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Abstract

This paper deals with polynomial cointegration, i.e. with the phenomenon that linear
combinations of a vector valued rational unit root process and lags of the process are
of lower integration order than the process itself (for definitions see Section 2). The
analysis is performed in the state space representation of rational unit root processes
derived in Bauer and Wagner (2003). The state space framework is an equivalent
alternative to the ARMA framework. Unit roots are allowed to occur at any point
on the unit circle with arbitrary integer integration order. In the paper simple crite-
ria for the existence of non-trivial polynomial cointegrating relationships are given.
Trivial cointegrating relationships lead to the reduction of the integration order sim-
ply by appropriate differencing. The set of all polynomial cointegrating relationships
is determined from simple orthogonality conditions derived directly from the state
space representation. These results are important for analyzing the structure of unit
root processes and their polynomial cointegrating relationships and also for the pa-
rameterization for system sets with given cointegration properties.

JEL Classification: C13, C32
Keywords: Unit roots, polynomial cointegration, state space representation
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1 Introduction

Polynomial cointegration, first introduced as multi-cointegration in Yoo (1986) and Granger

and Lee (1989a; 1989b) is a natural generalization of cointegration. Cointegration describes

the fact that for multivariate integrated processes (i.e. processes that can be transformed

to stationarity by appropriate differencing, see Definition 1 below) there may exist linear

combinations β′yt, which are integrated of lower order than yt itself or even stationary.

In polynomial cointegration analysis not only static (linear) combinations of the vari-

ables are studied, but the relationships are extended to include lagged variables, resulting

in transformed processes of the form
∑q

j=0 β′jyt−j, compactly written as β(z)′yt, where

β(z) =
∑q

j=0 βjz
j and z denotes the backward shift operator as well as a complex variable

(see Section 2 for precise definitions).

The analysis in this paper is based on the state space framework, which is in a sense made

precise in Bauer and Wagner (2003), equivalent to the ARMA framework for the represen-

tation of unit root processes. State space systems can be used to obtain very convenient

representations of stochastic processes with unit roots with integer integration orders at

finitely many arbitrary points on the unit circle. The representation result is based upon

the canonical state space representation developed in Bauer and Wagner (2003). In that

paper a specific canonical form is developed that clearly reveals the integration and cointe-

gration properties of the underlying process. The present paper is concerned with showing

that the developed canonical state space representation also directly leads to a simple and

convenient representation of all polynomial cointegrating relationships via orthogonality

constraints. The main ingredient is an appropriate more thorough investigation of the

previously developed representation results.

The results derived below are comparable to the representation results derived in Gregoir

(1999), based on the Wold representation of the sufficiently differenced process. Gregoir’s

results are, as most contributions in the (co)integration literature, formulated in the ARMA

framework. Some other contributions on the representation of integrated processes in the

ARMA framework, however restricted to unit roots only at z = 1, are e.g.: Gregoir and

Laroque (1994), which is also based on the Wold representation and can be seen as a pre-

decessor of Gregoir (1999); Stock and Watson (1993), who base their analysis of higher
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order integrated processes on a triangular representation; Haldrup and Salmon (1998), who

base their representation of I(2) processes on the Smith-McMillan form and Deistler and

Wagner (2000) who base their investigation of integrated systems on the transfer function.

Comparing our results with the existing ARMA based representation results for polynomial

cointegration, we are led to conclude that the state space framework is suited better for

obtaining an understanding of the structure of polynomially cointegrated systems. This

understanding is important in two respects: The results in this paper can be used to reveal

the cointegration properties of a given system. Secondly, and probably more importantly,

the results in this paper can be used to derive parameterizations for systems with given

polynomial cointegration properties incorporated. To the best of our knowledge, this is

not possible in the ARMA framework with the results available in the literature.

The paper is organized as follows: In section 2 the model set, the assumptions and some

definitions are presented. Section 3 discusses the state space framework. Section 4 dis-

cusses the links between complex and real valued system representations and in section 5

the basic ideas are illustrated with a small I(2) example. In section 6 polynomial cointe-

grating relationships are discussed in the state space representation and in section 7 the

results of the preceding section are sharpened to focus on the relevant, i.e. non-trivial and

minimum degree, polynomial cointegrating relationships. In section 8 an example to illus-

trate the results of section 7 is discussed and section 9 briefly summarizes and concludes

the paper. The appendix provides additionally a convenient and intuitive representation

and interpretation of polynomial cointegration when focusing only on one unit root.

Throughout the paper we denote with In the n × n identity matrix and with 0a×b the

null-matrix of dimensions a × b. Conjugate complex numbers are denoted by x̄ and X ′

denotes the Hermite transpose of a matrix X. Throughout λmax(A) denotes an eigenvalue

of maximum modulus of the matrix A.

2 Definitions and Assumptions

This section is devoted to present the required definitions and assumptions concerning

unit root processes, their unit root structure and (polynomial) cointegration. This in

turn requires in a first step to define the differencing operator at frequency ω and linearly

deterministic processes.
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The difference operator at frequency ω is defined as follows:

∆ω(z) =

{
1− eiωz, ω ∈ {0, π}
(1− eiωz)(1− e−iωz), ω ∈ (0, π).

(1)

Here z denotes a complex function as well as the backward shift operator. Further let

∆ := ∆0(z) to simplify notation. The way we define the differencing operator ∆ω(z) =

(1− eiωz)(1− e−iωz) = 1−2(cos ω)z + z2 for ω ∈ (0, π) incorporates the assumption of real

valued yt by filtering pairs of complex conjugate roots: For real valued processes complex

roots are occurring in pairs of complex conjugate roots. Note that in order to apply the

differencing operator to a process defined on N, initial conditions have to be specified.

A process (dt; t ∈ N) is called linearly deterministic, if it is perfectly predictable from its

own past from some time instant t0 onwards: Let dt|t0 denote the best linear least squares

prediction of dt based on dj, j = 1, . . . , t0. Then dt is said to be linearly deterministic, if

there exists a t0 ∈ N, such that supt>t0 E‖dt|t0−dt‖ = 0. Thus, for instance any solution to a

vector difference equation
∑p

j=0 Ajdt−j = 0, t ∈ N for some matrices Aj ∈ Rs×s, j = 0, . . . , p

is a linearly deterministic process. Therefore, not surprising, e.g. constants, linear or

polynomial trends

and seasonal dummies are linearly deterministic processes.

We are now ready to define the unit root structure.

Definition 1 The s-dimensional real random process (yt; t ∈ N) has unit root structure

((ω1, h1), . . . , (ωlR, hlR)) with 0 ≤ ω1 < ω2 < · · · < ωlR ≤ π, hk ∈ N, k = 1, . . . , lR, if

there exist random initial values y1−H , . . . , y0, H =
∑lR

k=0(hk +hkI(ωk /∈ {0, π})) with finite

second moments and a linearly deterministic process (Tt; t ∈ N) such that

∆h1
ω1

(z) . . . ∆
h

lR
ω

lR (z)yt = vt + Tt, t ∈ N (2)

for vt =
∑∞

j=0 cjεt−j corresponding to the Wold representation of the stationary process

(vt; t ∈ Z), vt ∈ Rs, where for c(z) =
∑∞

j=0 cjz
j with

∑∞
j=0 ‖cj‖ < ∞ it holds that

c(eiωk) 6= 0, k = 1, . . . , lR. Here I(.) denotes the indicator function.

The s-dimensional random process (yt; t ∈ N) has complex unit root structure ((ω1, h1), . . . , (ωl, hl))

with zk = eiωk , 0 ≤ ω1 < ω2 < · · · < ωl < 2π and hk ∈ N for k = 1, . . . , l, if there exist

random initial conditions y1−H , . . . , y0, H = h1 + · · · + hl with finite second moments and
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a linearly deterministic process (Tt; t ∈ N) such that

l∏

k=1

(1− zkz)hkyt = vt + Tt, t ∈ N (3)

with vt = c(z)εt ∈ Cs corresponding to the Wold decomposition of the stationary process

(vt; t ∈ Z) for c(z) =
∑∞

j=0 cjz
j with

∑∞
j=0 ‖cj‖ < ∞ and it holds that c(eiωk) 6= 0, k =

1, . . . , l.

If c(z) is a rational function of z, then yt is called rational process.

The unit root structure is defined for the multivariate process and not componentwise.

Consequently not each component of the process needs to have the same unit root struc-

ture. This is implied by requiring c(zk) 6= 0 rather than det c(zk) 6= 0. The order of

integration hk at the unit root zk denotes the maximum order of integration of the compo-

nents of (yt; t ∈ N) at zk. Note further that the definition excludes fractionally integrated

processes: The summability condition prevents vt to be fractionally integrated of order

d ∈ (0, .5). Processes with fractional integration order d ∈ [0.5, 1) at some unit root

zk = eiωk are nonstationary and therefore have to be differenced once to transform the pro-

cess to stationarity, which implies that the corresponding function c(z) can be factorized

as c(z) = ∆ωk
(z)1−dc̃(z) which implies c(zk) = 0.

Note furthermore that the restriction c(zk) 6= 0 only at the unit roots allows to classify

processes, which have been overdifferenced at some points on the unit circle while still

containing unit roots at other locations. Finally note that the inclusion of deterministic

terms in the definition implies that e.g. so called trend stationary processes are not inte-

grated. Also the first difference of a process with unit root structure ((0, 1)) need not be

stationary, but only stationary up to linearly deterministic processes. In later sections, to

distinguish notationally, we will use the term complex integrated of order hk at zk = eiωk ,

if the process yt has a complex unit root structure that includes the pair (ωk, hk).

In this paper we restrict attention to cointegration with real valued cointegrating relation-

ships and base the definition of cointegration on the unit root structure. This implies, see

also the discussion below, that we consider in the case of pairs of complex conjugate unit

roots, cointegrating relationships that reduce the complex integration order corresponding

to both members of the pair of unit roots by an equal number. The connection to complex
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cointegration, which allows to consider each unit root separately, will be only remarked

upon as the developed results directly allow to consider this case as well.

For processes with higher integration orders and with unit roots at a variety of points

on the unit circle a multitude of possibilities for cointegration and polynomial cointegra-

tion of different orders arises. For the vector polynomial β(z) =
∑q

j=0 βjz
j, βj ∈ Rs let

β(z)′yt =
∑q

j=0 β′jyt−j, where yt = 0 for t < 1 is used. In the following definition we

use the understanding that pairs (ωk, 0) are removed from the unit root structure of the

transformed process.

Definition 2 A random process (yt; t ∈ N) with unit root structure ((ω1, h1), . . . , (ωlR, hlR))

is called cointegrated or statically cointegrated of order
(
(ω1, h1, h

p
1), . . . , (ωlR, hlR, h

p
lR)

)
,

0 ≤ hp
k ≤ hk, k = 1, . . . , lR, maxk=1,...,lR(hk − hp

k) > 0, if there exists a vector β ∈ Rs, β 6= 0

such that (β′yt; t ∈ N) has unit root structure
(
(ω1, h

p
1), . . . , (ωlR, h

p
lR)

)
. The vector β is in

this case called cointegrating vector of order
(
(ω1, h1, h

p
1), . . . , (ωlR, hlR, h

p
lR)

)
.

A random process (yt; t ∈ N) with unit root structure ((ω1, h1), . . . , (ωlR, hlR)) is called poly-

nomially cointegrated of order
(
(ω1, h1, h

p
1), . . . , (ωlR, hlR, h

p
lR)

)
, 0 ≤ hp

k ≤ hk, k = 1, . . . , lR,

with maxk=1,...,lR(hk−hp
k) > 0, if there exists a vector polynomial β(z) =

∑q
j=0 βjz

j, βj ∈ Rs,

with maxk=1,...,lR ‖β(zk)‖(hk−hp
k) > 0 and β(0) 6= 0, such that (β(z)′yt; t ∈ N) has unit root

structure
(
(ω1, h

p
1), . . . , (ωlR, h

p
lR)

)
, with 0 ≤ hp

k ≤ hk, k = 1, . . . , lR. The vector polynomial

β(z) is in this case called polynomial cointegrating vector of order
(
(ω1, h1, h

p
1), . . . , (ωlR, hlR, h

p
lR)

)
.

Remark 1 As mentioned above, cointegration and polynomial cointegration can easily be

extended to complex cointegration and complex polynomial cointegration, using the complex

unit root structure as the basis in Definition 2 and allowing for complex coefficients βj ∈ Cs.

Complex cointegration allows to investigate cointegration with respect to each unit root

separately, results however in general in complex valued transformed processes. In section 4

we will briefly discuss some of the differences that occur between a real and a complex valued

perspective on cointegration.

Remark 2 Note that in the definition of the unit root structure the existence of appropriate

initial conditions has been postulated, whereas in the definition of the polynomial filter β(z)

we assume zero initial conditions irrespective of the true initial conditions.

The specific choice of initial conditions in defining the polynomial filters is however not
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critical. This stems from the fact that filtered processes β(z)′yt for different choices of the

initial conditions differ only in the first q time instants. This difference can be included

in the linearly deterministic process (Tt; t ∈ N), since it is obvious that a process that is

non-zero only for t = 1, . . . , q is linearly deterministic.

Remark 3 Our definition of polynomial cointegration differs from the Definition 3.1. in

Gregoir (1999) by considering the change in the unit root structure of the transformed pro-

cess rather than only the difference in the integration order at one unit root. A second

difference is the exclusion of trivial cointegrating polynomials, which reduce the integration

order only by differencing, see the definition below. Thirdly, Gregoir (1999) defines the or-

der of cointegration based on the polynomial degree of the cointegrating polynomial, whereas

our definition is based on the reduction of the integration orders.

Definition 3 (Triviality) A polynomial vector β(z) =
∑q

j=0 βjz
j, βj ∈ Rs is called triv-

ial, if maxk=1,...,lR ‖β(zk)‖(hk − hp
k) = 0 or if β(0) = 0 holds. Note that trivial polynomial

cointegration vectors have already been excluded in Definition 3.

Hence, non-trivial polynomial cointegrating vectors reduce the integration order for at least

one unit root not just due to differencing at that unit root. A remark in this respect is

that only the maximum of ‖β(zk)‖(hk − hp
k) over all unit roots has to be positive. This

implies that for all but one unit root the reduction in the integration order is allowed to

be achieved by applying suitable multiples of the respective differencing filters.

A second source of redundancy in the set of polynomial cointegrating relationships is

the polynomial degree of the polynomial cointegrating vector. Given a non-trivial poly-

nomial cointegrating vector it is easily possible to increase the polynomial degree with-

out changing the order of the cointegrating relationship. Consider as simplest exam-

ples the multiplication of a non-trivial polynomial cointegrating relationship β(z) of order(
(ω1, h1, h

p
1), . . . , (ωlR, hlR, h

p
lR)

)
with scalar polynomials, say p(z), to arrive at e.g. p(z)β(z)

or by adding any polynomial of the form γ∆ω1(z)h1−hp
1 . . . ∆ωRl (z)h

lR−hp

lR , γ 6= 0 to β(z). To

exclude such cases of polynomial cointegrating relationships that do not add additional in-

sights compared to polynomial cointegrating relationships of lower polynomial degree, the

following definition of minimum-degree polynomial cointegrating relationship is used. In-

troduce a semi-ordering of unit root structures as follows: Let Θ = ((ω1, h1), . . . , (ωlR, hlR))
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and Θ̃ = ((ω1, h̃1), . . . , (ωlR, h̃lR)) be two unit root structures, where possibly zero entries

hk, h̃k are allowed for in order to compare all unit roots occurring in both structures Θ, Θ̃.

Then Θ ¹ Θ̃ ⇔ maxk=1,...,lR(hk − h̃k) ≤ 0, i.e. hk ≤ h̃k for each unit root.

Definition 4 (Non-Minimum Degree) A non-trivial polynomial cointegrating vector

β(z) =
∑q

j=0 βjz
j of order ((ω1, h1, h

p
1), . . . , (ωl, hl, h

p
l )) is said to be of non-minimum de-

gree, if there exists a representation β(z) =
∑m

j=1 pj(z)βj(z) for some finite integer m,

where

1. pj(z) are scalar polynomials,

2. βj(z) are vector polynomials, such that the degrees of the scalar polynomials in its en-

tries are smaller or equal than the degrees of the entries in β(z) with strict inequality

for at least one entry,

3. the polynomial degree of pj(z)βj(z) is smaller or equal to the polynomial degree of

β(z),

4. (pj(z)βj(z)′yt; t ∈ N) has unit root structure Θ̃ ¹ ((ω1, h
p
1), . . . , (ωl, h

p
lR)).

It is easy to check that the examples given before the definition are all non-minimum

degree polynomials. Non-minimum degree polynomials are seen to be redundant, as they

do not add to the understanding of the cointegration properties of the process. Therefore it

follows that minimum degree polynomials are of maximum degree
∑lR

k=1(hk−hp
k)(1+I(zk 6=

±1))− 1.

3 State Space Framework

As in the companion paper Bauer and Wagner (2003), also in this paper we consider

rational processes in their state space representation. I.e. we consider processes that can

be represented as the solution to the state space system equations:

yt = Cxt + dt + εt,
xt+1 = Axt + Bεt,

(4)

where (yt; t ∈ N) denotes the s-dimensional output process. (εt; t ∈ Z) denotes an s-

dimensional unobserved white noise sequence, which is here for simplicity assumed to be
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i.i.d. xt ∈ Cn denotes the n-dimensional unobserved state vector and dt ∈ Rs is a linearly

deterministic process. A ∈ Cn×n, B ∈ Cn×s, C ∈ Cs×n are complex matrices, however the

corresponding impulse response coefficients Kj = CAj−1B for j > 0, K0 = Is are restricted

to be real valued, since we are only interested in real valued output processes (yt; t ∈ N).

The computations are performed using complex quantities to simplify the algebra and the

required notation. If one prefers, all computations can equivalently be performed using real

valued quantities, see Bauer and Wagner (2003) or also the following section for details on

the relation between complex and real valued representations. The recursions are started

at the initial state x1 ∈ Cn, which is restricted in order to obtain a real valued output.

x1 is assumed to be a random variable with finite variance uncorrelated with the noise

(εt; t ∈ N). Note that this also includes the case of a constant initial state.

In the following we provide a very brief presentation of some of the main properties of state

space systems relevant for the paper. The intention is merely to provide a list of keywords

for the state space analogues of concepts well known in the ARMA framework. Readers

interested in more detailed discussions on state space systems are referred to Hannan and

Deistler (1988), in particular Chapters 1 and 2.

The state space system (A,B,C) (cf. equations (4)) corresponds to a transfer function

k(z) = Is + zC(In − zA)−1B =: Π(A,B, C), where z here denotes a scalar complex vari-

able. This equation defines the mapping Π. Note that by construction k(z) is a rational

function. Conversely, also for each rational function k(z) with k(0) = Is, there exist state

space realizations, i.e. there exist matrix triples (with appropriate dimensions of the ma-

trices) (A, B, C) such that k(z) = Π(A,B, C), see Hannan and Deistler (1988, Chapter 1).

The matrix triple (A,B, C) is often referred to as state space realization of k(z).

A similar link prevails also between ARMA systems and rational transfer functions. For all

rational functions k(z) with k(0) = Is, there exist matrix fraction decompositions with left

coprime matrix polynomials a(z) =
∑p

j=0 Ajz
j, A0 = Is, Ap 6= 0, b(z) =

∑q
j=0 Bjz

j, B0 =

Is, Bq 6= 0, such that k(z) = a−1(z)b(z) holds. Analogous to the above, the pair (a(z), b(z))

is referred to as an ARMA realization of the transfer function. Combining the two links

it immediately follows that for every ARMA system (a(z), b(z)) there exist state space

systems (A,B,C) such that Π(A,B,C) = a−1(z)b(z).

A state space realization (A,B, C) of a given transfer function k(z) is called minimal, if
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there exists no other state space realization of k(z) with a smaller state dimension. Mini-

mality is the state space analogue to left coprimeness. From the ARMA framework it is well

understood that in a left coprime realization the locations of the roots of the determinant

of the matrix polynomial a(z) determine the integration or stationarity properties of the

resulting ARMA processes. The analogue for minimal state space realizations are the lo-

cations of the eigenvalues of A: If the poles of k(z) are defined as the roots of det a(z) from

any left coprime matrix fraction description (a(z), b(z)), k(z) = a−1(z)b(z), then λ is a pole

of k(z) if and only if det(In− λA) = 0 for any minimal state space realization (A,B,C) of

k(z) (cf. e.g. Hannan and Deistler, 1988, Theorem 1.2.2.). Hence, if λ 6= 0 is a pole of k(z),

then λ−1 is an eigenvalue of A. Similarly, if the zeros of the transfer function are defined

as the zeros of det b(z), then λ is a zero of k(z), if and only if det(In − λ(A − BC)) = 0.

The paper deals only with processes with eigenvalues of A smaller or equal than one in

absolute value, this restriction of |λmax(A)| ≤ 1 is called non-explosiveness restriction. In

terms of an ARMA representation we thus assume det(a(z)) 6= 0, |z| < 1. Similarly we

restrict attention to minimum-phase systems, i.e. to systems where |λmax(A − BC)| ≤ 1,

or equivalently to transfer functions k(z) such that the zeros of k(z) lie outside the open

unit disc.

Both, state space as well as ARMA realizations of a transfer function k(z) are not unique.

For a given minimal realization (A0, B0, C0) of a given transfer function, the set of all mi-

nimal state space systems realizing the same transfer function is given by {(A,B,C) : ∃
nonsingular T ∈ Cn×n : A = TA0T

−1, B = TB0, C = C0T
−1}. Hence, for any given

transfer function there is some freedom to choose a minimal state space realization. This

freedom can be exploited to select or construct a realization that highlights the properties

most important in the context studied, in our case the integration and cointegration prop-

erties.

We have seen above that the state space and ARMA framework are equivalent in the sense

that they are both capable of realizing the class of rational transfer functions. This is

however not the only level at which equivalence can be established. It can also be shown

that the solutions to the difference equation systems that constitute a state space or an

ARMA system are closely related, see e.g. Hannan and Deistler (1988, Chapter 1). For

the case of unit root processes defined on N this link has been investigated in Bauer and
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Wagner (2003): A unit root process (yt; t ∈ N) is said to have a state space representation,

if there exists a state space system (A,B, C), initial conditions x1 and a linearly determin-

istic process (dt; t ∈ N) such that (yt; t ∈ N) is a solution of equations (4). Analogously we

define an ARMA process to be the solution of

a(z)yt = b(z)εt, t ∈ N (5)

for some polynomial matrices (a(z), b(z)) and (possibly random) initial conditions yj, j =

1 − p, . . . , 0, εj, j = 1 − q, . . . , 0. Note that in the definition of an ARMA process no

deterministic processes are explicitly taken into account. This implies that any linearly

deterministic component, dt say, present in the ARMA process yt must be a solution of

a(z)dt = 0. It is shown in Hannan and Deistler (1988, p. 15), that for each ARMA process

(yt; t ∈ N) there exist initial conditions x1 and a (not necessarily minimal) state space

system (A,B, C), such that (yt; t ∈ N) has a state space representation. Furthermore even

dt = 0 can be assumed without restriction of generality in (4).

Conversely, if a process has a minimal state space representation with dt = 0, it can be

shown that there exists a (not necessarily left coprime) ARMA system (a(z), b(z)), such

that (yt; t ∈ N) satisfies the corresponding vector difference equation (5) for suitable initial

conditions. Therefore in the absence of linearly deterministic processes (dt; t ∈ N), every

solution to a minimal state space system can also be represented as a solution to an ARMA

equation (5) and vice versa.

The above discussion requires minimality of the state space system. Representing the

solution to the state space equations (4) as a function of the input and the initial state as

yt = Cxt + εt + dt = · · · = CAt−1x1 + dt + εt +
t−1∑
j=1

CAj−1Bεt−j,

shows that for the description of the impact of the noise on the output, minimality of the

state space system can be assumed without restriction of generality (since the matrices

CAjB are invariant for all state space realizations of a transfer function). The additional

term CAt−1x1 can be shown to be linearly deterministic and can therefore be attributed

to dt. Combining the above two arguments we can without restriction of generality state

that minimal state space systems (A,B,C) are – for appropriate definition of (dt; t ∈ N) –

capable of representing all ARMA processes (yt; t ∈ N) (cf. also Theorem 1).
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The convenient representation of state space systems with a given complex unit root struc-

ture ((ω1, h1), . . . , (ωl, hl)) developed in Bauer and Wagner (2003) is also the main necessary

ingredient for the representation of all polynomial cointegrating relationships. The devel-

oped canonical form starts from the already discussed observation that the eigenvalues of

the A-matrix determine the integration properties of the solutions of the state space sys-

tem. If all eigenvalues of A are smaller than one in absolute value, then there exist initial

conditions x1 such that the corresponding solution process is stationary (after removal of

a possibly present linearly deterministic component dt). Eigenvalues of modulus one cor-

respond to unit roots. The structure of the eigenvalues, i.e. the sizes of the Jordan blocks

corresponding to the Jordan segments (using the notation of Meyer, 2000) of A, determine

the integration and cointegration properties of the solution process of the system. This

statement is made precise in the following theorem which essentially summarizes the find-

ings of Bauer and Wagner (2003). Note that for algebraic simplicity we consider a complex

valued formulation. The transformation to obtain a real valued representation from this

complex representation is discussed in the following section.

Theorem 1 For each real rational process (yt; t ∈ N) with complex unit root structure

((ω1, h1), . . . , (ωl, hl)) a unique minimal state space representation (A,B, C) fulfilling the

following restrictions exists:

1. The matrix A is block-diagonal: A = diag(J1, . . . , Jl, Ast). The diagonal blocks Jk, k =

1, . . . , l correspond to the Jordan segments of A corresponding to the unit roots zk =

eiωk , i.e. to the eigenvalues of modulus one, ordered according to increasing frequency

ωk. Ast accounts for the eigenvalues smaller than one in absolute value. Each Jordan

segment Jk is in reordered Jordan normal form (see Bauer and Wagner, 2003):

Jk =




zkIdk
1

[Idk
1
, 0dk

1×(dk
2−dk

1)] 0 0 0

0dk
2×dk

1 zkIdk
2

[Idk
2
, 0dk

2×(dk
3−dk

2)] 0
...

0 0 zkIdk
3

. . . 0
...

...
...

. . . [Idk
hk−1

, 0dk
hk−1×(dk

hk
−dk

hk−1)]

0 0 0 0 zkIdk
hk




(6)
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Denote by dk =
∑hk

i=1 dk
i , then Jk ∈ Cdk×dk

. The indices dk
i denote the differences

of the dimension of the image of (Jk − zkI)hk−i and the dimension of the image of

(Jk − zkI)hk−i+1 for i = 1, . . . , hk, where hk denotes the size of the largest Jordan

block corresponding to the unit root zk.

2. Let the matrix C = [C1, . . . , Cl, Cst] be partitioned according to the partitioning of

Jk. For each of the matrices Ck ∈ Cs×dk
, k = 1, . . . , l corresponding to the unit roots

zk introduce the following notation: Let Ck = [C1
k , . . . , C

hk
k ], C i

k ∈ Cs×dk
i . Further

partition Ci
k =

[
Ci,G

k Ci,E
k

]
, with Ci,E

k ∈ Cs×(dk
i−dk

i−1) and Ci,G
k ∈ Cs×dk

i−1 for i =

1, . . . , hk, where dk
0 = 0 is used. Define C̄E

k = [C1,E
k , . . . , Chk,E

k ] ∈ Cs×dk
hk .

Then (C̄E
k )′(C̄E

k ) = I and (Ci,G
k )′(Cj,E

k ) = 0, j ≤ i for i = 1, . . . , hk and k = 1, . . . , l.

3. Let also B be partitioned analogously to A and C, i.e. B = [B′
1, . . . , B

′
l, B

′
st]
′ with

Bk = [(B1
k)
′, . . . , (Bhk

k )′]′, Bi
k ∈ Cdk

i×s. Decompose Bhk
k = [(Bhk,1

k )′, (Bhk,2
k )′, . . . , (Bhk,hk

k )′]′,

Bhk,i
k ∈ C(di−di−1)×s. Every sub-block Bhk,i

k for i = 1, . . . , hk is positive upper tri-

angular. A matrix B ∈ Cc×s, B = [bi,j]i=1,...,c,j=1,...,s is called positive upper tri-

angular (p.u.t.), if there exist indices 1 ≤ j1 < j2 < · · · < jc ≤ s, such that

bi,j = 0, j < ji, bi,ji
> 0. I.e. B is of the form




0 · · · 0 b1,j1 x . . . x
0 . . . 0 b2,j2 x . . . x

0 . . . 0 bc,jc x


 (7)

with x here denoting unrestricted entries.

4. The state space realization corresponding to the stationary part of the transfer func-

tion (Ast, Bst, Cst) is represented in a canonical form for stationary state space sys-

tems, e.g. in echelon canonical form (cf. Hannan and Deistler, 1988, Theorem 2.5.2).

5. For each k = 1, . . . , l there exists an index k′ such that J̄k = Jk′, C̄k = Ck′, B̄k = Bk′

and x̄1,k = x1,k′ for an analogous partitioning of the state.

The obtained representation has the following properties:

1. The matrices C̄E
k have full column rank for k = 1, . . . , l. Hence, dk

hk
≤ s and full

column rank of Ci,E
k for i = 1, . . . , hk follow.

15



2. Due to minimality it follows that Bhk
k has full row rank for k = 1, . . . , l.

3. If also the state is partitioned in the same way as the system matrices, xt = [x′t,1, . . . , x
′
t,l, x

′
t,st]

′

with xt,k = [(x1
t,k)

′, . . . , (xhk
t,k)

′]′ where xi
t,k ∈ Cdk

i , then xi
t,k has complex unit root

structure ((ωk, hk − i + 1)). Furthermore xi
t,k is not cointegrated or polynomially

cointegrated.

4. For each unit root zk the (complex) integration order hk of yt (as well as of xt) equals

the size of the largest Jordan block in Jk.

PROOF: The existence and the uniqueness of the given representation is stated in Theorem 2

in Bauer and Wagner (2003). Restriction 5 ensures real valuedness of the output process.

Properties 1 and 2 are given in Theorem 1 of Bauer and Wagner (2003). In order to

see that xi
t,k is indeed integrated of order hk − i + 1 at zk consider xi

t+1,k = zkx
i
t,k +

[Idk
i
, 0dk

i×(dk
i+1−dk

i )]xi+1
t,k + Bi

kεt, i < hk and xhk
t+1,k = zkx

hk
t,k + Bhk

k εt. The argument then

proceeds recursively: For i = hk, the above equation shows that xhk
t,k is integrated of order

hk − hk + 1 = 1. Since the variance of εt is nonsingular and Bhk
k is of full row rank due

to minimality (Property 2), no cointegration or polynomial cointegration occurs. Then

recursion in i = hk − 1, . . . , 1 proves Property 3. Property 4 finally is a consequence of

Properties 1 and 3, using the full column rank of C1
k = C1,E

k . ¤
The representation described in the theorem has two convenient features for cointegration

analysis. Firstly, the components of the state are decoupled in the sense that they are

grouped into blocks of components that are (complex) integrated at exactly one unit root.

Secondly, within the blocks corresponding to the different unit roots, the components

of the state (i.e. xi
t,k) are ordered corresponding to the integration order. This block

structure directly shows the chains of state components of increasing integration orders

that are relevant for polynomial cointegration. Note that hence e.g. the block of the state

corresponding to z = 1 is in a triangular representation similar to the representation given

in Stock and Watson (1993). Consider

yt = Cxt + dt + εt =
l∑

k=1

hk∑
i=1

Ci
kx

i
t,k + Cstxt,st + dt + εt (8)

with Ci
kx

i
t,k complex integrated of order hk − i + 1 at the unit root zk, if Ci

k is non-zero.

Thus, in β′yt with β ∈ Rs such that β′[C1
k , C

2
k , . . . , C

j
k] = 0 and β′Cj+1

k 6= 0, the order
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of complex integration corresponding to the unit root zk is reduced to hk − j. Note that

in case that zk is a member of a pair of complex conjugate unit roots, the vector β from

above also reduces the integration order of yt at z̄k to hk − j. This follows immediately

from restriction 5 and realvaluedness of β, which implies β′Ci
k = β′C̄ i

k = 0 for i = 1, . . . , j.

The above result shows that the canonical state space representation reveals more in-

formation concerning the integration and cointegration properties than contained in the

(complex) unit root structure given in Definition 1. This leads us to the definition of a

(complex) state space unit root structure.

Definition 5 The s-dimensional real random process (yt; t ∈ N) with minimal state space

representation (4) has, using the notation of the above discussion, state space unit root

structure Ω = {(ω1, (d
1
1, . . . , d

1
h1

)), . . . , (ωl, (d
l
1, . . . , d

l
hl

))}, 0 < dk
i ≤ dk

i+1 with dk
hk
≤ s for

all i = 1, . . . , hk − 1 and k = 1, . . . , lR.

4 Complex and Real Valued System Representations

The discussion in the previous section and in particular also the formulation of Theorem 1

has been based on complex matrices to simplify the algebra. However, the above results

directly lead also to real valued system representations. The key observation in this respect

is restriction 5, the fact that for real valued (yt; t ∈ N) complex unit roots occur in pairs

of complex conjugate roots. For these pairs the corresponding sub-blocks of A, B and C

are also complex conjugate. Thus, for example transforming the subsystems (Jk, Bk, Ck),

(J̄k, B̄k, C̄k) corresponding to the pair of complex conjugate roots zk, z̄k according to

Jk,R =

[
Idk Idk

iIdk −iIdk

] [
Jk 0
0 J̄k

] [
Idk Idk

iIdk −iIdk

]−1

=

[ R(Jk) I(Jk)
−I(Jk) R(Jk)

]
,

Bk,R =

[
Idk Idk

iIdk −iIdk

] [
Bk

B̄k

]
=

[
2R(Bk)
−2I(Bk)

]
,

Ck,R =
[

Ck C̄k

] [
Idk Idk

iIdk −iIdk

]−1

=
[ R(Ck) I(Ck)

]
,

leads to a real valued system representation. Here R denotes the real part of a complex

number and I the imaginary part.

The focus on only real valued cointegration introduces an asymmetry with respect to the

dimensions and structure of the cointegrating spaces corresponding to real and correspond-

ing to complex unit roots. This issue can be most easily exemplified by looking at a process

17



with unit root structure ((ω1, 1), . . . , (ωl, 1)), a process that we call multiple frequency I(1)

process.

Suppose that ω1 = 0, thus z = 1 is a unit root. For this unit root all cointegrating rela-

tionships are given by all vectors β ∈ Rs, β 6= 0 such that β′C1 = 0. This defines a real

space of dimension s− d1, since the matrix C1 is of full rank in a minimal representation

(Property 1 of Theorem 1). This shows the well known relationship between the number of

cointegrating relationships (s−d1), the number of stochastic trends (d1) and the dimension

of the process (s) for I(1) processes.

Let us next consider a complex unit root zk = eiωk with 0 < ωk < π. Note first at this

point if we consider also complex cointegration (cf. Remark 1), i.e. if we allow for β ∈ Cs,

then the orthogonality constraint β′Ck = 0, where Ck ∈ Cs×dk
say, leads to a s−dk dimen-

sional complex cointegrating space corresponding to unit root zk. Thus, the link, discussed

above for the unit root z = 1, between the number of common cycles and the dimension

of the cointegrating space prevails also for the case of complex unit roots when complex

cointegration is considered. Restricting attention to only real valued cointegrating vectors

breaks this link.

The orthogonality constraint β′Ck = 0 (solving for β ∈ Rs this requires orthogonality

to both the real and complex part of Ck separately) can be rewritten in real form as

β′[R(Ck), I(Ck)] = 0. Full column rank (in Cs) of Ck does not imply full column rank

(in Rs) of [R(Ck), I(Ck)]. The latter matrix can take on any rank from dk to min(2dk, s).

Thus, in a real valued discussion there is no link between the number of common cycles

and the dimension of the static cointegrating space corresponding to a complex unit root

of order 1.

As a remark note that the above orthogonality constraint β′[R(Ck), I(Ck)] = 0 is exactly

the same orthogonality constraint as the one that arises from the real valued system rep-

resentation, when the sub-blocks (Jk, Bk, Ck) and (J̄k, B̄k, C̄k) are transformed to a real

valued sub-system comprising both blocks, see (9). In the corresponding real valued sys-

tem representation, the block in the real C-matrix corresponding to the pair of complex

conjugate unit roots, Ck,R say again, is given by [R(Ck), I(Ck)].

In the case of real unit roots, minimum degree polynomial vectors are restricted to be

constant in the MFI(1) case. However in the complex unit root case, the elementary dif-
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ference filter ∆ω(z) is of polynomial degree two and therefore minimum degree polynomial

cointegrating vectors of polynomial degree one might exist. Therefore the focus on only

real valued cointegration gives rise to dynamic cointegrating relationships for MFI(1) pro-

cesses, see e.g. Johansen and Schaumburg (1999). These are cointegrating relationships of

polynomial degree 1, β(z) = β0 + β1z with β0, β1 ∈ Rs. Consider only the contribution of

Ckxt,k to the output yt to observe

(β′0 + β′1z)CkBkzt = β′0CkBkεt−1 + [β′0Ckzk + β′1Ck] Bk

t−2∑
j=1

zj−1
k εt−j−1.

with zt =
∑t−1

j=1 zj−1
k εt−j. Thus dynamic cointegration at the unit root zk occurs for

[
β′0 β′1

] [
Ckzk

Ck

]
= 0. (9)

The dynamic cointegrating relationships are found via orthogonality relationships over a

real space of dimension 2s by equating the real and the imaginary part of (9) separately.

Note that equivalently again the real valued system representation can be taken to recover

the dynamic cointegrating spaces from

[
β′0 β′1

] [
Ck,RJk,R

Ck,R

]
=

[
β′0 β′1

] [
cos ωkR(Ck)− sin ωkI(Ck) sin ωkI(Ck) + cos ωkR(Ck)

R(Ck) I(Ck)

]
= 0

(10)

The matrix in equation (10) can be shown to have full column rank. Thus, the dynamic

cointegrating spaces are seen to be of dimension 2(s − dk) for the complex unit roots in

MFI(1) processes. This reestablishes the analogy to the well known relation for the unit

roots ±1. Note that in this space the static cointegrating relationships are contained as a

subset with β1 = 0.

The above discussion makes clear that in the case of complex unit roots and when consid-

ering real cointegration it suffices to investigate the system blocks in the complex repre-

sentation corresponding to the unit roots with frequencies in the interval [0, π]. This, as

has been illustrated in the example and holds true in general, is equivalent to consider the

real valued blocks corresponding to pairs of complex conjugate unit roots.

19



5 An I(2) Example

Let us next illustrate with a small example the fact that the developed representation

reveals the polynomial cointegrating spaces clearly in systems with higher integration or-

ders. In the example we consider only the unit root z = 1 and neglect other nonstationary

components as well as stationary dynamics for simplicity. Let the state space unit root

structure for the example be given by Ω = {(0, (1, 2))}. Thus, combining the definition

of the state space unit root structure with Theorem 1 above, it follows that the output

is integrated of order 2 at this unit root. This also becomes clear immediately from the

corresponding state equation:

[
x1

t+1,1

x2
t+1,1

]
=




1 1 0
0 1 0
0 0 1




[
x1

t,1

x2
t,1

]
+

[
B1

1

B2
1

]
εt,

yt =
[

C1
1 C2

1

]
xt + εt

with x1
t,1 ∈ R, x2

t,1 ∈ R2, B1
1 ∈ R1×s, B2

1 ∈ R2×s, C1
1 ∈ Rs×1 and C2

1 =
[

C2,G
1 C2,E

1

] ∈
Rs×2 assuming again that yt, εt ∈ Rs. We assume that x1 is chosen such that ∆2yt is

stationary. From the theorem above we know that in a minimal representation there is no

cointegration among the components of x2
t,1, i.e. these two components are two linearly

independent I(1) variables. It is also clear, both from the theorem and the above equations,

that ∆x1
t+1,1 is equal to the first component of x1

t+1,2, denoted by x2,G
t,1 henceforth, plus

B1
1εt. It is this type of recursive integrating relationship between components of the state

corresponding to the same Jordan chain that drives polynomial cointegration, as will be

made clear below. The fact that the developed representation directly reveals these chains

is the reason for rendering the representation particularly suited for studying polynomial

cointegration.

It will be shown below that orthogonality relationships, given that the polynomial vector

β(z) is parameterized in powers of the filter (1 − z) for this example with the unit root

at z = 1 recover the polynomial cointegrating spaces. Hence for the I(2) case, let β(z) =

β̃0 + β̃1∆. From Definition 4 and the discussion in the previous section it is clear that for

the I(2) case the maximum required polynomial degree is equal to one. Thus, for β(z)′yt

20



we obtain

β(z)′yt = β̃′0C
1
1x

1
t,1 + β̃′0C

2,G
1 x2,G

t,1 + β̃′0C
2,E
1 x2,E

t,1 + β̃′1C
1
1∆x1

t,1

+β̃′1C
2,G
1 ∆x2,G

t,1 + β̃′1C
2,E
1 ∆x2,E

t,1 + β(z)′εt.

Note next that β̃′1C
2,G
1 ∆x2,G

t,1 and β̃′1C
2,E
1 ∆x2,E

t,1 are stationary and that ∆x1
t,1 is, as already

noted above, up to stationary terms equal to x2,G
t,1 . Thus, the nonstationary components of

the expression above are given by:

β̃′0C
1
1x

1
t,1 + (β̃′0C

2,G
1 + β̃′1C

1
1)x2,G

t,1 + β̃′0C
2,E
1 x2,E

t,1 .

Here β̃′0C
1
1x

1
t,1 has unit root structure ((0, 2)), if β̃′0C

1
1 6= 0. Otherwise, when β̃′0C

1
1 = 0,

β(z)′yt is integrated of order 1 at the unit root z = 1 or is not integrated. Since x2,G
t,1 and

x2,E
t,1 are not cointegrated (Property 3 of Theorem 1), β(z)′yt is stationary if and only if

additionally to β̃′0C
1
1 = 0 also β̃′0C

2,G
1 + β̃′1C

1
1 = 0 and β̃′0C

2,E
1 = 0 hold. This implies that all

cointegrating relationships can be uncovered from the following orthogonality conditions:

[
β̃′0 β̃′1

] [
C1

1 C2,G
1 C2,E

1

0 C1
1 0

]
= 0. (11)

Setting β̃1 = 0, this condition reveals the necessary orthogonality restrictions for the exis-

tence of static cointegration: If orthogonality holds only for the first block-column (sepa-

rated by the vertical line), the order of integration is reduced from 2 to 1, if orthogonality

holds with respect to all three block-columns of the first block-row, the transformed process

β̃′0yt is stationary. Furthermore looking at the first block-column it is e.g. obvious that

every polynomial of the form 0 + β̃1(1− z) reduces the integration order by (at least) one.

These trivial relationships are, however, not interesting and the representation in terms of

block-orthogonality constraints in connection with the reparameterization in terms of pow-

ers of ∆ directly allows to distinguish the relevant from the trivial relationships. Rewriting

polynomial cointegration in terms of the observations yt, it is a linear combination of yt

and ∆yt (or equivalently between yt and yt−1) that is, in this I(2) example, stationary. In

the appendix the representation discussed here for a small example is analyzed for any

given unit root and arbitrary integration order.
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6 Polynomial Cointegrating Relationships

The representation presented in Section 3 leads directly to necessary conditions for poly-

nomial cointegrating relationships when investigating all unit roots jointly. It follows from

the state space equations (4) that for each t > h the output can be written as (setting

dt = 0 for notational simplicity)

yt = Cxt + εt = C(Axt−1 + Bεt−1) + εt = · · · = CAhxt−h +
h−1∑
j=0

CAjBεt−j−1 + εt.

Let Y −
t,q = [y′t, y

′
t−1, . . . , y

′
t−q]

′ for t > q denote the vector of stacked outputs. Consider the

equation given above stacked for all outputs contained in Y −
t,q, where h is adopted to give

the same state xt−q in all equations.

Y −
t,q =




CuA
q
u

CuA
q−1
u

...
Cu




︸ ︷︷ ︸
Õq,u

xt−q,u+




CstA
q
st

CstA
q−1
st

...
Cst




︸ ︷︷ ︸
Õq,st

xt−q,st+




I CB . . . CAq−2B CAq−1B
0 I CB . . . CAq−2B
...

. . . . . . . . .
...

...
. . . . . . CB

0 . . . . . . 0 I




︸ ︷︷ ︸
Eq




εt

εt−1
...

εt−q




(12)

where the subscript u refers to quantities corresponding to the unit roots and the subscript

st refers to quantities corresponding to the stationary part of the system. This can be used

in

β(z)′yt =

q∑
j=0

β′jyt−j =
[

β′0 β′1 . . . β′q
]

︸ ︷︷ ︸
~β′

Y −
t,q = ~β′

(
Õq,uxt−q,u + Õq,stxt−q,st + EqE

−
t,q

)

where Eq denotes the matrix in (12) pre-multiplying the contribution of the noise, E−
t,q =

[ε′t, ε
′
t−1, . . . , ε

′
t−q]

′ and ~β = [β′0, β
′
1, . . . , β

′
q]
′. Clearly the latter two terms are stationary for

suitable initial value x1,st such that xt,st is stationary and ~β′EqE
−
t,q, t > q is an MA process.

Hence the unit root structure of the process (β(z)′yt; t ∈ N) is solely determined by the

respective properties of ~β′Õq,uxt−q,u. The key to understand the cointegration properties of

this process is the discussed decomposition of the state xt: It has been stated in Theorem 1

that the state can be partitioned into blocks xi
t,k that are complex integrated of orders

hk− i+1 only at one unit root zk. Furthermore each vector process xi
t,k is not cointegrated
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(Property 3 of Theorem 1). Thus, it follows that the polynomial cointegrating vectors of

the different orders can be found via orthogonality to certain sub-blocks of the matrix Õq,u.

Partition therefore Õq,u = [Õi
q,k]k=1,...,l,i=1,...,hk

with Õi
q,k ∈ C(q+1)s×dk

i , i.e the partitioning is

performed according to the decomposition of the nonstationary components of xt into xi
t,k

and a potential third subscript u is omitted.

Our focus on real cointegration implies that it is sufficient to consider only the blocks

corresponding to zk = eiωk such that 0 ≤ ωk ≤ π, compare also the discussion in section 4.

This follows from the fact that for real valued polynomial cointegrating vectors ~β′Õi
q,k = 0

is equivalent to ~β′Õi
q,k′ = 0 for k′ such that zk = z̄k′ . It is equivalently possible to base

the analysis on the real valued matrices ÕiR,q,k ∈ R(q+1)s×2dk
i , zk 6= ±1. We formulate the

theorems using the complex representation and consider the real valued representation in

Section 8 in an example.

The next result shows that the matrices Õi
q,k play a fundamental role in the determination

of polynomial cointegrating relationships. We also show that it is sufficient to consider

only the polynomial degree q = n − 1, since we are only concerned with the unit root

structure of the transformed process β(z)′yt and disregard for the moment the issues of

non-triviality and minimum degree of the polynomial β(z).

Theorem 2 Let (yt; t ∈ N) be as in Theorem 1. Then (β(z)′yt; t ∈ N) is of unit root

structure ((ω1, h
p
1), . . . , (ωlR, h

p
lR)), if and only if β(z) =

∑q
j=0 βjz

j, βj ∈ Rs is such that

~β′Õi
q,k = 0 for i = 0, . . . , hk − hp

k, k = 1, . . . , lR and ~β′Õhk−hp
k+1

q,k 6= 0 for k = 1, . . . , lR such

that hp
k > 0. Here Õ0

q,k = 0.

There exists a vector β(z) =
∑q

j=0 βjz
j such that (β(z)′yt; t ∈ N) is of the given unit

root structure, if and only if there exists a vector βn−1(z) =
∑n−1

j=0 βj,n−1z
j such that

(βn−1(z)′yt; t ∈ N) is of the given unit root structure.

If ~β′Õq,u = 0, then there exists a linearly deterministic term dt such that (β(z)′(yt−dt); t ∈
N) is stationary.

PROOF: The representation

β(z)′yt = ~β′Õq,uxt−q,u + νt =
l∑

k=1

hk∑
i=1

~β′Õi
q,kx

i
t−q,k + νt

and the properties of the state components xi
t,k as discussed above, directly imply that if

~β ∈ Rs(q+1) is as described in the theorem, then the process (β(z)′yt; t ∈ N) has the unit root
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structure given in the theorem. The term νt collects all stationary and linearly deterministic

contributions. Conversely suppose that there exists a vector polynomial β(z) =
∑q

j=0 βjz
j

such that (β(z)′yt; t ∈ N) has the given unit root structure. Then the representation given

above implies that the corresponding vector ~β has to fulfil the orthogonality restrictions

stated in the theorem.

In order to prove the second claim, the sufficiency of considering q = n − 1, three cases

concerning q have to be considered: The case q = n − 1 is trivial. In case that q < n − 1

setting βj,n−1 = 0, q < j < n proves the result. If q > n− 1 the result follows from the fact

that each matrix satisfies its characteristic equation, and hence Aq, q ≥ n can be written as

a linear combination of In, A, . . . , An−1. Consider e.g. An = α0In +α1A
1 + · · ·+αn−1A

n−1.

Then
∑n

j=0 β′jCAj =

n−1∑
j=0

β′jCAj+β′nCAn =
n−1∑
j=0

β′jCAj+β′nC(α0In+α1A
1+· · ·+αn−1A

n−1) =
n−1∑
j=0

(βj+αjβn)′CAj

Completely analogously Aq for q > n can be dealt with. This proves the second statement

of the theorem.

The third statement follows from equation (12): For t > q this equation shows that for

~β′Õq,u = 0 it follows that β(z)′yt = ~β′Õq,stxt−q,st + ~β′EqE
−
t,q for t > q. xt−q,st is (possibly

up to a linearly deterministic process contained in CstA
t−q−1
st x1,st) stationary. Thus, the

process (β(z)′yt; t ∈ N) is for t > q up to a linearly deterministic process stationary. As

mentioned in Remark 2, a process composed of the observations of β(z)′yt for t ≤ q and 0

afterwards is linearly deterministic. This proves the theorem. ¤
The theorem shows that the integration properties of (β(z)′yt; t ∈ N) can be easily deter-

mined using some simple orthogonality properties. These properties directly emerge from

the canonical state space representation developed in Bauer and Wagner (2003) and are

shown here to be suitable for polynomial cointegration analysis as well. According to our

opinion the partitioning of the state into the blocks xi
t,k is very useful in understanding the

cointegration and in particular also the polynomial cointegration properties of (yt; t ∈ N),

especially for processes with a complicated unit root structure. Neither in a Wold type

representation nor in an ARMA representation are the underlying cointegrating relation-

ships so clearly seen and interpretable.

The above Theorem 2 gives a classification of the integration properties of the transformed
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output process (β(z)′yt; t ∈ N). The orthogonality condition is only necessary for poly-

nomial cointegration, but not sufficient. This is clear since e.g. the null vector always

satisfies every orthogonality constraint. Sufficient conditions for polynomial cointegration,

which requires to find non-trivial polynomial cointegrating relationships, are the topic of

the following section.

7 Existence of Polynomial Cointegrating Relationships

The previous section provided conditions for polynomial vectors to reduce the order of

integration. In order to qualify for a polynomial cointegrating relationship, the polynomial

additionally has to be non-trivial. Remember that this is characterized (cf. Definition 3)

by the fact that the polynomial has to be non-zero for at least one unit root where the

integration order is reduced and by β(0) 6= 0. It is clear that this condition is not related

to the orthogonality property of Theorem 2. Focus again at one unit root, zk = eiωk say,

and consider

β(zk) =
n−1∑
j=0

βjz
j
k =

[
Is zkIs . . . zn−1

k Is

]
~β = Qn−1(zk)~β

where the last equality defines the operator Qn−1(zk). Hence the restriction β(zk) 6= 0 is

equivalent to Qn−1(zk)~β 6= 0. Note that for complex unit roots, the matrix Qn−1(zk) is

complex valued. This inequality condition can be combined with Theorem 2 to obtain a

characterization of the existence of non-trivial polynomial cointegrating relationships.

Theorem 3 Let (yt; t ∈ N) be as in Theorem 1. Furthermore let P = ((ω1, h1, h
p
1), . . . , (ωlR, hlR, h

p
lR))

and O(P ) denote the matrix, whose block-columns consist of {Õi
n−1,k, i = 1, . . . , hk−hp

k, k =

1, . . . , lR}. Then (yt; t ∈ N) is polynomially cointegrated of order ((ω1, h1, h
p
1), . . . , (ωlR, hlR, h

p
lR)),

if and only if there exists a vector b ∈ Rns such that (using Õhk+1
n−1,k = Ins)

O(P )′b = 0,

(Õhk−hp
k+1

n−1,k )′b 6= 0, k = 1, . . . , lR,
Qn−1(zk)b 6= 0, for some k ∈ {1, . . . , lR} such that hk − hp

k > 0.

(13)

Let ΠO denote the orthogonal projection onto the space spanned by the columns of O(P )

and let ΠO⊥ = Ins − ΠO. Then fulfillment of (13) is equivalent to the existence of one
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k ∈ {1, . . . , lR} such that hk − hp
k > 0 and

‖Qn−1(zk)ΠO⊥‖Fr

lR∏
j=1

‖ΠO⊥Õ
hj−hp

j +1

n−1,j ‖Fr 6= 0 (14)

where ‖.‖Fr denotes the Frobenius norm.

PROOF: The first statement follows immediately from Theorem 2, implying the existence

of a vector polynomial that reduces the integration order, and the definition of Qn−1(zk)

ascertaining the non-triviality of this vector polynomial.

In order to show equivalence of the two statements the argument proceeds indirectly:

Assume that there exists no vector b ∈ Rns for which both O(P )′b = 0 and the two

inequality constraints in (13) hold: Then either the space spanned by the columns of

Õhj−hp
j +1

n−1,j for some j or the space spanned by the columns of Qn−1(zk)
′ (or both) is a

subspace of O(P ) and hence the expression (14) of the theorem is equal to zero.

On the other hand, if there exists a vector b fulfilling (13) it follows that b = ΠO⊥b

and hence b′Õhk−hp
k+1

n−1,k = b′ΠO⊥Õhk−hp
k+1

n−1,k is nonzero. Therefore ΠO⊥Õhk−hp
k+1

n−1,k is nonzero

and consequently also its Frobenius norm is nonzero. From an analogous argument also

ΠO⊥Qn−1(zk)
′ 6= 0 follows, which proves the conjecture. ¤

Remark 4 Theorems 2 and 3 can completely analogously be used for considering complex

polynomial cointegration. The only differences are that b ∈ Cns has to be considered and

that the index set for k is given by k = 1, . . . , l. This allows to disentangle the complex

cointegrating spaces to each of the members of pairs of complex conjugate unit roots.

The preceding theorem gives an expression for the existence of non-trivial polynomial

cointegrating relations of polynomial degree n− 1. It is straightforward to verify, that the

theorem also gives a characterization of the existence of non-trivial polynomial cointegrat-

ing relations of polynomial degree q for arbitrary q ∈ N by simply replacing q for n− 1 in

the expressions.

The concept of minimum degreeness is not contained in the analysis up to now. Re-

call the definition of non-minimum degree polynomial cointegration: A vector polyno-

mial β(z) of degree q, say, is non-minimum degree, if β(z) =
∑m

j=1 pj(z)βj(z), where

pj(z)βj(z) reduce the unit root structure at least as much as β(z) and certain restrictions
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on the polynomial degree of βj(z) and pj(z)βj(z) hold (compare Definition 4). Reformu-

late this condition in terms of the vectors ~β: Let vec[γ(z)] = [γ′0, γ
′
1, . . . , γ

′
q]
′ ∈ R(q+1)s

denote the vector of stacked polynomial coefficients of γ(z) =
∑q

j=0 γjz
j for each vector

polynomial γ(z) of maximal degree q. Then non-minimum degreeness is equivalent to

vec[β(z)] ∈ span{vec[βj(z)zl], j = 1, . . . ,m, l = 0, . . . , q − 1 − deg(βj(z))}, where deg de-

notes the polynomial degree of a vector polynomial. If β(z) is minimum-degree, β(z) is

not contained in this set. It follows that the orthogonal projection of vec[β(z)] onto the

orthogonal complement of the above mentioned space, say β̃(z), is of degree q. Hence the

existence of a minimum degree cointegrating polynomial of any given polynomial degree

is equivalent to the existence of a minimum degree cointegrating polynomial of the same

degree, which moreover is orthogonal to all polynomial cointegrating vectors vec[zlβj(z)]

reducing the unit root structure at least as much as β(z) does. This latter orthogonality

constraint adds new columns to O(P ). Using a recursive procedure in the polynomial

degree of β(z) the existence of minimum degree non-trivial polynomial cointegrating re-

lations of any given polynomial degree can be characterized using expression (14), where

the definition of ΠO⊥ now includes also lower order polynomial cointegrating relations. We

will not go into more detail in this respect.

8 An Illustrative Example

To illustrate the results of the preceding sections we now analyze a small example. We

consider a 3-dimensional process with unit roots at 1 and ±i with complex state space unit

root structure {(0, (1, 2)), (π
2
, (1, 1)), (3π

2
, (1, 1))}. The integration orders corresponding to

each of the unit roots are equal to 2. For simplicity stationary dynamics are neglected in

the discussion:

yt = C0xt,0 + Cπ/2xt,π/2 + C3π/2xt,3π/2 + εt

where notation is chosen here to use the unit root frequency as subscript. Due to realval-

uedness of yt only one of the blocks corresponding to the pair of complex unit roots ±i has

to be investigated. We will equivalently investigate the real block Cπ/2,R corresponding to
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the pair of unit roots ±i below. The blocks of the state equation are given by:

xt+1,0 =




1 1 0
0 1 0
0 0 1


 xt,0 +




B1
0

B2,G
0

B2,E
0


 εt

and

xt+1,π/2 =

[
i 1
0 i

]
xt,π/2 +

[
B1

π/2

B2,G
π/2

]
εt

respectively. Let the matrix C0 be given in canonical form as described in Theorem 1 by:

C0 =
[

C1
0 C2,G

0 C2,E
0

]
=




1 0 0

0 1/2 1/
√

2

0 −1/2 1/
√

2


 .

It is easily verified by straightforward computations that this matrix indeed fulfills all

restrictions formulated in Theorem 1. Furthermore note that this matrix is nonsingular.

Let the block corresponding to the unit root z = i be given (in complex canonical form)

by:

Cπ/2 =
[

C1
π/2 C2,G

π/2

]
=




0 i
1 0
0 1




Since the matrix Õq contains only the matrices A and C, there is no need to specify a B-

matrix for this example. The real valued canonical representation for the system matrices

A and C is given by (numbers rounded):

AR =




1 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 1 0
0 0 0 0 0 0 1
0 0 0 −1 0 0 1
0 0 0 0 −1 0 0




, CR =




1 0 0 0 0 0 1
0 0.5 0.707 1 0 0 0
0 −0.5 0.707 0 1 0 0




Following the discussion of Theorem 2 the matrix investigated is ÕR,6. As discussed we

know that most of the polynomial cointegrating relationships recovered via orthogonality to

this matrix are not be of minimum degree and are potentially also trivial. Especially when

the analysis is focused on one unit root only it is sufficient to consider smaller matrices such

as ÕR,3. Investigating the full matrix once is however an interesting exercise that clarifies
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the content of Theorem 2 and 3. In ÕR,6 below, the partitioning already indicates the

sub-blocks ÕiR,6,k:

ÕR,6 =




1 6 0 0 0 0 −1
0 0.5 0.7071 −1 0 0 6
0 −0.5 0.7071 0 −1 0 0
1 5 0 0 −1 0 0
0 0.5 0.7071 0 5 1 0
0 −0.5 0.7071 0 0 0 1
1 4 0 0 0 0 1
0 0.5 0.7071 1 0 0 −4
0 −0.5 0.7071 0 1 0 0
1 3 0 0 1 0 0
0 0.5 0.7071 0 −3 −1 0
0 −0.5 0.7071 0 0 0 −1
1 2 0 0 0 0 −1
0 0.5 0.7071 −1 0 0 2
0 −0.5 0.7071 0 −1 0 0
1 1 0 0 −1 0 0
0 0.5 0.7071 0 1 1 0
0 −0.5 0.7071 0 0 0 1
1 0 0 0 0 0 1
0 0.5 0.7071 1 0 0 0
0 −0.5 0.7071 0 1 0 0




One note of caution is in order here: Since we use the real valued canonical form, the

columns corresponding to double integration at ±i are contained in the fourth and sixth

column of this matrix and not, as one might think, in columns four and five. This follows,

since in the complex representation columns four and six correspond to the double inte-

gration, and the real valued representation simply separates real and imaginary parts, but

does not change with the ordering of the columns. Alternatively a real-valued representa-

tion taking the ordering analogously to the case of unit roots at ±1 could be developed.

Let us start by investigating the polynomials of degree 0, i.e. the static cointegrating rela-

tionships. Thus only the first three rows of ÕR,6 have to be considered. This block-row is

given by CA6 and non-singularity of A shows that orthogonality to certain columns of C

is necessary and sufficient to derive the static cointegrating relationships. We start with

considering the unit root z = 1. Any vector β0 = [0, b2, b3]
′ implies that β′0yt is integrated

of order one at z = 1, if it is at all integrated. Since the matrix C0 has full column-rank
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there exists no vector β0 6= 0 that reduces the integration order to zero at the unit root

z = 1. Corresponding to the pair of unit roots z = ±i, one obtains that every vector of the

form β0 = [b1, 0, b3]
′ reduces the integration order at z = ±i from two to one, but no linear

combination of the components of yt exists, such that the pair of unit roots is eliminated.1

Let us next investigate polynomial cointegrating relationships, noting once again that the

orthogonality to certain blocks of ÕiR,6,k includes both trivial and in particular also non-

minimum degree relationships. Let us start with the unit root z = 1 again. For this unit

root we find via orthogonality to the first column of ÕR,6 all polynomial relationships that

reduce the integration order from 2 to 1 (or to 0, if in addition orthogonality to the second

block-column prevails). Note that of course no relevant nonconstant polynomial cointe-

grating relationships that reduce the integration order from 2 to exactly 1 at the unit root

z = 1 can exist, when one is considering this unit root only. However, as we will see below,

some of the relationships found might be non-trivially cointegrating at the other unit roots,

which in turn may lead them to be classified as non-trivial, compare Definitions 2 and 3.

The ortho-complement of the first column of ÕR,6,k is a space of dimension 20, being the

orthogonal complement of a vector in R21. 14 basis vectors of this space are of the form

βi = [0, b2, b3]
′, i = 0, . . . , 6 for arbitrary b2, b3 ∈ R. Twelve of them are of non-minimum

degree, being lagged versions of the static cointegrating relationships. The remaining 6

basis vectors are given by βi = [b1, 0, 0]′, βi+1 = [−b1, 0, 0]′, i = 0, . . . , 5. These are lagged

versions of the first difference operator applied to the first component of yt, which is the

only component of yt that is integrated of order 2 at z = 1. These 6 relationships all

fulfill β(1) = 0 and five of them are non-minimum degree. Nevertheless the polynomial

[∆,−1, 1]′ is non-trivial, since it also induces a reduction of the integration orders at ±i

from 2 to 1 whilst fulfilling β(i) 6= 0. Thus, this example shows that in order to find all

polynomial cointegrating relationships it is not sufficient to find all non-trivial polynomial

cointegrating relationships for each of the unit roots in turn, but that all unit roots have

to be considered jointly.

Let us next add the second block-column to investigate the polynomial cointegrating rela-

tionships that wipe out the nonstationarity at frequency 0. This requires finding a basis

1If one allows for complex cointegrating relationships, there exist relationships that reduce the complex
integration order at one of the complex roots to zero. For example β0 = [i, 0, 1]′ results in a complex
process β′0yt which is not complex integrated at the unit root i.
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for an 18-dimensional space, which is of course a subspace of the 20-dimensional space

considered above. Unfortunately, all basis vectors given above do not fulfill the additional

orthogonality constraints, hence we have to find a completely new set of basis vectors. 6

of them are of the form βi = [b1,−b1, b1]
′, βi+1 = [−b1, 0, 0]′, i = 0, . . . , 5. These vectors,

with different orders of lagging, linearly combine the first difference of the first component

of the output with the second and third component of yt. The mechanism is similar to the

mechanism in the example discussed in Section 2. In these relationships the linear combi-

nation of the second and third component of yt is chosen so as to eliminate the third state

component, which is not cointegrated with the second (and the first) state component.

This relationship is the only essential polynomial cointegrating (linear in z) relationship

for the unit root z = 1 that reduces the integration order from 2 to 0. The remaining 12

basis vectors are additional reformulations of the same fact, using different lags of the com-

ponents of yt and therefore of the components of xt,0. 5 non-minimum degree relationships

are given by βi = [b1,−2b1, 2b1]
′, βi+2 = [−b1, 0, 0]′, i = 0, . . . , 4. Thus, still 7 relationships

are missing: 6 of these are found from βi = [b1,−b1, 0]′, βi+1 = [−b1, 0, b1]
′, i = 0, . . . , 5

which means that only one polynomial remains to be found. It is given by e.g. ~β′ =

[3, 5, 4, 2, 5, 4, 1, 5, 4, 0, 5, 4,−1, 5, 4,−2, 5, 4,−3,−58, 4]. Taking the remainder of this vec-

tor polynomial divided by (1−z)2 one obtains [28−28z, 245−273z,−56+84z]′. This latter

vector is equal to 28[1 − z,−1, 1]′ + (1 − z)[0, 273,−84]′. Hence also this vector does not

add any essential new cointegrating relation. Summing up, this implies that all minimum

degree non-trivial polynomial cointegrating relationships that reduce the integration order

at z = 1 from 2 to 0 and do not change the integration order at z = i are constant scalar

multiples of [1− z,−1, 1]′.

We do not repeat the same construction for the complex conjugate unit roots, but instead

will use Theorem 3 and expression (14) to verify that for the example at hand there exist

to all possible cointegration orders non-trivial polynomial cointegrating vectors. This is

confirmed in Table 1, which presents the values of (14) for all configurations of cointegra-

tion structures. All values are nonzero. To give an example about the content of the left

panel of the table, consider the cointegration order ((0, 2, 2), (π/2, 2, 1)): Since static, and

therefore non-trivial, cointegrating relationships that reduce the integration order at ±i

from 2 to 1 and that do not reduce the integration order at z = 1, e.g. [b1, 0, b3]
′, b1 6= 0
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Non-minimum degree minimum pol. degree 2
Int. order z = 1 2 1 0 2 1 0
z = ±i

2 z = 1 x 61.42 27.84 x 0 0
z = i x 74.97 50.15 x 0 0

1 z = 1 77.95 147.92 60.29 0 2.45 2.87
z = i 64.16 148.95 91.96 0 0 2.87

0 z = 1 48.52 88.51 33.77 0 3.69 1.21
z = i 36.67 82.42 46.06 0 2.61 2.76

Table 1: Expression (14) for all different cointegration orders: Columns correspond to unit
root z = 1 and rows to z = ±i. First row: expression for z = 1, second row: expression
for z = i. Left panel corresponds to the existence of non-trivial polynomial cointegrating
vectors of order 6 (not necessarily minimum degree). The right panel corresponds to the
existence of minimum degree polynomials of degree two, to give just one example.

exist, the existence of polynomial cointegration of order ((0, 2, 2), (π/2, 2, 1)) is trivially

verified. The value of (14) is equal to approximately 64.16 at z = i. The right hand side of

the table considers minimum degree polynomials of polynomial degree two as an example.

E.g. the right panel shows, that there are no minimum degree polynomial cointegrating

vectors of polynomial degree two, which leave the integration order at z = 1 unchanged

and reduce the integration at ±i. This since all polynomials of degree two that achieve

this are non-minimum degree or trivial. However, there are non-trivial minimum degree

polynomials for all cases, where the order of integration at both roots is reduced.

As a final remark we note that the set of all polynomial cointegrating relationships that

eliminate all nonstationarities, in the sense that the resulting β(z)′yt is – up to a linearily

deterministic process – stationary, is given by the orthogonal complement of the space

spanned by the columns of ÕR,6, i.e. it can be described as a 14-dimensional space. In this

space again trivial and non-minimum degree polynomials are contained. The existence of

non-trivial cointegrating relationships that transform yt to stationarity can as above be

verified by computing the value of condition (14), resulting in 33.77 at z = 1 e.g (cf. Ta-

ble 1). Moreover, also minimum degree non-trivial polynomials of degree two exist, which

reduce the process to stationarity (cf. the value 1.21 at z = 1 in the corresponding entry

in the right panel of Table 1).
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9 Summary and Conclusions

In this paper we have demonstrated that the state space framework is very convenient for

representing higher order integrated systems and for discussing cointegration and polyno-

mial cointegration. The analysis is based on the canonical state space representation for

processes with a rational transfer function developed in Bauer and Wagner (2003). Com-

pared to available representation results for polynomial cointegration in the equivalent

ARMA framework, the discussed state space representation offers a couple of advantages.

Firstly, all polynomial cointegrating relationships can be found from simple orthogonality

constraints. Secondly, the developed system representation is very instructive with respect

to the integration and cointegration dynamics in the system. The state (cf. Theorem 1)

is partitioned into blocks of components that are only integrated at one unit root, respec-

tively, in a real representation, at one pair of complex conjugate unit roots. Within these

blocks further structure concerning the integration properties between the state compo-

nents integrated of different orders is directly visible within the coordinates corresponding

to Jordan chains. This latter property has been shown to be at the heart of polynomial

cointegration. Thus, this fact that the state space representation makes these relationships

along the chains clearly visible is the main reason for the representation’s elegance and

simplicity in displaying polynomial cointegration. The set of orthogonality constraints can

not only be used to easily find all polynomial cointegrating relationships of a certain order,

but also to find all polynomial cointegrating relationships of a certain maximum polyno-

mial degree, e.g. all linear cointegrating relationships. We have also discussed how to find

all minimum degree non-trivial polynomial cointegrating relationships, which are the only

ones considered to be relevant for the reasons discussed. Simple additional orthogonality

constraints lead to the required classification.

The representation furthermore directly implies that the output is decomposed in a Granger

type representation, i.e. decomposed as the sum of stochastic trends respectively cycles in-

tegrated of different orders plus the stationary components. Note that as a further property

of the representation the (polynomial) cointegrating spaces only depend upon the defined

state space unit root structure and the matrix C. This type of result compares, we think,

favorably with the relatively complicated representation result derived in Gregoir (1999)
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based on an ARMA representation of the underlying stochastic process.

The disaggregated interpretation of the state and system matrices becomes even more

intuitive, when one focuses on only one of the system blocks corresponding to only one

unit root at a time, see the discussion in the appendix: Reparameterizing the polynomial

cointegrating relationship in powers of the differencing filter corresponding to the unit

root under study and a finer disaggregation of the state components and system matrices,

highlights the interplay between differencing and orthogonality constraints that leads to

polynomial cointegration. Since in our canonical representation the blocks corresponding

to the different unit roots are separated, inspecting only one block at a time may be seen

as a simple and intuitive alternative to investigating all blocks jointly, as is done in the

theorems in the main text. When doing so, the issue of triviality in the sense of Definition 3

has to be investigated separately. It has to be verified that the polynomial cointegrating

relationship is non-zero for at least one unit root zk at which it leads to a reduction of the

integration order. This has also been illustrated in the example in section 8.

Note finally that the representation results of this paper form an important basis for sub-

sequent statistical analysis of polynomially cointegrated processes.
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Appendix: One Unit Root in Detail

In this appendix we discuss polynomial cointegration in detail when focusing only on one unit
root, zk say. Hence, we investigate only one block

∑hk
i=1 Ci

kx
i
t,k. This allows to gain insights by

reparameterizing the polynomial β(z) =
∑q

j=0 βjz
j as

∑q
j=0 β̃j(1− z̄kz)j , where the latter repre-

sentation of β(z) is referred to as β̃(z) below. In this appendix, mainly for notational simplicity,
we focus on complex cointegration, therefore the coefficients βj ∈ Cs are assumed to be complex
rather than real. The arguments for real valued cointegrating relationships are analogous. We
follow here at a general level the strategy outlined in the example in section 5.
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A key observation made in the main text is the fact that in the developed canonical representa-
tion the components of the state (for the given unit root block) are linked in chains of increasing
(complex) integration orders and via simple polynomial cointegrating relationships. The latter
occur corresponding to the components of xt,k that are linked in a Jordan chain. Note that in the
canonical representation the state components are ordered according to the complex integration
order and not along Jordan chains, this has to be taken into account in the discussion and the
notation.
The fact that the state components belonging to the same Jordan chain are linked via increasing
integration orders is the key to understand polynomial cointegration. Thus, the integration prop-
erties of the state have to be discussed in full detail first. This requires a finer structural investiga-
tion of the blocks and their components. To this end partition xi

t,k = [(xi,i
t,k)

′, (xi,i−1
t,k )′, . . . , (xi,1

t,k)
′]′

where xi,m
t,k ∈ Cdk

m−dk
m−1 for m = 1, . . . , i and i = 1, . . . , hk. Accordingly introduce also Ci,m

k ∈
Cs×(dk

m−dk
m−1), Bi,m

k ∈ C(dk
m−dk

m−1)×s and for notational reasons dk
hk+1 = 0 and xhk+1,m

t,k = 0.

Then, it follows from equation (6) that xi,m
t+1,k − zkx

i,m
t,k = xi+1,m

t,k + Bi,m
k εt for m = 1, . . . , i and

i = 1, . . . , hk. To summarize notation: The first superscript i refers to the integration order of
xi,m

t,k , given by hk − i + 1, and the second superscript denotes the position of the state component
in a Jordan chain, e.g. m = 1 indicates that this component corresponds to an eigenvector. Note
that this is a refinement of the disaggregation undertaken in Theorem 1, where the state compo-
nents are only disaggregated in components corresponding to eigenvectors (referred to with E)
and to generalized eigenvectors (referred to as G). Thus, all components with second superscript
m > 1 are contained in the G-components of the more crude disaggregation required for the
results in Theorem 1.
With this disaggregated representation of the block, the effect of pre-multiplying yt with a vec-
tor polynomial β(z) on the integration order of the product β(z)′yt at the unit root zk can be
analyzed in detail. Note that the maximum polynomial degree required for complex unit roots,
since we are using a complex valued representation, is given by hk − 1. Hence, it suffices to set
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q = hk − 1:2

hk−1∑

r=0

β̃′r(1− zkz)r
hk∑

i=1

Ci
kx

i
t,k =

hk∑

i=1

hk−1∑

r=0

i∑

m=1

β̃′rC
i,m
k (1− zkz)rxi,m

t,k

=
hk∑

i=1

hk−i∑

r=0

i∑

m=1

β̃′rC
i,m
k xi+r,m

t,k + νt

=
hk∑

i=1

hk∑

l=i

i∑

m=1

β̃′l−iC
i,m
k xl,m

t,k + νt

=
hk∑

l=1

l∑

i=1

β̃′l−i

(
i∑

m=1

Ci,m
k xl,m

t,k

)
+ νt

=
hk∑

l=1

(
l∑

m=1

(
l∑

i=m

β̃′l−iC
i,m
k

)
xl,m

t,k

)

︸ ︷︷ ︸
Integration order ≤ hk − l + 1

+νt (15)

=
hk∑

l=1

I(β̃(z)′yt, zk, l) + νt

where l = i + r and νt collects all asymptotically stationary parts. Representation (15) al-
lows to directly infer the polynomial cointegrating relationships, as it collects the terms corre-
sponding to the different integration orders. According to Property 3 of Theorem 1, the term∑l

m=1

(∑l
i=m β̃′l−iC

i,m
k

)
xl,m

t,k has integration structure ((ωk, hk−l+1)), unless
∑l

i=m β̃′l−iC
i,m
k = 0

for m = 1, . . . , l. From (15) now directly the polynomial cointegrating relationships can be read
off. The complex integration order of yt at the unit root zk is reduced from hk to hk−l0 say, if and
only if due to pre-multiplication with β(z) the terms I(β̃(z)′yt, zk, 1), . . . , I(β̃(z)′yt, zk, l0) are all
equal to 0, but I(β̃(z)′yt, zk, l0+1) 6= 0. Investigating the individual terms, i.e. the corresponding
sums of products that are required to equal zero, shows that these conditions can be conveniently
rewritten as orthogonality constraints using the matrix:

Mk =




C1,1
k C2,1

k C2,2
k C3,1

k C3,2
k C3,3

k . . . Chk,1
k Chk,2

k . . . Chk,hk
k

0 C1,1
k 0 C2,1

k C2,2
k 0 Chk−1,1

k Chk−1,2
k 0

... 0 0 C1,1
k 0

...
...

...
...

0
...

... 0
... 0 C1,1

k 0 . . . 0




,

=
[

M1
k M2

k . . . Mhk
k

]
.

The above matrix is the general case equivalent of the matrix in (11) in Section 5. As in that
example orthogonality to certain blocks determines polynomial cointegration. Mk is composed

2In real valued representations and for real valued cointegrating polynomials the maximum required
polynomial degree is equal to 2hk− 1 when focusing on only one particular pair of complex conjugate unit
roots.

37



of hk block-rows (corresponding to the polynomial degrees from 0 to hk − 1, higher polynomial
degrees just lead to null block-rows at the bottom of the matrix). Orthogonality to the block-
columns, denoted by M1

k , . . . ,Mhk
k , determines the polynomial cointegration orders, using the

vector notation β̃ = [β̃′0, β̃
′
1, . . . , β̃

′
hk−1]

′ for β̃(z). If e.g. β̃ is only orthogonal to M1
k , but not to

M2
k , then the complex integration order of β(z)′yt at the unit root zk drops from hk to hk−1. This

condition just amounts to the requirement β̃′0C
1,1
k = 0. Obviously there exist many solutions in

terms of polynomials up to degree hk−1. However, since we developed the polynomials in powers
of (1 − z̄kz) all polynomials with β̃0 = 0 are seen to be trivial solutions. Also, all polynomials
with β̃0 6= 0, β̃′0C

1,1
k = 0 and β̃j 6= 0 for some j ≥ 1 are directly seen to be non-minimum degree.

The same type of argument can now be repeated for relationships that reduce the integration order
by 2, via orthogonality to the first two block-columns. All polynomials with β̃0 = β̃1 = 0 are seen
to be trivial solutions, as are all polynomials of the form β̃0 = 0 and β̃′1C

1,1
k = 0. Hence, the rele-

vant cointegrating relationships are given by static relationships with β̃′0
[

C1,1
k C2,1

k C2,2
k

]
= 0

and by linear relationships of the form β̃′0
[

C1,1
k C2,2

k

]
= 0, β̃′0C

2,1
k +β̃′1C

1,1
k = 0 and β̃′1C

1,1
k 6= 0.

If the latter additional condition β̃′1C
1,1
k 6= 0 were not satisfied, the relationship would not be of

minimum degree. Thus, orthogonality to the corresponding non-zero blocks in Mk and zero coef-
ficients in β̃ corresponding to the 0 entries in the corresponding block-row(s) of Mk leads directly
to the relevant polynomial cointegrating relationships for any given unit root, respectively for
any given pair of complex conjugate unit roots.
Note finally once more that non-triviality of a polynomial cointegrating relationships requires it
to be non-trivial only at one of the unit roots where it leads to a reduction of the integration
order. Thus, for uncovering all non-trivial polynomial cointegrating relationships the behavior of
the polynomial cointegrating relationship has to be investigated at all unit roots where it leads
to a reduction of the integration order.
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