5.1 Automobile claims in The Netherlands

The data used bellow were collected by the Centrum voor Verzekeringsstatistiek (CVS) in
The Netherlands in 1992. Dutch insurance companies provide their claims information to the
Centre for comparative purposes. This practice is typical in most European countries, where
companies are member of a nationwide insurers union. A relatively large number of companies
participated in this study, such that close to 50% of all car collision claims that occurred during
1992 in The Netherlands are included in the sample.

The data considered only the so-called the WA-claims, which means that they correspond to
payments for legal liability and bodily injury expenses involved in the car accident and covered
by the policy contract. The expenses include personal injury damage, property damage, third
party bodily injury damage and any other liability damage. Kalb, Kofman and Vorst (1996)
used a parametric model to analyze these data.

The data set contains 164,183 observation of the cost of single claims in Dutch guilders.
Table 1 shows some descriptive measures of the sample.

The data set has the typical characteristics of claims data in insurance. It is a large sample
of strictly positive values with a heavy tail.

5.2 Automobile claims within an insurance company

In this second example we use information on claims from accidents occurred in Spain in 1997
that were provided by one of the major insurance companies in this country. The costs refer
only to bodily injury payments in thousands of pesetas. Damage payments were not considered
here. The claims included in the sample come from insured policyholders that have the most
basic type of insurance contract, namely, third party liability coverage. We only included those
policyholders that make a private use of the car and that accepted their fault in the accident. All
bodily injury costs caused by the accident were added together, so that costs resulted from the



addition of medical bills and fracture, disfigurement, dismemberment or death compensation.
Only accidents with a non-zero payment were examined.

Table 1. Descriptive statistics for automobile
claims in the Netherlands, 1992.

Statistic

Sample mean 4,658.85
Standard deviation 20,673,03
Skewness 37.16
Kurtosis 2,217.41
Minimum 1.00
First quartile 1.00
Median 1,002.00
Third quartile 1,861.00
Pys 13,077.00
Py 50,000.00
Maximum 1,870,000.00

In order to design new contracts or calculate fair premiums, the company may be interested
in estimating the loss distributions using these data. We will present the density estimates
for two groups in section 5. The first group includes claims of insured policyholders that are
younger than 30 years old and the second group includes those policyholders that are 30 years
old or more. Summary statistics are presented in Table 2 for the two groups.

Table 2. Descriptive statistics for bodily injury
payments in automobile insurance.

Statistic Age<30@  Age>30®

Sample mean 402.70 243.05
Standard deviation 3,952.27 704.54
Skewness 30.42 10.90
Kurtosis 964.86 183.04
Minimum 1.00 1.00
First quartile 22.00 20.00
Median 66.00 68.00
Third quartile 171.00 182.00
Pos 1,104.00 1,000.00
Py 4,600.00 3,000.00
Maximum 126,000.00 17,000.00

Sample sizes: (91,061 and ) 4,062

It is interesting to note the difference between the two types of policyholders. The summary
statistics show that the average paid amount is much higher for young insurers than for the
older ones. The percentiles show that the difference occurs at the extreme values, which are
more relevant in the subpopulation of young drivers. We would expect the tail to be heavier
for policyholders that are under 30 years of age, meaning that it is much more likely to have
large claims (extreme values) in this group. Using the loss distribution estimation we will be
able to evaluate the difference of shape for the two groups.
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6 Estimation of loss distributions

In this section we will apply the transformed kernel density estimation method described in
section 3. In the first subsection we will detail the steps of the estimation procedure and
we will compare the results with the bias correction methods presented in section 2. In the
second subsection we will emphasize the use of the transformed kernel density estimation when
assessing risk in heterogeneous portfolios.

6.1 Automobile collision claims in The Netherlands

The transformed kernel density estimate of the first data set is presented in Figure 1. We have
plotted the density estimate in the interval from 1 to 100,000. We would like to point out the
smoothed shape, also for the tail and the ability of the density estimate to capture the form
of the tail. From the results obtained in the estimation steps, we concluded that the optimal
parameter values for the transformation are )\1 = 863.12 and /\2 = —0.59. The rule-of-thumb
bandwidth is b = 1,977.07. We will discuss the details of the estimation procedure bellow.
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Figure 1. Transformed kernel density esti- Figure 2. Transformed kernel density esti- Figure 3. Transformed kernel (solid line) and
mate of Dutch automobile collision claims. mate of the tail of Dutch automobile collision multiplicative bias correction (dashed line)
claims. density estimate of Dutch automobile colli-

sion claims.

Figure 2 presents the transformed density estimate for the highest part of the domain. It
concentrates on costs between 1,600,000 and 1,870,000 Dutch guilders. From this figure, the
decreasing smoothed shape of the tail can be observed. Therefore, it can be seen that the
transformed kernel density estimate approximate the tail well.

In Figure 3, we present the transformed kernel density estimate for auto claims between
25,000 and 100,000 Dutch guilders. In this figure, we compare the results of the transformed
kernel density estimation method with those that are produced by the multiplicative bias cor-
rection method of Jones et al. (1995), using a bandwidth equal to b = 5,000. We conclude
that multiplicative bias correction method produces bumps at the tail, due to the presence of
scarce data in this interval. On the other hand, we should note that the multiplicative bias
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correction method underestimates the main mode of the distribution, which is located at a
lower cost value and is not shown in this picture. This means that, a wider window might
eliminate the oscillations but would not be able to capture the shape for small claims. The
simple bias correction kernel estimation method produces similar results. So, the transformed
kernel density estimation method is suitable in this context because it provides a good and
smooth estimate over the entire domain of the loss distribution.

The transformed kernel density estimation resulted from of the estimation of the transfor-
mation parameters A = (A1 A\2) and the selection of the smoothing parameter b. Figure 4 shows
the skewness coefficient as a function of the transformation parameters for these data. It can
be seen that there is a subset of parameters that make skewness equal to zero. Figure 5 plots
(2) in the logarithm scale as a function of the transformation parameters only for the subset of
pairs that make skewness equal to zero. The final transformation parameters were selected so
that (2) was minimized.
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~
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automobile collision claims data.

6.2 Automobile collision claims within an insurance company

For the second data set, we present the potential usefulness of the method when applied in
practice for the comparison of the loss distribution of two subgroups. For the transformed
kernel estimation, we conclude that the estimated parameter values for the transformation are
A1 = 3.30 and Ay = —0.23 for young policyholders and \; :A2.45 and Ay = —0.16 for those
policyholders over 30 years. The rule-of-thumb bandwidth is b = 1,038.96 for young insurers
and b = 141.62 for the older ones. Finally, the transformed kernel density estimates for young
(solid line) and for older policyholders (dashed line) are presented in Figure 6. In this picture,
the plotted x-range concentrates on small claims (up to one millions pesetas), showing that
the older drivers have a higher probability for small losses. In Figure 7, we plot the part of
the density estimate that corresponds to large claims (those above 5 million pesetas). In the
extreme-value region shown in Figure 7, the tail is lighter for the older policyholders and much
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heavier for those drivers under 30 years. The methods discussed in section 2 are unable to
provide such a smoothed version of the density simultaneously at low cost intervals and for
high cost values. In this example, we are able to show that actuaries may use this method to
compare the behavior of segments of the portfolio.

This information is very important specially for reinsurance, since it indicates that the
companies using an excess-of-loss system should be aware that the limit to be set should not
be the same for different age-groups. Therefore, the cost of reinsurance may differ for these two
groups of insured persons, although one should also take into account the frequency of accidents
involving bodily injury costs, because our variable is only measuring its severity. This result
is in accordance to common knowledge that young drivers usually have larger claims than
older ones. The reasons for this behavior are not unique and have long been discussed in the
literature, they point out inexperience and moral hazard.
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Figure 6. Transformed kernel density es- Figure 7. Transformed kernel density es-
timate of Spanish bodily injury automobile timate of Spanish bodily injury automobile
collision claims. For young (solid line) and collision claims. For young (solid line) and

for older policyholders (dashed line). for older policyholders (dashed line).

7 Simulation studies

In this section we present two simulation studies. In the first one, we compare the kernel
density estimation methods for different types of distributions that usually arise in actuarial
loss models. In the second one, we propose an alternative to the estimation of the tail index
and compare our approach with the Hill estimator for the most typical loss distribution shape.

7.1 Performance of the kernel density transformation method

We have simulated different densities that are common in actuarial science because they gen-
erate skewed and heavy tailed distributions. We have selected three types of distributions:
Weibull, lognormal and a mixture of a lognormal and a Pareto (Embrechts et al. 1999). The
reason for this choice is twofold: on one hand we want to be exhaustive regarding the extreme
value theory, and therefore we select three distributions within the three classes of generalized

13



extreme value distributions that characterize the behavior of tails. On the other hand, the
simulated shapes are very similar to the ones observed in practice when studying financial loss
functions. The lognormal hypothesis has often been used as the baseline model as well as the
combination of lognormality and Pareto-like forms.

We compare our method with the standard kernel method (with boundary correction):

Flo) = Y0 K oo - X0} =t Kl - X)) ()

where b is the bandwidth and the kernel K, is the cut-and-normalized kernel (Gasser and
Miiller 1979). There exist of course more sophisticated ways of correction of a standard kernel
estimator at the boundary (see Zhang et al. 1999, for an excellent overview), but we do
prefer the simplest possible one for our purposes. This is also in line with the approach in the
transformation method where we do not boundary correct at all.

We also consider the multiplicative bias correction estimator of Jones et al. (1995) that is
defined as:

f(z) =n"t n T — X AfA(:E)

This method decreases bias both near the boundary and in interior regions. In the compar-
ative study by Jones and Signorini (1997) this estimator was chosen as the overall best among
a range of different bias reducing methods. Our simulation study shows that in the study of
actuarial loss functions, the semiparametric transformation technique seems to be superior to
the above two standard methods in particular if we concentrate our attention to the tail. As
we mentioned in Section 2, this fact is extremely clear when it comes to a density with a heavy
Pareto-type tail that is so important for the theory and practice of actuarial loss models.

We measured the performance of the methods by comparing the Integrated Squared Error
(ISE) and the Weighted Integrated Squared Error (WISE), as described bellow. These were
also used as optimality criteria.

The value of ISE is the L? distance between the estimated density (f(z)) and the simulated
density (f(z)), namely:

155 = [ :’° F@) - f)) da.

We also used the weighted measure of distance, the WISE, which is a generalization of the
ISE.

WISE = /;OO {T(x) — f(x)}2 ride.

In our situation, the weighting function is 22, therefore WISE is giving more importance to
deviations in the tails. This also has a practical interpretation, since the z-values correspond
to payments to be made by the insurer. This measure penalizes deviancies of large amounts.

One difficulty when comparing the different methods is the choice of the bandwidth. As in
Jones and Signorini (1997) we will present a ”best case” analysis. In this way, the best possible
performance of each estimator is investigated. In every situation, we study the optimal band-
width in terms of the value of b that minimizes the ISE and also the WISE. Nevertheless, the
optimal bandwidth will not probably be achieved, so that the results will not hold in practice.
For the transformation method, we also study the rule-of-thumb bandwidth choice. This is a
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quick way to choose the smoothing parameter. We denote this transformation estimator by
fi (x, X 5), whereas f| (z, /A\) denotes the transformation estimator with the in-obtainable optimal
bandwidth.

Our simulation study covers three sample sizes: 100, 200 and 1,000. Every situation is
replicated 100 times. For the lognormal case, we also simulate two different shapes, namely two
parameter values. The four generated distributions are: a Weibull distribution with parameter
¢ = 1.5 and positive domain, a lognormal distribution with 4 = 0 and o = 0.5, a lognormal
distribution with 4 = 0 and ¢ = 1, and positive domain and, a mixture of a lognormal distribu-
tion with parameters ;1 = 0 and 0 = 1 and domain on [1, +00) and a Pareto distribution with
parameter a = 1, also defined on [1,+00). The mixture was 70% lognormal and 30% Pareto.
As presented in Figure 8, these four distributions show increasingly heavier tails (Johnson, Kotz
and Bulakrishnan 1994).
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Figure 8. Simulated densities.

For each density estimator, we have calculated the mean, the median and the standard error
of the ISE and the WISE. The results are given in tables 3 to 6, multiplied by 10°.

The transformation method with optimal bandwidth choice provides the best results both
in terms of the ISE and the WISE. In general, the greatest advantage of our method is in the
heavy tail situation.

In the Weibull case shown in Table 3, where the tail is not very heavy, the advantage of
the transformation method is not so big. Nevertheless, for a large sample size, the f(z, A;b)
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estimator is clearly better that estimators f(x) and f(z) with the in-obtainable optimal band-
widths. A quite powerful result in favor of the transformation method. For the lognormal
densities in Tables 4 and 5, we are looking at the shapes that have traditionally been used
by actuaries for loss models. Again, we see that our estimator has the best performance and
that the rule-of-thumb bandwidth estimator is a good choice. The estimators f(x) and f(z)
perform very similarly to one another for all sample sizes and they are inferior to the trans-
formation method even they have the best possible in-obtainable bandwidth compared to the
transformation method with a quick data-adaptive bandwidth choice.

When we consider the Pareto tail behavior in Table 6, we see that the transformation
estimator f(z,\) has the greatest improvements with sample size, in particular if we look at
the WISE. This means that if we give more importance to the tail estimation, including the
weights, the results are even more favorable to the transformation method. As a matter of
fact, the transformation method is almost a factor 10 better than the standard kernel methods.
Such an improvement is quite substantial and way beyond the improvements normally obtained
from bias reducing estimators (Jones and Signorini 1997).

As a general comment, for small sample sizes, the superiority of the transformation methods
becomes more evident when the tail becomes heavier and that even when the rule-of-thumb
bandwidth is chosen in the transformation method and the best possible bandwidth is selected
for the estimators f| (z) and f(z) then the later cannot improve the results of f(x, 5\,5)

For all the densities and large samples sizes, the mean of the ISE and the mean of the
WISE for f(z,A;b) are very close to the ones obtained for f(x,\) when selecting the optimal
bandwidth. For the estimators f(x) and f(x) we must keep in mind that the bandwidth choice
is a large and difficult topic, that will make their practical performance considerable worse.
We therefore think that our results demonstrate that f(x, 5\; B) is an interesting and easy-to-do
proposal that behaves very satisfactorily - in particular in the heavy tail situation.

Table 3. Summary results of the simulation study
for the Weibull (¢ = 1.5).

ISE WISE

Mean Med Std Mean Med Std
n=100

f(z) 8158 6.769 4.568  2.883 2.059 2.368

f(z) 10.036 8817 5.118 2932 2391 1.626

f(z,A) 6964 4.096 8319 2449 1936 1.905

Flxz, ;b)) 8327 5569 8.648  3.256 2.772 2.320
n=200

flz) 4929 4.089 2708  1.629 1.089 1.250

f(z) 6.327 5471 3.068  1.838 1.521 1.158

f(z,A) 3.750 2521 3.641  1.495 0.950 1.305

fl@z,\;b) 4506 2872 4180  1.814 1.299 1.507
n=1000

fz) 1.734 1.662 0.689  0.561 0.452 0.375

fz) 2256 2112 0.779  0.649 0.610 0.326

f(z,A) 0.849 0.680 0.676  0.404 0.300 0.302

fl@z,A;b) 0974 0.859 0.689  0.453 0.357 0.307
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Table 4. Summary results of the simulation study

for the lognormal (o = 0.5).

ISE WISE
Mean Med Std Mean Med Std
n=100
flz) 7.164 5656 6.252  7.508 5.673 6.747
f(z) 7.210 5830 6.441  7.085 5.111 6.104
f(z,)) 7.780 6.863 6.118  5.603 5.039 4.090
Ffl@, A b) 9.092 7.605 6.465  6.767 5.727 5.222
n=200
f(z) 3.804 3261 2.608  3.829 3.130 2.549
flx) 4359 3.786 2964  3.729 3.251 2.260
f(z,\) 3.044 2327 2337 2430 1.848 1.828
flz,A\;b) 3.836 3.293 2421  3.021 2504 1.884
n=1000
f(z) 1.660 1.435 1.064  1.428 1215 0.863
f(z) 1.636 1.248 1.071  1.348 1.153 0.804
f(z,A) 1.300 0.879 0.959 0988 0.755 0.758
fla,A;b) 1541 1.133 0991  1.180 0.940 0.785
Table 5. Summary results of the simulation study
for the lognormal (o = 1).
ISE WISE
Mean Med Std Mean Med Std
n=100
f(z) 5929 5.336 2716  3.590 3.069 2.061
flz) 6522 6.205 2450  2.936 2.593 1.455
f(z,A) 4.859 2942 6.761  1.311 1.105 1.016
f(z,\;b) 5981 3.801 7.515  1.720 1.340 1.335
n=200
fz) 4.624 4303 1.977 2649 2339 1.459
f(x) 5527 5361 1.674 2420 2338 0.901
f(z,A) 2295 1655 2.167  0.753 0.594 0.585
Flz,A;b) 2.838 2029 2409  1.038 0.900 0.733
n=1000
f(z) 1.487 1294 0.665  0.670 0.613 0.266
f(z) 1.947 1.840 0.733  0.829 0.780 0.278
f(z,A) 0.615 0453 0.490  0.197 0.162 0.127
flz,\;b) 0717 0572 0.506  0.233  0.191 0.140
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Table 6. Summary results of the simulation study

for the Mixture (0 =1, a = 1).

ISE WISE

Mean Med Std Mean Med Std
n=100

f(z) 4.853 4.356 3.219  36.203 26.826 35.827

f(z) 6.048 5379 3.465  33.879 29.347 28.307

flz,A) 2509 2.048 2.132 5383  4.221  4.376

flz,X;0)  3.308 2416 2.559 7.351  5.665 6.070
n=200

flz) 2765 2251 1.942  25.888 16.790 29.224

f(z) 3.767 3.073 2132 24128 17.834 21.315

f(z,A) 1810 1.338 1.619 3.767 2.914  3.042

flz,A\;b) 2106 1.584 1.758 4364 3.135  3.248
n=1000

f(z) 0994 0.867 0532  10.654 5.606 15.337

f(z) 1513 1.333 0.584  10.260 6.534 11.508

f(z,A) 0.548 0.352 0.596 1.170  0.810  1.098

Flz,X;b) 0.687 0.518 0.623 1.402  1.090 1.134

7.2 An alternative measure to the tail index

In this part, we want to study if the kernel density transformation estimation method can
be useful to estimate the tail index («), which is the shape parameter of the extreme value
distribution (see, Reiss and Thomas 1997 and Dress, de Haan and Resnick 2000). We propose
to estimate o by minimizing the WISE of our density estimate to a Pareto with domain on
[1,+00).

We want to compare our estimates with the results given by the Hill estimator in the case
where we simulate a mixture of a lognormal and a Pareto distribution, where the true tail
exponent is & = 1. We have used the 100 samples of size 100, 200 and 1,000 that were used in
the simulation of the previous subsection. Then, we have taken the k% of the observations in
the upper tail, k& > 5 (if the sample size is 1,000, we have taken k& > 0.5). For every fixed k,
we have estimated the tail index using the Hill’s method. Figures 9, 10 and 11 show the mean
squared error of the Hill estimates as a function of &, for the three sample sizes. The horizontal
dashed line indicates the level of the mean squared error of the estimates when our approach
is used.

As we can see, our approach to tail index estimation provides results that are much more
accurate than the Hill estimation for all sample sizes. Another advantage is that our method
eliminates the problem of selecting k.
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Figure 9. Mean Squared Error of the Hill Figure 10. Mean Squared Error of the Hill Figure 11. Mean Squared Error of the Hill
estimator of (X as a function of the k% of estimator of (¥ as a function of the k% of estimator of (¥ as a function of the k% of
the upper tail used (solid line) and Mean the upper tail used (solid line) and Mean the upper tail used (solid line) and Mean
Squered Error of our approach (dashed line), Squered Error of our approach (dashed line), Squered Error of our approach (dashed line),
n=100. n=200. n=1,000.

8 Conclusion

In this paper we have shown how the transformed kernel estimation method is used to estimate
actuarial loss functions. We study the properties of this transformation estimator and we find
a relationship to the properties of the multiplicative bias corrected kernel estimator with a
variable bandwidth. We have compared our method with other kernel estimation approaches
in this context using two data sets of automobile collision claims. We have also presented a
simulation study that shows on the one hand that the method can successfully be implemented
using the direct estimation of the bandwidth parameter and, on the other hand, that it can
also be used as an alternative to the Hill estimator of the tail index. The importance of this
methodology has also been emphasized. in the applications, showing that the transformation
method is very useful for actuarial loss distribution analysis. The problems of bandwidth
selection and transformation parameter estimation have also been overcome. As Jones and
Signorini (1997) already pointed out, the semiparametric methods like ours seem to be a good
direction for research.
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