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Abstract

This paper analyzes price competition between market makers who set
costly capacity constraints before they intermediate between producers
and consumers. The key finding is that the unique perfect equilibrium
outcome is Cournot if capacity is costly and rationing efficient. This result
is interesting for two main reasons: It generalizes Kreps and Scheinkman
(1983) to an arbitrary number of market makers, and it contrasts with
Stahl (1988) and the broader literature on market making, such as Gehrig
(1993), Fingleton (1997) and Rust and Hall (2003), where due to the
absence of capacity constraints on the input market the Bertrand paradox
typically prevails.
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1 Introduction

In many industries, firms act as price setters both on the input and on the out-

put market. For example, commercial banks set both deposit rates on the input

market and loan and mortgage rates on the output market. Similarly, retailers

like Wal-mart take neither input nor output prices as given, as witnessed by the

much publicized complaints of farmers and Wal-mart’s less efficient competitors

alike.

Acting as arbitrageurs who buy and sell a good, these firms bring together

supply and demand much in the same way as a Walrasian auctioneer does.

This is why we call call them market makers, following the recent literature

(see, e.g., Stahl, 1988; Gehrig, 1993; Spulber, 1996; Fingleton, 1997; Rust and

Hall, 2003). Quite naturally, it is to be expected that a monopolistic market

maker will set a lower bid price on the input market and a higher ask price on

the output market than a Walrasian auctioneer would, and that it will net a

positive profit. As the number of market makers increases, one would expect

that these bid and ask prices come closer and closer to the Walrasian price,

so that in the limit perfect competition amongst market makers coincides with

perfect competition à la Walras.

However, as first observed by Stahl (1988), the transition from monopolistic

to perfectly competitive market making is quite discontinuous. It is easy to

understand why if one assumes that two competing firms first buy and then sell

a homogenous good, observing in the interim stage the quantity bought by the

other firm. Thus, in this setting market makers first bid for the capacity they

face in the second stage when selling the good on the output market. In this

case, price competition on the input market is a winner-takes-all competition

for the monopoly profit accruing on the output market: Even if in equilibrium

the two firms would share revenue on the output market, either firm fares

strictly better by slightly overbidding the other firm’s bid price on the input

market, thereby taking over the whole market. This remains true as long as

the opponent’s bid price is below the zero-profit price, which in many settings

coincides with the Walrasian price. As zero profits become an equilibrium

condition, two market makers will often be enough to have perfect competition

as the equilibrium outcome just like in Bertrand product market competition.

Obviously, this motivates to see whether devices to solve the Bertrand para-

dox in product market competition can be applied for market makers as well.

Basically, this is what the present paper is about. The paper’s focus is on ca-

pacity constraints. Borrowing from the seminal work of Kreps and Scheinkman
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(1983), we address the question what happens if market makers have to set

capacities prior to competing in prices on either the input or the output mar-

ket. That is, in contrast to Stahl’s paper, which analyzes market making when

capacities are set in an interim stage, we analyze competition between mar-

ket makers when capacities are set ex ante. There are two motivations for

taking this approach. First, as a matter of fact, market makers need to have

the capacity to trade so as to be able to compete with one another. Absent

the capacities to trade, the Bertrand-Stahl threat to take over the whole input

market by slightly overbidding the competitor’s price is simply empty. Second,

since most models of market making assume a homogenous good,1 it seems a

good advice to pursue the approach with capacity constraints, which naturally

allows to maintain the homogenous good assumption.

Our main finding is that for a wide range of alternative settings, the unique

equilibrium outcome is Cournot rather than Bertrand if capacities are costly.

Thus, we generalize the key results of Kreps and Scheinkman (1983) to an

arbitrary number of market makers. The intuition for this result is first that

capacity constraints substantially soften price competition, as first observed

by Edgeworth (1897): If all firms face sufficiently small capacity constraints,

none of them can take over the whole market. Consequently, price competition

will be less aggressive. Second, due to the assumption of efficient rationing,

the residual demand and supply functions market makers face are the same as

under Cournot competition. Consequently, on the equilibrium path Cournot

behavior ensues.

These findings are interesting, and surprising, for two reasons. First, the

paper shows that it makes a big difference for models of market making whether

capacity constraints are set in an interim stage as in Stahl (1988) or ex ante.

Second, the fact that the findings of Kreps and Scheinkman generalize to an

arbitrary number of market makers is interesting news in itself. As pointed out,

e.g., by Stahl (1988) and Yanelle (1989, 1996), models of market making may

behave quite differently from the underlying oligopoly model. For example, if

demand is inelastic at the Walrasian price in Stahl’s model, then the equilibrium

will be non-Walrasian. Therefore, the robustness we find is by no means a

foregone conclusion.

Apart from the extensive literature on capacity constrained product market

competition, the paper is closest related to Stahl (1988), Gehrig (1993), Fin-

gleton (1997) and Rust and Hall (2003). The paper by Neeman and Vulkan
1The only exception we are aware of is Shevchenko (2004).
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(2003), which analyzes how a given centralized market drives out trade through

direct negotiations, is largely complementary to ours as we investigate how an

intermediated market operates and under what conditions it approaches the

ideal or centralized market they take as given. In a very recent paper, Ju et al.

(2004) study capacity constrained price competition between market makers.

However, they do not consider mixed strategies, so that our paper complements

theirs. The main difference between our model as well as the models of Stahl,

Gehrig, Fingleton and Rust and Hall and the model of Spulber (1996) is that

in the former models, market makers set publicly observable prices, whereas

the prices in the latter model are private information. Shevchenko (2004) an-

alyzes competition between middlemen in a setting with heterogenous goods

and preferences. Apart from that, the main difference is that we model price

competition between market makers, whereas in his model terms of trade are

determined through Nash bargaining. Similarly, in Rubinstein and Wolinksy

(1987) all trade occurs at terms that result from bargaining. Moreover, in their

setting a middleman’s capacity is exogenously given, while in our model, the

capacity of market makers is determined endogenously.2

The remainder of the paper is structured as follows. Section 2 introduces

the basic model, and section 3 derives the equilibrium for this model. Section

4 extends the basic model and deals in turn with forward contracts, inelastic

demand and simultaneous ask and bid price setting. Section 5 concludes.

2 The model

In this section, we develop the basic model. Except for the requirement that

market makers have to set capacities prior to setting prices on either side of the

market, the model is very similar to the one in Stahl (1988, section 3).3 The

assumptions are as follows.

There are n market makers, which are indexed as i = 1, .., n and occasionally

also called firms. A typical market maker is indexed as i, j or k. We take the

number of market makers as exogenously given, though we argue at the end of
2As market making is by its very nature a two-sided activity, the paper relates also loosely

to the recent literature on two-sided markets or platforms like, e.g., Caillaud and Jullien
(2001), Rochet and Tirole (2002, 2004), Armstrong (2004), or McCabe and Snyder (2004).
However, for platforms it is typically assumed that customers of one type, say, sellers exert an
externality on the utility enjoyed by customers of the other type. In contrast, in this paper
conditional on being served at a given price buyers and sellers do not care about the number
of other sellers or buyers served by a given market maker.

3The time structure of this section also corresponds to the one analyzed by Yanelle (1996) in
her Game 2. The time structure with forward contracts we analyze in section 4.1 is analogous
to her Game 1.
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section 3 that the equilibrium number of market makers can easily be derived

as a function of the fix cost of entry in a game with an additional entry stage

preceding this game. Each market maker maximizes its own profit. In stage

1, market makers simultaneously set physical capacity constraints, which are

denoted as qi. The cost of capacity qi is denoted as C(qi), where C ′ > 0

and C ′′ ≥ 0 is assumed.4 A capacity constraint is such that trading quantity

up to the constraint involves no direct costs, while beyond capacity trade is

prohibitively costly.5 Throughout we denote by qi the capacity of market maker

i and by q−i the aggregate capacity of all others than i, and aggregate capacity

is denoted as Q, so that by definition Q ≡ qi + q−i. In stage 2, market makers

simultaneously set bid prices bi on the so called input market, and in stage

3, they simultaneously set ask prices ai on the output market. All previous

actions are assumed to be observed, and in case rationing occurs, the efficient

rationing rule applies. Quantity of i and aggregate quantity of all others than

i are denoted as qi and q−i, respectively, and aggregate quantity is denoted

as Q ≡ qi + q−i. We will make clear where necessary what quantity (stock,

quantity sold or quantity demanded) is meant by qi, q−i or Q.

Let A(Q) denote the inverse demand function, which depicts the market

clearing ask price A(.) as a function of aggregate quantity demanded Q, and

consider Figure 1 for an illustration of the basic assumptions. The inverse

supply function is denoted as B(Q), where B(Q) is the market clearing bid price

for aggregate quantity supplied Q. Let D(a) ≡ A−1(Q) and S(b) ≡ B−1(Q),

respectively, denote the demand and supply function. Both functions represent

the behavior of perfectly competitive agents. As usual, we assume A′ < 0.

Moreover, we assume 0 ≤ B(0) < A(0) < ∞, B′ > 0, A(0) − B(0) > C ′(0)

and that the Walrasian quantity QW , given by A(QW ) = B(QW ), is less than

infinity. Furthermore, it is assumed that the ask price elasticity of demand,

denoted as εa(Q), does not exceed minus one, i.e., εa(Q) ≤ −1 for any Q ≤
QW .6 We say that demand is (price) elastic whenever εa ≤ −1. Also, we assume

4To be precise, there are different types of capacity used by market makers. On the one
hand, they need to have the capacity to store, transport and sell the good in order to be able
to compete on the output market. On the other hand, they must also have the capacity to
buy the good, residing, e.g., in the number of clerks or salesmen employed. In general, these
different kinds of capacities may involve different costs. For our analysis to be exactly correct,
it is required that market makers do not set different capacities at different levels, i.e., they
do not set, say, a capacity to sell that exceeds their capacity to buy.

5The assumption of prohibitive production cost beyond capacity is quite standard in the
literature on capacity constrained product market competition. An exception is Boccard and
Wauthy (2000) who consider the possibility that the cost of production beyond capacity may
be less than prohibitively large, though it is still larger than below capacity.

6A sufficient condition for this is D′′a + D′ − (D′)2
D

≤ 0.
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Figure 1: The basic setting.

B′′ ≥ A′′ for any Q ≤ QW . This last assumption makes sure that the spread

function Z(Q), defined as Z(Q) ≡ A(Q) − B(Q), is weakly concave. Because

A′ < 0 and B′ ≥ 0, we also have Z ′ < 0. For simplicity, we assume A′′ ≤ 0 for

Q > QW , which will allow us to directly apply results of Kreps and Scheinkman

(1983). Note that the above assumptions imply that there is a quantity Q̃ such

that A(Q̃) = 0. For Q ≥ Q̃, we let A(Q) = 0. So as to distinguish the market

clearing prices given by the functions A(.) and B(.) from prices set by market

makers, the latter are denoted by small letters and a subscript, like ai or bi,

and we will occasionally denote the prices of all firms other than i as a−i and

b−i.

The rationales for these assumptions are as follows. Concavity of Z(.) turns

out be very helpful. It is less restrictive than assuming that A(.) is concave,

which is often assumed in models of product market competition. The assump-

tion that demand is price elastic for any quantity not exceeding the Walrasian

one makes sure that setting market clearing prices is a subgame perfect strategy

in any equilibrium. Though it is satisfied in many applications (e.g., Gehrig,

1993; Fingleton, 1997; Rust and Hall, 2003) and maintained in large parts of

Stahl (1988), relaxing this assumption seems very desirable. As we argue in

section 4.2, this does not seem impossible, but for the time structure outlined

above, it involves some technicalities that have not been solved yet.
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With respect to capacity constraints, a key simplifying assumption is of

course that trade beyond capacity is possible only at prohibitive costs. At

first glance, this assumption may seem very restrictive. After all, a firm whose

capacity constraint is binding might rent idle capacity from another firm. How-

ever, this raises the question whether a firm, say i, can rent additional capacity

from a competitor when its own capacity is binding. For simplicity, consider

the case of product market competition, where i’s capacity constraint is binding

if, e.g., all firms set the market clearing price. In this case, there clearly is no

possibility to rent idle capacity from another firm. Alternatively, i’s constraint

can be binding if it sets a lower price than one of its competitors with idle

capacity. Under efficient rationing, selling one unit of its idle capacity to the

low priced firm will reduce the residual demand for this firm by one unit.7 The

maximal willingness to pay of i will be given by its price, which is lower than

that of the firm with idle capacity. Therefore, there are no gains from trade for

the two firms. What therefore is required is merely that aggregate capacity is

given, which is far less restrictive.8

The assumption of efficient rationing follows the approach taken in the

largest part of the literature.9 As noted by Davidson and Deneckere (1986),

the assumption is not without consequences in the sense that for alterna-

tive rationing schemes like, say, proportional rationing, equilibrium behavior

is likely to be more aggressive than Cournot. However, the fact that the equi-

librium behavior in models of capacity constrained price competition à la Kreps

and Scheinkman (1983) or Levitan and Shubik (1972) is less competitive than

Bertrand is nowhere put into question. To be sure, the main motivation for as-

suming efficient rationing is analytical ease. But there is also fair justification

for it, namely that it is, at least qualitatively, innocuous.

As to timing, the crucial assumption is that capacity can be observed. In

particular, it cannot be increased before price competition starts without having

the competitors take notice. Whether this assumption is realistic depends of

course on the application. It is arguably a good approximation if capacity takes

the form of sale space or number and size of branches as in retail trade. It is

certainly less accurate if the binding constraint is given by computer capacity
7The same holds for proportional rationing whenever aggregate capacity exceeds the

monopoly quantity. If aggregate capacity is smaller, firms set the market clearing price in
equilibrium.

8Nevertheless, we have to assume that capacity cannot be resold among firms (or market
makers) because otherwise firms could act as a cartel.

9See, e.g., Levitan and Shubik (1972), Kreps and Scheinkman (1983), Osborne and Pitchik
(1986), Deneckere and Kovenock (1992, 1996) and Boccard and Wauthy (2000).
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like, e.g., for providers of internet platforms.

The structure of the basic model is most appropriate when market makers

are retailers or shops. These are capacity constrained and do not sell forward

contracts but rather must have the goods in stock if they want to be able to

sell. Hence, the acquisition of stocks precedes selling. In other instances, such as

wholesale trade, forward contracts are frequently used. In section 4 we extend

the model to forward contracts, which corresponds to a reversion of the input

and the output market stages. The informational assumption that all previous

actions are observed is partly made for convenience and can be relaxed. For

example, if the prices in stage 2 are observed, then the quantities competitors

have in stock (or in the presence of forward contracts, the quantities they are

obliged to buy) can be inferred from the observation of capacities and prices.

3 Equilibrium analysis

We proceed as follows. The game outlined in section 2 is a dynamic game

with complete information. Hence, it can be solved using backward induction.

Because concepts from Cournot competition are crucial for the analysis that

follows, we first define Cournot capacities and derive the Cournot outcome for

our game. Then we solve for the equilibrium of each stage in turn, beginning

with stage 3.

3.1 Preliminary: Cournot competition

As Cournot competition typically refers to competition on a product market

organized by a Walrasian auctioneer, whereas we study competition between

market makers, we have to make clear what we mean by Cournot competition

and Cournot outcome in our setting. If we counterfactually assume that both

on the input and on the output market a Walrasian auctioneer quotes market

clearing ask and bid prices and every market maker names the quantity it

wants to trade, taking as given the inverse supply and demand functions B(.)

and A(.) and the quantities its competitors name, then the quantities traded

in equilibrium are called Cournot equilibrium quantities. That is, as a Cournot

competitor i maximizes its profit by choosing its optimal quantity q∗i given the

quantities of all others q−i and the inverse supply and demand functions B(Q)

and A(Q) and its cost function C(qi) with C ′ > 0 and C ′′ ≥ 0. Let Πi(qi, q−i)

denote firm i’s profit when setting quantity qi. Then, the maximization problem
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for i is

max
qi

Πi(qi, q−i) = (A(qi + q−i)−B(qi + q−i)) qi − C(qi)

= Z(qi + q−i)qi − C(qi), (1)

which yields the following first order condition

0 = Z ′(q∗i + q−i)q∗i + Z(q∗i + q−i)− C ′(q∗i ). (2)

The solution is called i’s best response or reaction function rc(q−i). It is im-

plicitly defined as

rc(q−i) =
Z(rc(q−i) + q−i)− C ′(rc(q−i))

−Z ′(rc(q−i) + q−i)
. (3)

Because Z(Q) has a negative slope and is weakly concave, the maximization

problem (1) is a concave problem, so that the solution in (3) is the unique

interior maximum.

Since the concept is repeatedly used, let us also define the Cournot best

response function with zero costs of production or trade. Let r(q−i) denote the

Cournot best response function when marginal costs are zero. Then, i’s profit

is Z(Q)qi and its best response to its competitors supply of q−i is implicitly

given as

r(q−i) =
Z(r(q−i) + q−i)
−Z ′(r(q−i) + q−i)

. (4)

The solution in (4) is the unique interior maximum. The corner solution with

r(q−i) = 0 arises only if q−i is so large that Z(q−i) ≤ 0, i.e., if q−i ≥ QW . If we

assume C ′ = 0, differentiate (2) with respect to q−i and set the result equal to

zero, we can solve for r′(q−i) to get

r′(q−i) =
ZZ ′′ − (Z ′)2

−ZZ ′′ + 2(Z ′)2
, (5)

where we have dropped the argument of Z(.). The property r′ < 0 is read-

ily established for any concave function Z, because the nominator is negative

and the denominator is positive. Moreover, r′ > −1. To see this, note that

−(−ZZ ′′+2(Z ′)2) < ZZ ′′− (Z ′)2. This implies also that r(q−i)+ q−i increases

in q−i, i.e., d(r(q−i)+q−i)
dq−i

> 0. Moreover, the fact that for q−i < QW , rc(q−i) <

r(q−i) is also readily established, using Z ′ < 0, Z ′′ ≤ 0 and C ′ > 0 to get a

contradiction for rc(q−i) ≥ r(q−i).
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Equilibrium quantities Individual firms’ Cournot equilibrium quantities

when trade is costly are given by the unique fix point of the equation qC =

rc((n − 1)qC). Aggregate Cournot quantity is denoted as QC ≡ nqC , and we

refer to the ask price A(QC) and the bid price B(QC) as Cournot (ask and bid)

prices. For the case with zero marginal costs, equilibrium quantity qZ is given

by the fix point of the equation qZ = r((n − 1)qZ). Because rc(q) < r(q) for

q < QW , qC < qZ follows.

3.2 The output market subgame

Let Q denote the aggregate stock of market makers and assume that Q is

observed. Recall that for Q ≤ QW , the demand function is price elastic. In

this case ai = A(Q) for all i is the unique Nash equilibrium. To see this, note

first that prices a′i < A(Q) are strictly dominated by the market clearing ask

price ai = A(Q) since by setting a′i, i sells the same quantity as it would by

setting ai but at a lower price. Therefore, the only equilibrium candidates are

prices ai ≥ A(Q). Suppose first that all firms other than i set a−i = A(Q)

and let i contemplate deviation to some ai > A(Q). Because demand is elastic,

increasing price by one percent will result in a reduction of demand by more

than one percent. Therefore, the deviation will not pay, and hence, given

a−i = A(Q), ai = A(Q) is a best response for all i.10 Uniqueness follows once it

is noted that for any other combination of ask prices with ai ≥ A(Q), at least

one player could strictly increase his profit by changing his price.

For Q > QW , there are two possibilities, the exact conditions for either one

to materialize will be derived shortly. The first possibility is that individual

quantities bought are such that the equilibrium is in pure strategies. In this

case, ai = A(Q) ≥ 0 for all i. The second one is that the equilibrium is in

mixed strategies. Let s(x) ≡ A(s(x)+x)
−A′(s(x)+x) denote the Cournot best response of

a firm with zero marginal costs when its competitors sell x and let k be one of

the firms (perhaps the only one) with the largest quantity in stock. As Kreps

and Scheinkman (1983) show, in the mixed strategy equilibrium of this game,

firms randomize over prices no larger than A(s(q−k) + q−k). We will return to

this result below, but for now we take it as granted. Note that for q−k > 0,
10Note that this result holds both for proportional and efficient rationing. Under propor-

tional rationing, the residual demand function for i when all others set a non-market clearing

price a−i is D(a)
D(a−i)−q−i

D(a−i)
for a > a−i. Obviously, the price elasticity of the residual de-

mand function equals the elasticity of the demand function D(a). Under the same conditions
the residual demand function under efficient rationing is D(a) − q−i, the ask price elasticity
of which is D′(a) a

D(a)−q−i
, which is strictly smaller (i.e., greater in absolute terms) than the

elasticity of the demand function D(a).
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A(s(q−k) + q−k) < A(s(0)) ≡ aM , where aM is the price a monopoly without

costs would charge. That is, at aM the price elasticity of demand equals minus

one. Note also that aM ≤ A(QW ).

Given our observations of the behavior on the output market, we can now

prove:

Lemma 1 In any equilibrium, (i) aggregate quantity bought Q does not exceed

QW and (ii) ask prices are market clearing, i.e., ai = A(Q) for all i.

Proof : For aggregate stock Q ≤ QW , the unique equilibrium outcome has just

been shown to be ai = A(Q) for all i. Therefore, (ii) follows as soon as (i) is

shown.

Part (i): Similar to the price setting behavior on the output market, on the

input market bid prices exceeding the capacity clearing price B(Q) are domi-

nated by bi = B(Q) for all i. Therefore, in any equilibrium, for the aggregate

quantity to exceed QW , the market maker who sets the lowest price on the

input market while still buying a positive amount pays a bid price greater than

B(QW ). However, for any aggregate stock Q > QW , the price any seller gets in

the output market equilibrium will be less than A(QW ) ≡ B(QW ). Either there

is a pure strategy equilibrium with ai = A(Q) < B(QW ) or the equilibrium will

be in mixed strategies where the range of prices over which firms randomize

will not exceed aM ≤ B(QW ). Thus, each market maker who trades a positive

amount will make negative profit, which cannot be an equilibrium given the

possibility to make zero profit (e.g., by setting bi = 0).¥

Equilibrium in Stahl’s (1988) model: The case of elastic demand It

is now straightforward to derive the equilibrium when capacity on the input

market is not binding, which is the case analyzed by Stahl (1988). Assume that

there are two firms. For any aggregate quantity not exceeding the Walrasian

quantity, the equilibrium output price will be market clearing. Therefore, if

both firms set the same price on the input market they would share revenue

on the output market. However, either firm has an incentive to slightly overbid

the competitor’s bid price since this discontinuously increases its profits. As in

Bertrand product market competition, the unique equilibrium with two firms

has thus both firms quote the Walrasian price on the input and on the output

market and net zero profits.
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3.3 The input market subgame

We now turn to the analysis of the bid price setting or input market subgame.

We first show that there is a unique Nash equilibrium in the bid price setting

subgame if each market maker has a capacity no greater than the quantity

given by its Cournot best response function for zero costs. In this equilibrium

each i plays the pure strategy bi = B(Q). This establishes that given Cournot

capacities, bi = B(Q) is a Nash equilibrium. Second, we show that there is an-

other region of pure strategy equilibria in which capacity constraints are by and

large irrelevant, and we characterize this region. Third, we determine the ex-

pected equilibrium revenue for the largest firm for those capacity combinations

for which the equilibrium of the bid price setting subgame is in mixed strate-

gies. In particular, we show that the crucial result of Kreps and Scheinkman

(1983) and Boccard and Wauthy (2000, 2004), according to which the largest

firm earns the Stackelberg follower profit in the mixed strategy region, carries

over to the present model.11

3.3.1 Region I of pure strategy equilibria

For Q ≤ QW , an obvious candidate for a pure strategy equilibrium is the

market clearing bid price B(Q). To see whether bi = B(Q) for all i is indeed an

equilibrium, suppose that all firms other than i set b−i = B(Q), and consider

whether or when deviation from bi = B(Q) pays for i. Bid prices above B(Q)

being strictly dominated, we only have to consider downward deviation. As i

sets bi < B(Q), it faces a residual supply of max[S(bi)− q−i, 0]. Since all other

market makers set a bid price not larger than B(Q), it will be the case that

S(bi)− q−i < qi. Therefore, max[S(bi)− q−i, 0] will be the quantity bought by

i when underbidding its competitors. Also note that for S(bi) − q−i > 0 and

b−i ≤ B(Q), aggregate quantity bought will just be S(bi). Since the unique

equilibrium of the ask price setting game is to set ai = A(Q), the equilibrium

price on the output market is a direct function of the smallest bid price for which

residual supply is positive. If all others set b−i = B(Q), it is a function only of

i’s bid price. If bi > B(q−i) ⇔ S(bi) > q−i, then A(Q) = A(S(bi)). Otherwise,

A(Q) = A(q−j), but then the profit of i is zero independently of A(.). Given

that its profit is positive when setting B(Q) whenever Q < QW , the deviation

bi ≤ B(q−i) will not pay. Therefore, we can concentrate on bi > B(q−i). In this

11See also De Francesco (2003).
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case, i’s profit when deviating from B(Q) is

Πi(bi, b−i, q−i) = (A(S(bi))− bi)
(
S(bi)− q−i

)
, (6)

which is what i maximizes over bi when optimally deviating. If we define

x ≡ S(bi)−q−i, we have A(S(bi)) = A(x+q−i) and bi = B(x+q−i). Therefore,

maximizing Πi(bi, b−i, q−i) over bi is equivalent to maximizing

Πi(x, q−i) =
(
A(x + q−i)−B(x + q−i)

)
x = Z(x + q−i)x (7)

over x, whence it becomes clear that the optimal deviation over bi is equivalent

to choosing the optimal quantity under Cournot competition with zero costs.

In other words, the optimal x will be such that x = r(q−i) implying that the

optimal bid price bi is equal to B(r(q−i) + q−i), the Cournot best response bid

price. Note also that this price is the optimal price for a firm who is certain to

be the lowest price bidder on the input market, which is a property that will

be used below.

Having thus established that the optimal deviation of i is to set bi =

B(r(q−i) + q−i) when all others set higher prices, it is now straightforward

to see when such deviation does not pay. Since prices above B(Q) are dom-

inated, it follows that whenever B(r(q−i) + q−i) ≥ B(Q), deviation does not

pay. Because B′ > 0, this implies that whenever qi ≤ r(q−i), setting a price

below the market clearing bid price does not pay for i. The intuition for this

result is pretty clear. If firm i could, it would buy r(q−i), but because this is

more than qi, it cannot buy that much. Therefore, it does not pay for i to set

a price higher than B(Q). Clearly, we therefore have an equilibrium where all

firms set B(Q) if for all firms i, qi ≤ r(q−i).12

The argument establishing uniqueness is analogous to the one of the output

market subgame. Bid prices above B(Q) being strictly dominated, the only

alternative candidates for an equilibrium are bid prices smaller than B(Q).

However, whenever a firm i sets a bid price bi < B(Q), at least one other firm,

say j, will optimally set a price below B(Q) and above bi, so that firm i’s profit

would discontinuously increase by setting a slightly higher price than j does.

Thus, there is no other equilibrium. These findings are summarized as follows:

Lemma 2 For capacities qi ≤ r(q−i) for all i = 1, .., n, there is a unique Nash

equilibrium in the input market subgame, in which all market makers set the

market clearing bid price B(Q).
12Note that this condition is exactly the same that has to hold in Kreps and Scheinkman

(1983) for a pure strategy equilibrium (in their region I).
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Figure 2: Cournot reaction functions and Cournot equilibrium.

Region I in Figure 2 depicts the region of pure strategy equilibria for the case

of two firms and a linear spread function, where qZ denotes the Cournot equi-

librium quantity with zero marginal costs.13

A final note concerns the question for which market maker the constraint

qi ≤ r(q−i) becomes binding first. To answer this question, define m ≡ Q −
qi− qj . Then, the constraints for i and j are qi ≤ r(m+ qj) and qj ≤ r(m+ qi).

Assume that initially qi = qj < r(m + qj) = r(m + qi) and then let qi increase,

while qj is kept fix. Since qi increases by one while r(m + qi) decreases by less

than one in qi, it follows that the constraint becomes first binding for i, who is

now the larger firm. Applying the argument for any two firms, it follows that if

the constraint qi ≤ r(q−i) is not violated for the largest firm, then it is satisfied

for all other firms.

3.3.2 Region II of pure strategy equilibria

There is another region of capacity constraints for which equilibria are in pure

strategies. The intuition is easily grasped if we assume that for two or more

firms qi ≥ QW . Since for these firms capacity constraints are not binding for

any quantity Q ≤ QW , we are back in the world of unconstrained Bertrand

competition. If n > 2, there are multiple, but payoff equivalent equilibria: At
13In this figure and those that follow, linearity merely serves the purpose of simplification.
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least two of the market makers with capacities greater than QW set their bid

equal to B(QW ). The other firms can set any bid price not exceeding B(QW ),

and any market maker buying a positive amount of quantity sets an ask price

equal to A(QW ) in the final stage of the game, and all market makers earn

zero profits. But it is easy to to see that qi ≥ QW for at least two firms is

only a sufficient condition. The complete region II of pure strategy equilibria

is illustrated in Figure 2, where the shaded areas are regions I and II of pure

strategy Nash equilibria (PSNE) and the white area is the region of mixed

strategy equilibria (MSE) of the bid price setting subgame. Formally, region II

of pure strategy equilibria is given as follows:

Lemma 3 If q−i ≥ QW for all i, there is always an equilibrium in which all

firms play pure strategies. In this equilibrium, all firms that buy positive quantity

set B(QW ). All firms make zero profits in any equilibrium.

Proof : Given q−i ≥ QW for all i, if all firms other than i set b−i = B(QW ),

there is no way i can increase its profit by setting a price other than B(QW ).

For bi ≤ B(QW ), i’s profit is zero, while for bi > B(QW ), i’s profit is negative.

Thus, bi = B(QW ) for all i is an equilibrium.

Next, we show that the unique equilibrium outcome is that all firms make

zero profits. Let bk be the lowest bid price set by any of the −i firms for which

residual supply is positive, absent i’s bidding. If bk < B(QW ), the best response

of i will be to set a price lower than B(QW ) but higher than bk. (How much

higher this price will be depends on the capacities and prices set by the other

firms among i’s competitors, but is not material.) Given i’s best response,

k’s profit will discontinuously decrease. Since i’s price is below B(QW ), k can

increase its profit by slightly overbidding i’s price. This race to the top does,

obviously, stop only as the lowest bid price for which the residual supply absent

i’s price setting, bk, equals B(QW ). Thus all firms that buy positive quantity

must set B(QW ). Moreover, all of the firms that buy positive quantity make

zero profit since the equilibrium ask price will be A(QW ) = B(QW ). Trivially,

firms that do not buy any quantity make zero profits. ¥
Note that there may be multiple equilibria. A necessary condition for mul-

tiple equilibria to arise is that in addition to q−i ≥ QW for all i, q−i− qj ≥ QW

holds for some j and i. In this case, j can set or randomize over any bid price

b ≤ B(QW ), provided the aggregate capacity of all firms other than j who set

B(QW ) is at least QW . Because q−i−qj ≥ QW , firm i cannot gain by deviating

from B(QW ) if all other firms but j set B(QW ).
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3.3.3 Region of mixed strategy equilibria

If q−j < QW for at least one j and qk > r(q−k) for at least one k, there is no

pure strategy equilibrium.14 If B(Q) < B(QW ), downward deviation from the

market clearing bid price pays for k. If B(Q) ≥ B(QW ), the only candidate price

at which quantity is traded in a pure strategy equilibrium is B(QW ). However,

if all others set B(QW ), downward deviation pays for j since q−j < QW implies

that j’s residual supply is positive for some bj < B(QW ) and b−j = B(QW ).

When setting bj < B(QW ), j buys therefore a positive quantity on which it

earns a positive spread, while with bj = b−j = B(QW ), its profit is zero.

Determining the expected equilibrium payoffs in the mixed strat-

egy region The existence of an equilibrium for our game is guaranteed by

Dasgupta and Maskin (1986). The equilibrium involves non-degenerate mixed

strategies. Though these mixed equilibrium strategies are hard to compute, it

is possible to derive the expected equilibrium profit or revenue for the largest

firm without completely characterizing these strategies. The expected equilib-

rium revenue is given in Lemma 4, which replicates the key finding of Kreps

and Scheinkman (1983) for market makers facing a concave spread function.

It states that in the mixed strategy equilibrium, the largest firm earns in ex-

pectation no more than it would have earned had it determined its capacity

according to the Cournot best response function with zero costs.

Lemma 4 Let i be one of the largest firms. In the mixed strategy equilibrium,

the expected profit of any of the largest firms is equal to r(q−i)Z(r(q−i) + q−i).

Proof : The proof has three steps. First, it is shown that in equilibrium

at most one firm sets the lowest bid price in the support over which firms

randomize with positive probability. Therefore, there is a firm who is overbid

with probability one when setting this price. In the second step, this fact is

used to determine the expected equilibrium revenue of any such firm. Based

on the indifference property of mixed strategy equilibria, the expected equilib-

rium revenue of such a firm equals the revenue it gets when setting the lowest

price. Third, having determined this revenue, the firm that nets this revenue is

determined.

Step 1: Let Φh(b) be the equilibrium distribution function of firm h, h =

1, .., n. Denote by b the lowest price in the support of any firm. That is,
14Note also that if q−j < QW for at least one j and qk > r(q−k) for at least one k holds,

then q−i < QW and qi > r(q−i) holds also for i, where i is (one of) the largest firms(s).
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b ≡ supb{b | maxh Φh(b) = 0}. Let j be one of the firms whose support in-

cludes b. At most one firm will set this price with positive probability. To

see this, note first that b < min[B(Q), B(QW )]. Otherwise, we would have

b ≥ min[B(Q), B(QW )] implying that we are in a pure strategy Nash equi-

librium since prices above min[B(Q), B(QW )] are strictly dominated. But

downward deviation from min[B(Q), B(QW )] has been shown to pay for the

largest firm, say k, because qk > r(q−k), implying that k must net more than

Z(min[Q,QW ])qk in equilibrium. This implies then that j buys less than qj

when setting b. Assume j sets b with positive probability. Then, if another firm

set b with positive probability, j could strictly increase its expected profit by

setting a slightly higher price. This leaves both aggregate quantity bought and

thus the spread j gets almost unaffected, but it discontinuously increases the

quantity traded by j and thus increases its expected profit.

Step 2: There is a firm who is overbid with probability one when setting

b. Either it sets b with positive probability. Then, no other firm sets b with

positive probability, which implies that all other firms set higher prices with

probability one. Or no firm sets b with positive probability. Then, obviously

any firm whose support includes b will be overbid with probability one when

setting b. Therefore, b must maximize the profit for any such firm under the

condition that this firm is overbid with probability one when setting b. That

is, for any firm, say j, who is overbid with probability one when setting b,

b = arg maxb(A(S(b)) − b)(S(b) − q−j). Otherwise, j could not be indifferent

between setting b and setting arg maxb(A(S(b))−b)(S(b)−q−j), but would prefer

the latter. As we saw above in Lemma 2, maximizing (A(S(b))− b)(S(b)− q−j)

over b is equivalent to maximizing Z(r+ q−j)r over r, which yields the Cournot

reaction function r(q−j), implying b = B(r(q−j) + q−j). Moreover, by the

indifference property of mixed strategy equilibria, firm j’s expected equilibrium

profit will be R(q−j) ≡ Z(r(q−j)+q−j)r(q−j), which is the Stackelberg follower

profit. Exactly like in Kreps and Scheinkman (1983) and Boccard and Wauthy

(2000, 2004), there is thus a firm j earning R(q−j). The final thing to be shown

is that it is (one of) the largest firm(s).

Step 3: Note that the problem is more complicated than in Kreps

and Scheinkman because a firm’s expected profit when setting a higher price

than b will also depend on other firms’ expected bid prices, since these influ-

ence aggregate quantity bought and thus the equilibrium ask price the firm

gets. Therefore, no direct equivalent to their calculations in Lemma 5 (d) and

(e) can be applied.
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So as to see that j is one of the largest firms, note first that for any j to be a

candidate for setting b, qj > r(q−j) is required for otherwise B(r(q−j)+ q−j) ≥
B(min[Q,QW ]). Second, for any firm j who is among the candidates for earning

revenue R(q−j), there is a bid price bj , b < bj < min[B(Q), B(QW )] such that j

would never overbid bj if all other firms set bj with certainty. That is, for every

firm j there is a ”security level bid price” bj implicitly defined by

Z(S(bj)) ≡
R(q−j)

min[S(bj), qj ]
. (8)

Note that because in the mixed strategy region R(q−j) > Z(min[Q, QW ])qj ,

it follows that Z(S(bj)) > Z(min[Q,QW ]) ⇔ bj < min[B(Q), B(QW )]. Next,

define zi ≡ Z(S(bi)) and bear in mind that zi > zj ⇔ bi < bj .

The crucial argument to be made is the following. So as to simplify the

illustration, assume that bi < mink 6=i{bk}, so that i is the single firm with the

lowest security level bid price. Then, i is the least aggressive firm and will earn

R(q−i) and all other firms will earn more than R(q−k), k 6= i. The reason for

this is that all −i can set bi (or a slightly higher price) and be sure not to be

overbid by i. But since bi < bk, any k 6= i earns more than R(q−k). So as to

find out which firm i has the lowest bi, we have to determine the dependence

of zi on qi and on q−i. Obviously, for qi > S(bi), ∂zi
∂qi

= 0. Otherwise, we have

∂zi

∂qi

= −R(q−i)
q2
i

= −r(q−i)Z(r(q−i) + q−i)
q2
i

< 0 (9)

∂zi

∂q−i

=
R′(q−i)

qi

=
r(q−i)Z ′(r(q−i) + q−i)

qi

< 0. (10)

The inequality in (9) follows immediately for R(q−i) > 0. As to the inequality

in (10), drop arguments and note that

R′(q−i) = r′Z + rZ ′(r′ + 1) = r′(Z + rZ ′) + rZ ′ = rZ ′ < 0, (11)

where the last equality is due to the fact that by definition of a reaction function

the term in parentheses is zero.

For any two firms with qi = qh, we have zi = zh. The question is thus

whether zi decreases more than zh when qi increases while qh is kept constant.15

Put differently, the crucial question is whether zi decreases more in qi than

in q−i. But for qi > r(q−i) (which is a condition that must hold for one i

for firms to be in the mixed strategy region in the first place), the inequality
∂zi
∂qi

≥ ∂zi
∂q−i

holds. To see that this is true, note first that quite trivially for r = 0,

15For any k 6= i,
∂q−i

∂qk
= 1 implying ∂zi

∂qk
= ∂zi

∂q−i
.
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∂zi
∂qi

≥ ∂zi
∂q−i

holds with equality. Second, note that qi > r(q−i) is equivalent to

0 > qiZ
′ (r(q−i) + q−i

)
+Z

(
r(q−i) + q−i

) ⇔ Z′
qi

< − Z
q2

i
. For r > 0 (which holds

at least for one i because q−i < QW for one i) this implies − rZ
q2

i
≡ ∂zi

∂qi
> ∂zi

∂q−i
≡

rZ′
qi

. Since ∂zi
∂qi

> ∂zi
∂q−i

implies ∂bi
∂qi

< ∂bi
∂q−i

, it follows that bi < bj if and only if

qi > qj . Applying the argument for any i and j, it follows that zi ∈ maxk{zk}
if and only if qi ∈ maxk{qk}. Thus, i earns R(q−i) if and only if qi ∈ maxk{qk}.
¥

There is a fairly clear intuition for this result. Smaller firms are more

aggressive in the bid price subgame because they have more to lose from low

bid prices and, by the same token, more to win from high bid prices. To see

this, note that when a small firm is overbid by a large firm, the small firm incurs

the risk of not buying anything because, ultimately, the large firm may take

the whole market. Note that this risk does not exist for the largest firm, say i,

because its profit is positive even if it is overbid by small firms, which cannot

take the entire market: Even at the lowest bid price b ≡ B(r(q−i)+q−i), i buys

a positive quantity, whereas there is no guarantee that any of its competitors

gets to buy anything when being overbid while setting prices close to b since qi

might be larger than S(b) = r(q−i)+q−i. As a consequence of this vulnerability

from low prices, smaller firms are more aggressive, i.e., are willing to overbid

higher prices than larger firms. As large firms incur the cost of high bid and low

ask prices on larger quantities, they have a greater dislike for high bid prices.

Thus, they are not willing to engage in high bid price wars. Consequently,

all small firms can earn more than their Stackelberg follower profit. In the

terminology of Fudenberg and Tirole (1984), large firms are thus fat cats while

small firms are lean and hungry.

It should also be noted that the reasoning to determine expected equilib-

rium revenue for capacity constrained product market competition is completely

analogous. Deneckere and Kovenock (1992, 1996) were the first to use ideas

along these lines to derive expected equilibrium revenue for product market

competition. There, of course, it is the firm with the higher ”security level

price” p
i

that nets the Stackelberg follower profit. Moreover, in their setting,

it is also quite easy to see that it is the lower bound of prices to be set be-

cause under efficient rationing on a product market a firm’s profit depends on

its competitor’s expected price only because it determines the probability of

being the lower or higher price bidder, but otherwise it is independent of the

competitor’s expected price.
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3.4 Equilibrium of the full game

Lemma 2 establishes that a necessary condition for Cournot behavior to be

replicated on the equilibrium path is met: Given Cournot capacities, market

makers set Cournot prices. Lemma 4 says that the profit of the largest market

maker, say i, in the mixed strategy region is equal to its Stackelberg follower

profit, given the aggregate capacity of all other market makers. If all other

market makers have set Cournot capacities, the Stackelberg follower profit is

equal to the Cournot profit. Hence, if all others set Cournot capacities, then

unilateral deviation does not pay even if capacity is costless, which proves the

first part of

Proposition 1 There exists a subgame perfect equilibrium outcome with Cournot

actions. If capacity is costly, the Cournot outcome is the unique subgame perfect

equilibrium outcome.

Uniqueness If capacities are costless, then for n ≥ 3 there is always a sub-

game perfect equilibrium in which the aggregate capacities of any firm’s com-

petitors are larger than the Walrasian quantity. On the equilibrium path, prices

for which quantities are traded are equal to the Walrasian price. Equilibrium

profits are zero for all firms. With n = 2, this is not an outcome of a sub-

game perfect equilibrium because any of the two firms could make positive

profits by unilaterally deviating and setting a smaller capacity.16 In addition,

as pointed out by Kreps and Scheinkman (1983), there may also be subgame

perfect equilibria in which one firm sets a large capacity and subsequently a

mixed strategy equilibrium ensues in the price setting subgame.17 However, if

capacity is costly, then both types of these equilibria disappear. Setting aggre-

gate capacity equal to the Walrasian quantity will no longer be an equilibrium

outcome because revenue is zero while capacity is costly. The equilibrium with

the mixed strategies on the equilibrium path breaks down because a firm is no

longer indifferent between setting rc(.) and a larger capacity, where rc(.) is the

Cournot best response function associated with the cost function C(.) defined

in (3). For any firm, its best response being uniquely given by rc(.), there are
16As noted by Kreps and Scheinkman (1983, p. 337) for product market competition.
17The basic reason for this is that with costless capacity there are multiple best responses for

a firm whose competitor has a capacity x < r(x). Either it sets capacity r(x) or it sets a large
capacity, e.g., larger than QW . The firm will be indifferent because capacity is costless and
therefore it expects in both cases to earn the Stackelberg follower profit. If the firm responds
with r(x), then the Cournot equilibrium emerges, but if it sets a sufficiently large capacity,
then the best response by the other firm will be to set l∗ ≡ arg maxl Z(r(l) + l). Thus, e.g.,
the capacities (q1 = l∗, q2 = 2QW ) will be part of a perfect equilibrium strategy profile.
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no other subgame perfect equilibrium outcomes if capacities are costly.

Example Consider the following example. Assume that the inverse demand

is A(Q) = 1 − Q and the inverse supply is B(Q) = Q, which implies that the

spread is Z(Q) = 1 − 2Q and the Walrasian quantity is QW = 1
2 . Note that

εa(QW ) = −1 and A′′ = Z ′′ ≤ 0. Thus the above assumptions are satisfied.

Assume also that the constant unit cost of capacity is c ∈ (0, 1) and that the

number of market makers is n ≥ 1. Then it follows from Proposition 1 that the

unique subgame perfect equilibrium outcome is qi = 1−c
2

1
n+1 , bi = 1−c

2
n

n+1 and

ai = 1− 1−c
2

n
n+1 for all i.

3.5 Fix cost and entry

So far, the number n of active market makers has been taken as exogenous.

However, assuming that market entry is possible at a positive fix cost f and that

entry takes place prior to capacity setting, the number of active market makers

can be determined endogenously. Since there is a negative relationship between

the number of active market makers and profits, the relationship between the

equilibrium number of active market makers, n∗, and fix cost f will also be

negative.

Two comments are in order. First, if physical capacity is a necessary condi-

tion for firms to be able to engage in price competition, legal and other barriers

to build capacity will have exactly the same effect as barriers to entry. To

the extent that government policy affects the ease with which capacity is built,

e.g., by shortening or lengthening the required legal procedures, policy has an

effect on the size of fix costs of entry since there is little doubt that these le-

gal measures will be used by incumbents to fight or at least delay entry by a

competitor.18

Second, the result that lowering the fix cost of entry and thereby increasing

the equilibrium number of market makers unambiguously increases welfare is

due to the fact that there is no cost of switching from one market maker to

another and that customers of market makers have measure zero. This is in

contrast to Ellison and Fudenberg (2003), where equilibria with two competing

market places can be inefficient because both buyers and sellers prefer markets

where there are more agents of the opposite type. Specifically, in stage 1 of

the game Ellison and Fudenberg analyze a finite number of buyers and sellers
18A recent example comes from Switzerland, where most legal objections to the new stores

Aldi, a German retailer entering the Swiss market, wants to build are made by local competi-
tors.
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simultaneously decide to join one of two market places, and in stage 2 a market

game ensues at the place they have joined, where the equilibrium price within a

market arises, e.g., from competing market makers. The market makers in our

model thus correspond to the competing market makers at a given market place

in their model. Note that as the number of market makers becomes large, the

zero measure assumption for individual producers or consumers may become

harder to justify in our model since a consumer or a producer becomes relatively

large compared to the size of a market maker. Consequently, fragmentation

among market makers may give rise to a coordination problem (at least in the

game with simultaneous moves analyzed below) similar to the one analyzed by

Ellison and Fudenberg with two market places and a finite number of buyers

and sellers.

4 Extensions

In this section, we deal with three extensions of the model, all of which show

that the above results are fairly robust. We first introduce forward contracts

and show that the basic results from the previous section carry over. Then

we analyze the basic model of section 2 with the modification that demand is

inelastic for some quantities smaller than the Walrasian one. Though a definite

answer is beyond the scope of the present paper, we are able to show that a

small deviation from the Cournot capacity does not pay if all others set the

Cournot capacity. This suggests (but of course it does not prove) that Cournot

is an equilibrium outcome even if demand is inelastic. Finally, we show that

for the case where market makers simultaneously set ask and bid prices the

key results from above are still valid. In all three cases, the key observation

is that in the region with mixed strategy equilibria the largest firm nets the

Stackelberg follower profit.

4.1 Forward contracts

As in Stahl (1988), introducing forward contracts amounts to a reversion of

stages 2 and 3. The modified time structure with forward contracts is as follows.

As before in stage 1, market makers simultaneously set capacities. In stage 2,

they sell forward contracts to consumers, entitling each consumer with the right

to get one unit of the good at the specified ask price. In stage 3, after forward

contracts are sold, market makers buy the amount of the good on the input

market necessary to fulfill the obligation arising from the volume of forward

contracts sold. Following Stahl (1988, pp. 196-7), we assume that the penalty
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for default is sufficiently severe to deter any default in equilibrium. In addition,

the legal proceedings are assumed to be lengthy (and time consuming) enough

so that consumers involved in it cannot buy from another market maker while

the proceeding lasts. This rules out that a market maker can gain additional

consumers by forcing another one into default. Note that these ”no default in

equilibrium” assumptions imply that whatever volume of forward contracts is

sold, market makers will set the market clearing bid price on the input market.

As before, we assume that rationing on the output market is efficient.

Equilibrium in Stahl’s (1988) model: The case of forward contracts

Absent binding capacity constraints that are set ex ante, the equilibrium out-

come in Stahl’s model with forward is Walrasian regardless of whether demand

is elastic or inelastic at the Walrasian price. Whenever a firm tries to sell for-

ward contracts at a price above the Walrasian price, it will be undercut by a

competitor. Consequently, the equilibrium condition that both (or all) firms net

zero profits requires that all firms that trade a positive volume sell at the Wal-

rasian price. Due the the severe default penalty, all firms fulfill their obligations

to sell, and therefore buy at the Walrasian price.

Let us now return to our game, in which capacity constraints are set first.

Since in stage 3 all market makers set market clearing bid prices, we can begin

the analysis directly in stage 2. Given capacities Q < QW , the profit for market

maker i when setting ai ≥ A(Q) while all other market makers set the market

clearing ask price a−i = A(Q) is

Πi(ai, a−i) = (ai −B(D(ai)))(D(ai)− q−i). (12)

When setting ai ≥ A(Q), aggregate quantity demanded is Q = D(ai) ≤
Q. Therefore, the market clearing bid price on the input market will be

B(Q) = B(D(ai)) implying that the spread i earns on its quantity traded

is ai − B(D(ai)). Finally, since ai ≥ a−i = A(Q), quantity traded by i will be

r ≡ D(ai) − q−i ≤ qi. Therefore, the maximization problem of i is equivalent

to that of maximizing the profit of a market maker i who faces market clear-

ing prices on both sides and trades quantity r when all others trade aggregate

quantity q−i. That is,

max
r

Πi(r, a−i) = (A(r + q−i)−B(r + q−i))r ≡ Z(r + q−i)r, (13)

from where it becomes apparent that this problem is identical to the one pre-

viously studied. In particular, the region of pure strategy equilibria (i.e., the
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region where all market makers set the capacity clearing ask price A(Q)) will be

given by capacities qi such that qi ≤ r(q−i) for all i. Moreover, it follows that

in the region of capacities with mixed strategies, the largest firm, say k, will

have an expected profit of Z(r(q−k) + q−k)r(q−k). Thus, we have established

the following corollary of Proposition 1:

Corollary 1 When market makers sell forward contracts, Cournot actions are

a subgame perfect equilibrium outcome. If capacities are costly, the Cournot

outcome is the unique subgame perfect equilibrium outcome.

Note that it is not necessary to assume that demand is price elastic for any

Q ≤ QW for this result to go through. Recall that in the model of the previ-

ous section, this assumption was used to ensure market clearing prices in the

output market in the last stage. But with forward contracts and sufficiently

severe punishment for default, bid prices will always be market clearing, be

the equilibrium on the output market (i.e., in stage 2) in pure or in mixed

strategies. Therefore, the results carry over even if demand becomes inelastic

for some quantities traded smaller than the Walrasian one. This is in con-

trast to Stahl’s findings, according to which with two market makers, zero costs

and elastic demand the equilibrium outcome is Walrasian in the absence of

capacity constraints with and without forward contracts. If demand is inelas-

tic in his model, the equilibrium outcome with forward contracts is Walrasian

for two market makers with zero costs. The contrast is therefore particularly

stark with forward contracts: Without capacity constraints, price competition

is Bertrand-like and yields the Walrasian equilibrium outcome, with costly ca-

pacity constraints, the equilibrium outcome is Cournot, regardless of whether

demand is elastic or inelastic.

4.2 Inelastic demand

Another natural question is whether the above results without forward contracts

carry over to a model where the demand function is inelastic for some quantity

traded smaller than the Walrasian one. This question is also motivated by the

observation of Stahl (1988) that without capacity constraints the unique sub-

game perfect equilibrium outcome is non-Walrasian and involves waste because

the winner on the input market throws away some of the quantity bought, as

will be shown shortly.

However, our model with inelastic demand gives rise to a region of capacity

constraints where firms will randomize on the input market taking into account
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that they will, eventually, also randomize on the output market. As the equilib-

rium in such a model has not yet been derived, a definite and conclusive answer

to the question cannot be given. Nevertheless, based on the previous analysis

it is easy to show that small deviations from Cournot capacity do not pay if

all other firms set Cournot capacities. This result strongly suggests that the

previous results would carry over to a game where demand is inelastic.

We make the following assumptions. There are no forward contracts, and

the timing is as in the basic model outlined in section 2. All previous actions

are observed, and in case rationing occurs, the efficient rationing rule applies.

As before, we assume A′ < 0, B(0) ≥ 0, A(0) − B(0) > C ′(0) and B′ > 0.

In addition, we now assume that A′′(Q) ≤ 0 for Q ≤ QW as well. These

assumptions imply that the spread function Z(Q) ≡ A(Q) − B(Q) has the

properties Z(Q) < A(Q), Z ′(Q) < A′(Q) and Z ′′(Q) ≤ 0. The Walrasian

quantity QW is such that A(QW ) = B(QW ). The main modification is that the

ask price elasticity of demand at QW is now assumed to be greater than minus

one, i.e., εa(QW ) ≡ A(QW )
A′(QW )QW > −1.

Equilibrium in Stahl’s (1988) model: The case of inelastic demand

Assume that the winner on the input market in case of tied bids is determined

by flipping a fair coin and that the winner takes over the whole supply.19 As

either bidder can gain by slightly overbidding its competitor as long as they

expect positive profits, an equilibrium condition is that both make zero profits.

Since the monopoly revenue on the output market exceeds the revenue at the

Walrasian price, it follows that both must set a bid price above the Walrasian

price on the input market. Consequently, quantity bought by the winner will

be larger than QW , whereas the quantity sold on the output market will be

the monopoly quantity, which is smaller than QW . Hence, there is waste in

equilibrium,20 as illustrated in Figure 3. Quantity bought by the winner on

the input market is Q′, which is such that B(Q′)Q′ = ΠM ≡ aMQM , where

ΠM is the profit of a monopoly seller with zero costs who sells QM at the price

aM . Since εa(QW ) > −1 ⇔ ΠM > A(QW )QW , we have B(Q′) > B(QW ) and

Q′ > QW > QM , so that there is waste in equilibrium of the size Q′−QM > 0.

19Without this somewhat peculiar tie-breaking rule, the game has no equilibrium; see Stahl
(1988, p.195).

20Were a rigorous environmental regulation in place that forbid and effectively deterred
waste, then the equilibrium outcome would be Walrasian even with inelastic demand. Such
a strict environmental regulation would have exactly the same effect as the severe default
penalty in the presence of forward contracts.
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Figure 3: Stahl’s (1988) model with inelastic demand and equilibrium waste.

Let us now return to our model and recall that the Cournot best response

function for a firm facing the spread Z(.) with zero marginal cost is r(x) ≡
Z(r(x)+x)
−Z′(r(x)+x) , where x is the quantity traded by all other firms and that 0 > r′ >
−1. Note also that r(0) is the quantity traded by a monopolistic market maker.

Furthermore, for x ≥ QW , r(x) = 0. As above, we let s(x) ≡ A(s(x)+x)
−A′(s(x)+x) be the

Cournot reaction function of a firm with zero marginal cost facing the demand

A(.) when all other firms supply quantity x. Since A(.) is weakly concave, 0 >

s′ > −1 follows. Note that s(0) < QW is the quantity sold by a monopoly facing

zero costs. We know that s(x) > r(x) for any x ≤ QW . To see this, assume to

the contrary s(x) ≤ r(x), implying A(s(x)+x)
−A′(s(x)+x) ≤

Z(r(x)+x)
−Z′(r(x)+x) . But since Z(Q) <

A(Q), Z ′(Q) < A′(Q) < 0 and Z ′′ ≤ 0, this yields a contradiction. Moreover,

the Cournot equilibrium quantities for firms facing the spread function Z(.) and

the ask price function A(.) with zero marginal costs, respectively, are given by

qZ ≡ r((n − 1)qZ) and qA ≡ s((n − 1)qA). That these quantities are unique

follows by noting that x < r((n − 1)x) and x < s((n − 1)x) for x = 0. Since

both right-hand sides decrease in x while both left-hand sides increase in x,

there is a unique fix point. Finally, qZ < qA. To see this, plug qZ into s(.).

Since s(x) > r(x) holds, s((n − 1)qZ) > qZ follows. Figure 4 provides an

illustration. The functions r(.) and s(.) are the Cournot reaction functions and

the quantities qZ and qA denote the corresponding equilibrium quantities for the

spread function Z and the ask price function A.21 Given q1 = qZ , equilibrium
21As before, linearity is assumed to simplify the illustration.
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Figure 4: The model with inelastic demand.

ask prices will be market clearing for any q2 ≤ x. Note also that s(0) < QW ,

which implies that demand is inelastic for some Q < QW .

These preliminaries are almost all we need to establish that small deviations

from Cournot equilibrium capacities qZ do not pay. Let every firm i set the

Cournot capacity qi = qZ , i = 1, .., n. Since qZ < qA, it follows that setting

market clearing prices is an equilibrium outcome of the subsequent subgames.

Next let firm j consider deviating when all −j set qZ . As usual, we only need

to consider upward deviations, since for smaller capacities firms will set market

clearing prices in the following subgames. A sufficient condition for the output

market equilibrium to be in pure strategies is that qi ≤ s(q−i) for all i. Recall

that if the constraint is satisfied for the largest firm, then it is satisfied for any

other. Define x ≡ s((n−1)qZ +x). That is, x is such that if the largest firm has

stocks not exceeding x, while all others have stocks no greater than qZ , then in

the output market equilibrium all firms will set the market clearing price. Note

that because s′ < 0 and qZ < qA, x > qA. Therefore, if j deviates and sets a

capacity qj ∈ [qZ , x], the deviation will not pay. That is:
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Proposition 2 Let x ≡ s((n − 1)qZ + x) and assume qj ∈ [qZ , x] while all

−j set qZ . Then the expected equilibrium profit of j if capacity is costless is

Z(r((n−1)qZ)+ (n−1)qZ)r((n−1)qZ) ≤ Z(nqZ)qZ . If capacity is costly, then

j’s expected profit when deviating to qj ≤ x is strictly smaller.

Proof : Given market clearing prices on the output market, it has been shown

that deviation does not pay, since in the (possibly mixed strategy) equilibrium

of the input market, the deviating firm will earn the Stackelberg follower profit.

But for qj ≤ x and qk = qZ for all k 6= j, qi ≤ s(q−i) for all i. Therefore,

the equilibrium ask price will be market clearing and deviation will not pay.

If capacity is costly, costs of the excess capacity have to be borne, making

expected equilibrium profits strictly smaller. ¥
An example may be illustrative. Assume zero costs and let A(Q) = 1 − Q

and B(Q) = Q
2 , so that Z(Q) = 1− 3

2Q, QW = 2
3 , s(x) = 1

2− 1
2x, r(x) = 1

3− 1
2x,

qA = 1
n+1 and qZ = 2

3
1

n+1 . In this case, x = 1
3− n−1

n+1
2
9 . Among other things, this

means that for n ≥ 7, (n− 1)qZ + x ≥ QW . That is, for more than seven firms

a deviation so large that aggregate capacity exceeds the Walrasian quantity

does not pay. It thus seems very likely that any larger deviation would not pay

either.

4.3 Simultaneous ask and bid price setting

To complete, we address the question what happens if market makers simul-

taneously set ask and bid prices. For that purpose, we assume again that the

demand function is price elastic for any Q ≤ QW , and the time structure is as

follows. In stage 1, market makers simultaneously set capacity constraints qi,

i = 1, .., n. In stage 2, having observed the capacity of all competitors, they

simultaneously set a pair of bid and ask prices (ai, bi), i = 1, .., n. These prices

are such that a market maker is obliged to buy up to its capacity and to pay

bi per unit supplied. The demand for a market maker can exceed its stock. In

this case, the market maker is obliged to sell its stock at the ask price set. On

both sides of the market, the efficient rationing rule applies.

We are now going to show that under these conditions, Cournot actions are

a subgame perfect equilibrium outcome of the game. We first prove that the

regions of pure strategy equilibria are identical with the game with sequential

price setting.

Lemma 5 If qi ≤ r(q−i) for all i, bi = B(Q) and ai = A(Q) is the unique pure

strategy equilibrium of the simultaneous price setting subgame. If q−i ≥ QW for
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all i, all market makers earn zero revenue. Those who trade positive quantities

set ai = bi = A(QW ) = B(QW ).

Proof : If all −i set market clearing prices, then the optimal deviation of

i is ai = A(r(q−i) + q−i) and bi = B(r(q−i) + q−i). For qi < r(q−i), though,

A(r(q−i)+q−i) < A(Q) and B(r(q−i)+q−i) > B(Q). These prices being domi-

nated by setting the market clearing prices, deviation does not pay. Uniqueness

of this equilibrium follows along the previous lines. If q−i ≥ QW for all i, capac-

ity constraints are not binding for any market maker and the Bertrand argument

applies. ¥
However, if q−i < QW for at least one i and qj > r(q−j) for at least one j,

then there is no pure strategy equilibrium. If B(Q) < B(QW ), deviation from

setting (A(Q), B(Q)) pays at least for j. If B(Q) ≥ B(QW ), then deviation

from setting (A(QW ), B(QW )) pays at least for i. Since no other pair of prices

can be a pure strategy equilibrium, it follows that there is no pure strategy

equilibrium. Nevertheless, arguments by Dasgupta and Maskin (1986) can be

used to show that an equilibrium exists. We now establish the property of this

mixed strategy equilibrium that is key for our purpose:

Lemma 6 Let i be (one of the largest) firms when capacities are such that there

is no pure strategy equilibrium. Then i’s expected revenue in the mixed strategy

equilibrium is R(q−i) ≡ r(q−i)Z(r(q−i) + q−i) .

Proof : The proof is based on a series of claims. Let a and b denote the

upper and lower bound of the support of ask and bid prices in the mixed strategy

equilibrium.

Claim 1: b and a can be set at most by one firm with positive probability

in equilibrium. Proof: Suppose not. Then, either of these firms could strictly

increase its expected profit by setting a slightly higher bid or slightly lower

ask price with positive probability instead. This would increase its expected

quantity traded while leaving the spread it earns largely unaffected, thereby

increasing its expected profit.

Claim 2: a = A(S(b)). Proof: Since bid prices b > B(Q) are dominated,

aggregate quantity bought will be weakly larger than S(b) implying that the

market clearing ask price will be weakly smaller than A(S(b)). Since by claim

1 there is a firm that is underbid with probability one when setting a, a must

maximize this firm’s expected profit, conditional on being underbid with prob-

ability one on the output market. Since aggregate stock is weakly larger than

S(b) and because demand is price elastic, a ≤ A(S(b)). Now consider a firm
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who is overbid with probability one when setting b. In this case, its quantity

bought can be zero in case the capacities of all other firms are larger than S(b).

In this case, though, the ask price it sets is immaterial. In the other case,

its quantity bought is positive, and A(S(b)) is the market clearing and profit

maximizing for this firm. Thus, a = A(S(b)).

Claim 3: Let i be one of the firms who is overbid with probability one when

setting b. Then, b = B(r(q−i) + q−i) and a = A(r(q−i) + q−i). Proof: As soon

as b = B(r(q−i) + q−i) is shown, a = A(r(q−i) + q−i) follows from claim 2. But

b = B(r(q−i) + q−i) is the profit maximizing bid price of firm i when it faces a

market clearing ask price. Therefore, the claim is proved.

Claim 4: Firm i is (one of the) largest firm(s). Proof: Any smaller firm,

say j, could set bi (as defined in the proof of Lemma 4) and ai ≡ A(S(bi)),

thereby making more profit than R(q−j), while i would make less profit by

slightly overbidding bj = bi on the input and slightly underbidding aj = ai on

the output market. ¥
From Lemma 6 follows:

Proposition 3 When ask and bid prices are set simultaneously, Cournot ac-

tions are a subgame perfect equilibrium outcome. If capacities are costly, the

Cournot outcome is the unique subgame perfect equilibrium outcome.

Proof : Given that all other market makers have set Cournot capacities, unilat-

eral deviation does not pay. If a firm sets a smaller capacity, equilibrium prices

will be market clearing, and given market clearing prices, the best response is

setting the Cournot capacity. When increasing capacity, the price setting equi-

librium will eventually be in mixed strategies, in which case the largest firm

earns the Stackelberg follower profit. Uniqueness for costly capacity follows

from the fact that for any firm, conditional on being the largest firm, its best

response given capacity x of other firms is uniquely given by rc(x). ¥

5 Conclusions

The question how and under what conditions a (neoclassical) market equilib-

rium emerges in a self-organized market is an important issue that has only

recently become the focus of models with endogenous market making. A theme

that prevails in these models is that two market makers are often enough for

perfect competition if prices are public signals. The reason for this is that price

competition is of the Bertrand-like winner-takes-all kind and thus yields the

Walrasian outcome. The downside to this seemingly competitive result is, of
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course, that there will never be competition between market makers if there is

a positive fix cost of entry for market making.

Given that the outcome is either that market making is perfectly compet-

itive or monopolistic, it is natural to ask whether it is possible and plausible

that there be a more gradual transition from monopoly to perfect competition.

This is a question that bears importance beyond theory since policy prescrip-

tions based on models of market making will clearly depend on whether or not

this is the case. The present paper has addressed this question by emphasizing

the role of capacity constraints market makers face. Apart from the fact that

capacity constraints are obviously important for many market makers, our ap-

proach is motivated by the literature on capacity constraints in product market

competition. This literature has shown that if capacity constraints are set and

observed prior to price setting, price competition is substantially weakened.

Though the literature dates back to Edgeworth, probably the most prominent

and influential contribution has been made by Kreps and Scheinkman (1983).

They showed that under fairly general assumptions on the demand function the

equilibrium outcome is Cournot if rationing is efficient. Boccard and Wauthy

(2000, 2004) have recently extended this model and shown that Cournot is the

unique subgame perfect equilibrium for any number of firms. We have shown

that these results carry over to market making under quite a wide range of set-

tings. In particular, if capacities are costly and rationing is efficient the unique

subgame perfect equilibrium outcome is Cournot if demand is price elastic, in-

dependent of whether bid prices are set first or ask prices are set first or bid

and ask prices are set simultaneously.

To the best of our knowledge, this paper is the first to combine capacity

constrained price competition and market making when capacities are set ex

ante.22 As the key results of Kreps and Scheinkman (1983) carry over to market

making and to any number of firms, one conclusion from the present study

is that their results are fairly robust in these respects. A more important

lesson, though, is that capacity constraints matter for models of market making.

Consequently, the Bertrand-Walras outcome should not be taken for granted

for market making, but rather be seen as an exception that occurs only if

costly capacity constraints are either not present or naturally larger than the

Walrasian quantity.

Finally, capacity constraints and market making may be helpful in under-
22A qualification concerns the very recent paper by Ju et al. (2004), who introduce oligopolis-

tic competition between market makers in a model à la Rust and Hall (2003). However, Ju et
al. do not consider mixed strategies.
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standing observed asymmetries in price adjustments. For instance, Peltzman

(2000) finds that consumer prices typically increase after positive cost shocks

for intermediate products, but do not decrease after negative cost shocks. As

Peltzman notes, this finding is poorly explained by available theories. However,

physical capacity constraints that are set prior to the realizations of the cost

shocks provide a natural explanation: As a positive cost shock corresponds to

an upward shift in the supply function market makers face, their capacity con-

straints eventually cease to be binding after such a cost increase. Therefore,

in equilibrium aggregate quantity traded will be smaller than aggregate capac-

ity, and thus the equilibrium output price will increase. On the other hand,

a negative cost shock shifts the supply function downward. Consequently, the

capacity constraints will become binding, so that aggregate quantity traded

will not increase and, by the same logic, output price will not decrease. Hence,

output prices adjust in an asymmetric way.
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