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Abstract

We study the role of whistle-blowing in the following inspection
game. Two agents who compete for a valuable prize can either behave
legally or illegally. After the competition, a controller investigates the
agents’ behavior. This control game has a unique equilibrium in mixed
strategies. We then add a whistle-blowing stage, where the controller
asks the loser to blow the whistle. This extended game has a unique
perfect Bayesian equilibrium in which only a cheating loser accuses the
winner of cheating and the controller tests the winner if and only if the
winner is accused of cheating. Whistle-blowing reduces the frequencies
of cheating, is less costly in terms of test frequencies, and leads to a
strict Pareto-improvement if punishments for cheating are sufficiently
large.
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2 1 INTRODUCTION

1 Introduction

We address the following problem. Two agents who compete for a prize can

choose between two strategies: behave legally or illegally. If both agents

play the same strategy, either agent wins the prize with an exogenously

given probability. If only one player plays the illegal strategy (“cheats”), he

wins with certainty. According to these assumptions, cheating is a domi-

nant strategy. This calls for an outside authority - the controller - to control

agents’ behavior, provided there is social preference against cheating. The

controller faces the problem that the agents’ behavior is not publicly observ-

able such that detecting cheating imposes costs. Even if it pays to control

an agent’s behavior if there is a high probability that he cheats, it will not

pay to control an agent if he is known to play legally. Agents, on the other

hand, are inclined not to cheat if they know that they will be controlled,

while they have incentives to cheat if they know that there will be no con-

trols. We refer to such a game as a control problem. In general, a control

problem has an equilibrium in mixed strategies only.

There are many real world situations that have this control problem

property. An obvious example is doping in sports, where a player can in-

crease his prospects to prevail over his opponent by doping. Another ex-

ample is the enforcement of environmental law. Any firm can increase its

profits by not using the appropriate, but expensive abatement technology

if the firm can be sure not be detected. Tax avoidance is another example

(Greenberg [8]). The control problem also applies for firms who compete for

a valuable resource like, say, capital. In order to attract capital, firms can

either truthfully report accounting and other data, or they can cheat. The

practice of cheating is not uncommon. According to the Economist maga-

zine [6] some company’s “sales forecasts were so high that managers, who

were meant to use them to plan production, routinely ignored the numbers.”

In the unique equilibrium of the control game, both agents randomize

between cheating and not cheating. Therefore, the strategy an agent chooses

in equilibrium is a probability distribution over his pure strategies, deter-
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mined by the parameters of the game. This equilibrium strategy of an agent

has to be distinguished from the actual behavior of the agent in equilib-

rium, which is the realization of a random variable. It is either ”cheat” or

”not cheat”. While all rational agents infer the equilibrium distributions,

we assume that the realizations of the random variables are only privately

observed. That is, whether an agent actually cheats or not is only observed

by himself. Given the assumption that cheating is powerful in the sense

that a cheater always prevails over a player who does not cheat, a player for

whom the realization of his random variable was “cheat” and who loses the

contest can therefore infer that the winner must have cheated, too. Our goal

is then to give the controller the possibility to make use of this private infor-

mation. We model this by adding an additional stage to the control game,

which we call whistle-blowing stage. In this stage, the loser is given the

opportunity to hand out to the controller additional information the loser

might have. The problem then consists of designing an incentive-compatible

remuneration scheme, which induces the loser to send different messages to

the controller depending on whether he has cheated or not. We show under

what conditions such a scheme exists. If it exists, it always reduces the

frequency of tests and if the penalty for cheating is sufficiently large, it also

reduces the frequency of cheating. We also show that whistle-blowing leads

to a strict Pareto-improvement if the penalty is sufficiently large.

The game between the two competing agents and the controller is similar

to a standard principal-agent problem. There is, however, an important

difference between the two. In a standard principal-agent setting, greater

effort increases an agent’s chances of winning and the principal’s welfare.

In our model, the cheating strategy that increases the prospect of winning

is disliked by society. Therefore, the illegal activity (cheating or doping) is

a dominant strategy in the absence of controls. Our paper is also related

to the literature on inspection games (an overview on such games is given

by Avenhaus et al. [3]). In contrast to a standard inspection game, the

inspected agents are competitors. This is not the case in the inspection

games we are aware of, where typically there is but one inspector and one
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inspectee (see e.g. Güth and Pethig [9]). On the other hand, we do not

address statistical test problems that play a prevalent role in the paper

by Avenhaus et al. [3]. An obvious application of inspection games are

arms inspection and disarmament, which are often based on (e.g. nuclear)

material accountancy. Whether the competitive side of a problem can be

neglected surely depends on the question addressed. Competition may be

less important in arms inspection than it is in, say, sports, though one can

easily think of counter-examples. Finally, our approach is also related to

the literature on tournaments and contests, which started with Lazear and

Rosen [11] (see also Dixit [5]). While this literature typically addresses

the question under what conditions tournaments are optimal remuneration

schemes, our starting point is different insofar as we take the contest as given

and rather investigate how contestants behave under different monitoring

schemes.

The paper is structured as follows. In Section 2 we introduce the control

problem. Section 3 investigates the whistle-blowing game, and Section 4

compares the two mechanisms. Section 5 concludes.

2 The Control Problem

We first consider what we call the control problem. A control problem

describes a situation where one or more players - to which we will refer as

agents - can choose between behaving legally and illegally, while another

player - called the controller - can choose between controlling (or testing)

and not controlling the agent(s). Preferences in control problems are such

that agents prefer to behave illegally (or to “cheat”) if the controller does not

control, while they prefer to behave legally if there is control. The controller,

on the other hand, prefers not to control if agents play legally, while if they

play cheat, he prefers to control. In general, therefore, control problems are

games with no equilibrium in pure strategies.1

1An example for a typical control problem is fare dodging in public transport (Avenhaus
[2]). Provided there are no fare dodgers, it makes no sense for the provider of the transport
facilities to make costly controls. But provided there are no controls, it makes no sense
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Unlike in standard control problems with one agent, where the agent’s

payoff is directly affected only by his own and the principal’s choice of strate-

gies, we study a situation in which two agents compete for a valuable resource

(a prize) only one of them can win. Cheating increases an agent’s chances

of winning the competition. Thus, an agent’s payoff is not only affected by

his own choice of strategy and that of the principal or controller, but also

by the strategy chosen by the other agent.

We describe the control problem in the context of sports competition,

where the agents are two athletes who face the choice of playing “clean” or

playing “doped”. Society’s objective is to reduce the frequency of testing

and the frequency of doping.2 Given the examples and illustrations discussed

in the Introduction, adaptation of the game to other settings with similar

structures is straightforward.

2.1 The Game

The prize the agents compete for has value 1 for either agent. The a priori

probability that agent 1 wins the prize if both agents are clean or if both

agents are doped is σ > 1
2 . The probability that agent 2 wins is accordingly

1 − σ, so that agent 1 is the better player.3 The winning probabilities are

exogenous to the game. We assume that doping is completely effective in

the sense that any doped agent prevails with certainty over his opponent if

the opponent is clean. These probabilities are common knowledge.

After the competition, the controller decides whether to test the winner.

The controller’s set of pure strategies is {T,NT}, where T stands for test and
NT for no test. Consistent with the assumption that the a priori probability

to pay the fare for the user of the transport facility, and provided no fares are paid,
controls make perfectly sense. Thus, there is no equilibrium in pure strategies. Customers
will cheat with a positive probability smaller than one, and controls will be made with a
positive probability, which is also smaller than one.

2For a game theoretic analysis of doping and the fight against doping see Berentsen
[4].

3 In sports, for example, σ is the probability that 1 prevails over 2 in a pairwise meeting.
If it were to be determined in practice, the odds set by bookmakers could be used to
approximate σ.
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σ is common knowledge, we assume that the controller also knows which

agent is the better one. Therefore, the controller can use different testing

probabilities for either agent. The probability that agent 1 is tested if he

wins is denoted by t1 and the probability that agent 2 is tested after winning

is t2. Thus, t1 and t2 denote the controller’s mixed strategy of testing winner

1 and winner 2, respectively. The controller’s payoffs are such that testing

causes him costs of k ∈ (0, 1). The test is reliable, i.e. there are no test
errors. If the test indicates that the winner is doped, the controller receives

a payoff of 1− k > 0, while if the test indicates that the winner is clean, the

controller gets 0− k < 0.4

1

c

22

d c

cd

d

(-P , 0 , 1 -k )

N N N N

W = 1

(1 , 0 , 0 ) (1 , 0 ,-k ) (1 , 0 , 0 )(-P , 0 ,1 -k ) (1 , 0 , 0 )

3

3

3

3

3

3

T NT T NT T NT

W = 2 W = 1 W = 2W = 1 W = 2

Figure 1: The control problem.

Our control problem is depicted in Figure 1. In order to keep the figure

simple, we have not drawn the information set of the controller when agent

1 is the winner.
4One can also consider the control problem as a game between three players, where

player three - the controller - also competes for the prize. The controller wins the prize if
he proves that the winner of the contest has cheated. In this setting the controller would
never test the loser because his payoff would be −k.
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Agents’ sets of pure strategies are {c, d}. The probability that agent
1 dopes is denoted by α and the probability that agent 2 dopes is β. We

denote by X(α) the random variable for agent 1 if he dopes with probability

α. Accordingly, X(β) denotes the random variable for agent 2.

If a player after winning is tested positive, he does not receive the prize

and gets the punishment P ≥ 0.5 The loser’s payoff is 0, regardless of

whether or not he has doped. The punishment P leaves the payoffs of the

controller unaffected. Such deadweight loss penalties are an accurate way of

modelling, provided the penalty consists of disqualification and a ban from

further competitions of detected cheaters, which is the case in sports for

athletes who are convicted as dopers. It is also accurate for cheaters within

hierarchical contests where detected cheaters are fired or sent to jail or in

arms inspection games, provided the arms inspectors find are of no use to

themselves.6 Finally, throughout the paper we assume that in contrast to

the testing probabilities punishments and rewards cannot be conditioned on

individual agents. This represents the idea of equality before the law.

2.2 Equilibrium

Before we investigate the equilibrium, it is useful to write down the a priori

probabilities for either agent to win the game, and the conditional probabil-

ities for agent 1 and 2 to be doped, conditional on winning the game. Let

P (W = 1) and P (W = 2) denote the a priori probabilities that the winner

is agent 1 or agent 2, respectively. These probabilities are

P (W = 1) = σ(1− α)(1− β) + α(1− β) + σαβ and (1)

P (W = 2) = (1− σ)(1− α)(1− β) + β(1− α) + (1− σ)αβ. (2)

5 If P = 0, the punishment is disqualification so that the winner does not receive the
prize. P > 0 implies that the principal can enforce some additional punishment in terms
of utility to a cheater.

6Deadweight loss penalties are inaccurate for situations where the penalty is a transfer
from the cheating agent to the controller, which is for example the case for fare dodgers
(as in Avenhaus [2]). It is straightforward to change our framework to cover situations
where the penalty is a transfer from the cheating agent to the controller.
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The term σ(1 − α)(1 − β) is the probability that player 1 wins times the

probabilities that both players are clean. The term α(1−β) is the probability
that only player 1 cheats in which case he wins with certainty and the term

σαβ is the probability that player 1 wins times the probabilities that both

players cheat.

Let P (X(α) = d | W = 1) and P (X(β) = d | W = 2) denote the

conditional probabilities that agents 1 and 2 are doped if they win. These

probabilities are respectively

P (X(α) = d |W = 1) =
α(1− β) + σαβ

(1− β) (σ(1− α) + α) + σαβ
and (3)

P (X(β) = d |W = 2) =
(1− σ)αβ + (1− α)β

(1− α) ((1− σ)(1− β) + β) + (1− σ)αβ
.(4)

In equilibrium all agents must be indifferent between their strategies, which

implies that for the controller and the agents the following conditions must

hold.

Controller The controller’s expected payoff of testing winner 1 is the

conditional probability that winner 1 is doped minus the costs of testing,

that is P (X(α) = d |W = 1)−k, while his (expected) payoff of not testing is
0. In equilibrium, both strategies have to yield the same (expected) outcome,

so that the equilibrium condition for testing winner 1 or winner 2 are

P (X(α) = d |W = 1)− k = 0 (5)

P (X(β) = d |W = 2)− k = 0. (6)

Agents The expected payoff for agent 1 of playing c is E1[c] = σ(1 −
β): with probability (1 − β) player 2 is clean in which case he wins with

probability σ. In all other cases he loses. The expected payoff of playing d

is E1[d] = (1− t1)(σβ+(1−β))− t1(σβ+(1−β))P : With probability 1−β
player 2 is clean in which case he wins with certainty and with probability β

player 2 is doped in which case he wins with probability σ. With probability

(1− t1) he is not tested by the controller in which case he receives the prize
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of value 1 and with probability t1 he is tested and receives punishment P .

Thus the equilibrium condition for agent 1 is

σ(1− β) = (1− t1(1 + P ))(σβ + (1− β)). (7)

The equilibrium condition for agent 2, which is derived in the same way, is

(1− σ)(1− α) = (1− t2(1 + P ))((1− σ)α+ (1− α)). (8)

Lemma 1 In any equilibrium, the favorite player (agent 1) is more likely

to dope than the underdog (α ≥ β; with strict inequality if σ > 1
2). Fur-

thermore, the underdog is more likely to be tested than agent 1 if he wins

(t2 ≥ t1; with strict inequality if σ > 1
2).

Proof. The fact that in any equilibrium α ≥ β, is a direct consequence of

the equilibrium conditions (5) and (6). They require that after winning the

conditional probabilities that agent 1 and 2 are doped must be the same.

But because agent 2 is more likely to lose if both agents are either doped or

clean, he is more likely to be doped if he wins if both agents dope with the

same probability (or if he is more likely to dope than agent 1). Consequently,

α must be greater than β in any equilibrium, for otherwise the controller is

not indifferent between testing and not testing winner 1.

The underdog is more often tested because, all else equal, doping is

relatively more attractive for agent 2 than playing clean. To see this, let us

define the relative attractiveness of doping for agent i as Ei[d]
Ei[c]

, which from

(7) and (8) is equal to one in any equilibrium. Therefore,

E1[d]

E1[c]
= [1− t1 (1 + P )]

µ
β

1− β
+
1

σ

¶
= [1− t2 (1 + P )]

µ
α

1− α
+

1

1− σ

¶
=

E2[d]

E2[c]
.

But since
³

β
1−β +

1
σ

´
<
³

α
1−α +

1
1−σ

´
, we have t1 < t2. That is, because

doping is relatively more attractive for the underdog, the underdog must be

more likely to be tested if he wins.¥
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The four equations (5), (6), (7), and (8) describe a system of equations

in the four unknowns t1, t2, α, and β. The unique solution is

α∗ =
1−Ψ− k(1− 2σ)

2σ
, β∗ =

1−Ψ+ k(1− 2σ)
2(1− σ)

(9)

and

t∗1 =
β∗

k(1 + P )
, t∗2 =

α∗

k(1 + P )
, (10)

where Ψ =
p
(1− k)(1− k(1− 2σ)2).

Proposition 2 The strategy profile (t∗1, t∗2;α∗;β
∗) is the unique Bayesian

Nash Equilibrium of the control game. In this equilibrium, P ∗(W = 1) = σ

and P ∗(W = 2) = 1− σ.

Proof. In Appendix.¥
In accordance with Lemma 1 the favorite player (agent 1) is more likely

to be doped than the underdog (α∗ ≥ β∗) and is less likely to be tested
after winning (t∗2 ≥ t∗1). The favorite’s cheating probability is increasing in
σ (∂α

∗
∂σ = (1−k)α∗

Ψσ > 0) while the underdog’s is decreasing (∂β
∗

∂σ = − (1−k)β∗Ψ(1−σ) <

0). For the testing probabilities we have ∂t∗1
∂σ = − (1−k)β∗

k(1+P )Ψ(1−σ) < 0 and
∂t∗2
∂σ =

(1−k)α∗
k(1+P )Ψσ > 0. Consequently, the differences in the cheating probabilities

α∗ − β∗ and the testing probabilities t∗2 − t∗1 are both increasing in σ. The

agents’ cheating probabilities increase in k. The effects of k on the testing

probabilities are less clear, however, because on the one hand an increase in

k makes testing more costly, on the other hand more profitable because the

winner is more likely doped. One can show that ∂t∗1
∂k =

t∗1
k

³
∂β∗
∂k

k
β∗ − 1

´
> 0

and ∂t∗2
∂k =

t∗2
k

¡
∂α∗
∂k

k
α∗ − 1

¢
> 0.

Interestingly, the possibility of cheating does not affect the agents’ prospects

of winning the game. In equilibrium, agent 1 wins with probability

P ∗(W = 1) = σ and agent 2 with probability P ∗(W = 2) = 1 − σ. Thus,

the winning probabilities are identical in games, where there are no doping

opportunities so that the agents can play only c, can choose between c and
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d without controls and punishments (in which case both will play d) or can

choose between c and d with controls and punishments.7

Finally, the equilibrium strategies of the agents are independent of the

deadweight loss penalty P . In contrast, the testing probabilities decrease in

P . P has no impact on the cheating strategies because all players random-

ize so as to keep all other players indifferent between their pure strategies.

Consequently, increasing P will not affect the cheating probabilities. It will

however reduce the testing probabilities because the controller must keep

the agents indifferent between cheating and not cheating, and since cheating

is less profitable if P increases. The same argument explains also why the

agents increase their doping probabilities if k increase, i.e. ∂α∗
∂k > 0 and

∂β∗
∂k > 0.

3 The Whistle-Blowing Game

We now extend the game with a whistle-blowing stage. We model this stage

as a signalling game between the controller and the loser, where after the

contest, the loser sends a message to the controller. The message space

is {D, I}, where D is the message “The winner is doped” and I is the

message “I don’t know.” Thus, when sending message D, the loser “blows

the whistle.” After receiving a message, the controller decides whether to

test the winner. Following a test, the game ends. If he decides not to test,

the game ends immediately.

In what follows, we assume that while the equilibrium strategies α and

β are inferred by (and thus in a sense “known” to) every player in the

game, the realizations of the random variables X(α) and X(β) are private

information of the respective agent.8 This private information is used by the
7Thus, in our game, the fight against cheating cannot be rationalized by fairness ar-

guments. This result relies on our assumption that there are no direct cost of doping. If
we modify the game by including (e.g. health) costs of doping γ ≥ 0, the game has an
equilibrium in mixed strategies for σ > γ > 1− σ. The ex ante probability for agent 1 to

win in such an equilibrium is
(σ−γ)(σ2+σγ−γ)

(2σ−1)2 6= σ (see Berentsen [4]).
8A standard assumption in the principal-agent-literature is that the distributions of

types (of agents) are commonly known, while the realizations of the random variables
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loser to update his beliefs about the winners behavior. In particular, due to

the effectiveness of doping, a doped loser can infer with certainty that the

winner is doped, which is an inference the controller cannot make.

Our goal is to design an incentive-compatible reward and punishment

scheme, which allows the controller to extract the loser’s private information

about the winner’s behavior in the contest. More specifically, we want to

design a “whistle-blowing mechanism” between the loser and the controller,

where the loser and the controller behave as follows: The doped loser (who

infers the winner’s behavior with perfect accuracy) “blows the whistle” and

the clean loser sends the message “I don’t know.” The controller tests the

winner if and only if the loser blows the whistle.

3.1 Strategies and Beliefs

A strategy for the entire game for an agent now consists of three choices;

the probability with which he dopes, the signal he sends if he loses and if

the realization of the random variable is c, and the signal he sends if he loses

and if the realization of his random variable is d. A strategy for agent 1 is

δ1 = (α,m1(c),m1(d))

where α is player 1’s doping choice, m1(c) is the probability that player 1

sends message D given that he is clean, and m2(d) is the probability that

player 1 sends message D given that he is doped. For example, the strategy

δ1 = (α, 0, 1) says that agent 1 dopes with probability α, sends the message

I with certainty if he is a clean loser, and sends message D with certainty

if he is a doped loser. Likewise, a strategy for agent 2 is

δ2 = (β,m2(c),m2(d)).

are private information of the agents (see e.g. Laffont and Mortimort [10]). Therefore,
our model is an application of a principal-agent model, in which the distributions are
determined endogenously as the equilibrium randomization of the competing agents.
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We denote the beliefs of agent 1 after losing the competition if he is clean

or doped by9

µ1(X(β) | X(α) = c) = (µ1(d | c), µ1(c | c)) and
µ1(X(β) | X(α) = d) = (µ1(d | d), µ1(c | d)) , respectively.

For example, after losing the competition, µ1(d | c) is agent 1’s belief that
the winner (agent 2) is doped given that he himself is clean. Note that our

assumption on the effectiveness of doping implies that no clean agent will

ever win against a doped player. Therefore, µ1(c | d) = 0 and µ1(d | d) = 1.
Agent 2’s beliefs are denoted in the same manner, except that there is a

subscript 2.

The controller’s strategy still consists of the testing probabilities t1 and

t2. In contrast to the standard control problem, these testing probabilities

are now contingent on the loser’s message. Therefore, a (mixed) strategy for

the controller is now denoted as δ3 = (t1(I), t1(D); t2(I), t2(D)). His beliefs

are denoted by µ3(.). Thus, µ3(X(α) = d | D) denotes the controller’s belief
that winner 1 is doped if player 2 sends the message D. Because there is no

confusion possible, we use the more concise notation µ3(d | W = 1,D) to

denote these same beliefs and µ3(d |W = 2, I) is accordingly the controller’s

beliefs that winner 2 is doped given agent 1’s message I.

3.2 Punishments, Rewards, and IC-constraints

The deadweight loss penalty for doping is still denoted by P and the pre-

mium for winning is still 1. The function Φ(s, r) specifies the punishments or

rewards for the loser from sending message s ∈ {I,D}. That is, it describes
the payoffs to the loser if he sends the message s ∈ {I,D} and the controller
doesn’t test (r = 0), or the test indicates that winner is clean (r = C), or

the test indicates that the winner is doped (r = D). We set Φ(s, 0) = 0 for

all s because we don’t want to punish or reward a loser whose message is “I

don’t know.” Likewise, we set Φ(I, r) = 0 for all r because we do not wish

9The beliefs of the winner are irrelevant for the game so we do not state them.
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to reward or punish a loser for any message if there is no test. The payoffs

Φ(s, r) are transfers from the controller to the loser if they are positive and

transfers from the loser to the controller if they are negative.

The whistle-blowing signaling stage is depicted in Figure 2. In order

to keep the figure simple, we only consider the case when agent 2 is the

winner so that the signaling game is between player 1 (the sender) and the

controller (the receiver).
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Figure 2. Whistle-blowing signaling stage.

The only non-zero transfers are Φ(D,C) and Φ(D,D). We impose the

following conditions on them. First, we want a doped loser to send the
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message D, which requires that10

Φ(D,D) > 0. (11)

Second, we want a clean loser to send message I, which - for reasons that

become clear in the proof - requires

−Φ(D,C) >
Φ(D,D)

(1− σ)P + σΦ(D,D)
. (12)

Third, we want the controller to have a dominant strategy to test given

message D, which requires

1− k > Φ(D,D) and − Φ(D,C) > k. (13)

Finally, we want the controller not to test if he receives the message I, which

- for reasons becoming clear in the proof - requires

Φ(D,D) <
1− σ

σ

µ
P − 1− k

(1− σ) k

¶
(14)

3.3 Whistle-blowing equilibrium

The solution concept for the game we study is the Perfect Bayesian (Nash)

Equilibrium (PBE). A PBE consists of a behavioral strategy profile and

a belief structure such that each player’s strategy is a best answer to the

strategies of all other players, given his beliefs about the history of the game,

where these beliefs must be consistent with the equilibrium strategy profile

and updated using Bayes’ rule (where such is possible).

We first investigate whether the whistle-blowing game has a pooling

equilibrium, where the loser sends the same message regardless of whether

he is doped or not.

Lemma 3 There are no pooling equilibria, i.e. there are no equilibria in

which one agent or both agents send(s) the same message, regardless of

whether they are doped or not.
10Recall that we assume throughout the paper that tests are completely reliable.
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Proof. In Appendix.¥
We next investigate the existence and uniqueness of a separating equi-

librium. For this purpose let us define

α∗∗ =
1

1− Φ(D,D) + 1−σ
σ P

and β∗∗ =
1

1− Φ(D,D) + σ
1−σP

.

Then, we can state the following Proposition.

Proposition 4 The Whistle-blowing game has a unique perfect Bayesian

equilibrium with the behavioral strategy profile

δ∗1 = (α
∗∗, 0, 1), δ∗2 = (β

∗∗, 0, 1), and δ∗∗3 = (0, 1; 0, 1)

and the belief structure

µ∗1(d | c) =
β∗∗

β∗∗ + (1− σ)(1− β∗∗)
, µ∗2(d | c) =

α∗∗

α∗∗ + σ(1− α∗∗)
µ∗3(d |W = 2, I) = µ∗1(d | c), µ∗3(d |W = 1, I) = µ∗2(d | c)

µ∗3(d |W = 2,D) = µ∗1(d | d) = µ∗3(d |W = 1,D) = µ∗2(d | d) = 1.

Proof. In Appendix.¥
In contrast to the control problem, the equilibrium probabilities of dop-

ing now depend negatively on P , so that increasing P reduces the frequency

of doping. They depend positively on the whistle-blowing reward Φ(D,D)

because an agent obtains this reward only if he is a doped loser and sends the

message D. Because the controller plays a pure strategy (which is contin-

gent on the message received), the costs of testing k do not affect the agents’

equilibrium strategies or beliefs. As in the control game, the favorite player

is more likely to be doped than the underdog (α∗∗ ≥ β∗∗), with ∂α∗∗
∂σ > 0,

∂β∗∗
∂σ < 0, and∂(α

∗∗−β∗∗)
∂σ > 0.

Finally, note that the controller tests if and only if both athletes are

doped. The frequency of tests is therefore α∗∗β∗∗.
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4 Comparing the games

We now compare the doping frequencies, the testing frequencies, and the

expected payoffs of the agents and the controller in the whistle-blowing

game with the ones in the standard control game.

We first compare the doping frequencies.

Proposition 5 There exist critical values Pα ≥ Pβ > 0 defined in the proof

such that if P ≥ Pj, j∗∗ ≤ j∗, j = α, β.

Proof. In Appendix.¥
According to Proposition (5) if the punishment is sufficiently large, the

cheating frequency is lower under the whistle-blowing mechanism than with-

out. Moreover, the more talented player must be punished harsher than the

underdog (Pα ≥ Pβ) in order to reduce his cheating frequency below the one

in the control game. The intuition behind Proposition (5) is that because

the deadweight loss penalty P affects the equilibrium behavior of the agents

in the whistle-blowing game, increasing P reduces the equilibrium probabil-

ities of doping. This is not the case for the control game, where increasing

P will only reduce the equilibrium probabilities of testing. Therefore, if

one can freely choose P , the equilibrium probabilities both of doping and of

testing can be made arbitrarily small under the whistle-blowing mechanism.

We now consider under which conditions the whistle-blowing equilibrium

Pareto dominates the equilibrium of the standard control game.

Proposition 6 The unique equilibrium of the whistle-blowing game Pareto-

dominates the unique equilibrium of the standard control game if P > Pα.

Proof. In the unique equilibrium of the control game, the expected payoff

of the controller is zero because in equilibrium he is indifferent between

testing and not testing, where not testing yields zero payoff. In contrast, in

the whistle-blowing game the controller’s expected payoff is strictly positive,

because with positive probability he receives the accurate message D and

tests the winner, which yields a positive payoff. Consequently, the controller
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is strictly better off in the whistle-blowing game relative to the standard

control game.

In both games, the expected payoffs of the agents are equal to the ex-

pected payoff of playing clean, which are σ(1−β∗) and σ(1−β∗∗) for agent
1 and (1− σ)(1− α∗) and (1− σ)(1− α∗∗) for agent 2, respectively. Thus,
in the whistle-blowing game if β∗∗ < β∗ agent 1 is strictly better off and if
α∗∗ < α∗ agent 2. Proposition (5) implies that if P > Pα, β∗∗ < β∗ and
α∗∗ < α∗. Thus, if P > Pα the expected utilities of both agents and the

controller are strictly larger in the whistle-blowing game than in the stan-

dard control game. Consequently, whistle-blowing leads to a strict Pareto

improvement.¥
Proposition 6 makes a strong case for the use of the whistle-blowing

mechanism. All participants are ex-ante better off provided that the pun-

ishment for behaving illegally can be made sufficiently large (P > Pα).

Finally, we compare the testing frequencies. In the control game the

probabilities that player 1 and 2 are tested are t∗1σ and t∗2 (1− σ), respec-

tively. So the testing frequency is

FSC = t∗1σ + t∗2 (1− σ) =
σβ∗ + (1− σ)α∗

k (1 + P )
.

Note that FSC strictly increases in k, since both t∗1 and t∗2 increase in k.

Hence, FSC is smallest as k approaches 0.

In the whistle-blowing game, on the other hand, the controller tests if

and only if both players are doped, i.e. the testing frequency is

FWB = α∗∗β∗∗.

Note that FWB strictly increases in Φ(D,D), so that FWB is smallest as

Φ(D,D) approaches 0 and recall that (11) and (14) imply that the whsitle-

blwoing equilibrium does not exist for k ≤ 1
1+(1−σ)P .

Proposition 7 For P > 1, Φ(D,D) can be chosen such that FWB < FSC

whenever the whistle-blowing equilibrium exists.



19

Proof. In Appendix.¥
Proposition 7 makes another strong case for the use of the whistle-

blowing mechanism, because lower testing frequencies can reduce the cost of

implementing controls considerably. Note also that P > 1 is a sufficient con-

dition, which we have derived under the assumption that the control costs

approach zero (k → 0), which makes the standard control scheme most ef-

fective. For higher values of k, P can be reduced below 1 and we still have

FWB < FSC .

5 Conclusions

In this paper, we have analyzed the role of whistle-blowing in a game with

two agents and a controller. We have first derived the equilibrium of a stan-

dard control game, where the controller cannot condition his testing strategy

on the loser’s knowledge. We then compared this (perfect Bayesian) equi-

librium to the perfect Bayesian equilibrium of the game in which the loser

can “blow the whistle.” We have found that whistle-blowing reduces test-

ing frequencies and cheating frequencies. Our whistle-blowing mechanism,

therefore, reduces the control cost of the controller and also reduces the

likelihood of cheating.

We briefly try to explain why this is so. Note first that in the game

without whistle-blowing, cheating frequencies do not depend on the penalty

for cheating. In a mixed strategy equilibrium, any player has to make all

other players indifferent between the pure strategies they can play. Because

we have assumed that penalties are deadweight losses and do no affect the

controller’s payoff, agents’ equilibrium probabilities of cheating are indepen-

dent of the penalty. Second, in the terms of principal-agent literature, there

are two types of winners in our game, those who have cheated and those who

have not, and the distribution of these types is determined endogenously by

the probabilities with which both agents cheat in the mixed strategies equi-

librium. While this distribution can be inferred by every player in the game,

the realization of the random variable is private information of the player
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who plays the corresponding mixed strategy. This assumption is completely

analogous to the assumption in asymmetric information models that distri-

butions of random variables are public information, while the realizations

(“types”) are only privately known. But it is also a reasonable assumption,

for otherwise, one would have to assume either that the controller also ob-

serves this realization (in which case the problem were solved at the outset)

or that a player does not observe whether he has cheated or not. There-

fore, a loser who has cheated can accuse the winner of having cheated, too,

without any risk of false testimony. In equilibrium, the controller controls if

and only if the loser blows the whistle. Consequently, the agents determine

the frequency of testing themselves through their choice of the probability

of doping. In contrast to a standard control game without whistle-blowing,

in the whistle-blowing game doping frequencies therefore depend negatively

on the penalty for cheating. Increasing the penalty will thus reduce the

equilibrium probabilities of cheating in the whistle-blowing game. This is

basically why whistle-blowing can reduce both frequencies of testing and fre-

quencies of doping and thus increases welfare relative to the game without

whistle-blowing.

Throughout the paper, we have maintained the assumption that cheating

is very effective in the sense that a cheater always prevails over a player who

does not cheat. We have made this assumption to simplify the analysis,

because it enables a loser who has cheated to infer with certainty that the

winner has cheated, too. We do not think that the existence of the whistle-

blowing equilibrium hinges on this assumption. Relaxing this assumption

(such that cheating only increases the probability of winning) may, however,

have the consequence that other equilibria cannot be excluded. We have

also assumed that tests do not involve errors. We suppose that relaxing

this assumption would basically have the same consequences as relaxing the

assumption that cheating is fully effective.

We think our control problem captures many relevant features of cheat-

ing and the fight against cheating. Of course, it does not explicitly capture

dynamic issues that are inherent in many cheating situations, because the
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agents can develop new technologies of cheating that allow them to be a step

ahead of the controlling authorities, as a consequence of which cheating will

never be eliminated. But at the heart of it, the problem of new technolo-

gies developed by cheaters is still equally driven by the scarcity of resources

disposable for the agency in charge of preventing cheating. For if these re-

sources were not scarce, the agency could do the cheaters’ R&D, and the

cheaters could not gain even short-term advantages over the agency. There-

fore, and because the control problem makes the same prediction, based on

the simple, hardly contestable assumption that resources to be devoted to

the banning of the illegal activity are limited (see Neue Zürcher Zeitung [12]),

the control problem can indeed be seen as capturing the (more) fundamental

features of cheating and the fight against it.

6 Appendix

Proof of Proposition 1 >From (5), (6), (7), and (8), the equilibrium

conditions are

α(1− β) + σαβ

σ(1− α)(1− β) + α(1− β) + σαβ
= k (15)

(1− α)β + (1− σ)αβ

(1− σ)(1− α)(1− β) + β(1− α) + (1− σ)αβ
= k (16)

(1− t1(1 + P ))(σβ + (1− β)) = σ(1− β) (17)

(1− t2(1 + P ))((1− σ)α+ (1− α)) = (1− σ)(1− α).(18)

This system of four equations has the unique solution (t∗1, t∗2, α∗, β
∗). To see

that P ∗(W = 1) = σ, recall that

P ∗(W = 1) = σ[(1− α∗)(1− β∗) + α∗β∗] + α∗(1− β∗). (19)

The first thing to note is that (1−α∗)(1−β∗) = 1−k. Using this information
we can simplify (19) to get

P ∗(W = 1) = σ (1− k) + (k − β∗) (σβ∗ + 1− β∗) (1− β∗)−1



22 6 APPENDIX

Since t∗1 =
β∗

k(1+P ) , equilibrium condition (17) implies that

(k − β∗) (σβ∗ + 1− β∗) (1− β∗)−1 = kσ,

which implies P ∗(W = 1) = σ. Equivalent reasoning gives us P ∗(W = 2) =

1− σ.¥

Proof of Lemma 3 Note first that testing given message D is a dominant

strategy for the controller because −Φ(D,C) > k and 0 < Φ(D,D) <

1− k. Consequently, for a doped loser sending message I is not sequentially

rational: The doped loser is sure that the winner is doped and will be tested

if he says D, so that his expected payoff of saying D is Φ(D,D) > 0, while

the payoff of saying I is 0. Hence, sending message I is not sequentially

rational for a doped loser.

Therefore, the only candidates for pooling equilibria consist of strat-

egy profiles where the pooling loser always say(s) D. Because testing is a

dominant strategy given message D, the winner (who may or may not pool

himself) will be tested with probability one if he wins. But if an agent is

certain to be tested if he wins, he will never dope: If tested with probability

one, his expected payoff of doping is negative, while the expected payoff of

playing c is positive. But given that his opponent never dopes, the expected

payoff of always saying D is negative. Thus, it is not a best response for the

pooling to always say D. Hence, there are no pooling equilibrium.¥

Proof of Proposition 4 The proof involves two steps. We first show

that the strategy profile and beliefs described in the Proposition (4) is a

perfect Bayesian Nash equilibrium. After this we prove that the equilibrium

is unique.

Existence: For the controller, the expected payoff of testing given mes-

sage I has to be negative for both winners. That is, for i = 1, 2

µ∗3(c |W = i, I)(−k) + µ∗3(d |W = i, I)(1− k) < 0, (20)
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which implies for i = 1, 2 that

k > µ∗3(d |W = i, I). (21)

In equilibrium µ∗3(d | W = 1, I) = µ∗2(d | c) = α∗∗
α∗∗+σ(1−α∗∗) and µ∗3(d | W =

2, I) = µ∗1(d | c) = β∗∗
β∗∗+(1−σ)(1−β∗∗) . Consequently, we need

k > max[
α∗∗

α∗∗ + σ(1− α∗∗)
,

β∗∗

β∗∗ + (1− σ)(1− β∗∗)
]. (22)

Inserting the equilibrium values α∗∗ and β∗∗ into condition (22) we get

k > max[
1

1 + P − σ(P +Φ(D,D))
,

1

1 + σ(P +Φ(D,D))− Φ(D,D)
]

Note that 1+P −σ(P +Φ(D,D)) < 1−Φ(D,D)+σ(P +Φ(D,D)) because

P +Φ(D,D) < 2σ(P +Φ(D,D)) for σ > 1
2 . Therefore,

k >
1

1 + P − σ(P +Φ(D,D))
(23)

which can be re-arranged to get condition (14). Note from (13) that the

controller has a dominant strategy to test given message D. This describes

the behavior of the controller.

We next consider the signalling behavior. For a clean agent i message I

is sequentially rational if

µ∗i (c | c)Φ(D,C) + µ∗i (d | c)Φ(D,D) < 0, i = 1, 2,

which implies

(1− β∗∗)(1− σ)Φ(D,C) + β∗∗Φ(D,D) < 0 and (24)

(1− α∗∗)σΦ(D,C) + α∗∗Φ(D,D) < 0. (25)

Plugging in the values of α∗∗ and β∗∗ into (25) and (24) and re-arranging,
we get

−Φ(D,C) >
Φ(D,D)

(1− σ)P − σΦ(D,D)
and (26)

−Φ(D,C) >
Φ(D,D)

σP − (1− σ)Φ(D,D)
. (27)



24 6 APPENDIX

Because for P > Φ(D,D) (which is implied by (14)) we have σP − (1 −
σ)Φ(D,D) > (1−σ)P−σΦ(D,D), the restriction 1

(1−σ)P−σΦ(D,D) >
1

σP−(1−σ)Φ(D,D)

is the stronger one. Thus, we need −Φ(D,C) > Φ(D,D)
(1−σ)P−σΦ(D,D) , which is

condition (12).

For a doped agent i message D is sequentially rational if Φ(D,D) > 0

because µ∗i (d | d) = 1, i = 1, 2. This concludes the signalling behavior.
Finally, we show that α∗∗ and β∗∗ are equilibrium strategies. The ex-

pected payoff for agent 1 of doping is (1− β)− σβP + (1− σ)βΦ(D,D). In

equilibrium, it must be equal to the expected payoff of being clean, which

is σ(1− β). Therefore, the equilibrium probability β∗∗ is

β∗∗ =
1

1−Φ(D,D) + σ
1−σP

. (28)

Accordingly, α∗∗ is
α∗∗ =

1

1− Φ(D,D) + 1−σ
σ P

. (29)

Note that α∗∗ > β∗∗ because σ ≥ 1
2 .

Therefore, the strategy profile and the beliefs in Proposition 4 constitute

a PBE.

Uniqueness: We now show that the equilibrium is unique, provided

conditions (11), (12), (13), and (14) hold. From Lemma (3) we know that

there are no pooling equilibria. So we focus on separating equilibrium can-

didates. The plan is as follows: We first show (step 1) that there are no

equilibria in which a clean loser sends message D with positive probabil-

ity. We then show in two steps that there is no equilibrium, in which the

controller tests with strictly positive probability given message I.

Step 1: We first show that there are no equilibria in which mi(c) > 0 for

at least one agent i. To see this, note that mi(c) > 0 implies that

µi(d | c)Φ(D,D) + µi(c | c)Φ(D,C) ≥ 0 (30)

i = 1, 2. But if (30) holds, then

µi(d | c)(1− k) + µi(c | c)(−k) > 0
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because in equilibrium µ∗3(d | W = j, I) = µ∗i (d | c) and µ∗3(d | W = j,D) =

µ∗i (d | d), j 6= i. Hence, if the expected payoff of clean agent i of sending

message D is non-negative, then the controller’s expected payoff of testing

given message I is strictly positive. But this implies that winner j, j 6= i, is

tested with certainty. Consequently, he will never dope, which contradicts

(30). Thus in any equilibrium mi(c) = 0, i = 1, 2.

Step 2: We now show that there is no separating PBE, in which the

controller’s testing probabilities are 0 < ti(I) ≤ 1 and 0 < tj(I) ≤ 1, i, j =
1, 2.

First, consider the case with ti(I) = 1 for at least one i. Given that

sequential rationality requires the doped loser to say D and that testing is a

dominant strategy given message D (ti(D) = 1, i = 1, 2), ti(I) = 1 implies

that agent i will always be tested, which cannot be an equilibrium.

Next consider the case with 0 < ti(I) < 1 for i = 1, 2. This cannot be an

equilibrium. For such a strategy profile to be an equilibrium, the controller’s

expected payoff of testing the winner given that the loser has sent message

I must be equal to the payoff of not testing, which is zero. Thus, for the

controller we need

α

σ(1− α) + α
− k = 0 and

β

(1− σ)(1− β) + β
− k = 0 (31)

yielding bα = kσ
1−k(1−σ) and bβ = k(1−σ)

1−kσ .
The payoff to the loser if the winner is tested positive is Φ(D,D). Be-

cause agents 1 and 2 must be indifferent between the two (pure) behavioral

strategies available, we need

(1− β)(1− t1(1 + P ))− σβP + (1− σ)βΦ(D,D) = σ(1− β) and (32)

(1− α)(1− t2(1 + P ))− (1− σ)αP + σαΦ(D,D) = (1− σ)(1− α).(33)

Using bα and bβ and re-arranging yields
t1 =

1− σ

(−1 + k)(1 + P )
(−1 + k − kΦ(D,D) + kσ(Φ(D,D) + P )) (34)

t2 =
σ

(1− k)(1 + P )
(−1 + k(1 + P − σ(Φ(D,D) + P ))). (35)
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By assumption t1 and t2 are strictly positive probabilities. Because the

fraction in equation (34) is negative, the term in brackets in equation (34) has

also to be negative. Thus we must have k−kΦ(D,D)+σk(Φ(D,D)+P ) < 1.

On the other hand, because the fraction in (35) is positive, the term in

brackets needs to be greater than zero. Thus, k+kP −σk(B+P ) > 1. But

this can never simultaneously be the case, because

k − kΦ(D,D) + σk(Φ(D,D) + P ) ≥ k + kP − σk(Φ(D,D) + P ) (36)

implying

2σk(Φ(D,D) + P ) ≥ k(Φ(D,D) + P ), (37)

which always holds for σ ≥ 1
2 , contradicting the assumption that t1 and t2

are strictly positive probabilities.

Step 3. There is no equilibrium with ti(I) = 0 and 0 < tj(I) < 1 for

j 6= i. Assume to the contrary t2(I) = 0 and 0 < t1(I) < 1. Then, agent 1

must keep the controller indifferent. That is, α is such that

α

α+ σ(1− α)
− k = 0. (38)

On the other hand, agent 1 must also keep agent 2 indifferent. Hence, α

also solves

(1− α) + σαΦ(D,D)− (1− σ)αP = (1− α)(1− σ). (39)

But α solves (38) and (39) if and only if Φ(D,D) = 1−σ
σ

³
P − 1−k

k(1−σ)
´
, which

contradicts (14). Hence, this is not an equilibrium. Analogous reasoning

applies in the converse case with t1(I) = 0 and 0 < t2(I) < 1.

This concludes the proof that the equilibrium is unique.¥

Proof of Proposition 5. The proof is straightforward and only involves

the comparison of α∗∗ with α∗ and β∗∗ with β∗. The critical values are

Pα =
σ

1− σ

µ
1

α∗
− 1 +Φ(D,D)

¶
and

Pβ =
1− σ

σ

µ
1

β∗
− 1 +Φ(D,D)

¶
, respectively.
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To show that Pα ≥ Pβ, note that σ
1−σ

¡
1
α∗ − 1

¢ ≥ 1−σ
σ

³
1
β∗ − 1

´
> 0 =⇒

Pα ≥ Pβ. Hence, if

σ2

(1− σ)2
≥
µ
1− β∗

β∗

¶µ
α∗

1− α∗

¶
,

Pα ≥ Pβ. Equations (5) and (6) imply that 1−σσ =
³

β∗
1−β∗

´ ¡
1−α∗
α∗
¢
. Multi-

plying both sides by this term and re-arranging, we get σ ≥ 1
2 .¥

Proof of Proposition 7. We show that the limit of FSC as k goes to

0 is greater than the limit of FWB as Φ(D,D) approaches 0 (where the

whistle-blowing equilibrium does not necessarily exist). Because FSC strictly

increases in k and FWB is independent of it, FSC > FWB for any greater

k then follows immediately. Therefore, FSC > FWB will also be feasible

through appropriate (i.e. sufficiently small) choice of Φ(D,D) for any k for

which the whistle-blowing equilibrium exists. The limit

lim
φ→0

Fwb =
σ(1− σ)

(1− σ + σP )(σ + P − σP )

is straightforward to find.

Using L’Hôpital’s rule, we can determine the limit of FSC , which is

lim
k→0

Fsc = 2
σ(1− σ)

1 + P
.

Now, for P > 1 we have

2
σ(1− σ)

1 + P
>

σ(1− σ)

(1− σ + σP )(σ + P − σP )
, (40)

since inequality (40) can be simplified to yield

(1− P )2σ(1− σ) >
1

2
(1− P ), (41)

which is always true because for P > 1, the right-hand side is negative, while

the left-hand side is positive.¥
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