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Abstract

In Hotelling type models consumers have the same transportation cost
function. We deviate from this assumption and introduce two con-
sumer types. Some consumers have linear transportation costs, while
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consumers have linear transportation costs, a subgame perfect equi-
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1 Introduction

Product differentiation is a major marketing tool. Firms use product differ-

entiation to soften price competition. In his seminal paper, Hotelling (1929)

introduced a very appealing model of horizontal product differentiation to cir-

cumvent the discontinuous consumer behavior proposed by Bertrand. The

Hotelling approach models product differentiation by introducing firm lo-

cations and consumer addresses. Consumers have different addresses. An

address represents a consumer’s ideal good or most preferred sales location.

The distance between a firm’s location and a consumer’s address indicates

how close the good actually produced is to the consumers’ ideal good. Con-

sumers who buy a less-than-ideal good incur a disutility; or, in Hotelling’s

term, transportation costs.

The literature views Hotelling’s original model as a two-stage location-

then-price game. Two firms compete for demand with a location choice

in the first stage, and with prices in the second. However, the two-stage

location-then-price game has a drawback. D’Aspremont, Gabszewicz, and

Thisse (1979) show that no subgame perfect equilibrium in pure strategies

exists if transportation costs are linear in distance. This non-existence occurs

because demand functions are discontinuous and hence profit functions are

neither continuous nor quasi-concave.

Existence of equilibrium in Hotelling type models depends on the basic

assumptions and a number of parameters. Brenner (2001) provides a nice

survey about the determinants of equilibrium existence and product differ-

entiation. For example, various authors consider firms locating on a circum-

ference, different number of firms, restricted reservation prices, non-uniform

consumer densities over space, collusive behavior, or choice of the pricing pol-

icy. The most influential modification comes from d’Aspremont, Gabszewicz,
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and Thisse: quadratic transportation costs. With quadratic transportation

costs an equilibrium in pure strategies exists for any of the firms’ locations.

We make a related modification. Our modification consists in introduc-

ing two types of consumers. Besides varying tastes, consumers differ in the

assessment of the distance between ideal and actual good. For assessment of

distance we use linear and quadratic transportation cost functions, as these

types are well known and widely used in literature. Some consumers have

linear transportation costs. The other consumers have quadratic transporta-

tion costs. This specification represents a hybrid between Hotelling’s original

formulation and the modification of d’Aspremont, Gabszewicz, and Thisse.

Let us motivate different consumer types using Hotelling’s cider example.

We can view the firms’ locations as the degree of sourness in the cider they

offer. Consumers differ in the degree of sourness they desire. Now, consider

consumers who prefer the most sour cider possible. All these consumers

have the same address. If they consume the sweetest cider possible the

distance between their preferred and their consumed good is the same. But

it is possible that these consumers do not attach the same importance to

the distance. Consumers value the distance between ideal and consumed

good differently. Or, consider consumers whose ideal polo shirt brand is

Lacoste. If these consumers wear a polo shirt from Quicksilver, say, they

incur a disutility. Although the difference between Lacoste and Quicksilver

is fix, the disutility may vary among consumers. The disutility varies because

consumers assess the difference differently.

With our modification we remain very close to Hotelling’s model. But

we find pure strategy equilibrium existence for any symmetric locations if at

most half the consumers have a disutility linear in distance. By contrast, the

same existence problem as in Hotelling’s original model arises if more than
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half the consumers have linear transportation costs. No equilibrium in pure

strategies exists for all symmetric locations.

Previous studies with modifications of Hotelling’s model reject a general

principle of differentiation1. We also reject a general principle of differentia-

tion. With two consumer types, differentiation between firms’ goods depends

on the fraction of the respective types. However, maximum differentiation is

frequent. Firms locate at the extremes in product space for fractions of con-

sumers with linear transportation costs between zero and one third. When

the fraction of consumers with linear transportation costs exceeds one third,

firms move towards each other. Equilibrium locations are interior solutions.

If the number of consumers with linear transportation costs is high (approx-

imately 0.86) the equilibrium distance between firms increases again. This

increase is due to restrictions for location spaces that we impose to solve the

non-existence problem. Firms must keep a minimal required distance. For

large fractions of consumers with linear transportation costs firms locate as

close to each other as the minimal required distance allows. The minimal re-

quired distance between firms is increasing in the fraction of consumers with

linear transportation costs. Hence, product differentiation also increases.

The paper is organized as follows: In section 2 we set up Hotelling’s model

with two consumer types. Next, in section 3, we derive the demand func-

tions and the equilibrium. In section 4 we discuss the equilibrium outcome.

Finally, we conclude in section 5.

1See, e.g., Böckem (1994), Economides (1986), Hinloopen and van Marrewijk (1999),

and Wang and Yang (1999)

3



2 The Model

Consider two firms, 1 and 2, each selling one good. The goods are identical

except for a one dimensional characteristic. This characteristic represents for

example the sweetness of cider or a firm’s brand. Firms choose the amount

of characteristic by locating on a line with length one. Each firm’s location

qi ∈ [0, 1] measures the amount of characteristic embodied in the good. We

assume that firm 1 locates to the left of firm 2, i.e., q1 < q2. Firm i sells

its good at mill price pi. Let us also assume, for simplicity, that both firms

produce at zero fixed and marginal costs.

Suppose there is a continuum of consumers with total mass one. All

consumers have the same gross valuation r for exactly one unit of the good.

The valuation r is sufficiently high such that in equilibrium all consumers

buy from one of the firms. So, valuation r is never binding and the market

always covered.

Each consumer knows her individually preferred amount of characteris-

tic embodied in the good. Denote a consumer’s most preferred amount of

characteristic by the address θ. If a consumer buys a good with a different-

than-ideal characteristic, she suffers a disutility. This disutility is the distance

between q and θ weighted by the utility loss per unit distance t. Per unit

distance costs t measure consumers’ sensitivity to product differentiation.

Thus, a consumer with address θ pays the mill price p and transportation

costs t|q−θ| when buying a good with characteristic q. We call the mill price

plus the transportation costs the generalized price.

Up to this point we follow Hotelling’s original model. Our modification

consists in modelling two types of consumers. A fraction α ∈ [0, 1] of con-

sumers incur linear transportation costs. The other fraction (1 − α) of con-

sumers have quadratic transportation costs. We denote a consumer’s address
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who has linear transportation costs by θl. Similarly, we denote a consumer’s

address who has convex transportation costs by θc. Addresses for consumers

with linear transportation costs are uniformly distributed on [0, 1] with den-

sity α. Analogously, addresses for consumers with quadratic transportation

costs are uniformly distributed on the unit interval with density (1− α).

A consumer with linear transportation costs and address θl who buys a

good with characteristic q at price p has utility

ul(θl, q, p) = r − t|q − θl| − p.

A consumer with convex transportation costs and address θc who buys a

good with characteristic q at price p has utility

uc(θc, q, p) = r − t(q − θc)
2 − p.

We study a two-stage price-then-location game. In the first stage firms

simultaneously choose locations bearing in mind the subsequent price equi-

librium. Given their locations, firms simultaneously set prices in the second

stage. To solve the game we use the solution concept of subgame perfect

Nash equilibrium. For both stages we look for equilibria in pure strategies.

3 The Equilibrium

3.1 Demand Specification

For the sake of clarity we derive the demand functions before we determine

firms’ equilibrium behavior. Each consumer buys from the firm which offers

her the least generalized price. First, consider consumers with linear trans-

portation costs. Given firms’ locations and their prices all consumers with
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address that satisfies

−t(θl − q1)− p1 ≥ −t(q2 − θl)− p2

buy firm 1’s good. The consumer who is indifferent between buying firm 1’s

and firm 2’s good has address θ̂l = [t(q1 + q2) + p2 − p1] /(2t). Consumers

with address θl ≤ θ̂l buy from firm 1.

Now, consider consumers with convex transportation costs. All con-

sumers with address such that

−t(q1 − θc)
2 − p1 ≥ −t(q2 − θc)

2 − p2

prefer to buy firm 1’s good. Therefore, the indifferent consumer has address

θ̂c = [t(q2
2 − q2

1) + p2 − p1] /(2t(q2 − q1)). All consumers with address θc ≤ θ̂c

shop at firm 1.

Implicitly, we assume that θ̂l and θ̂c lie between q1 and q2. It turns out

that this is implied by existence of pure strategy equilibria in the price game.

Using the distributional assumptions for the addresses firm 1 faces the

demand function

D1 = Prob[θl ≤ θ̂l] + Prob[θc ≤ θ̂c]

= αθ̂l + (1− α)θ̂c.

Similarly, the demand function for firm 2’s good is

D2 = α(1− θ̂l) + (1− α)(1− θ̂c).

3.2 The Firms’ Equilibrium Behavior

To find the subgame perfect equilibrium we solve the location-then-price

game by backwards induction. In the second stage we look for a Bertrand-

Nash equilibrium in prices. That is, firm i takes locations and pj as given and
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chooses pi to maximize profits πi = piDi. The firms maximization problems

are

max
p1

π1 = max
p1

p1 [α(t(q1 + q2) + p2 − p1)

+(1− α)(t(q2
2 − q2

1) + p2 − p1)/(q2 − q1)
]
/(2t),

max
p2

π2 = max
p2

p2 [α(2t− t(q1 + q2)− p2 + p1)

+(1− α)(2t(q2 − q1)− t(q2
2 − q2

1)− p2 + p1)/(q2 − q1)
]
/(2t).

The F.O.Cs. for the firms’ maximization problems yield their price reaction

functions:

p1(p2) =p2/2 + t(q2
2 − q2

1)/ (2(1− α(1− q2 + q1))) ,

p2(p1) =p1/2 + t(2(q2 − q1) + q2
1 − q2

2)/(2(1− α(1− q2 + q1))).

Note that ∂2πi/∂p2
i < 0 for all α by the assumption q1 < q2. Both profit

functions are strictly concave in prices and the second order conditions are

satisfied. It follows that the F.O.Cs. yield the optimal price reaction func-

tions.

The reaction functions are linearly increasing functions of the other firm’s

price. Therefore, we can solve the system of equations given by the reaction

functions to calculate the Bertrand-Nash equilibrium prices. The firms’ equi-

librium prices in the second stage, given their locations, are

p∗1(q1, q2) = t(2 + q1 + q2)(q2 − q1)/(3(1− α(1− q2 + q1))),

p∗2(q1, q2) = t(4− q1 − q2)(q2 − q1)/(3(1− α(1− q2 + q1))).

So far we neglected the possibility that firms can sell to consumers in the

other firm’s hinterland. In Hotelling’s original model a firm can lower its

price and attract the consumers in the rival’s back yard too. D’Aspremont,
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Gabszewicz, and Thisse show that the firms start undercutting each other’s

price if they are located too closely. This undercutting process does not con-

verge to an equilibrium in pure strategies. For Hotelling’s model with convex

transportation costs d’Aspremont, Gabszewicz, and Thisse show that no un-

dercutting process occurs. These findings suggest that in our model a process

of price cuts also occurs for consumers with linear transportation costs. Firm

i can lower its price so that it sells to all consumers with linear transportation

costs. However, the findings also suggest that the firms do not undercut each

other to attract additional consumers with convex transportation costs.

Indeed, an undercutting process does not occur with respect to consumers

with convex transportation costs (see Appendix A). But it can be profitable

for the firms to serve all consumers with linear transportation costs. In

this case firm i lowers its price so that the consumer located at the same

point where firm j is located purchases from firm i. Thus, firm i serves

the entire market share α. For a given p∗j(q1, q2) firm i undercuts with the

highest possible price pi such that it just serves all consumers with linear

transportation costs (see Appendix A).

If firm 1 undercuts with the price p1, given p∗2(q1, q2), the indifferent con-

sumer has address θ̂1
c = (q2

2 − q2
1 + (p∗2(q1, q2) − p1)/t)/(2(q2 − q1)). Simi-

larly for firm 2. Given p∗1(q1, q2) and close locations, firm 2 undercuts with

the price p2. The indifferent consumer has address θ̂2
c = (q2

2 − q2
1 + (p2 −

p∗1(q1, q2))/t)/(2(q2 − q1)).

The firms undercut each other if p∗1(q1, q2) and p∗2(q1, q2) are not globally

profit-maximizing. Then, the same problem as in Hotelling’s original model

arises. For p∗1(q1, q2) and p∗2(q1, q2) to constitute Bertrand-Nash equilibrium

prices, the firms must not undercut. Following d’Aspremont, Gabszewicz
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and Thisse, the firms do not undercut each other if

p∗1(q1, q2)D1 ≥ (p∗2(q1, q2)− t(q2 − q1))(α + (1− α)θ̂1
c ), (1)

p∗2(q1, q2)D2 ≥ (p∗1(q1, q2)− t(q2 − q1))(α + (1− α)(1− θ̂2
c )), (2)

with the demand for good 1 and good 2

D1 = (2 + q1 + q2)/6, D2 = (4− q1 − q2)/6,

and the indifferent consumers

θ̂1
c = (q1 + q2 + 1)/2, θ̂2

c = (q1 + q2 − 1)/2.

Note that θ̂1
c and θ̂2

c are the indifferent consumers’ addresses for pi = p∗j(q1, q2)−
t(q2 − q1).

At this point we focus on symmetric locations. Hence, q1 + q2 = 1. It

follows that the indifferent consumers with quadratic transportation costs

are θ̂1
c = 1 and θ̂2

c = 0. This means, the undercutting firm serves the entire

market by charging pi. At the undercutting price pi and with symmetric

locations both conditions (1) and (2) simplify to:

1/2 ≥ (3α + 3αq1 − 3αq2)/3.

For an equilibrium to exist, the distance between the firms must satisfy

q2−q1 ≥ d(α) = (2α−1)/(2α). We call d(α) the minimum required distance.

It is important to discuss the minimum required distance d(α) = (2α −
1)/(2α) in more detail. We discuss the minimum required distance for interior

locations because d(α) is at most 1/2, e.g., d = 1/2 if α = 1. For α ≤ 1/2

the required distance is never greater than zero. Consequently, firms never

find undercutting profitable. Let us give an intuition why undercutting is

not profitable for α ≤ 1/2. With symmetric locations firms’ prices are the
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same, i.e., p∗1(q1, q2) = p∗2(q1, q2). To gain the entire market, firm i reduces

its price by t(q2 − q1). But the higher demand comes at the expense of a

price reduction t(q2 − q1) for consumers that already buy from firm i. This

expense is high if the price reduction is high relative to the price p∗i (q1, q2).

The price is increasing in α as ∂p∗i (q1, q2)/∂α > 0 shows. Hence, the smaller

α, the higher is the price reduction compared to p∗i (q1, q2). For α ≤ 1/2

a gain in market share does not compensate for the loss due to a lower

price. The price reduction t(q2 − q1) is too large relative to firm i’s price

to make undercutting profitable. However, with an increasing α the price

reduction becomes smaller relative to p∗i (q1, q2). Undercutting becomes more

attractive. For an equilibrium to exist the firms must be further away from

each other. For α > 1/2 the minimum required distance is positive. The

minimum required distance d(α) is an increasing function of α. Hence, the

higher α, the greater must be d. The polar case α = 1 is Hotelling’s original

model and the firms must be located outside the quartiles for an equilibrium

in pure strategies.

We state the findings from the discussion of the minimum required dis-

tance in Lemma 1 and 2.

Lemma 1 In Hotelling’s location-then-price game with two types of con-

sumers and q1 + q2 = 1 a pure-strategy Bertrand-Nash equilibrium always

exists for α ≤ 1/2. The price equilibrium is given by p∗1(q1, q2) and p∗2(q1, q2).

Lemma 2 In Hotelling’s location-then-price game with two types of con-

sumers and q1+q2 = 1 a pure-strategy Bertrand-Nash equilibrium for α > 1/2

exists iff q2 − q1 ≥ d(α). If a price equilibrium exists, it is given by p∗1(q1, q2)

and p∗2(q1, q2).

Lemma 2 has a crucial impact on equilibrium existence in the whole two-
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stage location-then-price game. According to Lemma 2, no price equilibrium

in pure strategies exists for α > 1/2 and location combinations which violate

q2 − q1 ≥ d(α). For these location combinations firms cannot know their

payoffs because no price equilibrium exists. Without knowledge of their

payoffs, firms do not have the basis for a rational location decision. Therefore,

we must restrict firms’ location spaces in case α > 1/2.

The restriction of firms’ location spaces is symmetric around the center

because we focus on symmetric locations. A symmetric restriction means

that firms cannot locate closer to the center than half the minimum required

distance. Firm 1 to the left and firm 2 to the right of the center. For firm 1

the restricted strategy space is q1 ∈ [0, (1 − d(α))/2]. By symmetry, firm 2

chooses locations q2 ∈ [(1 + d(α))/2, 1].

We now turn to the first stage in the location-then-price game. In the first

stage, firms simultaneously choose their locations. Firm i maximizes profits

πi with respect to its location qi. Substituting the equilibrium prices p∗1 and p∗2

dependent on locations into the firms’ profit functions, firms’ maximization

problems are

max
q1

t(2 + q2 + q1)
2(q2 − q1)/(18(1− α(1− q2 + q1))),

max
q2

t(4− q1 − q2)
2(q2 − q1)/(18(1− α(1− q2 + q1))).

Differentiating firms’ profits with respect to locations yields the following

F.O.Cs.:

∂π1

∂q1

=
t(2 + q1 + q2)

18(1− α + αq2 − αq1)2
[2α(q1 − q2)

2 + (1− α)(q2 − 3q1 − 2)]︸ ︷︷ ︸
A1

= 0,

∂π2

∂q2

=
t(4− q1 − q2)

18(1− α + αq2 − αq1)2

[
(1− α)(4 + q1 − 3q2)− 2α(q1 − q2)

2
]

︸ ︷︷ ︸
A2

= 0.
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A closer look at the F.O.Cs. shows that the relevant terms for firms’

optimal locations are A1 for firm 1 and A2 for firm 2. Solving Ai = 0 for qi

yields firm i’s optimal location as reaction function qi(qj) of the other firm

j’s location. The equation Ai = 0 is quadratic in qi and yields two solutions

q1(q2) =
(
4αq2 + 3(1− α)±

√
16αq2(1− α) + 9− 2α− 7α2

)
/(4α),

q2(q1) =
(
4αq1 − 3(1− α)±

√
9 + 14α− 23α2 − 16αq1(1− α)

)
/(4α).

Easy algebra shows that the first solution for firm 1’s location reaction func-

tion implies q1(q2) ≥ q2. Similarly, the second solution for firm 2’s optimal

location yields q2(q1) ≤ q1. Hence, the economically meaningful reaction

function for firm 1 is the second solution and for firm 2 the first solution. To

keep track of, we restate the firms’ location reaction functions:

q1(q2) =
(
4αq2 + 3(1− α)−

√
16αq2(1− α) + 9− 2α− 7α2

)
/(4α),

q2(q1) =
(
4αq1 − 3(1− α) +

√
9 + 14α− 23α2 − 16αq1(1− α)

)
/(4α).

The intersection of the reaction functions gives a closed form solution for

an interior Nash equilibrium in locations (that is, one where 0 < q1 < q2 < 1).

To show the existence of an interior Nash equilibrium we need the reaction

curves behavior. A detailed discussion of the reaction curves is relegated to

Appendix B. Here, we report the reaction functions’ main characteristics

and depict them in Figure 1. Figure 1 displays all location combinations in

q1-q2-space. The line q1 = q2 separates the q1-q2-space into two regions. In

the region to the left of q1 = q2 lie all location combinations with q1 > q2.

The right region contains all combinations with q1 < q2. Therefore, the

reaction functions must lie in the region to the right of the line q1 = q2.

Firm 1’s reaction function is strictly convex. Firm 2’s reaction function is

strictly concave. Both reaction functions have slopes smaller than one. For
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q1+q2 < 1 firm 1’s reaction function has a smaller slope than firm 2’s reaction

function. If the firms’ locations are symmetric the reaction curves have the

same slope. For q1 + q2 > 1 firm 1’s reaction function is steeper than firm

2’s.

 

q2(q1) 

q1(q2) 

q1 

q2 

1 

1 

q1 = q2, 
slope = 1 

1= q1 + q2 

q1(1) 

q2(0) 

Figure 1: Intersection of the reaction functions for α > 1/3

The following, rather tedious arguments describe when the reaction func-

tions intersect. Consider the values q2(0) and q1(1). Firm 1’s reaction

function evaluated at q2(0) can be equal to, smaller, or greater than 0:

q1(q2(0)) S 0. Analogously, firm 2’s reaction function evaluated at q1(1)

can be equal to, smaller, or greater than 1: q2(q1(1)) S 1.

For α > 1/3 we have q1(q2(0)) > 0 and q2(q1(1)) < 1 as depicted in figure

1. From firm 1’s viewpoint its reaction function lies to the left of firm 2’s for

q2(0). By contrast, firm 1’s reaction function lies to the right of firm 2’s for

q1(1). Hence, for α > 1/3 the reaction functions intersect. An interior Nash

equilibrium in locations exists.

For α = 1/3 we obtain q1(1) = 0 and q2(0) = 1. The reaction functions

and the intersection coincide with the corner point identified by the location
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pair (q1 = 0, q2 = 1).

It remains to consider firms’ location choices for α < 1/3. In these cases,

we have q1(1) < 0 and q2(1) > 1: the reaction functions are not in the

strategy spaces, i.e., q1 /∈ [0, q2) and q2 /∈ (q1, 1]. Hence, no intersection

between the reaction functions exists.

We are now ready to determine the firms’ optimal location choices. For

α > 1/3 an interior Nash equilibrium in locations exists and is given by the

system of equations containing firms’ reaction functions. Solving the system

of equations for firm 1’s location yields two solutions:

q∗1 = (1 + α±
√

(1− α)(5α + 1))/(4α).

The solution q1 = (1 + α +
√

(1− α)(5α + 1))/(4α) is not in the strategy

space. In particular,

(1 + α +
√

(1− α)(5α + 1))/(4α) >





1, for 0 ≤ α ≤ 1/2,

(1− d(α))/2, for 1/2 < α ≤ 1.

Therefore, we can exclude this first solution. Plugging q∗1 in firm 2’s reaction

function yields its optimal location:

q∗2 =

(
4α− 2−

√
(1− α)(5α + 1)

+

√
(1− α)(19α + 5 + 4

√
(1− α)(5α + 1))

)
/(4α)

=

(
4α− 2−√1− α

(√
5α + 1−

√
(
√

1− α + 2
√

5α + 1)2

))
/(4α)

=
(
4α− 2 +

√
1− α(

√
1− α +

√
5α + 1)

)
/(4α)

=
(
3α− 1 +

√
(1− α)(5α + 1)

)
/(4α).

For α = 1/3 the firms’ reaction functions coincide in the corner (0, 1).

Easy calculations show that firm 1 chooses q1 = 0 given q2 = 1. Firm 2’s
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optimal location is q2 = 1 given q1 = 0. Indeed, the location pair (q∗1 = 0, q∗2 =

1) is a Nash equilibrium in locations. Firms choose maximum differentiation.

Last, what is the firms’ optimal behavior if α < 1/3? We know that

A1 < 0 and A2 > 0 for α < 1/3. It follows that ∂π1/∂q1 < 0 for firm 1

and ∂π2/∂q2 > 0 for firm 2. Consequently, each firm increases its profits

by moving away as far as possible from the other. Thus, the principle of

maximum differentiation also holds for α < 1/3.

Figure 2 shows firms’ location choices by the solid lines. The shaded area  

q2

q1

αααα 

qi 

1/3 /2)/310(1+

Figure 2: Firms’ equilibrium locations

represents the restriction in location spaces. Firms choose symmetric interior

locations around the center for α > 1/3, i.e., q∗1 + q∗2 = 1. Furthermore, the

distance d∗ = (α − 1 +
√

(1− α)(5α + 1))/(2α) between firms’ equilibrium

locations is a decreasing function of α. With a higher α the firms increase

their profits by moving towards each other. But we restrict firms’ location

spaces for α > 1/2. Both firms must maintain half the minimum required
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distance d(α): q∗1 ≤ (1 − d(α))/2 and q∗2 ≥ (1 + d(α))/2. These conditions

boil down to

0 ≤ 6α2 − 4α− 1

for both firms. Obviously, the condition is satisfied for 1/3 < α < (1 +
√

10/2)/3. In this range, firms’ optimal locations are given by the solution

to the system of equations containing firms’ reaction functions. For α >

(1+
√

10/2)/3 firms move as close as possible to the center as strategy spaces

allow: q∗1 = (1 − d(α))/2 and q∗2 = (1 + d(α))/2. Because d is increasing

in α the restriction of location spaces forces firms further apart for α >

(1 +
√

10/2)/3.

We summarize the firms’ behavior in the location stage with Lemma 3:

Lemma 3 In Hotelling’s location-then-price game with two types of con-

sumers firms choose locations

q∗1 =





0, for α ≤ 1/3,

(1 + α−
√

(1− α)(5α + 1))/(4α), for 1/3 < α ≤ (1 +
√

10/2)/3,

1/(4α), for (1 +
√

10/2)/3 < α,

and

q∗2 =





1, for α ≤ 1/3,

(3α− 1 +
√

(1− α)(5α + 1))/(4α), for 1/3 < α ≤ (1 +
√

10/2)/3,

1− 1/(4α), for (1 +
√

10/2)/3 < α.

We may summarize our findings and describe the equilibrium in Propo-

sition 1.

Proposition 1 In the Hotelling two-stage location-then-price game with

fraction α of consumers with linear transportation costs and fraction 1 − α
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of consumers with quadratic transportation costs we find the following equi-

libria:

· if α ≤ 1/3 (i.e., α is small) firms choose locations q∗1 = 0 and q∗2 = 1.

Firms set the same price p∗1 = p∗2 = t and earn profits π∗1 = π∗2 = t/2,

· if 1/3 < α ≤ (1 +
√

10/2)/3 (i.e., α is intermediate) firms choose

locations given by Lemma 3. Firms set the same price p∗1 = p∗2 = p∗ =

t(1−α−
√

(5α + 1)(1− α))/(α(α−1−
√

(5α + 1)(1− α))) and earn profits

π∗1 = π∗2 = p∗/2,

· if (1+
√

10/2)/3 < α (i.e., α is large) firms choose locations q∗1 = 1/(4α)

and q∗2 = 1 − 1/(4α). Firms set the same price p∗1 = p∗2 = t(2α − 1)/α and

earn profits π∗1 = π∗2 = t(2α− 1)/(2α).

4 Discussion

We begin the discussion with the degree of price competition. Our specifica-

tion for the degree of price competition refers to the cross-price sensitivity of

demand. The cross-price sensitivity is the amount of consumers firm i gains

or loses as firm j changes its price2. In our model, the cross-price sensitivity

is equal to the own-price sensitivity multiplied by -1. Thus, our definition

for the degree of price competition η is:

η = ∂Di/∂pj = −∂Di/∂pi = (1− α(1− d)) /(2dt), i = 1, 2,

where d = q2 − q1. With this definition the measure for the degree of price

competition is on the positive real axis. A higher η indicates more intense

price competition. Note that the degree of price competition η does not

2Brenner (2001) uses the cross-price sensitivity of demand as a measure for the degree

of price competition to highlight the relationship between transportation cost functions

and equilibrium existence.
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account for undercutting effects. But we focus on pure strategy equilibria and

restrict location spaces. Undercutting is ruled out. Therefore, we proceed

the discussion about η without considering an undercutting process.

The degree of price competition η depends on parameters t and α as well

as on distance d. First, price competition intensifies if t decreases, ceteris

paribus. Firms’ prices are lower, the lower is t. This is characteristic for

Hotelling-type models, since t represents consumers’ sensitivity to product

differentiation. Consumers attach less importance to product differentiation

when t is low. When t approaches zero, the model approaches Bertrand

competition with homogeneous goods.

Secondly, the degree of price competition is decreasing in α, given t and

d: ∂η/∂α = −(1 − d)/(2dt) ≤ 0. Price competition becomes less intense,

the higher the fraction of consumers with linear transportation costs. When

deciding about buying good 1 or good 2, consumers compare the utility from

consuming good 1 with the utility from consuming good 2. This utility

comparison reduces to a comparison of the difference in transportation costs

with the price difference. Consumers with linear transportation costs (l-

consumers) buy good 1 if

t(q1 + q2 − 2θl)︸ ︷︷ ︸
difference in

transportation costs

≥ p1 − p2︸ ︷︷ ︸
price

difference

.

Consumers with quadratic transportation costs (c-consumers) buy good 1 if

t(q1 + q2 − 2θc)(q2 − q1)︸ ︷︷ ︸
difference in transportation costs

≥ p1 − p2︸ ︷︷ ︸
price

difference

.

Now, consider consumers with the same address but being of a different type,

i.e., θl = θc. For both consumer types the price difference is the same. By

contrast, the difference in transportation costs is greater for l-consumers than

18



for c-consumers:

q1 + q2 − 2θl > (q1 + q2 − 2θc)(q2 − q1),

1 > q2 − q1,

except when d = 1. If d = 1 the difference is the same for both consumer

types. Consumers with θl = θc perceive the price difference relative to the

difference in transportation costs equally. A price change, and hence a change

in the price difference, has the same effect on consumers’ buying decision,

independent of their type. However, the difference in transportation costs

is greater for l-consumers than for c-consumers if d < 1. Relative to trans-

portation costs, l-consumers care less for a price change than c-consumers.

A price change has a weaker effect on l-consumers. If α increases more con-

sumers care less for the price relative to travel distance. The degree of price

competition decreases.

We can confirm the observation ∂η/∂α < 0 by considering Hotelling’s

original model and the modified version of d’Aspremont, Gabszewicz, and

Thisse. These models are the two polar cases α = 1 and α = 0 in our

work. In Hotelling’s original model the degree of price competition is 1/(2t).

In the model of d’Aspremont, Gabszewicz, and Thisse the degree of price

competition is 1/(2dt). Because 1/(2dt) > 1/(2t) for d < 1, price competition

in the polar case α = 0 is more intense than in the opposite polar case

α = 1. With an increasing α we move from more to less intense competition.

The degree of price competition decreases. For d = 1 the degree of price

competition is the same in both polar cases. It is straightforward, then, that

the degree of price competition is independent of α: ∂η/∂α = 0.

The third factor that affects the degree of price competition is the distance

d = q2−q1. Keeping t and α constant, the degree of competition is decreasing

in d, i.e., ∂η/∂d = (−1 + α)/(2d2t) ≤ 0. By moving towards each other the
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firms offer less differentiated goods. For consumers, less differentiation leads

to better substitutability between goods. Price competition increases.

Figure 3 illustrates the equilibrium degree of price competition η∗ for

various t by solid lines. The dotted line is the equilibrium distance d∗ between

firms.

 
ηηηη*, d* 

αααα 

ηηηη*, t = 3/5 

d* 

ηηηη*, t = 4/5 

ηηηη*, t = 2 

1/3 /2)/310(1+

Figure 3: The degree of price competition for various t and the distance

between firms in equilibrium

In the range α ≤ 1/3 firms choose maximum differentiation. The de-

gree of price competition is constant. For 1/3 < α ≤ (1 +
√

10/2)/3 both

firms move towards the center. The distance d∗ and product differentia-

tion decrease. Because products are less differentiated price competition is

more intense. As soon as α > (1 +
√

10/2)/3 the degree of price compe-

tition decreases. Two effects that work in the same direction relax price

competition. With an increasing α we move closer to Hotelling’s original

model. As argued above the degree of price competition is lower the closer
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we are to Hotelling’s original model. The second effect stems from the re-

striction of location spaces. For α > (1 +
√

10/2)/3 firms move away from

each other because they must keep the minimum required distance d. Be-

cause ∂d(α)/∂α > 0 the distance between firms increases. Firms offer more

differentiated goods. More differentiated goods soften price competition.

Let us now discuss firms’ location choices in the second stage. Proposition

1 and Figure 2 show that no general principle of differentiation exists in our

model. Differentiation depends on the fraction of l- and c-consumers in the

way intuitively expected. The more consumers with linear transportation

costs, the closer we are to Hotelling’s model and the closer firms move to each

other. However, maximum differentiation is frequent for the range α ≤ 1/3.

It seems that maximum differentiation is quite robust.

Two now standard opposite effects are responsible for firms’ location

choices. On the one hand, firms differentiate their goods to weaken price

competition. This is the price effect. Because a larger distance between

firms reduces the degree of price competition firms want to move away from

each other. On the other hand, firms move inwards in the product space

to capture a larger market share. This centripetal force is the demand ef-

fect. The relative strength of those effects determines the location pattern

in equilibrium.

The price effect dominates the demand effect if the fraction of consumers

with linear transportation costs is small. In this case, the principle of maxi-

mum differentiation holds. By contrast, maximum differentiation is not the

equilibrium outcome for intermediate and large α. The reason is that the

demand effect does not depend on α while the price effect does. With an in-

creasing α the degree of price competition decreases. Relative to the demand

effect the price effect becomes weaker. The price effect does not overcompen-
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sate the demand effect anymore. Firms balance the trade-off between price

and demand effect increasingly in favor of the latter. Since the trade-off is

increasingly in favor of the demand effect, firms move towards each other for

intermediate α. For large α, the demand effect still becomes stronger. But

again, the restricted location spaces lead to increased product differentiation.

Last, we turn to the condition that ensures an equilibrium. More pre-

cisely, what is the maximum fraction of consumers with linear transportation

costs such that an equilibrium in pure strategies exists for all symmetric lo-

cations. The answer is short and given by Lemmas 1 and 2: α ≤ 1/2. At

most half the consumers can have linear transportation costs. Otherwise, no

pure-strategy price equilibrium exists in the second stage for all symmetric

locations. Without price equilibrium for some location patterns firms are not

able to evaluate their profits in the first stage. No (pure-strategy) equilibrium

to the two-stage location-then-price game exists.

As it is well-known, non-existence of equilibrium in Hotelling’s original

model arises because the profit functions are not quasi-concave. The same

problem occurs for α > 1/2 in our model. Profit functions are neither contin-

uous nor quasi-concave. Firms can undercut the opponent’s price to capture

the entire market. At this undercutting price the profit functions, as well as

the demand functions, are discontinuous. For α > 1/2 and sufficiently close

locations undercutting is profitable. Profit functions have an upward discon-

tinuity. In this case, firms’ profit functions are not quasi-concave. Firms start

undercutting each other. The undercutting process results in discontinuous

best reply functions. Unfortunately, these discontinuous best reply functions

do not lead to a price equilibrium in pure strategies.
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5 Conclusions

Consumers may assess deviations from buying a less-than-ideal good differ-

ently. To allow for such different assessment we introduce two consumer types

in Hotelling’s model of product differentiation. A fraction α of consumers

have linear transportation costs. The other fraction (1 − α) of consumers

have quadratic transportation costs.

As expected, we cannot support a general principle of differentiation. But

maximum differentiation seems to be quite robust. In the subgame perfect

Nash equilibrium firms choose maximum differentiation if at most one third of

the consumers have linear transportation costs. With an increasing fraction

of consumers who have a disutility linear in distance the agglomeration force

becomes stronger. Firms move closer to each other.

The fraction of consumers with linear transportation costs also affects

equilibrium existence. A subgame perfect equilibrium does not exist for any

symmetric locations and any fraction of consumers with linear transportation

costs. Only if at most half the consumers have linear transportation costs

an equilibrium in the price subgame exists. A price equilibrium no longer

exists for any symmetric locations if more than half the consumers have

linear transportation costs. The same non-existence problem as in Hotelling’s

model occurs.

To circumvent the non-existence problem we impose location restrictions

on firms. Firms must keep the minimal required distance such that a pure-

strategy price equilibrium exists. This minimal required distance must go

from zero to one half.
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Appendix A

We now proof that the firms set an undercutting price pi = pj − t(q2 − q1)

given selling to all consumers with linear transportation costs is profitable.

To serve all consumers with linear transportation costs firm i can at most

charge the price pi. With a higher price the consumer located at the same

point where firm j is does not purchase from firm i. Because the consumer

with address θl = qj does not buy firm i’s good not all consumers with linear

transportation costs buy firm i’s good. Therefore, we can restrict attention

to prices pi ≤ pi.

Consider firm 1 that undercuts firm 2. If firm 1 sets a price p1 ≤ p1 it

sells to all consumers with linear transportation costs. At an undercutting

price p1 firm 1 bags profits

π1 = p1

(
α + (1− α)

t(q2
2 − q2

1) + p2 − p1

2t(q2 − q1)

)
.

Firm 1’s profits change with p1 according to

∂π1

∂p1

= α + (1− α)
t(q2

2 − q2
1) + p2 − 2p1

2t(q2 − q1)
.

For p1 = p2 − t(q2 − q1) this derivative is

∂π1

∂p1

∣∣∣∣
p1=p1

= α + (1− α)
t(q2

2 − q2
1)− p2 + 2t(q2 − q1)

2t(q2 − q1)
.

Now, for a given p2 = p∗2(q1, q2) the derivative ∂π1/∂p1 evaluated at p1 =

p∗2(q1, q2)− t(q2 − q1) is positive:

∂π1

∂p1

∣∣∣∣
p1=p1

S 0

2tα(q2 − q1) + (1− α)t(q2
2 − q2

1) S (1− α)(p∗2(q1, q2)− 2t(q2 − q1))

2 + (1− α)(q1 + q2) S (1− α)(4− q1 − q2)

3(1− α + αq2 − αq1)

6α(q2 − q1) + 3(1− α)(q1 + q2)(1− α + αq2 − αq1) > −(1− α)(2 + q1 + q2).
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Taking the second derivative of π1 with respect to p1 shows that firm 1’s

undercutting profits are a strictly concave function:

∂π2
1

∂2p1

= −1/(t(q2 − q1)).

Because firm 1’s profit function is concave the derivative ∂π1/∂p1 is positive

for all p1 ≤ p∗2(q1, q2)− t(q2− q1). Firm 1’s profits are an increasing function

of the price: the higher the price, the higher the profits. Thus, firm 1 chooses

the highest possible undercutting price p1 = p∗2(q1, q2)− t(q2 − q1), provided

that it is profitable to attract all consumers with linear transportation costs.

Going through the same calculations for firm 2 yields an analogous re-

sult. Given that serving all consumers with linear transportation costs is

profitable, firm 2 undercuts with a price p2 = p∗1(q1, q2)− t(q2 − q1).

Appendix B

Maximizing firms’ profits with respect to their locations yields the reaction

functions:

q1(q2) =
(
4αq2 + 3(1− α)−

√
16α(1− α)q2 + 9− 2α− 7α2

)
/(4α),

q2(q1) =
(
4αq1 − 3(1− α) +

√
9 + 14α− 23α2 − 16α(1− α)q1

)
/(4α).

Denote the term in the square root in firm i’s reaction function by ϕi. Simple

inspection of ϕi shows that it is non-negative. For ϕ1 in firm 1’s reaction

function this is

ϕ1 = 16α(1− α)q2 + 9− 2α− 7α2

︸ ︷︷ ︸
≥0

≥ 0, ∀α ∈ [0, 1].

To see that ϕ2 in firm 2’s reaction function is also non-negative we first

observe that it negatively depends on q1. Hence, if ϕ2 is non-negative for
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q1 = 1, non-negativity holds for all q1 ≤ 1. The problem boils down to

checking if ϕ2 is non-negative for q1 = 1. Indeed, for q1 = 1, ϕ2 is not smaller

than zero:

ϕ2 = 9 + 14α− 23α2 − 16α + 16α2 ≥ 0, ∀α ∈ [0, 1].

Both reaction functions are positively sloped:

∂q1(q2)

∂q2

=1− 2(1− α)√
16α(1− α)q2 + 9− 2α− 7α2

> 0,

∂q2(q1)

∂q1

=1− 2(1− α)√
9 + 14α− 23α2 − 16α(1− α)q1

> 0.

Moreover, the first derivatives show that the slopes are never greater than

one. Let us also compare these slopes:

∂q1(q2)/∂q2 S ∂q2(q1)/∂q1

1− 2(1− α)√
16α(1− α)q2 + 9− 2α− 7α2

S 1− 2(1− α)√
9 + 14α− 23α2 − 16α(1− α)q1

16α(1− α)q2 + 9− 2α− 7α2 S 9 + 14α− 23α2 − 16α(1− α)q1

q1 + q2 S 1.

The comparison of the slopes shows that firm 1’s reaction function is less

steeper for q1 + q2 < 1. For symmetric locations, that is q1 + q2 = 1, firms’

reaction functions exhibit the same slope. If q1 + q2 > 1 firm 1’s reaction

function is steeper than firm 2’s reaction function.

Because the reaction functions are non-linear we need the second deriva-

tives to make further conclusions about their behavior:

∂q2
1(q2)

∂2q2

=16α(1− α)2ϕ
−3/2
1 ≥ 0,

∂q2
2(q1)

∂2q1

=− 16α(1− α)2ϕ
−3/2
2 ≤ 0.

26



Therefore, firm 1’s reaction function is strictly convex in q2. Firm 2’s reaction

function is strictly concave in q1.

Next, we evaluate the functions’ values at the endpoints of the strategy

space.

q1(q2 = 0) =
(
3(1− α)−

√
9− 2α− 7α2

)
/(4α) ≤ 0,

q1(q2 = 1) =
(
3 + α−

√
9 + 14α− 23α2

)
/(4α) ≤ 1,

q2(q1 = 0) =
(
−3(1− α) +

√
9 + 14α− 23α2

)
/(4α) ≥ 0,

q2(q1 = 1) =
(
7α− 3 +

√
9− 2α− 7α2

)
/(4α) ≥ 1.

Finally, we compare q2(q1(q2 = 1)) with 1 and q1(q2(q1 = 0)) with 0. Firm

2’s reaction function evaluated at q1(q2 = 1) is:

q2(q1(q2 = 1)) =

[
4α−

√
(23α + 9)(1− α)

+

√
(1− α)(19α− 3 + 4

√
(23α + 9)(1− α))

]
/(4α).

The comparison shows that q2(q1(q2 = 1)) S 1 dependent on α:

[
4α−

√
(23α + 9)(1− α) +

√
(1− α)(19α− 3 + 4

√
(23α + 9)(1− α))

]
/(4α) S 1

√
(1− α)(19α− 3 + 4

√
(23α + 9)(1− α)) S

√
(23α + 9)(1− α)

19α− 3 + 4
√

(23α + 9)(1− α) S 23α + 9
√

(23α + 9)(1− α) S α + 3

α(1− 3α) S 0.

For α < 1/3 firm 2’s reaction function yields a value greater than 1 evaluated

at (q1(q2 = 1)). If α = 1/3 and (q1(q2 = 1)) firm 2’s optimal location is 1.

For α > 1/3 firm 2’s reaction function takes a value less than 1 evaluated at

(q1(q2 = 1)).
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Similarly, q1(q2(q1 = 0)) S 0:

(
√

(23α + 9)(1− α)−
√

(1− α)(19α− 3 + 4
√

(23α + 9)(1− α)))/(4α) S 0

√
(23α + 9)(1− α) S

√
(1− α)(19α− 3 + 4

√
(23α + 9)(1− α))

0 S α(1− 3α).

For α < 1/3 firm 1’s optimal location is smaller than 0 evaluated at q2(q1 =

0). For α = 1/3 firm 1’s reaction function takes the value 0. If α > 1/3 and

q2(q1 = 0) firm 1’s optimal location is q1 > 0.

28



References

[1] Anderson, P. Simon, 1979, Equilibrium Existence in the Linear

Model of Spatial Competition, Economica, 55(220), pages 479-491.

[2] d’Aspremont, Claude, Gabszewicz, J. Jean, Thisse, Jacques-

François, 1979, On Hotelling’s “Stability in Competition”, Economet-

rica, 47(5), pages 1145-1150.
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