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Abstract

This paper offers a detailed assessment of the Balassa-Samuelson (BS) effect in eight Cen-
tral and Eastern European countries (CEEC8). Several features distinguish this study
from others: First, we investigate a variety of specifications of extended models. Non-
homogeneity of wages, deviations from PPP in tradables and demand side variables are
found to importantly contribute to explain inflation differentials. Second, a variety of
specifications is investigated. Third, we rely upon bootstrap inference for panel unit root
and panel cointegration analysis. The bootstrap results are rather clear: No evidence for
cointegration remains when resorting to bootstrap inference. To quantify the bias that
may arise from incorrectly using cointegration techniques, we also quantify the BS effect
from equations containing (nonstationary) ‘cointegration’ terms. Fourth, we present in-
flation simulations based on well specified scenarios.
The results are as follows: Evidence for the BS effect is found. The BS effect is, how-
ever, rather small (around half a percent per annum) and not sufficient to explain the
observed inflation differentials between the CEEC8 and the EU11. Using, despite the lack-
ing evidence, cointegration techniques results throughout in substantially larger estimated
effects. This suggests that studies relying upon cointegration may have overestimated the
BS effect.
The additional explanatory variables in the extended BS models allow for a satisfactory
modelling of the observed inflation rates. The mean inflation simulations for the CEEC8
countries, based on the extended models, range from 2.77% for the Slovak Republic to
6.75% for Poland. These are well above the 2% inflation objective for the European Mon-
etary Union.
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1 Introduction

In this paper we present a detailed econometric study of the Baumol-Bowen (BB) and Balassa-

Samuelson (BS) effect for eight Central and Eastern European Countries (CEECs). Studies

of these effects have been offered in abundance in recent years. In particular the recent EU

enlargement and the subsequent entry of the new member states into the European Monetary

Union spur the interest in studies of the real exchange rate and inflation behavior of these

economies. Different structural inflation rates across monetary union member states may pose

a challenge for common monetary policy, see e.g. Sinn and Reutter (2001). Recent interest in

the BS model stems from the fact that it explains differences in inflation rates (respectively

real exchange rates) by different productivity growth differentials between the tradables and

non-tradables sectors across countries, see the discussion of the model in Section 2. Since

larger productivity differentials are often observed in catching-up economies the BS model

has been prominent in explaining higher inflation rates in, respectively real exchange rate

appreciations of, catching-up economies, see Canozoneri et al. (1999) for OECD country

evidence or Mihaljek and Klau (2004) for a study on CEECs.

In our study we try to improve over current practice in the empirical BS literature in

several directions. First, the highly stylized theoretical model rests upon a variety of assump-

tions that lead to a purely supply side based explanation of real exchange rates respectively

inflation rates. We check for the presence of demand side effects and find in particular real

per capita GDP important. This finding is consistent with the extension of the BS model pre-

sented in Bergstrand (1991). Furthermore we assess in detail the validity of two additional key

assumptions of the BS model. These are wage homogeneity across sectors and the prevalence

of purchasing power parity (PPP) in tradables. Our econometric analysis leads us to refute

both. We thus work with the so called extended versions of the models, that relax these two

assumptions. Also, we specify a multitude of equations based on the model. We differentiate

the estimation equations along two dimensions. The first is the choice of the dependent vari-

able. Since the theoretical model is specified for a two-sector economy, composed of tradables

and non-tradables, we use in the narrow specifications only the prices in these two sectors,

respectively the real exchange rate with respect to these two sectors as dependent variables.

The broader specifications are less theory driven and use the GDP deflators respectively the

corresponding real exchange rates as dependent variables. The equations with the narrow
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dependent variables in general show better fit, as expected. The second dimension along

which we distinguish the equations is the choice of the BS variable, see Section 2 for details.

The five choices concerning the BS variable differ e.g. with respect to how sectoral wages are

considered. These two specification issues, narrow and wide measure of dependent variables

and choices of BS variables, have not yet been treated systematically in the literature.

Second, we acknowledge in our econometric analysis the fact that econometric methods for

small nonstationary panels are known to behave unsatisfactorily. Especially panel unit root

and panel cointegration tests are known to suffer from severe distortions in small samples,

see Hlouskova and Wagner (2004a) or Gutierrez (2003). We try to overcome these limitations

by resorting to bootstrapping methods. Various bootstrap algorithms are implemented and

lead to similar results: Unit root nonstationarity is found to be widespread amongst the

variables. However, essentially no evidence for cointegration is found, when resorting to

bootstrap inference. This finding stands in stark contrast with other studies that rely upon

panel cointegration methods, see e.g. Egert (2002) or Egert et al. (2002). To assess the bias

that is introduced by incorrectly resorting to cointegration techniques, we also quantify the

BS effect for well specified equations including error correction terms. We term an equation

well specified if all coefficient signs are in line with theory, this includes the coefficient in the

‘cointegrating’ relationship. The results are quite clear for our data for all equations: Using

cointegration leads to an over-estimation of the BS effect throughout, partly substantially (by

a factor up to four).

We find ample evidence for the BS effect being present. With an average value of about

half a percent per annum, it is however too small to explain observed inflation differentials

between the CEEC8 and the EU11.1 This finding is consistent with the above mentioned

observation that several key assumptions of the standard BS model are not supported by the

data. Thus, the pure BS effect alone cannot be expected to be too powerful in explaining in-

flation differentials, respectively real exchange rate movements. It is the inclusion of variables

like deviation from PPP in tradables, relative sectoral wages, real per capita GDP or total

consumption that allow for well specified BS type equations with good fit. We therefore base

our inflation simulations not just upon the estimated BS effects, but include also the other
1The ‘foreign country’ used in our study, denoted by EU11, is the aggregate of eleven incumbent EU member

states: Austria, Belgium, Denmark, Finland, France, Germany, Great Britain, Italy, The Netherlands, Spain
and Sweden. The other incumbent EU member states are omitted because of lacking sectoral data. The sample
period for the empirical analysis is 1993–2001 with annual data.
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explanatory variables in our inflation simulations, see the details, in particular also concern-

ing the scenario assumptions, in Section 7. The bottom line of the large set of results can

be roughly summarized as follows: The mean inflation projection is between 2.77% for the

Slovak Republic to 6.75% for Poland. The mean prediction for the aggregate inflation of the

CEEC8 is 5.43%, with a standard deviation over specifications of about 1.2% inflation rate.

These numbers, are well above the inflation objective of 2% formulated for the European

Monetary Union. Also the fact that relatively large inflation differences are predicted across

countries, may pose a challenge for monetary policy in an enlarged monetary union.

The paper is organized as follows. In Section 2 we start with a discussion of the theoretical

model and the relationships derived thereof for the econometric analysis. Section 3 is devoted

to a description of the data and a preliminary graphical investigation of some key elements

of the BS model. In Section 4 panel unit root tests are performed and Section 5 is devoted

to panel cointegration analysis. In Section 6, based on the results of the previous sections,

appropriate equations are specified and the BB and BS effects are quantified. In Section 7 we

discuss and present the inflation simulations and Section 8 briefly summarizes and concludes.

Three appendices follow the main text: Appendix A contains a detailed description of the

data, their sources and preliminary variable transformations. In Appendix B a multitude

of additional empirical results is collected and in Appendix C the implemented bootstrap

algorithms are briefly described.

2 The Baumol-Bowen and the Balassa-Samuelson Effect

Balassa (1964) and Samuelson (1964) present models in which different productivity growth

differentials between the tradables and non-tradables goods sectors across countries are an

important factor in explaining real exchange rate movements, respectively differences in the

evolution of national price levels.2

The model is formulated in terms of a two-sector small open economy. The small open

economy assumption implies that the world interest rate R and the world market price of

tradables P T are taken as given. Both sectors, tradables (T) and non-tradables (N), are

described by their sectoral production functions, which are for algebraic simplicity assumed
2Recently Ghironi and Melitz (2003) presented a very interesting stochastic general equilibrium model with

heterogeneous firms that leads to BS type effects. An econometric analysis of that model will be an interesting
challenge for the BS community. An earlier general equilibrium analysis of the BS model is given by Asea and
Mendoza (1994).
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to be Cobb-Douglas:3

Y T = AT (KT )1−αT
(LT )αT

Y N = AN (KN )1−αN
(LN )αN (1)

where Y s, with s ∈ {T, N}, denotes real output in sector s; As, Ks and Ls denote (total

factor) productivity, capital and labor in the respective sector; and αs denotes labor intensity

in each sector. The productivities and the labor intensities are allowed to differ across the

two sectors. Both sectors are assumed to be composed of perfectly competitive firms and

production factors are assumed to be fully utilized. The assumptions imply that only the

supply side of the economy influences the evolution of the real exchange rate. The potential

effect of demand side factors for the evolution of the real exchange rate in the CEECs is tested

in Section 6.

The assumption of perfect competition in both sectors leads to the following first order

conditions for profit maximization, with W T and WN denoting the wages in the tradables

and non-tradables sector.4

R = (1 − αT )AT
(

LT

KT

)αT

= P rel(1 − αN )AN
(

LN

KN

)αN

W T = αT AT
(

LT

KT

)−(1−αT )

WN = P relαNAN
(

LN

KN

)−(1−αN )

(2)

where P rel = PN/P T denotes the relative price of non-tradables.

Concerning the labor market, in the standard Balassa-Samuelson model perfect labor

mobility across the two sectors is assumed. This results in wage homogeneity, W T = WN .

Under this additional assumption the above equations can be solved to obtain the following

expression for the logarithm of relative prices.5

prel = c +
αN

αT
aT − aN (3)

where c is a constant depending upon the exogenously given factor intensities (αT , αN ) and the

interest rate. Throughout the letter c is used to denote constants in the various equations,

those are not necessarily the same across equations. The above equation (3) displays the
3The choice of Cobb-Douglas functions, with its algebraic convenience of leading to simple log-linear equi-

librium relationships, is of course an approximation. Thus, some flexibility in the empirical modelling might
be required.

4Throughout the discussion we consider the tradables good as the numeraire.
5Lower case letters indicate logarithms of variables throughout.
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link between the relative prices in the two sectors and, up to the factor αN

αT , the relative

productivities. This effect is known in the literature as the Baumol-Bowen effect, see Baumol

and Bowen (1966). The underlying logic of the argument is simple: For simplicity of the

verbal argument assume for the moment that αT = αN . Assume further that productivity

growth is faster in the tradables sector than in the non-tradables sector, i.e. ∆aT > ∆aN .

Now, if productivity grows faster in the tradables sector, this allows for wages to grow faster

in this sector (given the exogenous world market prices for tradables and capital). Due to the

assumed labor mobility, the non-tradables sector has to pay the same wages as the tradables

sector. This implies, due to lower productivity growth, that the non-tradables sector has to

raise its prices (faster) in order to remain profitable. Thus, higher productivity growth in

the tradables sector leads to higher inflation in the non-tradables sector. Note that in many

countries the labor intensity is higher in the non-tradables sector than in the tradables sector,

i.e. αN > αT , which reinforces the above argument where we assumed identical intensities

for simplicity.

Surprisingly, many empirical studies like Alberola and Tyrväinen (1998), Coricelli and

Jazbec (2004a), Coricelli and Jazbec (2004b), Halpern and Wyplosz (2002) or Sinn and Reut-

ter (2001) that claim to study the Balassa-Samuelson effect are in fact studying the Baumol-

Bowen effect. The imprecision in the distinction may stem from the fact that the relative

price of non-tradables to tradables is often used as an internal measure for the real exchange

rate. This measure, however, will in general differ substantially from other real exchange rate

variables, based on the GDP or CPI deflators or also the trade weighted real exchange rate.

Note also that the Baumol-Bowen effect is only concerned with domestic variables, thus in

particular it cannot explain any inflation differentials across countries. The Baumol-Bowen

effect is only one important part of the Balassa-Samuelson effect, as will become clear below.

Without the assumption of sectoral labor mobility and the implied wage homogeneity, the

above equation (3) is modified to

prel = c +
αN

αT
aT − aN + αN (wN − wT ) (4)

The interpretation of this extended Baumol-Bowen effect is similar to the explanation given

above. Now, for example, lower wage growth in the non-tradables sector can mitigate the

relative inflation pressure.

The Balassa-Samuelson effect itself combines the above domestic Baumol-Bowen effect
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with the (evolution of the) real exchange rate. Starred variables henceforth denote the foreign

country, or the rest of the world. In our empirical analysis the foreign country is given by,

as already stated, the EU11. The real exchange rate for a country is defined as Q = EP ∗
P ,

where E denotes the nominal exchange rate (local currency per Euro) and P and P ∗ denote

the domestic and foreign aggregate price levels. Throughout the paper variables for the

EU11 are indicated with a ‘*’. The aggregate price levels are weighted averages (weighted by

expenditure shares δ) of the sectoral price levels, i.e. in logarithms they are given by:

p = (1 − δ)pT + δpN

p∗ = (1 − δ∗)pT∗ + δ∗pN∗ (5)

Combining the above price level decompositions with the definition of the real exchange rate

directly leads to

q = (e + pT∗ − pT ) − δ(pN − pT ) + δ∗(pN∗ − pT∗) (6)

Thus, the (logarithm of the) real exchange rate is seen to depend upon three factors: The

first is the real exchange rate in the tradables sector. It is commonly assumed that PPP

holds in the tradables sector, this implies e + pT∗ − pT = 0. Thus, under this assumption

the first term vanishes. The second and third term are the relative prices of non-tradables in

both countries, weighted by their shares in the overall price level. Inserting the expressions

for the relative prices found above, leads to the Balassa-Samuelson model, that explains the

real exchange rate in terms of productivity differentials at home and abroad

q = c + (e + pT∗ − pT ) − δ

(
αN

αT
aT − aN

)
+ δ∗

(
αN∗

αT∗ aT∗ − aN∗
)

(7)

Given that PPP holds in the tradables sector, the real exchange rate is given by:

q = c − δ

(
αN

αT
aT − aN

)
+ δ∗

(
αN∗

αT∗ aT∗ − aN∗
)

(8)

The above equation (8) implies, for sufficiently similar labor intensities and expenditure

shares, that the real exchange rate of the country appreciates (∆q < 0), if its sectoral pro-

ductivity growth rate differential is larger than the productivity growth differential abroad.

The fact that this differential is often found to be bigger in faster growing or catching-up

economies, makes the Balassa-Samuelson model a widely used model for explaining real ex-

change rate appreciations. Employing once again the definition of the real exchange rate, the

above equation (8) can be modified and differenced to describe inflation differentials across
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countries:

∆p − ∆p∗ = c + ∆e + δ

(
αN

αT
∆aT − ∆aN

)
− δ∗

(
αN∗

αT∗ ∆aT∗ − ∆aN∗
)

(9)

The inflation differential depends upon nominal exchange rate movements and the differences

in the sectoral productivity growth differentials across countries. In a monetary union, the

nominal exchange rate is by construction fixed, and inflation differentials are, according to

the model, solely determined by productivity growth differentials across member states of a

monetary union.

As for the Baumol-Bowen effect discussed above, also for the Balassa-Samuelson effect the

assumption of wage homogeneity across sectors can be relaxed. This results in the following

generalization of equation (9), now again in levels:

p − p∗ = c + e + δ
(

αN

αT aT − aN + αN (wN − wT )
)

−δ∗
(

αN∗
αT∗ aT∗ − aN∗ + αN∗(wN∗ − wT∗)

) (10)

Abstaining from the assumption of PPP for traded goods, we obtain the following reformu-

lation of equation (9)

∆p − ∆p∗ = c + ∆pT − ∆pT∗ + δ

(
αN

αT
∆aT − ∆aN

)
− δ∗

(
αN∗

αT∗ ∆aT∗ − ∆aN∗
)

(11)

which holds without any assumption on the nominal exchange rate. Now inflation differen-

tials depend upon tradables inflation differentials and the differences in productivity growth

differentials. Of course, as above, also the extension allowing for non-homogenous wages can

(and will) be investigated:

∆p − ∆p∗ = c + ∆pT − ∆pT∗ + δ
(

αN

αT ∆aT − ∆aN + αN (wN − wT )
)
−

δ∗
(

αN∗
αT∗ ∆aT∗ − ∆aN∗ + αN∗(wN∗ − wT∗)

) (12)

From the above relationships various variables that correspond to the Balassa-Samuelson

effect can be derived. The variable BSit = δita
rel
it − δ∗t arel∗

t follows from equation (8) after

setting αN = αT in both the CEE country and the EU11, with arel = aT − aN .6 Here

and throughout the paper in the double sub-script it, i is the country and t the time index.

These are dropped when unnecessary. The shares δit can be easily computed by δit = Y N
it

Y T
it +Y N

it
.

Taking into account the non-homogeneity of wages (established below), the variable BSE1it is

6We furthermore experimented with variables that contain αN

αT aT −aN instead of aT −aN . These variables,
despite their theoretical appeal do not lead to satisfactory econometric analysis and results. This may inter
alia reflect that the sectoral production functions are not exactly Cobb-Douglas.
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computed as follows BSE1it = δit(arel
it +αN

it wrel
it )−δ∗t (arel∗

t +αN∗
t wrel∗

t ), with wrel = wN −wT .

Implicitly setting δit = δ∗t , i.e. ignoring differences in the sectoral composition across the CEE

countries and the EU11, defines the variable BSE2it = (arel
it + αN

it wrel
it ) − (arel∗

t + αN∗
t wrel∗

t ).

Finally also the differential of relative productivities, arel
it − arel∗

t , is used as a BS variable.

This latter choice is probably the most widely used variable, despite or because of neglecting

some Cobb-Douglas related constants.

As indicated in the introduction in the following sections the above relationships are

investigated using panel unit root and panel cointegration techniques. Usage of this type of

techniques rests upon the first tested assumption of unit-root non-stationarity for the macro-

variables used. Unit-root non-stationarity combined with the presence of cointegration as laid

out by the above relationships leads to error-correction models for the evolution of the (rate

of appreciation of the) real exchange rate, respectively of the inflation differentials. In the

empirical analysis we furthermore address the potential impact of demand side factors on the

evolution of prices and exchange rates.

3 Data and Preliminary Investigations

The study is conducted for eight Central and Eastern European countries (CEEC8): the

Czech Republic (CZE), Estonia (EST), Hungary (HUN), Latvia (LVA), Lithuania (LTU),

Poland (POL), the Slovak Republic (SVK) and Slovenia (SVN). The foreign country in the

empirical study is, as mentioned, comprised by the aggregate of eleven incumbent EU (EU11)

member states, these are the EU15 excluding Greece, Ireland, Luxembourg and Portugal.

These four countries are omitted because of incomplete data. Note, however, that these are

all relatively small economies that are rather unrelated to our CEE countries. Thus, the effect

of the omission of these countries in the construction of the foreign country can be expected

to be modest. The data are annual and the sample period is 1993–2001. This is also the

sample period used throughout the econometrics in the subsequent sections.

The first decision to make is, of course, the sectoral classification. We decide to take

NACE sectors C (mining and quarrying), D (manufacturing) and E (electricity, gas and

water supply) as our tradables (T) sector. Non-tradables (N) is composed of NACE sectors

F (construction) to K (real estate and business activities). NACE sectors A and B are

aggregated to agriculture (AGR) and sectors L to P are aggregated to the public sector

(PUB). See Table 20 in Appendix A for details.
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A description of all available variables and their sources is given in Tables 21 and 22. For

reference purposes all variable transformations prior to econometric analysis are collected in

Table 23. The precise construction of the EU11 aggregates for the tradable and the non-

tradable sectors is contained in Table 24. These are aggregated using sectoral output weights.

All these tables describing the data and preliminary variable transformations are contained

in Appendix A.

With the chosen classification, about 70 to 80 % of the economy are taken into account,

see the right block of Table 1. The two neglected sectors, agriculture and the public sector,

have quite substantial inflation rates, see columns five and six of Table 1. For this reason,

we have decided to specify the empirical analogues of equations (7) to (12), derived in the

previous section, with two different price indices respectively two different real exchange rate

measures.7 The two price differentials are given by pGDP
it − pGDP∗

t , i.e. the difference in the

(logarithms of the) GDP deflators. Following Harberger (2004) and based on the fact that

our model is specifying the supply side of the economy, we have decided to use the GDP

deflator as our broad price measure. The other possible choice for a broader price aggregate

would be the consumer price index (CPI). The correlation between the GDP based inflation

rates and the HICP (Harmonized Index of Consumer Prices) inflation rates is close to one

for most countries. Thus, no qualitative differences in the results have to be expected.8 The

second price differential chosen is given by pT+N
it − p

(T+N)∗
t , i.e. by the differential of the

log price levels only in the two sectors tradables and non-tradables. Similarly to the two

price variables also the corresponding two real exchange rate measures have been chosen,

qit = eit + pGDP∗
t − pGDP

it and q2,it = eit + p
(T+N)∗
t − pT+N

it . From the definition of the

variables it immediately follows that the predictions concerning the coefficient signs in the

p-equations are opposite those for the q-equations. Specifying two sets of equations, based

on a narrow and a wide price respectively real exchange rate measure, allows us to assess the

effect of the choice of dependent variable on the results. This is an issue up to now entirely

neglected in the empirical literature. In the sequel we denote with p-equations the equations

with the two price (differentials) as dependent variables and with q-equations the equations
7The empirical specifications will partly include further explanatory variables. All equations include relative

wage terms and terms related to the real exchange rate of tradables. See the discussion below.
8The correlation between GDP deflator and HICP inflation rates over the period 1994–2001 is e.g. 0.95 for

Sweden or 0.86 for the Netherlands. The average correlation across the EU11 is 0.81. For only two countries
is the correlation below 0.7, Belgium and Finland. Not only the correlation between the HICP and the GDP
deflator inflation is very high, also the dynamics of the two variables are very similar for all countries.
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Sectoral shares in total output
Country ∆aT ∆aN ∆pT ∆pN ∆pAGR ∆pPUB T N AGR PUB

Averages over 1994–2001
CZE 5.15 2.17 5.14 6.51 6.39 12.06 0.35 0.47 0.05 0.13
EST 6.38 5.72 12.53 14.27 11.68 18.43 0.24 0.50 0.08 0.18
HUN 6.87 0.92 11.77 15.70 11.68 15.01 0.28 0.46 0.06 0.20
LVA 6.92 6.06 6.01 10.94 4.38 17.08 0.28 0.47 0.09 0.17
LTU 6.07 2.02 12.84 14.78 8.71 23.52 0.26 0.47 0.12 0.15
POL 7.99 2.66 7.93 18.61 12.36 17.03 0.33 0.45 0.06 0.16
SVK 3.82 2.30 5.86 8.03 5.31 6.33 0.31 0.47 0.06 0.16
SVN 6.96 2.15 9.47 12.31 8.92 11.11 0.33 0.44 0.04 0.20
EU11 2.84 1.01 1.25 2.03 0.70 2.82 0.24 0.53 0.02 0.21

Averages over 2000–2001
CZE 5.6 7.9 2.2 0.9 9.1 7.8 0.35 0.49 0.05 0.11
EST 8.4 7.1 5.3 5.5 8.1 4.1 0.24 0.52 0.06 0.17
HUN 4.8 1.6 7.4 9.5 6.7 10.9 0.31 0.45 0.05 0.19
LVA 4.8 7.3 1.2 3.1 7.4 6.5 0.26 0.50 0.08 0.16
LTU 12.7 5.8 5.5 1.3 -1.7 0.8 0.27 0.48 0.11 0.15
POL 6.8 3.1 1.3 8.0 14.0 16.1 0.34 0.46 0.05 0.15
SVK 0.3 1.6 4.2 7.6 9.5 0.0 0.31 0.47 0.05 0.17
SVN 6.6 1.7 6.4 11.8 9.3 11.2 0.33 0.43 0.04 0.20
EU11 2.3 0.8 1.8 2.2 3.2 3.2 0.23 0.54 0.02 0.21

Table 1: Sectoral productivity growth rates, sectoral inflation rates and sectoral output shares.
The top panel displays the average annual growth rates over the period 1994–2001 and the
lower panel over the period 2000–2001.

that have the real exchange rate measures as dependent variables.

In Table 1 we also display the average sectoral productivity growth rates in the tradables

and non-tradables sectors. Consider the productivity growth rates first. For the larger period,

displayed in the top panel, it holds in all CEECs and the EU11 that productivity grows faster

in the tradables sector than in the non-tradables sector. For the shorter period 2000–2001

this does not hold for the Czech Republic, Latvia and the Slovak Republic. Also note that

the differentials vary substantially across countries. For example in the Slovak Republic

the productivity growth differential (over the period 1994–2001) is smaller (1.52%) than in

the EU11 (1.83%). Thus, we can already expect substantial differences across countries,

concerning the extent of dual inflation pressures via sectoral productivity differentials.

Concerning sectoral inflation rates, we see in columns three and four that (again for the

longer period) the non-tradables sector has a higher inflation rate than the tradables sector.

For the shorter period again some opposite inflation dynamics occur, in the Czech Republic
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and in Lithuania.

Summing up the information from Table 1, some key facts in line with the Baumol-

Bowen model are present in the data for the CEECs: Higher productivity growth rates in the

tradables sector and higher inflation rates in the non-tradables sector. In Figure 1 roughly the

same information is also shown graphically. For all countries and the EU11 we display, over the

period 1993–2001 in solid lines the relative price of non-tradables to tradables, in fine dashed

lines the relative productivity of tradables to non-tradables and in dashed lines the relative

wages in the non-tradables sector relative to wages in the tradables sector. Thus, the relative

prices and relative productivities are displayed in such a way that they should grow over time,

if behaving according to the model with higher productivity growth in tradables and higher

inflation in non-tradables. Wage homogeneity across sectors implies that the relative wages

should not exhibit trending behavior. The evidence is mixed. Concerning relative wages we

observe stable relative wages in the Czech Republic, Poland, Slovenia and the EU11, in other

countries wage homogeneity seems to be violated.9 Relative prices and productivities exhibit

co-movements, with differing degrees of synchronicity. E.g. in Lithuania there is an almost

one-to-one relation between relative prices and productivities.

Table 1 and Figure 1 allow for a first graphical assessment of the prevalence of a Baumol-

Bowen effect in the CEECs. In the following Figure 2 we take a first look at a potential

Balassa-Samuelson effect in the CEECs with respect to the EU11. The figure displays for

three different periods the differential of the relative productivity growth rates in the CEECs,

∆arel, to the relative productivity growth rate in the EU11, ∆arel∗ against the inflation

rate differential between the CEEC countries, ∆pT+N and the EU11, ∆p(T+N)∗.10 In its

standard version, the Balassa-Samuelson effect implies a positive correlation between sectoral

productivity growth differentials and inflation differentials, compare e.g. equation (9). This is

supported by Figure 2. The correlations are 0.458 for the longest period 1994–2001, 0.836 for

the period 1996–2001 and 0.419 for the shorter period 2000–2001. We already know from the

above discussion that over the period 2000–2001 in several countries behavior not supporting

the standard BS setup has been observed. This translates into the lower correlation over that

short period. One further important observation can be made in the figure. For three or
9Formal econometric tests for wage homogeneity will be presented in the following sections, in the context

of panel unit root and panel cointegration analysis. The tests reject the null hypothesis of wage homogeneity
in the panel of eight CEE countries.

10Note that the inflation rates are only computed for the tradables and non-tradables sectors. Similar
pictures with the GDP deflators exhibit also positive correlation, albeit slightly less pronounced.
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rates are computed only over the tradables and non-tradables sectors. The left chart displays
the averages over the period 1994–2001, the chart in the middle displays the averages over
the period 1996–2001 and the right chart over the period 2000–2001.

four out of eight countries, depending upon the period, the relative productivity differential

growth rate is smaller than in the EU11. Thus, for these countries and these periods the

standard BS model actually implies smaller inflation in the CEE countries than in the EU11.

Combining this with the observed higher inflation rate in all CEE countries compared to the

EU11 directly implies that the contribution of the BS term, which ever way measured, to

inflation will be limited, despite the positive unconditional correlation. The model thus needs

to be augmented by further explanatory variables, like the extensions discussed in Section 2

or demand side variables discussed as below in Section 6.

The evidence gained in this section by considering averages and also by graphical inspec-

tion of some key ratios and relationships is grosso modo sufficiently positive to turn to formal

econometric analysis. The non-stationary character of many of the series requires us to first

establish unit root type non-stationarity in order to be able to use (panel) cointegration anal-

ysis to test for ‘long-run’ relationships. We turn to both of these issues in the subsequent two

sections.

4 Econometric Analysis I: Panel Unit Root Testing

The small sample size with only nine years necessitates the application of panel unit root

tests. The implemented panel unit root tests are developed in the following papers:11 Levin,
11As indicated already above, the implementation of the econometric procedures was originally based on

Chiang and Kao (2002), but has been substantially modified, corrected and extended. The authors currently
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Lin and Chu (2002), abbreviated by LL; Breitung (2000), abbreviated by UB; two tests

developed in Im, Pesaran and Shin (1997) and Im, Pesaran and Shin (2003), a t-type test

abbreviated by IPS and a Lagrange multiplier test, abbreviated by IPS − LM ; Harris and

Tzavalis (1999), abbreviated by HT ; and Maddala and Wu (1999), abbreviated by MW .

All tests except for HT allow for individual specific serial correlation structures, whilst

HT is designed for the case of no serial correlation in the residuals. For all tests the null

hypothesis is that of a unit root in all series. The alternative is stationarity in all series, except

for the tests developed by Im et al. where the alternative allows for non-stationarity in a non-

vanishing (in the limit for N → ∞) fraction of the series. The first five tests listed above are

asymptotically normally distributed and the latter is asymptotically χ2
2N distributed, with

N denoting the cross section dimension of the panel. The test LL, UB, IPS and HT are

left-sided and IPS − LM and MW are right sided.

It has been found, see e.g. Hlouskova and Wagner (2004a,b), that for panels of the

size available in this study, the asymptotic distributions of the panel unit root and panel

cointegration tests provide poor approximations to the small sample distributions (for an

example see Figure 3 and the corresponding discussion below). In other words, the notorious

size and power problems for which unit root tests are known in the time series context also

appear in small or short panels.

To overcome these limitations we have implemented three different bootstrap methods

to obtain improved small sample inference. The three bootstrap methods, explained in Ap-

pendix C, are the parametric, the non-parametric and the residual based block bootstrap. The

latter has been developed for non-stationary time series by Paparoditis and Politis (2003).

The former two methods obtain white noise bootstrap replications of residuals due to pre-

whitening and the latter is based on re-sampling blocks of residuals to preserve the serial

correlation structure. The difference between the parametric and the non-parametric boot-

strap is essentially given by the fact that in the former the residuals are drawn from a normal

distribution and are re-sampled from the empirical residuals in the latter. The results ob-

tained by the three bootstrap methods are rather similar, thus in the main text we only report

the result from one of the methods. Note furthermore that bootstrapping, if re-sampling is

done identically for all cross-sectional units, also provides certain robustness against the vio-

work on a user friendly version of the new toolbox. A detailed description of these panel unit root tests,
including the assumptions on the data generating process and the precise construction of the test statistics, is
given e.g. in Hlouskova and Wagner (2004a).

15



−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
N(0,1)
LL
UB
IPS
HT
IPS−LM

Figure 3: Bootstrap test statistic distributions for relative prices, prel, for the five asymptot-
ically standard normally distributed panel unit root tests.
The results are based on the non-parametric bootstrap with 5000 replications. Fixed effects
are included.

lation of a key assumption of all the implemented unit root tests, namely the assumption of

cross-sectional independence, see e.g. Chang (2000). In Figure 3 we display the asymptotic

null distribution (the standard normal distribution) and the bootstrap null distributions (from

the non-parametric bootstrap) for one of the variables tested for a unit root, the relative price

of non-tradables to tradables, prel, for the five asymptotically standard normally distributed

tests. The figure shows substantial differences between the bootstrap approximations to the

finite sample distribution of the tests and their asymptotic distribution. Thus, basing infer-

ence on the asymptotic critical values leads to substantial size distortions. This can also be

seen in Tables 2 and 3 below, where in brackets the bootstrap 5% critical values are displayed.

They vary substantially both across tests and also across variables, and are in many cases

far away from the asymptotic critical values ±1.645, respectively 26.296 for the Maddala and

Wu test.

All tests are implemented, as is standard in the unit root literature, with different speci-

fications of the deterministic terms. We have tested with two versions, for each of the three

bootstrap algorithms. With fixed effects only, reported in Table 2 and with fixed effects and

individual specific linear trends, reported in Table 3. These tables report the results based on
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the parametric bootstrap. All bootstrap results in this paper are based on 5000 replications.

Including a linear trend in the test equation, when there is no trend in the data generating

process reduces the power of the tests, on the other hand, omitting a linear trend when there

is a trend in the data, induces a bias in the tests towards the null hypothesis. Graphical

inspection of the data shows that for basically all variables, even the relative price or wage

variables, in at least one or two countries trending behavior is visible. This implies that in

the panel framework the specification with trends may be more appropriate. As is common in

the unit root literature, we however present and compare the results of both specifications for

all variables. The comparison of the results obtained with different specifications is usually

informative.

The variables for which we report the panel unit root test results are the following.12 Three

real exchange rate measures, q the logarithm of the real exchange of the CEEC countries to

the EU11 (indexed to equal 100 in 1995) based on the GDP deflators; q2 defined similarly to q

but based on the price indices of only the tradables and non-tradables sectors; and qT , the real

exchange rate for tradables (again in logarithms and indexed). The latter is directly related

to one of the assumptions of the standard Baumol-Bowen and Balassa-Samuelson models,

namely prevalence of PPP in the tradables sector. The econometric testing for validity of

PPP in a world of I(1) nonstationary data is to test for stationarity of the real exchange

rate. This, of course, allows for substantial and persistent differences in prices. The unit

root hypothesis is hardly at all rejected for these variables, in particular if one relies on

bootstrap based inference, then only for q2 two tests reject the null when a trend is included.

In particular also note that for qT some rejections occur based on the asymptotic critical

values, but no rejection occurs based on the bootstrap critical values. Thus, we conclude that

PPP does not hold in the tradables sector between the CEE countries and the EU11.

The second group of variables tested are the various (logarithms of) price variables. The

relative price of non-tradables to tradables and different price level differentials between the

CEE countries and the EU11. For the price level differentials it is not a priori clear which

specification is preferable, since due to catching-up of the CEE countries persistent inflation

differentials and thus a narrowing of price differentials might induce a trend in the price level
12See also Table 23 for a summary description of the variables and transformations. Note that also for the

output variables and the prices the null hypothesis of a unit root can generally not be rejected, detailed results
are available from the authors upon request. In the presentation here we focus on those variables and their
relationships that are directly relevant for the model only.
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differences.

Concerning the relative price, prel, the hypothesis of a unit root is never rejected in both

specifications. For the price level differentials the evidence is a bit more mixed. The tests

IPS and MW reject, based on the bootstrap critical values, the null of a unit root for all

three price level differentials, pT − pT∗, pGDP − pGDP∗ and pT+N − p(T+N)∗. Also IPS −LM

is rejecting the null for these three variables. When a linear trend is included in the test

equation, for pGDP − pGDP∗ three tests reject the null. Thus, for the price differentials some

evidence for stationarity is available.

The third group of variables are four wage variables, again normalized to 100 in 1995 and

in logarithms. We have tested the wages in the tradables sector, wT , the wages in the non-

tradables sector, wN and the relative wage in the non-tradables to the tradables sector, wrel.

Additionally we also test for a unit root in the variable wrel
BS = wrel − wrel∗ + ln 100.13 This

latter variable plays, up to neglected constants δαN a role in the extended Balassa-Samuelson

model, compare equation (10). For the sectoral wages, the specification with trend in the

test equation seems to be more relevant. As expected, none of the tests rejects the null of a

unit root in these two variables. Given the unit root non-stationarity of wN and wT testing

for a unit root in wrel is obviously a direct device of testing for cointegration of the form

[1,−1] between the wages in the two sectors. Thus, similarly to PPP above, stationarity of

relative wages is a weak econometric formulation of wage homogeneity. A unit root in wrel is

not rejected, when the bootstrap critical values are employed, with one exception, see again

Tables 2 and 3. wrel is one of the examples where inference based on the asymptotic critical

values leads, for some tests at least, to the incorrect conclusion of rejecting the null of a

unit root. Thus, we conclude that the assumption of wage homogeneity is not fulfilled in

the CEECs. Also for the variable wrel
BS the rejections of the unit root hypothesis stem from

applying asymptotic critical values. With bootstrap critical values only the HT test with no

trends rejects the null hypothesis. Thus, also wrel
BS is found to be non-stationary.

Next, the productivity variables are tested. Again, there a four variables considered,

normalized to 100 in 1995 and in logarithms: Productivity in the tradables sector, aT ; in the

non-tradables sector, aN ; relative productivity in the tradables to the non-tradables sector arel

and the differential of relative productivities in the CEE country and the EU11, arel − arel∗.

The latter is, as discussed above, a widely used variable in the BS models, see equations (8)

13The factor ln 100 is added to achieve that the variable wrel
BS equals ln 100 in 1995.
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or (10). The results are as follows. Only for aT and the inappropriate specification without

trends, several tests reject the null of a unit root. For the other three measures only one or

two tests reject. The difference in relative productivities is thus, with two rejections in the

specification with trends, sort of a borderline case.

Finally the other BS variables discussed in Section 2, BSE1, BSE2 and BS, are tested

for a unit root. The evidence for all these variables is rather clear. The unit root hypothesis

is never rejected for BSE1 and BSE2. For BS two rejections occur in the specification with

trend. Twice a unit root is also rejected for BS when using the asymptotic critical values.

Thus, only for the relative productive differentials weighted by the δ’s there is at least some

evidence for stationarity.

The unit root testing performed in this section leads to two main conclusions. First,

unit root non-stationarity prevails throughout the variables. Second, no evidence for PPP in

tradables between the CEECs and the EU11 is found. Also relative wages are found to be

non-stationary in the CEECs. These two facts imply that the empirical analysis has to focus

on specifications that do not rely upon PPP in the tradables sector and that do not rely upon

homogenous wages, i.e. the so called extended models form the basis for subsequent analysis.

The next step, given the unit root non-stationary behavior is to test for cointegration. This

is done in the following section.
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5 Econometric Analysis II: Panel Cointegration Testing

In total ten cointegration tests are performed, seven of them developed in Pedroni (2004) and

three developed in Kao (1999). Similar bootstrap procedures as for the panel unit root tests

are applied, for details see again Appendix C.

All employed tests have the null hypothesis of no cointegration and are based on the

residuals of the so called cointegrating regression. Thus, the null hypothesis of no cointegra-

tion is equivalent to a unit root in the residuals of the cointegrating regression. The usual

specifications concerning deterministic variables have been implemented. We report again

test results when including only fixed effects, and when including fixed effects and individual

specific trends.

Pedroni (2004) develops four pooled tests and three group-mean tests. Three of the four

pooled tests are based on a first order autoregression and correction factors in the spirit of

Phillips and Ouliaris (1990). These are a variance-ratio statistic, PPσ; a test statistic based

on the estimated first-order correlation coefficient, PPρ; and a test based on the t-value of

the first-order correlation coefficient, PPt. The fourth test is based on an augmented Dickey-

Fuller type test statistic, PPdf , in which the correction for serial correlation is achieved by

augmenting the test equation by lagged differenced residuals of the cointegrating regression.

Thus, this test is a panel cointegration analogue of the panel unit root test of Levin, Lin and

Chu (2002) discussed above. For these four tests the alternative hypothesis is stationarity

with a homogeneity restriction on the first order correlation in all cross-section units.

To allow for a slightly less restrictive alternative Pedroni (2004) develops three group-

mean tests. For these tests the alternative allows for completely heterogeneous correlation

patterns in the different cross-section units. The group-mean tests can be seen as averaged -

over the cross-section units - test statistics. Pedroni discusses the group-mean analogues of

all but the variance-ratio test statistic. Paralleling the above notation for the pooled tests,

we denote them with PGρ, PGt and PGdf .

After centering and scaling the test statistics by suitable correction factors, to correct

for serial correlation of the residuals and for potential endogeneity of the regressors in the

cointegrating regression, all test statistics are asymptotically standard normally distributed.

The first test, PPσ, is right-sided and the other six tests are left-sided.

Kao (1999) derives tests similar to three of the pooled tests of Pedroni for homogenous
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panels and when only fixed effects are included. A panel is called homogenous, if the serial

correlation pattern is identical across units. Kao’s three tests, Kρ, Kt and Kdf using obvious

abbreviations, are based on the spurious least squares dummy variable (LSDV) estimator of

the cointegrating regression. We report results obtained by these tests, in Appendix B. We

include these tests, because it might be the case that in small samples tests based on a cross-

sectional homogeneity assumption perform comparatively well, since no individual specific

correlation corrections, which may be very inaccurate in short panels, are necessary. Also

Kao’s tests are after scaling and centering appropriately asymptotically standard normally

distributed and left sided.

Figures similar to Figure 3 are available from the authors upon request. Again substantial

differences between the asymptotic critical values and the bootstrap critical values emerge.

Note also again that bootstrapping robustifies, when done identically for all cross-section

units, the tests to a certain extent against a violation of the critical assumption of cross-

sectional independence, which is required for all tests discussed. We report in Tables 5 and 6

the results obtained by applying the non-parametric bootstrap, for a list of relationships

discussed next and summarized in Table 4.
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The first relationship investigated is again the relationship between sectoral wages. In the

previous section non-stationarity of wrel could not be rejected. In this section we search for

less restricted cointegration, i.e. we test for cointegration in wT
it = ci+βwN

it +uit. Throughout

the section ci denotes either fixed effects or fixed effects and individual specific time trends,

depending upon the specification investigated. The result is interesting, as all Pedroni tests

reject the null of no cointegration (based on bootstrap critical values) in case a linear trend

is included in the unit root test regression. Thus, relative wages are found to be cointegrated

when allowing for a linear trend in the cointegrating relationship and when the coefficient β

is not restricted to equal 1. This, however, is a relatively weak link in wages across the two

sectors, which we certainly do not interpret as evidence for wage homogeneity.

The second and third relationship, LC-LPT and LC-LPN, are included to verify one of

the underlying assumptions of the Baumol-Bowen and Balassa-Samuelson model: compet-

itive wage setting and the implied link between productivity and total labor costs in the

tradables and the non-tradables sector respectively. For a Cobb-Douglas production func-

tion the marginal product equals the average product. Thus, if wages are set competitively,

wages equal the marginal and in the Cobb-Douglas case thus also the average product of

labor. Therefore, a weak empirical formulation of this relationship is cointegration between

(average) labor productivity and total labor costs. The evidence for cointegration is rather

weak for both sectors. However, compared to other relationships, for these relationships at

least some tests reject the null of no cointegration. Thus, a link between (log levels of) labor

productivities and labor costs is not entirely rejected at least.
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The fourth relationship, BBE, tests for cointegration in the extended Baumol-Bowen

model (4) (with the discussed focus on aT − aN instead of αN

αN aT − aN ), i.e. testing is

performed on the equation prel
it = ci + β1a

rel
it + β2w

rel
it . Based on bootstrap inference, no

evidence for cointegration is found. This relationship is again an example where inference

based on the asymptotic critical values leads to the incorrect conclusion of cointegration, in

particular in the specification including trends.

The remaining twenty relationships tested are structured as follows. The first letter in

the name, ranging from A to E, indicates the specification of the Balassa-Samuelson term

or variable. The remaining one respectively two symbols in the name indicate the dependent

variable, q and q2, the two real exchange rate measures, and p and p2, when the depen-

dent variables are the respective price differentials between the CEE country and the EU11.

Equations A include BSE1 (defined in Section 2) as their BS variable, equations B include

BSE2 as their BS variable. In the equations labelled C and D, the wage components of the

BS variable are treated separately. Thus, in the C equations, the BS variable is given by

δita
rel
it − δ∗t arel∗

t , and in the D equations by arel
it − arel∗

t . In both sets of equations, C and D,

wages are included in the form of wrel
BS , introduced already in the previous section. Finally the

E equations relax the homogeneity assumption on the productivity terms. They nest equa-

tions D. The corresponding parameter restrictions can be tested. The Balassa-Samuelson

variable in the E equations is a combination of the relative productivities at home and in

the EU11. As discussed above, four dependent variables are chosen for the equations, two

price differentials, pGDP
it − pGDP∗

t and pT+N
it − p

(T+N)∗
t and two real exchange rate variables,

qit = eit + pGDP∗
t − pGDP

it and q2,it = eit + p
(T+N)∗
t − pT+N

it .

The test results, in Tables 5 and 6 for the discussed twenty Balassa-Samuelson relationships

are very clear. There is basically no evidence for cointegration, if one bases inference on any of

the implemented bootstrap procedures. If inference is conducted according to the misleading

asymptotic critical values, quite some evidence for cointegration is found, illustrated by the

multitude of bold-starred entries in the two tables.

From the very strong evidence against cointegration across the variety of specifications we

conclude that in many of the studies that use panel cointegration methods and asymptotic

inference, the evidence for cointegration is mainly due to severely distorted small sample

inference. This, of course, raises severe doubts on the validity of the results obtained in these

studies.
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In order to assess the potential mis-quantification of the BB and BS effect we will how-

ever also investigate equations based on ‘cointegration’. The ‘cointegrating’ relationships are

estimated by two methods, fully modified ordinary least squares (FM-OLS) and dynamic or-

dinary least squares (D-OLS). Both estimation methods are panel extensions of well known

time series concepts. FM-OLS was introduced by Phillips and Hansen (1990) and D-OLS is

due to Saikkonen (1991). Both methods allow for serial correlation in the residuals and for

endogeneity of regressors in the cointegrating regression and result in asymptotically efficient

estimation of the cointegrating vector. The panel extensions of FM-OLS are discussed in

detail in Phillips and Moon (1999), nesting the discussion in Pedroni (2000) and Kao and

Chiang (2000). As in the time series case the idea of FM-OLS is to obtain in the first step

(OLS) estimates of long-run variance matrices. In the second step another regression is run

on corrected variables, with the correction factors being functions of the estimated long-run

variance matrices. The idea of D-OLS is to correct for serial correlation and endogeneity by

augmenting the cointegrating regression by leads and lags of differences of the regressors. The

panel extension of D-OLS is discussed in Mark and Sul (2001) and Kao and Chiang (2000).

Both methods lead to asymptotically normally distributed (for both T and N to infinity)

estimated cointegrating vectors, which implies that χ2 inference via e.g. Wald tests can be

conducted. Note for completeness that various implementations of both FM-OLS and D-OLS

in a weighted or unweighted fashion are possible, see Hlouskova and Wagner (2004b) for a

description. In this paper we do not discuss further details in this respect.

The last two columns of Table 4 display information concerning the results of FM-OLS and

D-OLS estimation. A ‘+’ indicates that in the estimation of the equation all coefficients have

signs in line with the theoretical model, whereas a ‘–’ indicates that at least one coefficient

has a sign not in line with the model. It is remarkable that although there is no evidence

for cointegration (when relying upon any of the bootstrapping procedures), for most of the

equations, the coefficients are estimated with correct signs.

The sign predictions (noting again that they are opposite for the q- and q2-equations)

for the equations with the price variables as the dependent variables are as follows: A- and

B-equations: β2 > 0, C- and D-equations: β2 > 0, β3 > 0 and E-equations β2 > 0, β3 <

0, β4 > 0. For the equations labelled Wages, LC-LPT and LC-LPN β > 0 and for BBE

β1 > 0 and β2 > 0 are implied by the theoretical model.

The coefficient sign for the price index differential of tradables respectively the real ex-
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change rate for tradables is expected to be positive in all equations. This indeed holds true

for all equations.

6 Econometric Analysis III: Quantification of the Baumol-
Bowen and Balassa-Samuelson Effects

In this section we now turn to a quantification of the Baumol-Bowen and the Balassa-

Samuelson effects. The results of the preceding sections, namely the prevalence of unit root

nonstationarity for many variables and almost no evidence for cointegration, implies that the

equations will be formulated for growth rates.

However, we also estimate panel error correction versions of the equations, to assess the

differences in the implied BB and BS effects between equations entirely in growth rates and

equations incorporating nonstationary ‘error correction’ terms. The panel error correction

equations contain lagged residuals of the corresponding cointegrating regressions, which are

due the lack of evidence for cointegration very likely nonstationary. The differences in the esti-

mated effects between equations without and with such error correction terms is our measure

of the bias introduced by inappropriately resorting to cointegration techniques. For notational

brevity throughout this section we refer to the equations that contain nonstationary (due to

the absence of cointegration) error correction terms as specifications with cointegration. This

is not meant to indicate cointegration!

In Table 4 the last two columns indicate for all equations, whether the signs of the coeffi-

cients in the ‘cointegrating relationships’ are in accordance with the theoretical predictions.

As indicated in the previous section, two methods have been employed FM-OLS and D-OLS.

It is remarkable that for most of the equations, both methods result in coefficient signs in line

with theory. An exception to this observation are, however, three of the E-equations. The

empirical results are based on the cointegration estimation method that results in the ‘best’

estimates. With ‘best’ here indicating that the coefficient signs of the coefficients in both the

cointegrating relation and the resulting error correction equation are in line with the theory,

i.e. of correct sign and significant.

The small sample size of our panels does not facilitate estimation, since many of the more

advanced panel estimators like DPD (see e.g. Arellano, 2003) are known to perform poorly

in small samples.14 We thus proceed as follows in our estimation strategy for all equations,
14The optimality properties of these and related panel GMM estimators rest upon the cross-section dimension
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both without and with error correction terms: We start by specifying equations by feasible

GLS, where we allow for cross-section heteroscedasticity and correlation. The t-statistics

are based on the feasible GLS specification. Potential endogeneity is of course a concern.

Therefore we apply the Durbin-Wu-Hausman test for testing the null of consistency of GLS

against the alternative of inconsistency due to regressor endogeneity (see e.g. Davidson and

MacKinnon, 1993). This is done via auxiliary regressions, where in a first step the potentially

endogenous regressors are each regressed on the set of instruments specified for the equation

at hand. The residuals of these regressions are then added to the ‘original’ equation and the

null hypothesis of all their coefficients being jointly equal to zero is tested. The advantage

of the formulation of the Durbin-Wu-Hausman test via auxiliary regressions is to avoid to

perform instrumental variables estimation already in the testing step. The precise details

of potentially endogenous regressors and the corresponding instruments are available from

the authors upon request. We perform the tests with various sets of regressors treated as

potentially endogenous and various instrument sets. Usually the instruments are given by

either lagged variables or variables for the EU11. The latter choice stems from the fact that

many of the regressors are given by the difference of a variable in the CEE countries and the

EU11, an example being ∆ait −∆a∗t , for which ∆a∗t is an instrument candidate. Variables of

this type are by construction good instruments: they are correlated with the variables and

very likely uncorrelated with the error terms. In case of over-identification we have performed

the corresponding tests for instrument validity, often referred to as J-test or Sargan test, see

Arellano (2003). No rejections of the null occurred. All test results have to be seen in the

light of the small sample, of course.

The results can briefly be summarized as follows: The null hypothesis of the Durbin-Wu-

Hausman test was only rejected for equations ∆Ap2, ∆Cpec and ∆Cqec. Thus, only for these

three equations 2SLS estimation is necessary. Only, for the equation ∆Ap2 a 2SLS specifi-

cation with all coefficient signs in line with theory has been achieved (with the instruments

given by the lagged price of tradables in the EU11 and the lagged BS variable). For the other

two equations no specification with all coefficient signs according to theory has been obtained.

Those two equations with error correction terms are thus not considered further.

It has been mentioned in the introduction that the BB and BS models offer purely supply

side based explanations of price respectively real exchange rate movements. Since we are now

tending to infinity. Thus, for our sample with eight countries, no practical advantage can be expected.
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∆aT ∆aN ∆lcrT ∆lcrN ∆lnY T ∆lnY N(
GFCF
GDP

)
−1

-0.453 0.037
(-8.005) (1.466)

FDI 0.111 0.149
(1.294) (1.283)

∆aT 0.772 0.403 0.868
(24.024) (12.169) (30.134)

∆aN 1.494 1.004
(18.288) (55.919)

∆aN
−1 0.187

(3.606)
∆lnLT

−1 -0.274 -0.090 0.156
(-5.675) (-2.439) (2.377)

∆lnLN 0.598
(11.009)

∆lnLN
−1 0.144 0.304

(1.647) (12.952)
U

U+L -0.534
(-3.680)

∆lnGDPPC−1 0.047 0.024 0.401
(3.171) (4.853) (9.703)

∆lnTC−1 0.202
(6.152)

êc−1 -0.630 -0.814
(-15.135) (-27.088)

Adj.R2 0.055 0.063 0.399 0.558 0.432 0.632 0.847 0.373

Table 7: Testing for the presence of demand side effects on key variables in the BB and
BS models. In the first column the dependent variables are listed and in the first row the
regressors are listed. êc (error correction) denotes the residuals from the equation LC-LPT
respectively LC-LPN, both estimated with FM-OLS.
Robust t-statistics are displayed in brackets. All equations include fixed effects.

focusing in our study on equations in growth rates, it becomes of particular importance to

test for the influence of demand variables, which are potentially more important in the short

and medium-run. We thus study next the potential impact of demand side variables on the

evolution of the key variables in the BB and BS-models, see Table 7. The equations presented

in the table are the result of extensive specification searches, where again also validity of GLS

estimation has been verified by applying the Durbin-Wu-Hausman test as discussed. The

analysis is inspired by Bergstrand (1991) and Halpern and Wyplosz (2002).

Let us start with a discussion of the equations for ∆aT and ∆aN . The premise concerning

productivity developments in the BB and BS models is that productivity is supply driven.

This is not fully confirmed by the two equations, where foreign direct investment is significant
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but also lagged real per capita GDP is significant.15 Thus, demand side variables contribute

to the evolution of labor productivities. Note furthermore the highly significant impact of

foreign direct investment on productivity. This is consistent with the installment of efficient

technologies by foreign investors via e.g. greenfield investments.

The next two columns correspond to the equations LC-LPT and LC-LPN already dis-

cussed in the previous section, now in growth rates and including additional explanatory

variables. Also specifications including error correction terms are presented, the fourth and

the sixth equation in Table 7. Productivity in the respective sectors is highly significant.

However, also (for both sectors) employment growth is a further significant supply side vari-

able, with negative sign in the tradables sector and with positive sign in the non-tradables

sector. This supports the hypothesis that in transition productivity is driven i.a. by labor

reallocation from the tradables (which is essentially equal to industry) to the non-tradables

sector (which contains all services), see also Grafe and Wyplosz (1999). Thus, labor costs are

driven by labor productivity and employment reallocation, i.e. labor costs are indeed supply

side determined.

The final two equations assess the importance of supply and demand factors for output

growth in both sectors. The supply side is captured by productivity and employment. How-

ever, also demand side variables are significant: Real per capita GDP in the tradables sector

and total consumption in the non-tradables sector.

The above analysis shows that demand variables contribute to the explanation of produc-

tivity and output developments. Thus, in the subsequent econometric analysis the equations

presented in levels in Table 4 have been estimated in growth rates and augmented by demand

variables like real per capita GDP or total consumption. In Table 8 the resulting equations are

listed. These represent again the results of extensive specification searches, in this case over

explanatory demand side variables. For notational simplicity we do, however, not change the

equation labels, except for a ∆ to indicate the growth rate specification. Real per capita GDP

is the main explanatory demand variable. This is perfectly consistent with Bergstrand (1991),

who provides a corresponding extended theoretical model as well as an empirical study.

15Fischer (2002) presents an extension of the BB model where investment is affecting the (internal) real
exchange rate. Note that in our case it is only foreign direct investment that is significant.
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We have noted previously that the E-equations nest the D-equations. The corresponding

test, performed for the four different ∆E-equations is given by the null hypothesis β2 = −β3,

with β2 denoting the coefficient to relative labor productivity in the CEE countries and

β3 denoting the coefficient corresponding to relative labor productivity in the EU11. For

three out of the four equations the null hypothesis is not rejected. Thus, in Table 8 the

equations ∆Dq, ∆Dq2, ∆Dp2 and ∆Ep are displayed. The last column in Table 8 displays

again the information concerning the coefficient signs. Here again a ‘+’ indicates that the

signs of all estimated coefficients are in line with the theoretical predictions, which hold for

all but two equations (∆Cq2 and ∆Ep). These latter two equations, ∆Cq2 and ∆Ep, will

thus not be considered further in the quantification of the BS effects and the subsequent

inflation simulations presented in Section 7. Albeit ∆Dp2ec has one coefficient with wrong

sign (corresponding to total consumption) we keep it, as only one coefficient sign is incorrect.

Throughout, the equations with error correction terms are presented with the same names

as the corresponding equations without error correction terms with a further subscript ec

added. We report only those equations with error correction terms where both the coeffi-

cients of the estimated equation (in growth rates) and the coefficients in the ‘cointegrating

relationships’ all have correct signs (nine in total).

The results of the estimations are presented in two tables: In Table 9 we report the

equations with the real exchange rates (∆q and ∆q2) as dependent variables and in Table 10

the equations with the inflation differentials as dependent variables are displayed. In that

table also the extended Baumol-Bowen equation BBE with ∆prel as dependent variable is

included. The equations are then used below to quantify the Baumol-Bowen respectively the

Balassa-Samuelson effect and also for projections concerning the evolution of the inflation

rates in Section 7.
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We first discuss the results in Table 9. The equation ∆Cq2 has been excluded, since

no specification with all coefficient signs in line with theory could be obtained, as already

mentioned above. For equations ∆Cq and ∆Dq no error correction specifications with all

coefficient signs in line with theory could be obtained. For all other equations, both a spec-

ification in growth rates and as error correction model, with all coefficient signs in line with

theory has been found.

A couple of important observations can be made concerning the final specifications: In

the ∆A- and ∆B-equations the BS variables, ∆BSE1 and ∆BSE2 enter lagged, as does the

relative wage variable ∆wrel
BS in equations ∆Cq and ∆Dq. Furthermore, and this is a difference

to the equations in the next table, almost nowhere are demand variables significant. Only

total consumption is significant in two of the D-equations. The error correction terms are

obtained by D-OLS for equations ∆Bqec and ∆Dq2ec and by FM-OLS for the other equations.

Note that the adjusted R2 is with one exception (the A-equation with error correction term)

higher for the equations with ∆q2 as the dependent variable. This is not surprising, since

the theoretical model is specified for the tradables and non-tradables sectors only. Thus, we

expect better fit for a corresponding dependent variable. This is confirmed by the results.

The (rate of change of the) real exchange rate of tradables is highly significant throughout.

Next we turn briefly to the equations displayed in Table 10. Error correction specifications

with all coefficient signs correct have been found for ∆BBE, ∆Bp, ∆Dp and ∆Dp2. Note

again that in the equation ∆Dp2 with the error correction term total consumption enters

with the wrong sign. Also note the large t-values for the equation ∆Dpec. These stem from

the inclusion of the nonstationary error correction term. Spurious regression often manifests

itself in large t-values, and it is actually surprising that this effect shows up only in one

of the equations with error correction terms. For all equations the error correction term is

estimated by FM-OLS. For many of the equations again the lagged BS variables remains

after specification analysis. Also, lagged real per capita GDP or lagged total consumption

growth stay in the final specification in several cases. The prevalence of lagged variables

indicates a certain degree of stickiness in the transmission mechanism outlined by the BB and

BS models. The inflation differential in tradables between the CEE countries and the EU11

is highly significant in all equations. As indicated above, only for the equation ∆Ap2 2SLS

estimation is warranted by the Durbin-Wu-Hausman test.
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The above equations in Tables 9 and 10 form the basis for an assessment of the Baumol-

Bowen and the Balassa-Samuelson effects. The quantification is given by the product of

the estimated coefficient corresponding to the Baumol-Bowen respectively Balassa-Samuelson

variable times the average value of the BB or BS-variable. Again, two periods are considered,

1994–2001 and 2000–2001.

We present three different estimates of the effect. One based on the specifications without

error correction terms and two based on the specifications with error correction terms. Since

none of the equations contains the lagged dependent variable as a regressor and either the

contemporaneous BS variable or a certain lag of the BS variable is included only, no distinction

has to be made between short and long-run effects.16 In the specifications including the error

correction term short- and long-run effects are to be distinguished. The short-run effect is

given by the estimated coefficient corresponding to the BB or BS variable times the average

value of the variable over the period considered. The long-run effect with error correction is

derived entirely from the error correction term. It is given by the product of the coefficient

corresponding to the BB or BS variable in the ‘cointegrating relationship’ times the average

value of the variable. This uses the well known fact that in cointegrating regression the

long-run elasticity is given by the corresponding coefficient in the cointegrating relationship.

We start with a discussion of the Baumol-Bowen effect, summarized in Table 11. The

average productivity growth rates in both the tradables and the non-tradables sectors for

the two periods considered are displayed in Table 1. The negative estimated Baumol-Bowen

effects for the period 2000–2001 for the Czech Republic, Latvia and the Slovak Republic

directly follow from the fact that over these two years productivity growth in these countries

is higher in the non-tradables sector than in the tradables sector. For the other countries,

and for all countries for the longer period, as discussed already in Section 3, productivity

growth is higher in the tradables sector than in the non-tradables sector. The results are

quite clear: The effect in the equation without cointegration is for all countries smaller than

both measures of the effect derived from the equation containing the error correction term.

Over the larger period the dual inflation rate contribution ranges from 0.15% for Estonia to

1.36% for Hungary. It is probably noteworthy that with the exception of the Baltic countries,

‘similar’ countries’ estimate of the BB effect are rather similar. Within the Baltic countries
16Note that this is, of course, just the usual distinction in econometrics between short- and long-run elastic-

ities. Due to the result of the specification search, no distinction has to be made for the equations in growth
rates, upon which we will later on base our inflation simulations.
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CZE EST HUN LVA LTU POL SVK SVN
1994–2001

no coint. 0.682 0.151 1.360 0.197 0.925 1.219 0.348 1.100
SR with coint. 0.887 0.196 1.768 0.256 1.202 1.585 0.452 1.430
LR with coint. 2.522 0.558 5.027 0.728 3.417 4.506 1.287 4.067

2000–2001
no coint. -0.518 0.298 0.723 -0.572 1.596 0.855 -0.291 1.117

SR with coint. -0.674 0.387 0.940 -0.744 2.074 1.112 -0.378 1.452
LR with coint. -1.916 1.102 2.674 -2.115 5.898 3.161 -1.076 4.130

Table 11: Estimates of the Baumol-Bowen effect for the CEEC8 in percent of dual inflation
per year. The Baumol-Bowen effect is given by the product of the coefficient to ∆arel and
the average value of this variable over the indicated period.
The first lines labelled no coint. display the effect based on the equation ∆BBE and the
second and third lines display the short- and long-run effects based on the equation ∆BBEec.

Lithuania is sort of an outlier. This might be due to the different exchange rate regime. Both,

Estonia and Latvia operate currency boards, whereas Lithuania follows a fixed peg strategy.

The effects of adding a cointegration term are substantial. As already mentioned, both

the short and long-run effects are bigger for all countries than the effects estimated from the

equations without error correction terms. In particular the long-run effects are bigger by a

factor of about four for all countries.

Similar observations as for the longer period can also be made for the shorter period,

with the ‘correct’ no cointegration estimates now ranging from -0.57% for Latvia to 1.60% for

Lithuania. Adding error correction terms again increases the effect, as for the longer period

by approximately a factor four when deriving the (long-run) effect from the cointegrating

regression.

In Table 12 we display the period averages for the Balassa-Samuelson terms for equations

∆A, with BSE1, to ∆D, with ∆arel − ∆arel∗ as BS variable. The different terms are, as

already discussed in Section 2, based on equations (8) to (11). The two variables most closely

related to the Cobb-Douglas specification of the theoretical model are ∆BSE1 and ∆BSE2.

Both variables are negative for all CEE countries for both periods considered. Thus, the

estimated BS effect for equations ∆A and ∆B will be negative for all countries, since in the

specifications correct coefficient signs are prevalent throughout. Comparing the BS-terms

BSE1 and BSE2 with the other BS terms for equations ∆C and ∆D, it is seen that the

main difference is the inclusion of the relative wage terms. For comparison, in Figure 2 where
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∆BSE1 ∆BSE2 ∆BS ∆arel − ∆arel∗

Averages over 1994–2001
CZE -1.846 -0.445 -0.391 1.153
EST 0.217 -5.929 1.704 -1.169
HUN -6.533 -5.288 -0.649 4.115
LVA -0.230 -13.254 3.742 -0.969
LTU -3.914 -11.224 2.160 2.212
POL -3.825 -4.208 0.549 3.499
SVK -4.041 -3.367 -1.634 -0.308
SVN -6.426 -9.748 0.047 2.980

Averages over 2000–2001
CZE -3.651 -7.497 -1.391 -3.816
EST -12.477 -25.432 0.529 -0.247
HUN -3.169 -1.648 -0.229 1.612
LVA -8.928 -24.226 0.559 -4.052
LTU -12.637 -13.722 -1.233 5.425
POL -3.891 -3.366 0.085 2.188
SVK -9.922 -13.137 -3.367 -2.822
SVN -20.191 -29.050 -2.664 3.334

Table 12: Average values of Balassa-Samuelson variables for equations ∆A to ∆D.

on the horizontal axis ∆arel−∆arel∗ is displayed (i.e. a BS-variable that does not include the

relative wage terms), a negative BS effect is only prevalent for three or four countries. The

difference stems from the intermingling of the contributions of relative productivity growth

and relative wage growth in BSE1 and BSE2. In the quantification of the BS-effect below

we want to separate these two parts and thus focus on the ∆C and ∆D equations. Note,

however, that the estimated effect (being the product of the BS variable and the corresponding

coefficient) do depend upon the relative wages, since we only consider equations that include

relative wage terms as regressors because of wage non-homogeneity.

The BS variables corresponding to equations ∆C and ∆D, namely ∆BS and ∆arel−∆arel∗

are displayed in the last two columns of Table 12. Especially the latter is a common choice in

the literature. Both of these variables are positive for a majority of countries for the longer

period and for about half of the countries for the shorter period. Note that the set of countries

for which the variables, in particular ∆arel−∆arel∗, are negative for the shorter period, include

the three countries for which the Baumol-Bowen effect was found to be negative above.

For the ∆C- and ∆D-equations we now discuss the three different measures of the Balassa-

Samuelson effect, similarly to the above quantification of the Baumol-Bowen effect. We start
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CZE EST HUN LVA LTU POL SVK SVN
Quantification of effect with ∆q as dependent variable

∆Cq, 1994–2001
no coint. 0.119 -0.518 0.197 -1.137 -0.656 -0.167 0.497 -0.014

∆Cq, 2000–2001
no coint. 0.423 -0.161 0.070 -0.170 0.375 -0.026 1.023 0.809

∆Dq, 1994–2001
no coint. -0.053 0.054 -0.190 0.045 -0.102 -0.162 0.014 -0.138

∆Dq, 2000–2001
no coint. 0.177 0.011 -0.075 0.188 -0.251 -0.101 0.131 -0.154

Quantification of effect with ∆q2 as dependent variable
∆Dq2, 1994–2001

no coint. -0.056 0.057 -0.201 0.047 -0.108 -0.171 0.015 -0.146
SR with coint. -0.160 0.162 -0.570 0.134 -0.306 -0.485 0.043 -0.413
LR with coint. -1.815 1.840 -6.474 1.524 -3.480 -5.506 0.484 -4.689

∆Dq2, 2000–2001
no coint. 0.187 0.012 -0.079 0.198 -0.265 -0.107 0.138 -0.163

SR with coint. 0.529 0.034 -0.223 0.561 -0.752 -0.303 0.391 -0.462
LR with coint. 6.003 0.389 -2.536 6.375 -8.536 -3.443 4.441 -5.245

Table 13: Balassa-Samuelson effect in % in equations for (rate of change of) real exchange
rate measures. The Balassa-Samuelson effect is defined as the product of the coefficient to
the BS-variable in the corresponding equations with the average values of the variables as
displayed in Table 12.
no coint. indicates the effect from the specification without the error correction term, SR with
coint. indicates the short-run effect derived from the specification with the error correction
term and LR with coint. indicates the long-run effect derived from the cointegrating regression
in the corresponding equation.

in Table 13 with the quantification in the equations for the real exchange rate measures and

after that turn in Table 14 to the equations with the inflation differentials as dependent

variables.

In Table 13 the upper panel displays the effect when the rate of change of the real exchange

rate, ∆q, is the dependent variable. The following main observations emerge: Both the

ordering across countries and the magnitude of the estimated BS effect differ between the

∆C-and the ∆D-equation. The ordering across countries for the ∆D-equations is the same

as the one for the Baumol-Bowen effect. This holds also when using ∆q2 instead of ∆q as

dependent variable. Note here that the contribution of the BS effect to the real exchange

rate evolution is an appreciation of the real exchange rate, i.e. a decline of q. The magnitude

of the effect varies substantially between the two periods 1994–2001 or 2000–2001, with a
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general tendency to be smaller over the shorter period. The largest appreciation is about

1.14% for Latvia based on the ∆C-equation and the period 1994–2001. Basing the effect on

only the years 2000–2001 implies for all countries a smaller rate of appreciation, or – for the

countries with depreciation except for Hungary – larger depreciation for the ∆C-equation.

For the ∆D-equation there is no unidirectional change between the effects computed from

the 1994–2001 averages to the effects computed from the 2000–2001 averages. Furthermore,

the effect based on the ∆D-equation is smaller than the effect based on the ∆C-equation for

all countries but Slovenia. As with the BB effect, resorting to cointegrating equations leads

to an effect that is bigger by a factor four on average.

Using ∆q2 as the dependent variable, shown in the lower panel of Table 13, results on

average in smaller appreciation, respectively depreciation than using ∆q. For the shorter pe-

riod 2000–2001 the difference between the assessment without and with the ‘error correction’

term is huge (up to a factor 30) for all countries but Estonia. For the ∆D-equation a bigger

effect is found for a majority of countries when computed from the smaller period averages.

For the equations with the inflation rate differentials as dependent variables the following

observations can be made in Table 14. The ranking of the effect across countries is the same

for both dependent variables for all ∆C specifications and for all ∆D specifications for each of

the two periods. Note, however, that the rankings differ between the ∆C and ∆D equations

and also between the periods. The details are as follows: For ∆Cp and ∆Cp2 over the period

1994–2001 the ranking, based on the equations without cointegration terms, is (from largest to

smallest inflation differential) Latvia, Lithuania, Estonia, Poland, Slovenia, Czech Republic,

Hungary and Slovak Republic. Thus, the three Baltic countries have the largest BS-effect

according to the ∆C-equations. For ∆Dp and ∆Dp2 and the same period the corresponding

ranking is Hungary, Poland, Slovenia, Lithuania, Czech Republic, Slovak Republic, Latvia

and Estonia.

Looking in more detail at the effect obtained from the equations with the GDP deflator

inflation differentials, the following observations emerge. The differences between the effects

without and with cointegration are less pronounced than in the case of the equations for the

real exchange rates, although still in general the use of cointegration results in larger effects.

For the shorter period the effect estimated given by the long-run effect of the cointegrating

relation leads to effects that are larger by a factor two to three than the effects without

cointegration. Basing the effect on values for 1994–2001, the largest inflation differentials are
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CZE EST HUN LVA LTU POL SVK SVN
Quantification of effect with ∆p − ∆p∗ as dependent variable

∆Cp, 1994–2001
no coint. -0.056 0.243 -0.093 0.534 0.308 0.078 -0.233 0.007

∆Cp, 2000–2001
no coint. -0.198 0.075 -0.033 0.080 -0.176 0.012 -0.480 -0.380

∆Dp, 1994–2001
no coint. 0.264 -0.267 0.941 -0.222 0.506 0.801 -0.070 0.682

SR with coint. 0.196 -0.199 0.700 -0.165 0.376 0.595 -0.052 0.507
LR with coint. 0.795 -0.806 2.837 -0.668 1.525 2.413 -0.212 2.055

∆Dp, 2000–2001
no coint. -0.873 -0.057 0.369 -0.927 1.241 0.501 -0.646 0.763

SR with coint. -0.649 -0.042 0.024 -0.689 0.923 0.372 -0.480 0.567
LR with coint. -2.631 -0.171 1.111 -2.794 3.741 1.509 1.946 2.299
Quantification of effect with ∆p2 − ∆p∗2 as dependent variable

∆Cp2, 1994–2001
no coint. -0.087 0.378 -0.144 0.829 0.479 0.122 -0.362 0.011

∆Cp2, 2000–2001
no coint. -0.308 0.117 -0.051 0.124 -0.273 0.019 -0.746 -0.590

∆Dp2, 1994–2001
no coint. 0.294 -0.298 1.050 -0.247 0.564 0.893 -0.079 0.760

SR with coint. 0.122 -0.123 0.434 -0.102 0.233 0.364 -0.032 0.314
LR with coint. 0.337 -0.341 1.201 -0.283 0.646 1.022 -0.090 0.870

∆Dp2, 2000–2001
no coint. -0.973 -0.063 0.411 -1.034 1.384 0.558 -0.720 0.850

SR with coint. -0.402 -0.026 0.170 -0.427 0.572 0.231 -0.298 0.352
LR with coint. -1.111 -0.072 0.470 -1.183 1.584 0.639 -0.824 0.973

Table 14: Balassa-Samuelson effect in % in equations for the inflation differentials. The
Balassa-Samuelson effect is defined as the product of the coefficient to the BS-variable in the
corresponding equations with the average values of the variables as displayed in Table 12.
no coint. indicates the effect from the specification without the error correction term, SR with
coint. indicates the short-run effect derived from the specification with the error correction
term and LR with coint. indicates the long-run effect derived from the cointegrating regression
in the corresponding equation.
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found for Hungary with 0.94% and Poland with 0.80% and the smallest are found for Estonia

with -0.27% and the Slovak Republic with -0.23%. For most countries for both periods the

‘correct’ (i.e. without cointegration) BS-effect is smaller than about half a percent.

When the inflation differential is only computed with respect to the prices in the two

sectors tradables and non-tradables, see the lower panel of Table 14, qualitatively the same

observations as for the GDP deflator based inflation rates emerge. A larger effect is obtained

when using cointegration, where partly the differences are rather large again between the

specifications without and with cointegration. The largest BS effect is again observed for

Hungary, now with 1.05%. Again, the effects are, with few exceptions, smaller than half a

percent.

The results discussed above show that the BB or BS effect alone are not very powerful

in explaining the evolution of the real exchange rate respectively the inflation differentials

between the CEECs and the EU11. The effects are, as we have seen, mostly below half a

percent and partly even negative. This is, however, not too surprising, given the fact that

several key assumptions of the standard models are not fulfilled. These are wage homogeneity,

PPP in tradables and the irrelevance of demand side factors. It is only the inclusion of

these additional explanatory variables that leads to well specified equations with significant

coefficients with correct signs. In principle this has already been seen in Figure 2, where

positive correlation between the productivity growth and inflation differentials is visible, but

where one can also see that the degree of determination of this correlation is rather low.

Thus, in order to assess the implications for the real exchange rates or inflation rates, which

we focus upon, the impact of these variables has to be taken into account. In other words, the

magnitude of the pure BB or BS effect is certainly not the best indicator of the explanatory

power of the underlying models for the evolution of the real exchange rate respectively the

inflation differentials. In the following section we therefore derive inflation projections based

on not only the BB or BS terms but include also the other explanatory variables. This, of

course, requires to make assumptions concerning all the explanatory variables.

7 Inflation Simulations

In this section we present the inflation simulations stemming from the analysis in the previous

sections. Two sets of simulations are performed. One based on the Baumol-Bowen equation,

discussed in subsection 7.1, and one based on the Balassa-Samuelson equations, discussed in
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subsection 7.2. The first set of simulations based on the ∆BBE equation is inspired by the

simulations performed in Alberola and Tyrväinen (1998).17 We perform inflation simulations

for all BS-equations without the incorrect cointegration term. Performing simulations for all

equations, including the ∆A to ∆B equations, reflects again the previously made observation

that all the specified equations have all coefficients significant and with signs according to

theory and fit the data rather well.18 It is the inclusion of additional variables, like PPP-

deviations, relative wages or demand variables that contributes importantly to the explanation

of the dependent variable. In other words, it is not only the BS-term that is relevant for the

inflation developments.

7.1 Baumol-Bowen Inflation Simulations

Let us start with a discussion of the Baumol-Bowen based inflation simulation. Following

Alberola and Tyrväinen (1998) the inflation rate in the tradables sector is assumed identical

for all countries. This allows to compute the country specific inflation rates in non-tradables,

based on an assumption for aggregate inflation in the CEEC8 group. Therefore, to obtain a

simulation for the GDP deflator based inflation rate requires to furthermore specify assump-

tions concerning inflation in agriculture and the public sector.

Denote with ρi the output share of country i in the group CEEC8. Then, the inflation

rate in the group CEEC8 can be written as

∆pCEEC8 =
8∑

i=1

ρi∆pi (13)

where ∆pi is the GDP deflator inflation rate in country i. For notational simplicity the

superscript GDP is omitted throughout in this section. Since the economy consists of four

sectors and the ∆BBE equations is only concerned with the tradables and non-tradables

sectors, one further step is necessary. The GDP deflator inflation rate is given by the weighted

average of the inflation in the tradables and non-tradables sector, ∆pT+N
i , and by inflation

in agriculture and the public sector, ∆pA+P
i . The weights are given by the respective GDP

17Simulations paralleling the discussion in Sinn and Reutter (2001), who ask, translated to our investigation,
the question what minimum inflation rate is required in an enlarged monetary union in order to prevent
deflation in any member state are also possible. To do so, however, would require a disaggregated analysis
also of the EU11 countries. A detailed investigation of the BS-effect in the EU11 is performed in Wagner and
Doytchinov (2004).

18The exception being equation ∆p2ec with the wrong sign for lagged total consumption.
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shares, θi say.

∆pi = θT+N
i ∆pT+N

i + (1 − θT+N
i )∆pA+P

i (14)

From the equation ∆BBE, the following representation for the inflation rate in the tradables

and non-tradables sector together can be obtained:

∆pT+N
i = (1 − δi)∆pT

i + δi∆pN
i (15)

= ∆pT
i + δi∆prel

i (16)

= ∆pT
i + δi(ĉi + β̂1∆arel

i + β̂2∆wrel
i ) (17)

For the inflation simulation it is seen from equation (17) that assumptions concerning the

relative productivity growth and relative wage growth are required. We use the historical

averages of ∆arel
i and ∆wrel

i over three periods, 1994–2001, 1996–2001 and 2000–2001, see

Table 32 in Appendix B. For the inflation simulation we also use the historical averages for

the inflation rates in agriculture and the public sector over the same periods. These three

periods, chosen according to the disinflation progress made in the CEEC8, see Table 31 in

Appendix B, show the impact of different periods for the scenario variables on the inflation

simulations.19

Equations (14) and (17) can be combined with an assumption on inflation in the CEEC8

(via equation (13)) and the assumption of equal tradable price inflation in all countries,

to compute ∆pT . Then, for the computed value of ∆pT , inserting in equation (17) gives

the implied inflation rate for country i in the tradables and non-tradables sector together,

∆pT+N
i . This value can now be combined with the assumed inflation in agriculture and the

public sector for country i, ∆pA+P
i , to obtain the implied inflation for country i according to

equation (14). We perform this simulation with two assumptions concerning inflation in the

CEEC8 as a group of countries. The first assumption is ∆pCEEC8 = 2%. This assumption

corresponds to the value that is often specified as at least an implicit inflation objective for

the Euro Area but also other Western European countries. The results of this simulation

are displayed in Table 15. The last column of this table displays the implied inflation rate

for tradables, which is negative with values between 4 and 5% deflation. This, basically

says that, an inflation objective of 2% annual inflation is only sustainable with substantial
19The average annual aggregate inflation rate in the CEEC8 was given by 12.25% over the period 1994–2001,

by 8.98% over the period 1996–2001 and by 5.59% over the period 2000–2001. The year 1996 was the first
year where the aggregate inflation rate in the CEEC8 was below 20%, at 14.62%.
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CZE EST HUN LVA LTU POL SVK SVN ∆pT
CEEC8

1994–2001 -2.31 1.52 2.14 2.08 -1.87 4.49 -1.15 0.07 -4.88
1996–2001 -2.55 0.11 2.21 1.92 -3.40 4.61 -1.11 0.04 -4.20
2000–2001 -2.48 -2.62 0.32 0.73 -4.65 5.48 -2.18 -0.17 -4.76

Table 15: Baumol-Bowen inflation simulations under the assumption of an aggregate inflation
in the CEEC8 of 2% per annum.

deflation in tradables, under the assumption that inflation in agriculture and the public sector

continues at the historical average values. This latter assumption is probably not too bad,

given the fact that structural reforms in agriculture and the public sector, including abolishing

price regulations, are essentially inevitable due to the EU membership of all countries in our

sample. The simulation exercise results in deflation for the Czech Republic, Lithuania, the

Slovak Republic and with the 2000–2001 values also for Estonia and Slovenia. This, of course,

is rather unlikely. We thus, conclude from the BB simulation that 2% is too tight a target

for the group. Note furthermore that the inflation predictions show substantial differences

across countries.

The above results lead us to consider also the following experiment, with the results

displayed in Table 16. Here we compute the inflation objective according to 2% inflation

in the tradables and non-tradables sector for each country and to this we add the actual

(over the corresponding period) inflation rates in agriculture and the public sector, using

equation (14) for each country. Now, the inflation rate for the group CEEC8 is between 4

and 5%, see the last column in Table 16. Tradables inflation for the CEEC8 computed from

these assumptions is -1.37 % (1994–2001), -1.55% (1996–2001) and -2.09% (2000–2001). Thus,

still deflation in tradables prices results from the experiment. The implied inflation rates for

the individual countries vary (depending upon the period used for the explanatory variables)

between -2.67% for Lithuania to 7.60% for Poland. Still, some countries face deflation, based

on this less restrictive Baumol-Bowen inflation simulation.

7.2 Balassa-Samuelson Inflations Simulations

The 15 (out of 17) equations with all coefficients signs according to theory displayed in Table 8

form the basis for the Balassa-Samuelson inflation simulations. We consider all well specified

equations ∆A to ∆D.

Based on assumptions concerning the inflation rate in the EU11 and assumptions con-
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CZE EST HUN LVA LTU POL SVK SVN ∆pCEEC8

1994–2001 0.57 4.11 4.73 4.68 0.68 7.20 1.60 2.73 4.71
1996–2001 -0.37 2.10 4.19 3.92 -1.47 6.67 0.96 2.07 4.07
2000–2001 -0.26 -0.57 2.35 2.77 -2.67 7.60 -0.11 1.87 4.10

Table 16: Baumol-Bowen inflation simulations under the assumption of an aggregate inflation
in the CEEC8 in tradables and non-tradables only of 2% per annum. The implied inflation
rate for the CEEC8 country group is displayed in the last column.

cerning the explanatory variables in the equations, similar as above, inflation rates for the

CEE countries can be computed. Care has to be taken of the fact that there are four different

dependent variables in the equations. These imply slight differences for the computation of

the inflation rates ∆pi. To assess the implied inflation rates from the equations with the real

exchange rate measures as dependent variables, requires an assumption concerning the evo-

lution of the nominal exchange rate of the CEEC’s currency with respect to the Euro, since

∆qi = ∆ei + ∆p∗ − ∆pi. In our inflation simulations we assume that the nominal exchange

rate does not change. Any assumed appreciation (depreciation) would reduce (increase) the

implied inflation rate for country i. For the inflation rate in the EU11 we assume 2%.

Note also that for the equations with p2 and q2 as dependent variables, an assumption

concerning inflation only in tradables and non-tradables in the EU11 is required, which we

again set to 2%. Furthermore, of course, from here again equation (14) has to be invoked to

compute the inflation rate for the GDP deflator. As for the above Baumol-Bowen experiment,

the historical averages over the corresponding periods for inflation in agriculture and the

public sector are used. The values used for the explanatory variables are again seen in Table 32

in Appendix B. Compared to the BB experiment above, some further variables are required

now. One of them is the difference in inflation rates in the tradables sector between the CEE

country and the EU11. Here we consider two cases. The first is that PPP in tradables starts

to holds from now on. This implies that the deviation from PPP in tradables term in all the

BS-equations is set to zero. The corresponding results are given in Table 17. This reflects the

assumption that due to EU enlargement tradables prices should move towards PPP across

the enlarged EU. The second assumption, with the corresponding results given in Table 33

in Appendix B is to base the scenario on the historical averages also for the tradables price

differences. In the equations displayed in Tables 9 and 10 also some demand variables are

present. These are the growth rates of real per capita GDP and of real total consumption.
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For these two variables the scenario values are given by the mean prediction for real per capita

GDP growth derived in Wagner and Hlouskova (2004). Since population growth is currently

close to zero in the CEECs, under the assumption of balanced growth the real per capita

GDP growth rate is approximately equal the growth rate of real total consumption. All the

listed assumptions suffice for computing the GDP deflator inflation rates for the CEEC8.

A couple of clear observations can be made in Table 17. First of all, the inflation rates are

with very few exceptions monotonously declining from the first (1994–2001) to the last (2000–

2001) panel for all countries, and subsequently also for the CEEC8 as a group. Comparing

the mean of the implied inflation rates (for the CEEC8 group) with the historic values shows

that the ‘fit’ is especially good for the last period. This is noteworthy since the parameters

of the equations are estimated for the entire period 1994–2001. Thus, our scenarios are

tracking the direction of the disinflation process observed since the mid 1990ies. We focus

in the rest of the discussion on the simulation based on the last period values, since they

very precisely match the last observations in the sample. This match occurs despite two

counterfactual assumptions, namely identical inflation rates in tradables and no nominal

exchange rate changes (required for the inflation computations in the equations with ∆q or

∆q2 as dependent variables). Note in Table 32, that the averages for the independent variables

show no clear trends across the three averaging periods, contrary to e.g. the GDP deflator

inflation rates. Thus, loosely speaking, the description of the actual inflation movements by

our extended BS-equations becomes more accurate towards the end of the sample. This is,

of course, partly at least a level effect that comes from disinflation. However, it does not

invalidate the fact that very accurate inflation simulations are obtained, when the fit over the

period 2000-2001 is chosen as the evaluation criterion.

The mean inflation projections range from 2.77% for the Slovak Republic to 6.75 % for

Poland. The standard deviation varies from about 0.8% for the Slovak Republic to about

3.2% for Lithuania. The standard deviation of the mean simulation for CEEC8 inflation,

given by 5.43%, is about 1.2% inflation. Thus, roughly the interval between about 4 to about

6.5% inflation rate is the result of the Balassa-Samuelson inflation projection exercise, for the

CEEC8 group.20

Note, that (for all three periods) the means over the equations with ∆p2 or ∆q2 as depen-
20When the inflation simulations are computed with tradables price differentials set at the historical values,

then mean inflation simulation for the CEEC8 is given by 7.92%, with a standard deviation of 0.93% inflation.
See Table 33 in Appendix B for details.
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CZE EST HUN LVA LTU POL SVK SVN CEEC8
1994–2001

Min 2.89 3.20 3.52 2.71 3.33 3.99 2.78 2.52 3.83
Max 6.63 8.73 7.66 10.31 10.98 10.13 5.21 6.67 7.84

Mean 4.60 6.00 5.44 6.64 6.90 7.16 3.84 4.49 5.99
Std. Dev. 0.92 1.67 1.58 2.36 2.59 2.05 0.80 1.34 1.30
Mean p, q 4.36 4.89 4.24 6.47 6.47 5.92 3.52 3.51 5.05

Mean p2, q2 4.87 7.27 6.81 6.83 7.39 8.58 4.20 5.61 7.06
1996–2001

Min 2.07 3.41 3.55 2.69 1.21 3.92 2.45 2.43 3.68
Max 5.73 6.84 7.06 10.16 9.50 9.60 4.63 6.00 7.23

Mean 4.06 5.12 5.25 6.01 5.74 6.98 3.37 4.16 5.69
Std. Dev. 0.94 1.12 1.31 2.49 2.66 1.87 0.73 1.19 1.09
Mean p, q 4.07 4.76 4.32 6.52 6.38 6.05 3.29 3.34 5.04

Mean p2, q2 4.13 5.53 6.32 5.43 5.01 8.05 3.46 5.10 6.44
2000–2001

Min 2.14 1.52 3.36 1.48 -1.70 3.08 1.64 1.15 3.10
Max 5.73 6.84 7.06 10.58 10.13 9.60 4.63 6.00 7.23

Mean 4.10 3.76 4.96 5.25 4.65 6.75 2.77 3.81 5.43
Std. Dev. 1.02 1.05 1.21 2.54 3.23 2.05 0.81 1.59 1.17
Mean p, q 4.08 3.99 4.30 5.94 6.35 5.55 2.94 2.69 4.73

Mean p2, q2 4.11 3.50 5.72 4.48 2.70 8.13 2.59 5.10 6.24

Table 17: Balassa-Samuelson inflation simulations under the assumption ∆p∗ equals 2% and
with the inflation differentials in tradables set to zero. The values for the other variables are
at the average values for the periods specified, except for real per capita GDP and real total
consumption growth, which are taken from Wagner and Hlouskova (2004).
The three panels correspond to the periods over which the average values for the explanatory
variables (except for per capita GDP and total consumption) are taken.
Min, Max, Mean and Std.Dev. denote the minimum, maximum, mean and standard deviation
of the implied inflation rates for all 15 equations. Mean p, q and Mean p2, q2 denote the mean
over the corresponding sub-groups of equations only.
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CZE EST HUN LVA LTU POL SVK SVN
1994-2001 -0.04 0.12 10.86 -4.36 -4.38 6.85 2.30 6.22
1996-2001 -0.30 0.71 7.40 -3.47 -6.31 2.45 1.80 5.70
2000-2001 -2.20 0.00 0.75 -5.53 -8.71 -7.04 -0.94 5.71

Table 18: Nominal exchange rate changes (in % per annum) of CEEC currencies against
the Euro. The exchange rates are defined as units of local currency per Euro. Averages are
computed over the periods indicated in the first column.

dent variables are higher, by about 1.5 to 2%, than the means over the equations with ∆p or

∆q as dependent variables.

The simulations have been based on the assumption of an unchanged nominal exchange

rate. Table 18 shows that with the exception of Estonia over the period 2000–2001 no country

has experienced a constant exchange rate vis-a-vis the Euro.21 Furthermore the data support

a link between nominal appreciation and inflation reduction over the sample period. It thus

might be a valuable exercise to refine the inflation simulations with respect to assumptions

concerning nominal exchange rate movements. Here, importantly, the upcoming European

Monetary Union membership of the CEE countries represents the anchor for potentially

refined simulation exercises. This is, however, beyond the scope of this paper, as it also

requires estimates of the pass through of exchange rate changes.

All inflation simulation experiments lead to the conclusion that 2% is a too tight inflation

objective for the CEE countries. An aggregate inflation around 4 to 5% seems to be more

appropriate over the medium run. Also the inflation differentials across countries are expected

to remain substantial. These two facts may present challenges for monetary policy in the

enlarged European Monetary Union.

8 Summary and Conclusions

In this paper we offer a detailed econometric analysis of the Baumol-Bowen and Balassa-

Samuelson effects for eight CEE countries. Our results are based on a variety of specifications

derived from the theoretical model presented in Section 2. We estimate specifications with

narrowly (p2, q2) and broadly (pGDP , q) defined dependent variables and also employ various

BS variables. The narrow specifications result in general in slightly better fit, which is con-
21Note again that the exchange rate movements for the Baltic countries stem from the currency board

arrangements in place in Estonia, with respect to the SDR, and Latvia, with respect to the Euro since 1999.
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sistent with the fact that they are more closely related to the underlying model. We test for

the validity of several key assumption of the BB and BS model. These are homogenous sec-

toral wages, prevalence of PPP in tradables and irrelevance of demand side factors. All three

assumptions are refuted by the data. We thus perform our empirical analysis with extended

equations that account for the non-validity of these assumptions. Real per capita GDP is

found to be the most important demand side variables, this is consistent with Bergstrand

(1991).

Based on extensive bootstrap panel unit root and panel cointegration testing, we find

throughout evidence for unit root nonstationarities in the data, but no evidence for coin-

tegration. We resort to bootstrapping in order to overcome, or at least mitigate, the bad

small sample performance of panel unit root and panel cointegration tests. From the lack of

evidence for cointegration we conclude that other studies that rely upon cointegration may

have done so inappropriately. In order to assess the possible biases of such practice, we also

specify the full set of equations including incorrectly (nonstationary) ‘error correction’ terms.

Taking the differences in the estimated effects between the corresponding equations without

and with error correction terms as a measure of the bias, we find that incorrect application of

cointegration techniques results for all countries and equations in an overestimation of the BB

and BS effects. For the BB effect this is in general by a factor of about four and for the BS

effect the average overestimation is by a factor two to four depending upon the specifications

considered.

Evidence for the BB and BS effect is found. However, the effects are found to be small,

about half a percent per annum on average. With the more theory driven measures for the BS

variables, the BS effect is even negative for most or all countries. The small magnitude of the

effects does not explain the large inflation differentials observed between the CEE countries

and the EU11. This is perfectly consistent with the observation that several key assump-

tions of the standard model are not supported by the data. We therefore base our inflation

simulations on the well specified extended equations. Thus, our simulations incorporate the

extensions required by the data. We specify several scenarios to obtain inflation simulations

based on the BB equation and all the BS equations. The inflation simulations rest on the

following assumptions. The independent variables are set at their historical average values

(computed over several periods), except for real per capita GDP growth, which is taken from

Wagner and Hlouskova (2004) and the deviation from PPP for tradables, which is set to zero
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for the BS simulations presented in the main text. The inflation rate in the EU11 is set to

2%. The results from the BS inflation simulations can be summarized as follows. An inflation

objective of 2% seems to be too low for the CEECs over the medium-run. This finding is also

supported by the BB inflation simulations, where an inflation objective of 2% for the CEEC8

leads to deflation in several countries and also to substantial deflation in tradables prices.

The mean inflation predictions range from 2.77% for the Slovak Republic to 6.75% for

Poland. The mean inflation prediction for the CEEC8 aggregate inflation is 5.43%. These

findings imply that common monetary policy in the enlarged European Monetary Union to

come might have to be adjusted to allow for higher and more versatile inflation rates across

the CEE countries. Note finally that the results of this paper (the specified equations) can be

used to derive additional inflation simulations based on more detailed scenario assumptions.

These refinements could be with respect to the nominal exchange rates (set constant in our

simulations) or with respect to inflation in agriculture and the public sector (set at historical

averages in our simulations). This is, however, beyond the scope of this paper.
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Symbol Country
CZE Czech Republic
EST Estonia
HUN Hungary
LVA Latvia
LTU Lithuania
POL Poland
SVK Slovak Republic
SVN Slovenia

EU11 countries
AUT Austria
BEL Belgium
DNK Denmark
FIN Finland
FRA France
GER Germany
GBR Great Britain
ITA Italy
NLD The Netherlands
ESP Spain
SWE Sweden

Table 19: List of countries used in this study and abbreviations.

NACE code NACE category Sector
A Agriculture AGR
B Fishing AGR
C Mining and quarrying T
D Manufacturing T
E Electricity, gas and water supply T
F Construction N
G Wholesale and retail trade N
H Hotels and restaurants N
I Transport, storage and communication N
J Financial intermediation N
K Real estate and business activities N
L Public administration and defence PUB
M Education PUB
N Health and social work PUB
O Other communal, social and indiv. services PUB
P Private households with employed persons PUB

Table 20: Aggregation of NACE categories to the 4 sectors agriculture (AGR), tradables (T),
non-tradables (N) and public sector (PUB) as defined in this study.
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Symbol Variable
GDP Gross domestic product,

1995 prices, local currency
GDPPC GDP per capita, constant 1999 US$ (EKS PPP)

HHC Final consumption of households
1995 prices, local currency

GOV Government final consumption
1995 prices, local currency

NPH Final consumption of non-profit organizations
1995 prices, local currency

GFCF Gross fixed capital formation
(including changes in inventories)

1995 prices, local currency
FDI Foreign direct investment

net inflows, % of GDP
EXP Exports of goods and services

1995 prices, local currency
IMP Imports of goods and services

1995 prices, local currency
Y X Gross Value Added, 1995 producer prices, local currency
PZ Deflators, 1995 = 100, based on local currencies
LX Employment, annual average
U Registered unemployment, total

WX Annual gross wages per employee, current prices, local currency
LCX Annual labor costs per employee, current prices, local currency

Labor cost is the sum of gross wages and social security contributions
E Nominal exchange rate, Local currency/EURO(ECU)

Table 21: List of variables. The super-script X indicates the sector {T, N, AGR, PUB},
and the super-script Z for the price deflator indicates a value in the set
{GDP, HHC, GV C, NPH, GFCF, EXP, IMP, T, N, AGR, PUB}. No super-script for these
variables indicates the economy-wide variables.
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Variable Country Source
GDP, HHC, GOV, NPH, EU11 without FIN and FRA WIFO
GFCF, EXP, IMP, PGDP , FIN, FRA EUROSTAT

PHHC , PGV C , PNPH , PGFCF , CZE, HUN, EST, LVA, POL, SVK, SVN UNECE
PEXP , P IMP LTU WDI (1993-1994),

UNECE (1994-2001)
GDPPC CZE, HUN, EST, LTU, LVA Groningen Growth and

POL, SVK, SVN Development Center at the
University of Groningen

FDI CZE, HUN, EST, LTU, LVA World Development
POL, SVK, SVN Indicators

Y T , Y N , Y AGR, Y PUB , EU11 EUROSTAT
Y , PT , PN , PAGR, CZE, EST, LVA, POL, SVK, SVN EUROSTAT

PPUB , P HUN, LTU UNECE (1993-1995)
EUROSTAT (1996-2001)

LT , LN , LAGR, EU11 EUROSTAT
LPUB , L EST, LVA, LTU, POL, SVK EUROSTAT

CZE UNECE
HUN UNECE (1993-1995)

EUROSTAT (1996-2001)
SVN National Statistical Office

U EU11 WIFO
CZE, HUN, SVK EUROSTAT

EST, LVA, LTU, POL UNECE
SVN National Statistical Office

WT , WN , WAGR, EU11 EUROSTAT
WPUB , W CZE EUROSTAT (1993-2000)

UNECE (2001)
EST, HUN, LVA, LTU, POL, SVN EUROSTAT

SVK National Statistical Office
LCT , LCN , LCAGR, EU11 EUROSTAT

LCPUB , LC EST, HUN, LVA, LTU, POL, SVK EUROSTAT
CZE EUROSTAT (1993-2000)

UNECE (2001)
SVN National Statistical Office

E CEE EUROSTAT

Table 22: Description of data sources. UNECE denotes United Nations Economic Commission
for Europe, WDI denotes the World Development Indicators and WIFO denotes the Austrian
Institute for Economic Research.
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Symbol Definition
Prices

pGDP ln(PGDP )
δ Y N

Y T +Y N

PT+N (1 − δ)PT + δPN

pT+N ln(PT+N )
prel ln(100PN/PT )
pT ln(PT )
pN ln(PN )

pAGR ln(PAGR)
pPUB ln(PPUB)

Labor shares in tradables and non-tradables sectors
αT LCT LT /Y T

αN LCNLN/Y N

Labor productivities
AT Y T /LT

AN Y N/LN

AiT 100AT /AT
1995

AiN 100AN/AN
1995

arel ln(100AiT /AiN )
aT ln(AiT )
aN ln(AiN )
arel

m ln(100(AiT )αN /αT

/AiN )
Wages and labor costs

WiT 100WT /WT
1995

WiN 100WN/WN
1995

wrel ln(100WiN/WiT )
wT ln(WiT )
wN ln(WiN )
wrel

BS wrel − wrel∗ + ln(100)
LCrT 100LCT /PT

LCrN 100LCN/PN

lcrT ln(100LCrT /LCrT
1995)

lcrN ln(100LCrN/LCrN
1995)

Real exchange rates
Q EPGDP

EU11/PGDP
CEE

q ln(100Q/Q1995)
Q2 EPT+N

EU11/PT+N
CEE

q2 ln(100Q2/Q2,1995)
QT EPT

EU11/PT
CEE

qT ln(100QT /QT
1995)

Total consumption
TC HHC + GOV + NPH

Table 23: Detailed description of variable transformation employed in the empirical analysis.
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Gross domestic product, 1995, EURO
GDP ∗ =

∑
i∈C GDPi/Ei,1995

Gross value added, 1995 producer prices, EURO
Y T∗ =

∑
i∈C Y T

i /Ei,1995 Y N∗ =
∑

i∈C Y N
i /Ei,1995

Employment
LT∗ =

∑
i∈C LT

i LN∗ =
∑

i∈C LN
i

GDP weights
ci = GDPi/Ei,1995

GDP∗ , i ∈ C
Sectoral value added weights
cT
i = Y T

i /Ei,1995

Y T∗ , i ∈ C cN
i = Y N

i /Ei,1995

Y N∗ , i ∈ C
Deflators, 1995=100
PGDP∗ =

∑
i∈C ciP

GDP
i Ei,1995/Ei

PT∗ =
∑

i∈C cT
i PT

i Ei,1995/Ei PN∗ =
∑

i∈C cN
i PN

i Ei,1995/Ei

Labor productivities
AT∗ = Y T∗/LT∗ AN∗ = Y N

EU11/LN∗

Annual gross wages per employee, current prices, Euro

WT∗ =
∑

i∈C(W T
i /Ei)L

T
i

LT∗ WN∗ =
∑

i∈C(W N
i /Ei)L

N
i

LN∗

Annual labor costs per employee, current prices, Euro

LCT∗ =
∑

i∈C(LCT
i /Ei)L

T
i

LT∗ LCN∗ =
∑

i∈C(LCN
i /Ei)L

N
i

LN∗

Table 24: Details of construction of the variables for the EU11 aggregate. C here denotes the
index set comprising eleven countries.
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Appendix B: Additional Empirical Results
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Kρ Kt Kdf

Wages -2.539* (-2.589) -5.003 (-3.270) -1.541 (-3.064)
LC-LPT -2.222* (-2.390) -4.035 (-3.569) -0.283 (-2.417)
LC-LPN -3.466 (-2.183) -5.317 (-2.900) -1.626 (-2.533)
BBE -1.993* (-2.573) -3.288 (-2.989) 0.882 (-2.433)
Aq -0.960 (-3.630) -1.601 (-4.143) -1.478 (-4.320)
Aq2 -0.525 (-3.405) -1.061 (-3.967) -1.458 (-4.619)
Ap -1.299 (-2.710) -2.098* (-3.461) 1.537 (-2.584)
Ap2 -0.348 (-2.767) -0.783 (-3.662) 1.980 (-2.617)
Bq -1.084 (-3.885) -1.522 (-4.102) -2.192* (-4.530)
Bq2 -0.837 (-3.640) -1.132 (-3.971) -2.487* (-4.559)
Bp -1.150 (-3.393) -1.851* (-3.755) 1.254 (-3.557)
Bp2 -0.530 (-3.386) -1.052 (-3.769) 1.508 (-3.747)
Cq -2.230* (-4.077) -2.502* (-4.380) -2.204* (-4.071)
Cq2 -1.678* (-4.067) -1.883* (-4.251) -1.847* (-4.215)
Cp -1.902* (-3.344) -3.136* (-3.901) 0.535 (-2.918)
Cp2 -1.142 (-3.346) -1.914* (-4.149) 1.380 (-2.219)
Dq -0.927 (-3.886) -1.415 (-4.378) -0.978 (-3.792)
Dq2 -0.698 (-3.444) -1.091 (-4.040) -1.060 (-3.654)
Dp -1.171 (-3.124) -1.900* (-3.369) 1.835 (-3.646)
Dp2 -0.690 (-2.859) -1.044 (-3.137) 2.167 (-3.423)
Eq -0.975 (-3.482) -1.443 (-3.701) -1.234 (-3.882)
Eq2 -0.933 (-3.156) -1.409 (-3.550) -1.212 (-3.719)
Ep -1.560 (-3.422) -2.648* (-4.030) 1.186 (-3.918)
Ep2 -1.646* (-3.266) -2.766* (-3.853) 1.240 (-3.618)

Table 29: Results of Kao’s panel cointegration tests including fixed effects. In parentheses
the 5% critical values obtained by the parametric bootstrap are displayed.
The asymptotic 5% critical value is given by -1.645 for all 3 tests.
Bold indicates rejection of the null hypothesis based on the bootstrap critical values and
bold* indicates rejection based upon the asymptotic critical values but no rejection according
to the bootstrap critical values.
The autoregressive lag lengths in both Kdf and the parametric bootstrap are equal to one.
The Bartlett kernel with window size one is applied.
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Kρ Kt Kdf

Wages -2.539 (-1.981) -5.003 (-2.726) -1.541 (-2.424)
LC-LPT -2.222 (-1.619) -4.035 (-2.439) -0.283 (-1.503)
LC-LPN -3.466 (-1.677) -5.317 (-2.298) -1.626 (-1.872)
BBE -1.993* (-2.278) -3.288 (-2.622) 0.882 (-1.974)
Aq -0.960 (-1.844) -1.601 (-2.634) -1.478 (-2.410)
Aq2 -0.525 (-1.557) -1.061 (-2.507) -1.458 (-2.281)
Ap -1.299 (-1.594) -2.098 (-2.085) 1.537 (-1.255)
Ap2 -0.348 (-1.479) -0.783 (-2.091) 1.980 (-1.276)
Bq -1.084 (-2.057) -1.512 (-2.469) -2.192* (-2.573)
Bq2 -0.837 (-1.518) -1.132 (-2.081) -2.487 (-2.243)
Bp -1.150 (-1.850) -1.851* (-2.268) 1.254 (-1.984)
Bp2 -0.530 (-1.690) -1.052 (-2.063) 1.508 (-1.884)
Cq -2.230* (-3.269) -2.502* (-3.502) -2.204* (-2.559)
Cq2 -1.678* (-3.200) -1.883* (-3.502) -1.847* (-2.707)
Cp -1.909* (-2.014) -3.136 (-2.236) 0.535 (-1.205)
Cp2 -1.142 (-2.052) -1.914* (-2.241) 1.380 (-0.799)
Dq -0.927 (-2.904) -1.415 (-3.616) -0.978 (-2.403)
Dq2 -0.698 (-2.898) -1.091 (-3.714) -1.060 (-2.504)
Dp -1.171 (-2.360) -1.900* (-2.747) 1.835 (-2.445)
Dp2 -0.690 (-2.658) -1.044 (-2.979) 2.167 (-2.840)
Eq -0.975 (-2.035) -1.443 (-2.032) -1.234 (-1.476)
Eq2 -0.933 (-2.029) -1.409 (-2.122) -1.212 (-1.267)
Ep -1.560 (-2.585) -2.648* (-2.764) 1.186 (-1.922)
Ep2 -1.646* (-2.732) -2.766* (-2.856) 1.240 (-1.928)

Table 30: Results of Kao’s panel cointegration tests including fixed effects. In parentheses
the 5% critical values obtained by the non-parametric bootstrap are displayed.
The asymptotic 5% critical value is given by -1.645 for all 3 tests.
Bold indicates rejection of the null hypothesis based on the bootstrap critical values and
bold* indicates rejection based upon the asymptotic critical values but no rejection according
to the bootstrap critical values.
The autoregressive lag lengths in both Kdf and the non-parametric bootstrap are equal to 1.
The Bartlett kernel with window size one is applied.
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CZE EST HUN LVA LTU POL SVK SVN CEEC8
1991 30.89 84.4 − 94.09 113.05 40.46 29.75 66.75 −
1992 11.65 227.59 18.95 237.58 227.01 30.76 10.47 112.55 42.37
1993 19.07 59.59 19.22 53.97 140.17 26.73 14.29 31.54 27.31
1994 12.58 33.37 18.13 32.45 48.02 31.65 12.81 20.37 24.12
1995 9.73 26.95 24.13 13.96 32.24 24.67 9.47 14.11 20.01
1996 8.43 20.92 19.21 15.37 22.38 17.16 4.30 10.53 14.62
1997 7.73 10.09 16.95 6.98 12.41 13.11 6.50 8.44 11.81
1998 10.1 8.90 11.90 5.60 6.46 11.14 5.07 7.54 10.18
1999 2.91 4.42 8.15 6.89 3.19 6.57 6.23 6.37 6.09
2000 1.05 6.70 9.31 4.53 1.96 6.64 6.21 5.58 5.92
2001 5.15 4.92 8.26 1.73 0.26 4.05 5.24 9.43 5.26

1994–2001 7.21 14.53 14.51 10.94 15.87 14.37 6.98 10.30 12.25
1996–2001 5.90 9.33 12.30 6.85 7.78 9.78 5.59 7.98 8.98
2000–2001 3.10 5.81 8.79 3.13 1.11 5.35 5.73 7.51 5.59

Table 31: GDP deflator based inflation rates for the CEEC8 countries and for the group
CEEC8.

CZE EST HUN LVA LTU POL SVK SVN
∆wrel

1994-2001 0.13 2.16 -1.97 -2.71 -6.84 1.73 0.28 -1.31
1996-2001 0.19 0.58 0.15 2.57 -3.18 3.68 0.23 -1.34
2000-2001 4.68 -3.35 -3.17 0.01 1.82 9.53 -1.73 -1.46

∆wrel
BS

1994-2001 1.32 2.49 -3.09 -5.29 -6.91 -1.46 -0.14 -1.26
1996-2001 1.39 0.24 -1.47 -0.47 -3.01 -4.18 -0.84 -1.74
2000-2001 3.78 -4.24 -4.06 -0.89 0.92 -10.43 -2.63 -2.36

∆pT − ∆pT∗

1994-2001 5.18 11.28 10.52 10.40 16.41 7.95 5.98 8.22
1996-2001 4.75 6.59 8.76 4.22 10.67 5.07 4.12 5.90
2000-2001 6.11 3.52 5.63 0.07 10.92 1.38 2.47 4.62

∆pA+P

1994-2001 10.57 16.12 14.36 13.05 17.23 16.34 6.07 10.75
1996-2001 8.41 10.32 12.26 7.52 8.61 13.65 3.67 9.30
2000-2001 8.08 5.24 10.25 5.80 0.14 16.56 2.42 10.98

∆ln(GDPPC)
3.22 3.42 3.29 3.34 3.31 3.21 3.33 3.05

Table 32: Period averages of explanatory variables used in the inflation simulations. The real
per capita GDP growth rates are the mean projections from Wagner and Hlouskova (2004).
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CZE EST HUN LVA LTU POL SVK SVN CEEC8
1994–2001

Min 7.51 13.04 9.71 12.56 15.91 10.33 6.65 7.51 10.35
Max 9.44 15.10 15.35 16.66 20.40 16.15 9.79 12.08 13.50

Mean 8.49 14.09 13.01 14.12 18.62 12.99 8.26 10.45 11.86
Std. Dev. 0.68 0.74 1.83 1.39 1.41 1.78 1.04 1.45 1.07
Mean p, q 8.40 13.68 12.44 14.58 19.25 12.11 8.19 9.90 11.30

Mean p2, q2 8.60 14.56 13.67 13.60 17.89 14.00 8.34 11.03 12.49
1996–2001

Min 6.32 9.33 8.68 6.16 9.75 8.79 5.10 5.95 8.91
Max 8.66 10.35 13.83 13.00 16.63 13.41 7.96 9.58 11.22

Mean 7.63 9.87 11.58 9.05 13.36 10.72 6.42 8.44 9.89
Std. Dev. 0.73 0.33 1.52 2.13 2.12 1.59 0.91 1.25 0.79
Mean p, q 7.71 9.89 11.14 9.80 14.69 9.99 6.51 7.93 9.50

Mean p2, q2 7.54 9.85 12.08 8.19 11.85 11.56 6.32 9.02 10.34
2000–2001

Min 6.97 4.48 6.88 1.54 7.21 4.46 2.84 4.24 6.45
Max 8.66 10.38 13.83 13.06 16.63 13.41 7.96 9.86 11.22

Mean 8.70 6.33 9.06 5.29 12.53 7.78 4.61 7.15 7.92
Std. Dev. 0.78 0.84 1.20 2.54 3.17 1.96 1.01 1.57 0.93
Mean p, q 8.84 6.73 8.68 5.99 14.86 6.62 4.89 6.26 7.34

Mean p2, q2 8.53 5.86 9.49 4.48 9.87 9.11 4.30 8.17 8.57

Table 33: Balassa-Samuelson inflation simulations under the assumption ∆p∗ equals 2% and
with the inflation differentials in tradables set at the historical values. The values for the
other variables are at the average values for the periods specified, except for real per capita
GDP and real total consumption growth, which are taken from Wagner and Hlouskova (2004).
The three panels correspond to the periods over which the average values for the explanatory
variables (except for per capita GDP and total consumption) are taken.
Min, Max, Mean and Std.Dev. denote the minimum, maximum, mean and standard deviation
of the implied inflation rates for all 15 equations. Mean p, q and Mean p2, q2 denote the mean
over the corresponding sub-groups of equations only.
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Appendix C: Description of Implemented Bootstrap Algorithms

Bootstrapping the panel unit root and panel cointegration tests used in this paper requires to take
two issues into consideration. The first is non-stationarity of certain quantities (all tests applied have
the null of a unit root in the panel, and correspondingly of no cointegration). The second issue is the
serial correlation allowed for in the innovation processes.

Both issues can be handled by resorting to appropriate bootstrap procedures. Bootstrap procedures
for non-stationary processes are in the meantime relatively well understood, see e.g. Paparoditis and
Politis (2003). In our application we have to take into account in addition the extremely small time
dimension of our panels. For this reason, one part of our bootstrap procedures fits an autoregression to
the residuals of the unit root test equation respectively of the cointegrating regression. Bootstrapping
is then based on the residuals from these autoregressive approximations, which should resemble white
noise. For our case with T = 9 this might be preferable to some block-bootstrap procedure. For
comparison, however, we have also implemented the so called residual based block bootstrap (RBB)
procedure of Paparoditis and Politis (2003), which has certain asymptotical advantages in terms of
power compared to the other procedures implemented, compare Paparoditis and Politis (2002).

Since we are in a panel situation, we can also think about bootstrap procedures that preserve some
cross-sectional correlation patterns that may be present. A simple way of doing this is to re-sample
residuals according to the same re-sampling scheme for all units. Note, however, that none of the tests
for unit roots or cointegration applied is designed to allow for correlation across the units. Panel unit
root and cointegration tests that allow for correlation across the individual units and that resort to
bootstrapping inference are currently investigated i.a. by Chang (2000), Chang (2004) or Chang and
Song (2002).

Note that the panel unit root tests and panel cointegration tests are implemented for two different
specifications concerning the deterministic components. One, where only (individual specific) inter-
cepts are contained in the test equation respectively the cointegrating regression and the other where
both intercepts and trends are contained. We only discuss the second case in this appendix, the other
case follows trivially.

Let us now discuss the bootstrapping algorithms implemented for the panel unit root tests and let
us start with the autoregression based algorithms. Denote with yit ∈ R the panel data observed for
i = 1, . . . , N and t = 1, . . . , T . Then for each unit the following equation is estimated by OLS:

∆yit = γi0 +
pi∑

j=1

γij∆yit−j + uit (18)

with ∆ denoting the first difference operator (defined on N here). The lag lengths pi are allowed to
vary across the individual units in order to whiten the residuals uit. Denote with ûit the residuals of
equation (18). Then the following two bootstrap procedures are based on the autoregression residuals.

(i) Parametric: The bootstrap residuals are given by u∗
it = σ̂iεit, where σ̂2

i denotes the estimated
variance of ûit and εit ∼ N(0, 1).

(ii) Non-parametric:22 Denote with ût =
[

û1t, . . . , ûNt

]′ and generate the bootstrap residuals
u∗

t by re-sampling ût, t = p + 2, . . . , T with replacement. By re-sampling the whole vector, any
contemporaneous correlation across units is preserved in the bootstrap series.

Given u∗
it the bootstrap data themselves are generated from

y∗
it =

{
yit t = 1, . . . , pi + 1
γ̂i0 + y∗

it−1 +
∑pi

j=1 γ̂ij∆y∗
it−j + u∗

it t = pi + 2, . . . , T
(19)

As indicated above Paparoditis and Politis (2003) propose a different bootstrap algorithm, the RBB
bootstrap, based on unrestricted residuals. By unrestricted residuals we mean residuals which are not

22For notational simplicity we assume pi = p for all units here in the discussion.
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generated from an equation like (18) where a unit root is imposed, due to estimation in first differences,
but from an unrestricted first order autocorrelation. Higher order serial correlation is not dealt with by
fitting an autoregression, but by bootstrapping blocks, with the block-length increasing with sample
size at a sufficient rate.23 The implementation of the RBB bootstrap is as follows:

(i) Estimate the equation yit = γi0 + ρiyit−1 + uit by OLS (for each unit).

(ii) Calculate the centered residuals

ũit = (yit − ρ̂iyit−1) − 1
T − 1

T∑
τ=2

(yiτ − ρ̂iyiτ−1).

(iii) Choose the block-length b and draw j0, . . . , jk−1 from the discrete uniform distribution over the
set {1, . . . , T − b} with k = �T−1

b �. Here �x� denotes the integer part of x. By taking the
same realizations jm for all cross-sections, the contemporaneous cross-sectional correlation is
preserved in the bootstrap data.

(iv) Denoting with m = � t−2
b � and with s = t − mb − 1, the bootstrap data are given by:

y∗
it =

{
yi1 t = 1
γ̂i0 + y∗

it−1 + ũijm+s t = 2, . . . , kb + 1 (20)

Note again for completeness that for the tests that only allow for an intercept in the test equation
γ̂i0 above is replaced by zero.

For the panel cointegration tests used in this study we also apply three bootstrap algorithms.
These are essentially multivariate extensions of the above. The starting point for the autoregression
based bootstrap procedures is now given by

yit = αi + δit + X ′
itβi + uit (21)

Xit = Ai + Xit−1 + εit (22)

for i = 1, . . . , N, t = 1, . . . , T . Now αi, δi ∈ R, Xit = [xit1, . . . , xitk]′ and Ai, βi ∈ R
k. Note for

completeness that for the test proposed by Kao (1999) βi = β holds for all units. Under the null
hypothesis of no cointegration between yit and Xit it follows that uit is integrated and that εit is
stationary.

We estimate24 the above equations (21) and (22) to obtain the estimated residuals v̂it = [ûit, ε̂
′
it]

′

from

ûit = yit − α̂i − δ̂it − X ′
itβ̂i

ε̂it = ∆Xit − Âi

Under the null hypothesis vit ∈ R
k+1 is a process whose first coordinate is integrated and whose

other coordinates are stationary. These known restrictions can be incorporated into the autoregressive
modelling to obtain white residuals by fitting a vector error correction model which incorporates the
exact knowledge about the cointegrating space. This is achieved by estimating:

v̂it = Biε̂it−1 +
pi∑

j=1

Γj∆v̂it−j + µit (23)

with Bi ∈ R
k+1×k. The residuals from equation (23), µ̂it say, should resemble white noise due to

appropriate choice of the lag lengths pi.
As in the univariate case for the panel unit root tests, two bootstrap versions are implemented

based on µ̂it.
23For an autoregression based implementation of this idea of using unrestricted residuals see Paparoditis

and Politis (2002).
24Estimation proceeds by unit specific OLS estimation, except for the method of Kao (1999), which rests

upon the LSDV estimator to obtain an estimate β̂ identical across units.
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(i) Parametric: Estimate the variance-covariance matrix of µ̂it, Σ̂i say. Denote its lower triangular
Cholesky factor by L̂i and generate the bootstrap residuals µ∗

it = L̂iηit with ηit ∼ N(0, Ik+1).

(ii) Non-parametric: µ∗
it is given by re-sampling µ̂it. By choosing the same re-sampling scheme for

all cross-sectional units, the contemporaneous correlation structure is preserved.

The bootstrap series y∗
it and X∗

it are generated by first inserting µ∗
it in (23) and by then inserting

the resulting v∗
it in (21) and (22).

The multivariate implementation of the RBB bootstrap is based on an unrestricted VAR(1) for
Zit = [yit,X

′
it]

′ as follows.

(i) Estimate the first order VAR Zit = Ai0 + Ai1Zit−1 + vit.

(ii) Compute the centered residuals

ṽit = (Zit − Âi1Zit−1) − 1
T − 1

T∑
τ=2

(Ziτ − Âi1Ziτ−1).

Choose the block-length b and draw j0, . . . , jk−1 from the discrete uniform distribution over
the set {1, . . . , T − b} with k = �T−1

b � and �x� denotes the integer part of x. By taking the
same realizations jm for all cross-sections, the contemporaneous cross-sectional correlation is
preserved in the bootstrap data.

(iv) Denoting with m = � t−2
b � and with s = t − mb − 1, the bootstrap data are given by:

Z∗
it =

{
Zi1 t = 1
Âi0 + Z∗

it−1 + ṽijm+s t = 2, . . . , kb + 1
(24)

Note again for completeness that for the tests that only allow for an intercept in the test equation
Âi0 above is replaced by zero.
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