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Evaluating Theories of Income Dynamics:

A Probabilistic Approach *

1. Introduction

This paper proposes a unified statistical framework for evaluating and testing hypotheses on

the evolution of a distribution, say an income distribution, over time. Our approach is based

on the concept of relative entropy or Kullback-Leibler Information criterion (Kullback 1959)

as a measure of “distance” from one probability distribution to another one.1 In contrast to

other similar applications, we justify this choice by an explicit probabilistic micro model as

suggested by Aebi (1996; 1997) in a different context. This justification relies on the

fundamental hypothesis of statistical mechanics and on a large deviation argument. As it turns

out, our approach also provides a sound statistical basis for hypothesis testing.

Despite this methodological perspective, we illustrate our case by considering a concrete

problem which is of some practical relevance. The problem we wish to analyze is the

following. Suppose we are in a situation where the distribution of income is observed at two

points in time and where no information on the incomes of individual members in the

population is available. We may think of having at our disposal a repeated cross-section

where individual income histories are not recorded. Suppose further that we want to evaluate

some particular model (or hypothesis) of the transition dynamics. This model may have been

derived from theoretical considerations or from samples drawn from another population.

Although by construction no information on the income of any individual in the two periods

is available, we will show that it is nevertheless possible to draw meaningful statistical

inferences on the transition dynamics under these circumstances. Moreover, our approach

does not only result in a statistical test, but also indicates in what respect our model is

misspecified and how it can be adapted “optimally”.

                                                          
* We thank Boris Zürcher for helpful comments. The paper has benefited from seminar participants at the

Institute for Advanced Studies in Vienna and at Stanford University.
1 The concept of relative entropy is not widespread in econometrics. Important exceptions are White

(1982), Golan, Judge, and Miller (1996), or Kitamura and Stutzer (1997).
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It turns out that the above problem is equivalent to the problem of fitting the cell probabilities

of a contingency table when the marginal probabilities are known and fixed. This question has

been treated in the statistical literature by Deming and Stephan (1940) and Ireland and

Kullback (1968) among others. These authors also propose an algorithm known as iterative

proportional fitting procedure (IPFP) to solve this problem in practice. Recently, Aebi (1996;

1997) gave a probabilistic framework in terms of “large deviations” for contingency tables.

He shows how to compute „most probable“ adjustments of observed contingency tables to

prescribed marginals based on the fundamental hypothesis of statistical mechanics. In this

paper we follow his interpretation and use a large deviation principle to operationalize the

meaning of „most probable“.

We think that our approach can be fruitfully applied to such diverse issues as the convergence

hypothesis in the theory of economic growth and to the theory of personal income inequality.

The so-called convergence hypothesis asserts that differences across countries in per capita

income are transitory, controlling for technology, preferences and population growth rates. As

has been forcefully pointed out by Quah (1996), the cross-country growth equation initially

advocated by Barro and Sala-i-Martin (1992) suffers from severe deficiencies which lead to

unreliable conclusions. Instead, Quah (1996) suggests to “model explicitly the dynamics of

the entire cross-country distribution of incomes”. The second application relates to the

recently observed increase in income inequality in some countries (notably the U.S. and the

U.K.). The reasons for this rise are widely debated and have brought the income distribution

“in from the cold” (Atkinson 1997; Gottschalk 1997). In order to assess this rise in inequality

it is important to develop a notion of mobility within the income distribution. This, however,

requires again to model the dynamics of the entire distribution.

Although these two applications are related to quite different economic traditions and

concerns, the analysis of the dynamics of the underlying distribution uses similar tools. In

both strands of literature, the evolution of the income distribution is analyzed in terms of a

transition probability matrix (or a stochastic kernel in case of a continuous state space)

estimated from panel surveys. The convergence hypothesis can then be assessed by
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computing the stationary distribution or passage times associated with the transition matrix;2

mobility is assessed by computing some scalar mobility measure from the transition matrix.3

Although these applications produce interesting insights, they are purely descriptive in nature.

They lack a probabilistic foundation and do not formally test or evaluate theories of income

dynamics formulated in terms of the transition matrix. We think that this is a serious

drawback which hinders further progress in these fields. The purpose of our paper is therefore

to provide the methodological foundations to the testing and evaluation of theories of income

dynamics. Although we expose our views by investigating a concrete problem, we think that

our approach can be fruitfully extended to related issues.

We do not only develop the theoretical concepts, but we also illustrate our approach by a

practical example. In particular, we compare the income dynamics of men and women in the

U.S. using the PSID data set. These data encompass more information than we actually need

because the PSID data trace individual incomes over time. This additional information will,

however, allow us to assess and document the validity of our approach.

2. Concepts and theoretical background

2.1 A Probabilistic Model

Suppose that for a population consisting of a large number of N independent individuals we

observe the true distribution of income at two points in time t and s with t < s. As our

exposition relies on a finite state space, we take a finite partition I = {Ii}i=1,...,k of R+ and

assume that income is distributed in the two time periods according to the discrete probability

distributions qt = (q1t, . . ., qkt)´ and qs = (q1s, . . ., qks)´ defined on I, i.e. qit is the probability

that income in period t falls in the i-th interval.

If we were actually in a position to trace the income of each individual in the population, we

could count how many persons starting in income class i in period t arrive in income class j in

period s. Denote these numbers by Γij and arrange them in a k×k matrix

Γ = (Γij)i,j=1,...,k

                                                          
2 Durlauf and Quah (1998) provide extensive references and a critical assessment of the literature.
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We call this matrix the income history matrix. Note that the income history matrix is

unobserved. We only know that it must be compatible with the observed income distributions

at time t and s, qt and qs. Thus if nobody gets lost or is joining in going from period t to s,

each person starting in income class i must end up in some income class j, likewise each

person ending up in income class j must have started in some income class i. When the

number of persons N is large, these restrictions on the income history matrix can be stated as

follows:

(1)

kj1Nq

ki1Nq

js

k
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ij

it

k

1j
ij
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∑

∑
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If we denote by ι the k-vector of ones, these restrictions can be written more compactly as

(1’)
s

t

Nq

Nq

=ιΓ′
=ιΓ

Because Σi qit = 1 and Σj qjs = 1, the above conditions impose 2k – 2 independent restrictions

on Γ, referred to as continuity restrictions or initial and terminal conditions.

The theory or model of the dynamics of the income distribution between the two periods t and

s is formulated in terms of a two-dimensional joint probability distribution. This can be done

either directly or, more conveniently, indirectly via a transition probability matrix.4 If we

denote by P = (pij)i,j=1,...,k the transition matrix representing our model, the elements pij are just

the probabilities of moving to income class j given that the individual was in income class i.

For any given income distribution π = (π1, . . ., πk)´ in period t, πi pij is the probability that an

individual is in income class i in period t and in class j in period s. The two-dimensional joint

probability distribution is then given by the matrix (πi pij)i,j=1,...,k =  diag(π) P. Note that our

model will in general not satisfy the continuity restrictions. When it comes to statistical

inference, this probability distribution will be our null hypothesis.

                                                                                                                                                                                    
3 For a theoretical discussion see Shorrocks (1978). Schluter (1998) and Trede (1998) provide examples of

empirical applications.
4 Champernowne (1953) was the first one to view the income distribution as the equilibrium outcome of a

Markov process specified by a transition matrix. He presented conditions on the transition matrix such
that the ergodic distribution satisfies Pareto´s law. Later Wagner (1978), and more recently Conlisk
(1990) and Dardanoni (1994), discussed alternative hypotheses about the form of the transition matrix.
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The continuity restrictions (1) are not sufficient to determine the income history matrix Γ

uniquely. The problem we address in this paper can therefore be stated in the following way:

find the income history matrix Γ which would have the maximum likelihood of being

observed under our maintained hypothesis, diag(π) P, subject to the continuity restrictions (1).

We solve this problem in two steps. First, we compute the probability of observing a

particular income history matrix and then solve the underlying maximization problem. The

analysis is, however, not straightforward because our model does not in general satisfy the

continuity restrictions. The law of large numbers then implies that, viewed from the

perspective of our model, the probability of every income history matrix goes to zero as N

tends to infinity. We resolve this indeterminacy by relying on a large deviation principle, i.e.

we seek the income history matrix whose probability goes to zero at the slowest rate.

2.2 Probability of Income History Matrices

Assuming that the evolution of individual incomes is independent from each other, the

probability that a particular history of N persons belongs to a given income history matrix Γ is

( )∏
=

Γπ
k
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iji

ijp

This given income history matrix Γ can be realized in several ways from the N individual

income histories. The number of such possibilities corresponds to the number of arrangements

of N distinguishable individuals as subsets of Γij persons. It is obtained by an elementary

combinatorial argument:
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Viewed from the perspective of our model, the income history matrix Γ is realized with

probability PN(Γdiag(π)P) given by
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2.3 Maximization and adjusted Dynamics

There are many income history matrices which are compatible with the continuity restrictions

(1). To determine the income history matrix Γ uniquely, we adopt the fundamental hypothesis

of statistical mechanics to the evolution of incomes: an observation at the macroscopic level

is realized in the limit of infinitely many individuals by that microscopic ensemble which has

maximal probability (i.e. is „most probable“) given the observation. This principle means that

we want to choose the income history matrix which has the highest probability of being

realized, viewed from the perspective of our model, and which satisfies the continuity

conditions. Chapter I in Ellis (1985) provides an insightful introduction to the concepts we

will use subsequently.

As explained previously, the law of large numbers implies that every income history matrix

has probability zero of being realized as N tends to infinity, PN(Γ diag(π)P) → 0 as N → ∞,

because Γ satisfies the continuity restrictions whereas our conjecture diag(π)P does not. We

can nevertheless obtain a unique solution to our maximization problem if we interpret “most

probable” as “vanishing at the slowest rate”. This is a so-called large deviation argument. The

rate at which the probability (2) goes to zero is given by the limit of

(1/N) log PN(Γ diag(π)P). Using Stirling’s formula for large factorials5, this limit is

(3) ( )( ) ( )( )PdiagHPdiagPlog
N
1

lim N
N

πγ−=πΓ
∞→

where γ = (γij) denotes the matrix Γ/N = (Γij/N). The function H(γ diag(π)P) is known as the

relative entropy or Kullback-Leibler divergence of the two-dimensional distribution γ with

respect to diag(π)P and is defined as

(4) ( )( ) ∑
=
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γ
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where it is understood that 0 log(0) equals 0 and that γij log(γij/(πipij)) equals infinity if πipij

equals 0 and γij ≠ 0. The function H(. diag(π)P) is also called the rate function because

PN(Γ diag(π)P) decays to zero exponentially fast at a rate given by (4). It can be shown that

                                                          

5 Stirling´s formula is ( )x

x

1x2
e

x
!x ε+π





=  with εx → 0 as x → ∞.
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H(.  diag(π)P) is a nonnegative and strictly convex function. Moreover, H(. diag(π)P) equals

zero if and only if γ = diag(π)P. Thus H(. diag(π)P) attains its infinum at the unique measure

γ = diag(π)P. These properties suggest to interpret the relative entropy H(γ diag(π)P) as a

distance or a measure of discrepancy from the distribution diag(π)P to the distribution γ. The

relative entropy does, however, not define a metric in the space of probability distributions

because it is not symmetric in its arguments and because it violates the triangular inequality.6

The relative entropy can, nevertheless, be given a geometric interpretation analogous to the

usual Euclidean distance. In particular and most relevant for this paper, the minimization of

the relative entropy with respect to a given probability distribution over a convex subset of

probability distributions can be viewed as a projection with properties similar the projection

in Euclidean or Hilbert spaces (Csiszár 1975).

The relative entropy can be interpreted as a measure of the probability of observing a given

income history matrix viewed from the standpoint of our model. The principle of statistical

mechanics then advises us to take the “most probable” income history matrix subject to the

continuity restrictions. We are thus led to consider the following pure inverse problem (Golan,

Judge and Miller 1996): minimize H(γ diag(π)P) over all two-dimensional distributions γ

subject to the continuity restrictions (1). In the words of the statistics literature, we have to

find the minimum discrimination information under the hypothesis diag(π)P (Kullback 1959,

37). The solution is called the minimum discriminant information adjustment of diag(π)P

(Haberman 1984). The Lagrangian L for this optimization problem is

(5) ∑ ∑∑ ∑∑
= == ==






 −γλ−





−γλ−
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where λit and λjs are the 2k Lagrangian multipliers associated with the constraints (1). A

solution to this optimization problem exists if and only if there is at least one income history

matrix which satisfies the continuity restrictions (1) and which has at least the same zero

entries as diag(π) P (Csiszar 1975, corrolary 3.3). The strict convexity of the relative entropy

then implies that this solution is unique. The optimum, denoted by G = (gij)i,j=1,...,k, is found by

differentiating (5) with respect to γij and setting the derivative equal to zero:

(6) gij = φit πipij φjs

                                                          
6 Further properties of the relative entropy and a deeper discussion of its interpretation can be found among
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where φit and φjs equal exp(λit) and exp(λjs-1). In matrix notation the above relation becomes

(6´) G = Φt diag(π) P Φs

where Φt and Φs denote diag((φ1t,...,φkt)) and diag((φ1s,...,φks)). According to our terminology

we call G the „most probable“ income history probability density matrix.

In the theory of quantum mechanics the φ´s are known as Schrödinger multipliers. They

indicate how to adjust “in the most probable” way the two-dimensional density diag(π) P,

representing our model about income dynamics, to satisfy the continuity restrictions (1). The

Schrödinger multipliers adjust the probabilities of our model (πipij) downward if φit × φjs is

smaller than one and upward if φit × φjs is larger than one. The matrix (φitφjs)i,j=1,...,k may

therefore reveal patterns of adjustment and indicates the entries where our model is

misspecified. In addition the Schrödinger multipliers have a kind of “separability property”

because the φit´s depend only on the distribution at time t whereas the φis´s depend only on the

distribution at time s. The relative size of φt and φs thus indicates whether the misspecification

is primarily due to the initial or to the terminal restriction.

The Schrödinger multipliers are found after differentiating L with respect to the Lagrangian

multipliers (λit) and setting the derivatives equal to zero. The resulting equation system is the

so-called Schrödinger system:

 (7)

jsjs

k
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ijiit

it
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jsijiit
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=φ




 πφ

=φπφ

∑

∑
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This equation system shows that the Schrödinger multipliers are unique only up to a

multiplicative constant. In the following we normalize the φ´s such that φ1t equals φ1s.

In empirical applications it is often more convenient to deal with transition probabilities

instead of two-dimensional densities. We can reformulate the adjustment equation (6´) in

terms of the ”most probable” transition matrix R = (rij). Given the initial distribution qt, the

elements of the two-dimensional density and of the transition matrix are related by gij = rij qit.

The elements of R are therefore obtained from P as follows

                                                                                                                                                                                    
others in Kullback (1959), Ellis (1985), and Hillman (1996).
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(8)
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. Note that R satisfies the definition of a transition matrix, i.e.

rij ≥ 0 and 1r
k

1j ij =∑ =
 for all i. Moreover, R is obtained from P only through the Schrödinger

multipliers φjs related to the terminal restrictions.

2.4 Statistical inference

From a statistical point of view, we do not only want to know how to best adjust our model,

but also if these adjustments are significant in a statistical sense. For this purpose, it is

convenient to interpret the computation of G as estimating the cell probabilities of a k×k

contingency table for which the marginal probabilities, in our case qt and qs, are given. This

problem was first treated by Deming and Stephan (1940) who also suggest an iterative

procedure, known as iterative proportional fitting procedure (IPFP), to solve the Schrödinger

system  (7). Taking the φjs equal to one as starting values, the φit can be computed from the

first part of  (7). Inserting these values in the second part of  (7), new values for φis are

obtained. These can then be used to update the φit. This procedure is then repeated until

convergence is achieved.7 Having found the Schrödinger multipliers, it is straightforward to

compute G and R using equations (6) and (8). It can be shown that this procedure converges

geometrically fast, generates best asymptotically normal (BAN) estimates and is equivalent to

maximum likelihood estimates (Smith 1947; Ireland and Kullback 1968). With a reference

sample of size n, these latter authors show that the statistic 2n times the relative entropy

function is asymptotically distributed as chi-squared and can thus be used to test the null

hypothesis given by our model:

(9) ( )( ) 2
2k2~PdiagGHn2 −χπ

According to Ireland and Kullback (1968), the degrees of freedom, 2k–2, are given by the

difference between the degrees of freedom in the unrestricted model, k2–1, and in the

                                                          
7 The procedure assumes that πipij > 0. Clearly, if πipij = 0, gij = 0.
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restricted model, k2–2k+1. Therefore the degree of freedom corresponds to the number of

restrictions imposed by the continuity restrictions (1).8

3. Comparing the income dynamics of women and men

3.1 The data

We illustrate our approach by asking whether the observed distributions of women’s income

are compatible with the income dynamics estimated for men over the same period. To answer

this question we use data from the panel study of income dynamics (PSID).9 The "1968-1993

individual file" records, among other information, the annual income of 53'013 individuals

from 1967 through 1992. We divided the sample period into 5-year intervals and extracted the

variables "total annual work hours", "type of income", "total annual income" and "age of

individual". Due to a change in data collection, we retrieved in 1992 the variable "total annual

labor income" instead of "total annual income”. In order to save space, this paper focuses on

the last 5-year interval (1987 to 1992).10

To obtain sensible and meaningful results, we used only a subset of the whole sample. In

particular, we applied the following restrictions:

• We focus on labor income only.

• Individuals have to be at least of age 20 in the starting year and at most of age 60 in final

year of the 5-year intervals.

• We only look at fully employed individuals. People with less than 1800 hours worked per

year are eliminated from the sample.

• Despite these restrictions some extreme outliers remained in the sample11. To eliminate

them, we require a minimum annual income of 1´000 USD in 1967. This minimum is

inflated in subsequent years by the growth rate of the mean income.

                                                          
8 The same result can be obtained by observing that (5) is just the Neyman-Pearson statistic subject to the

restrictions (1) (see Billingsley 1961, chapter 5).
9 URL: http://www.isr.umich.edu/src/psid/maindata.html; file 68_93ind.zip.
10 The other 5-year intervals give similar conclusions and are available upon request.
11 The following examples illustrate two cases of extreme outliers. Individual number 2’059 worked 2’728

hours in 1992 but earned an annual income of only 15$. Individual number 32’416 worked 2’080 hours in
1987 but earned an annual income of only 14$. While such cases should definitely not occur in the
sample years prior to 1992, this could happen in 1992 due to the change in data collection. It is for
instance possible that somebody invested a lot of time to manage his financial assets without being
employed. Such a person could earn a lot of asset income and only little labor income.
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After processing the restrictions mentioned above, the male data set, which is our reference

sample, contains 1’180 individuals. The female data set 935 consists of individuals. To

construct transition matrices and two-dimensional discrete distributions, we had to choose

partitions for the starting and the final year. Setting k arbitrarily equal to 10, we chose the

income interval bounds in both years such that the number of men is equally distributed

among the 10 cells. Thus the i-th interval is the interval with bounds given by the (i–1)-th and

i-th decile of men’s income distribution.

The female incomes are distributed according to the partitions defined for men. This

procedure resulted in the marginal densities of the beginning and the final year for women. In

case several female incomes happen to be exactly equal to some bound of the partition, the

incomes are equally split between the two adjacent cells of the marginal density.

The income distributions of women in the two years 1987 and 1992 are plotted in figure 1.

These two distributions correspond to qt and qs, respectively. For comparison purposes we

have also plotted the distribution of men’s income which is uniform and equal to 0.1 by

construction. This figure reveals that the mode of the density shifted from the first to the

second income class. In addition, more women are now in the upper income classes. These

two simple observations suggest that women’s income distribution has obviously changed

over these five years. The question we want to address is whether these changes can be

explained by the income dynamics estimated for men.

3.2 Empirical results

The income dynamics for men is represented by the two-dimensional density matrix in table 1

and the corresponding transition matrix in table 2. The cell probabilities are estimated by the

method of maximum likelihood which just equals the corresponding sampling frequency.

These estimates are asymptotically normally distributed so that asymptotic standard errors are

easily computed. As for the marginal distributions of women qt and qs, we ignore, for the sake

of exposition, the sampling error associated with the estimation. Accordingly, we treat men’s

density matrix and men's transition matrix as given. In the following they play the role of our

model and serve as our null hypothesis. They therefore correspond to the matrices diag(π) P
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and P, respectively. For comparison purposes we also computed Shorrocks’ mobility index

for transition matrices (Shorrocks 1978).12

We can now formulate the objective of our empirical investigation in terms of the language

from the previous section. Estimate the “most probable” adjustment of the men’s two-

dimensional density or transition matrix taking the income distribution of women in the years

1987 and 1992 as given. The PSID data would, of course, allow us to estimate the two-

dimensional density matrix and the transition for women directly and to conduct a traditional

statistical analysis. We chose, however, to ignore this information at this stage, but use it to

check if our approach delivers sensible and meaningful results.

Given these preliminaries, we solve the Schrödinger system (7) by the method of iterative

proportional fitting. This gives the "most probable" adjusted two-dimensional density matrix

G reported in table 3 with the corresponding Schrödinger multipliers plotted in figure 2.

Table 4 reports all cross-products of the Schrödinger multipliers, i.e. the matrix of adjustment

coefficients (φi,1987×φj,1992)i,j = 1,...,10. These numbers show by how much one must multiply a

cell of men's density matrix to get the "most probable" adjusted density. A closer examination

of this matrix reveals that large values (values greater than 2) are concentrated in the north-

west corner of the matrix whereas small values (values lower than 0.5) are concentrated in the

south-east corner of the matrix.13 This means, for example, that the probability of being in the

lowest income class in 1987 and in the second income class in 1992 is nearly three times as

large for women compared to men, according to the "most probable" adjustment. Similarly,

the probability of being in both years in the highest income class is five times lower for

women compared to men. Generally speaking, one must increase the probabilities to be in the

low income classes and reduce those for being in the high income classes.

The plots of the Schrödinger multipliers in figure 2 show that the downward adjustments are

due to the distribution in 1987 (φi,1987 < 1 for i ≥ 4) whereas the upward adjustments are

primarily due to the distribution in 1992 (φi,1992 > 1 for i ≤ 4 and (φi,1992 ≈ 1 for i ≥ 5). This

makes sense given the observed shift in the distribution documented in figure 1.

                                                          
12 Shorrocks’ mobility index for a transition matrix T is defined as (k – tr(T))/(k – 1) where k denotes the

number of states. Schluter (1998) and Trede (1998) provide a statistical approach to the analysis of
mobility indices.

13 This pattern is typical. If we repeat this exercise for other time periods, we obtain similar results.
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As mentioned in the theoretical part, we can use the relative entropy of the "most probable"

adjusted density matrix (matrix in table 3) with respect to men’s density matrix (matrix in

table 1) to test whether the adjustments are statistically significant. The value of relative

entropy is H = 0.2069 and the value of the corresponding test statistic (9) is

2n H = 2×1180×0.2069 = 488.28. Given that the critical value is 28.87 for the 5 percent

significance level, we must clearly reject our hypothesis.

Because the PSID contains more information, we can check our approach by computing the

relative entropy of the “true” female density matrix estimated from the data. This gives a

relative entropy of 0.2829 which is larger than the relative entropy of the “most probable”

adjusted density matrix. This shows that our adjustment points in the “right” direction.

Often it is more convenient to interpret the transition matrices instead of the two-dimensional

densities. We have therefore computed the “most probable” adjusted transition as indicated in

equation (8). The result is reported in table 5. It shows only two significant changes at the 5

percent level: cells (2,2) and (3,2). In both cases the probabilities are adjusted upwards

meaning that women have a significantly higher propensity to stay in the second income class

and to fall back from the third income class to the second. Given the great similarity between

the transition matrices which is also reflected in similar mobility indices, we conclude that the

differences between the two-dimensional density matrices are largely due to the differences in

the initial income distribution inherited from the past than to the income dynamics per se.

4. Conclusion

This paper has proposed a new approach to evaluate theories on the dynamics of income

distributions. We hope to have demonstrated the validity and the usefulness of our method. Of

course, further applications are necessary to arrive at a final judgement. The example of this

paper was just a first test. The PSID data provided more information than we actually needed.

We could have, in principle, estimated the transition matrix for women from the data and

compared it to the transition matrix of men using conventional statistical methods. The

advantage of using the PSID data was that it allowed us to check whether our adjustments

went into the “right” direction, as they actually did.
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In the future we hope to apply our method to issues where such additional information is not

available. We could for example investigate the differences in the dynamics of income

distributions across economies or across time. Or we could use our approach to evaluate

specific theories of income dynamics as proposed by Conlisk (1990), Dardanoni (1994) or

Wagner (1978).

The approach should also provide new insights in the “empirics of economic growth” which

studies the evolution of the cross-country income distribution (Quah 1996; Durlauf and Quah

1998). This literature has not yet gone beyond the simple estimation of transition matrices.

On the methodological side it would perhaps be desirable to extend our analysis to continuous

state space. This would circumvent the problem of choosing a somewhat arbitrary partition of

the state space. Although the combinatoric argument presented in this paper cannot be carried

over, the extension seems feasible but conceptually difficult (Föllmer 1988; Aebi and

Nagasawa 1992) and goes far beyond this paper.
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Table 1: two-dimensional density of men’s income in 1987 and 1992

Income class in 1992

1 2 3 4 5 6 7 8 9 10

1 0,044 0,016 0,012 0,011 0,008 0,004 0,001 0,001 0,001 0,002

2 0,021 0,025 0,015 0,008 0,011 0,007 0,008 0,002 0,002 0,001

3 0,010 0,026 0,019 0,009 0,014 0,009 0,007 0,003 0,002 0,001

4 0,011 0,017 0,020 0,013 0,010 0,008 0,009 0,007 0,002 0,003

5 0,004 0,005 0,017 0,018 0,016 0, 014 0,012 0,004 0,007 0,003

6 0,002 0,006 0,007 0,019 0,018 0,018 0,018 0,007 0,003 0,004

7 0,003 0,003 0,003 0,009 0,016 0,017 0,019 0,014 0,011 0,004

8 0,002 0,001 0,004 0,008 0,003 0,011 0,020 0,028 0,014 0,008

9 0,003 0 0,001 0,003 0,002 0,008 0,006 0,023 0,039 0,016

In
co

m
e 

cl
as

s 
in

  1
98

7

10 0 0 0,002 0,002 0,001 0,004 0,001 0,012 0,021 0,058
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Table 2: men’s income transition matrix between 1987 and 1992

Shorrocks mobility index and its standard deviation: 0.80226 (0.01378)

Income class in 1992

1 2 3 4 5 6 7 8 9 10

1 0,44 0,16 0,12 0,11 0,08 0,04 0,01 0,01 0,01 0,02

2 0,21 0,25 0,15 0,08 0,11 0,07 0,08 0,02 0,02 0,01

3 0,10 0,26 0,19 0,09 0,14 0,09 0,07 0,03 0,02 0,01

4 0,11 0,17 0,20 0,13 0,10 0,08 0,09 0,07 0,02 0,03

5 0,04 0,05 0,17 0,18 0,16 0,14 0,12 0,04 0,07 0,03

6 0,02 0,06 0,07 0,19 0,18 0,18 0,18 0,07 0,03 0,04

7 0,03 0,03 0,03 0,09 0,16 0,17 0,19 0,14 0,11 0,04

8 0,02 0,01 0,04 0,08 0,03 0,11 0,20 0,28 0,14 0,08

9 0,03 0 0,01 0,03 0,02 0,08 0,06 0,23 0,39 0,16

In
co

m
e 

cl
as

s 
in

 1
98

7

10 0 0 0,02 0,02 0,01 0,04 0,01 0,12 0,21 0,58



-    -19

Table 3: "most probable" adjusted two-dimensional density matrix

Income class in 1992

1 2 3 4 5 6 7 8 9 10

1 0,103 0,047 0,027 0,023 0,012 0,008 0,001 0,002 0,001 0,002

2 0,035 0,052 0,025 0,012 0,011 0,009 0,007 0,002 0,002 0,001

3 0,017 0,056 0,031 0,014 0,015 0,013 0,007 0,004 0,002 0,001

4 0,015 0,029 0,027 0,015 0,009 0,009 0,008 0,008 0,001 0,002

5 0,004 0,006 0,015 0,014 0,009 0,010 0,006 0,003 0,004 0,002

6 0,002 0,007 0,006 0,015 0,010 0,013 0,010 0,006 0,001 0,002

7 0,002 0,004 0,003 0,008 0,009 0,013 0,010 0,012 0,006 0,002

8 0,001 0,001 0,002 0,004 0,001 0,005 0,007 0,014 0,005 0,003

9 0,003 0 0,001 0,002 0,001 0,005 0,003 0,015 0,019 0,007

In
co

m
e 

cl
as

s 
in

 1
98

7

10 0 0 0,001 0,001 0,000 0,001 0,000 0,004 0,005 0,012

Shading indicates a value significantly different at the 5 percent level from those of men’s
density matrix in table 1

values above the 95%-confidence-interval for the two-dimensional density of men

values below the 95%-confidence-interval for the two-dimensional density of men
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Table 4:  “most probable” adjustments by cell (crossing of φ1987 and φ1992)

1 2 3 4 5 6 7 8 9 10

1 2,35 2,94 2,31 2,07 1,47 1,89 1,38 2,07 1,49 1,29

2 1,65 2,06 1,62 1,45 1,03 1,33 0,97 1,45 1,05 0,90

3 1,69 2,12 1,66 1,49 1,06 1,36 1,00 1,49 1,07 0,93

4 1,38 1,72 1,35 1,21 0,86 1,11 0,81 1,21 0,87 0,75

5 0,88 1,10 0,86 0,78 0,55 0,71 0,52 0,77 0,56 0,48

6 0,92 1,16 0,91 0,82 0,58 0,75 0,54 0,81 0,59 0,51

7 0,93 1,16 0,91 0,82 0,58 0,75 0,54 0,82 0,59 0,51

8 0,55 0,69 0,54 0,49 0,35 0,45 0,33 0,49 0,35 0,30

9 0,75 0,94 0,74 0,67 0,47 0,61 0,44 0,66 0,48 0,41

10 0,37 0,47 0,37 0,33 0,23 0,30 0,22 0,33 0,24 0,20

values higher than 2.0

values lower than 0.5
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Table 5: “most probable” adjusted transition matrix

Shorrocks mobility index and its standard deviation: 0.80684 (0.01988)

next period’s income class

1 2 3 4 5 6 7 8 9 10

1 0,45 0,21 0,12 0,10 0,05 0,04 0,01 0,01 0,01 0,01

2 0,22 0,33 0,16 0,08 0,07 0,06 0,05 0,02 0,01 0.00

3 0,11 0,35 0,20 0,09 0,10 0,08 0,04 0,02 0,01 0.00

4 0,12 0,23 0,22 0,12 0,07 0,08 0,06 0,07 0,01 0,02

5 0,05 0,08 0,21 0,19 0,12 0,14 0,09 0,05 0,05 0,02

6 0,02 0,10 0,09 0,21 0,14 0,18 0,13 0,08 0,02 0,03

7 0,03 0,06 0,04 0,11 0,13 0,18 0,15 0,17 0,09 0,03

8 0,02 0,01 0,06 0,1 0,03 0,12 0,16 0,33 0,11 0,06

9 0,05 0 0,01 0,03 0,01 0,09 0,05 0,28 0,35 0,12

  i
ni

ti
al

 in
co

m
e 

cl
as

s

10 0 0 0,03 0,02 0,01 0,05 0,01 0,17 0,21 0,50

Shading indicates a value significantly different at the 5 percent level from those of men’s
transition matrix in table 2. Both values lie above the 95%-confidence-interval for the
transition matrix of men.
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Figure 1
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Figure 2: “most probable” adjustments
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