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The Role of Sectoral Shifts in the Great

Moderation∗

Daniel Burren†

January 17, 2008

Abstract

In this paper, I study the drop of real GDP volatility which has

been observed in the United States during the postwar period.

This paper thoroughly estimates how much sectoral shifts con-

tributed to this phenomenon called the Great Moderation.

In a short section, Stock and Watson (2003) find that this con-

tribution is negligible, however, their data is disaggregated only up

to 10 sectors. Blanchard and Simon (2001) come to the same result.

Using a new estimation method and more disaggregated data, I find

that sectoral shifts contributed between 15% and 30% to the great

moderation. Moreover, I find that if in the year 1949 sectoral shares

had been equal to what they were in 2005, then the conditional and

unconditional standard deviation of GDP growth would have been, on

average, 20-25% lower in the postwar period. Finally, I find that the

shift out of durable goods production has significantly stabilized real

GDP growth.

As a methodological contribution, I show how to use the particle fil-

ter to estimate latent covariance matrices when they follow a Wishart

autoregressive process of order one.

∗I thank Klaus Neusser, Philippe Bacchetta, Bo E. Honoré, Gregor Bäurle and semi-
nar participants from the University of Bern and the Study Center Gerzensee for useful
comments. The usual disclaimer applies.

†University of Bern and Study Center Gerzensee, danielburren@gmail.com
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I use this in order to get, for each observation period, an estima-

tion of the covariance matrix of the sectoral growth rates. Since real

GDP growth is the sum of these sectoral growth rates weighted by

the sectoral shares, it is then straightforward to use these covariance

matrices to express the conditional variance of GDP growth in each

period as a function of sectoral shares. Computing the unconditional

variance of GDP growth as a function of sectoral shares is a bit more

involved, but also quite easy using Monte Carlo simulations.

My methodology to estimate covariance matrices is preferable to

alternatives like estimating a multivariate GARCH model or using

a Nadaraya-Watson estimator for the following reasons: The multi-

variate GARCH model has undesirable properties for the Monte Carlo

simulations and involves estimating a large number of parameters.

The Nadaraya-Watson estimator, on the other hand, does not guar-

antee to give positive definite covariance matrices due to the limited

number of observations available for estimating the relatively big co-

variance matrices.

Keywords: Great moderation, Sectoral Shifts, Stochastic Volatility, Wishart
Autoregressive Process, Particle Filter, ARCH-GARCH, Bayesian Estima-
tion.

JEL-Classification: C11, C32, E32.
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1 Introduction

In this paper, I study the drop of real GDP volatility which has been observed

in the United States during the postwar period.

There is a rich body of competing explanations for this phenomenon called

the Great Moderation. The contribution of this paper is to thoroughly assess

the part of the Great Modration which can be attributed to sectoral shifts.

In a short section, Stock and Watson (2003) estimate that this contribu-

tion is negligible, however, their data is disaggregated only up to 10 sectors.

Blanchard and Simon (2001) come to the same result. Using more disaggre-

gated data, I find that sectoral shifts contributed between 15% and 30% to

the great moderation, depending on the chosen method. Moreover, I find

that if in the year 1949 sectoral shares had been equal to what they were

in 2005, then the conditional and unconditional standard deviation of GDP

growth would have been, on average, 20-25% lower in the postwar period.

Finally, I find that the shift out of durable goods production has significantly

stabilized real GDP growth.

As a methodological contribution, I show how to use the particle filter to

estimate latent covariance matrices when they follow a Wishart autoregres-

sive process of order one. I use this in order to get, for each observation

period, an estimation of the covariance matrix of the sectoral growth rates.

Since real GDP growth is the sum of these sectoral growth rates weighted by

the sectoral shares, it is then straightforward to use these covariance matri-

ces to express the conditional variance of GDP growth in each period as a

function of sectoral shares. Computing the unconditional variance of GDP

growth as a function of sectoral shares is a bit more involved, but also quite

easy using Monte Carlo simulations.

My methodology to estimate covariance matrices is preferable to alter-

natives like estimating a multivariate GARCH model or using a Nadaray-

Watson estimator for the following reasons: The multivariate GARCH model

has undesirable properties for the Monte Carlo simulations and involves es-

timating a large number of parameters. The Nadaraya-Watson estimator,

on the other hand, does not guarantee to give positive definite covariance
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matrices due to the limited number of observations available for estimating

the relatively big covariance matrices.

In the first part of the paper, I look at aggregated real GDP growth

only. Using GARCH specifications for the innovation variance in a univariate

autoregressive (AR) process for GDP growth, I show that there is evidence

for a non-linear decreasing trend in the conditional GDP variance. I then

argue that this non-linear trend could have been caused by sectoral shifts.1

In the second part, I analyze explicitly the role of sectoral shares in US-

GDP volatility using GDP by industry data from the NAICS two digits

dataset (Bureau of Economic Analysis). I proceed as follows.

First, I estimate AR(1) processes for the sectoral growth rates and check

the stability of (i) the regression parameters, using the test of Andrews and

Ploberger (1994), as well as of (ii) the innovation variances, using the cumu-

lative sum of squares test proposed by Inclán and Tiao (1994). Interestingly,

I find that the innovation variance in the AR(1)s of the sectors mining, util-

ities and information increased. Only for durable goods, I find a significant

decrease in the innovation variance. This goes against the hypothesis that

good luck (i.e. less frequent economic shocks) is at the source of the great

moderation.

Then, I use the estimated AR(1) processes for Monte Carlo simulations

which I make in order to assess the implication of sectoral shifts for GDP

volatility. In a first set of simulations, I draw the innovation errors from a

multivariate normal distribution with constant covariance matrix. Since the

covariance matrix is constant, changes in the volatility of simulated GDP

(obtained by aggregating simulated sectoral production) must come from

changes in the shares. Depending on whether the pre-84 or the post-84

sample covariance matrix of the AR(1) residuals is used for the simulations,

I find that sectoral shifts explain 31.7%, respectively 14.4% of the great

moderation.

In the second set of simulations, I assume that the covariance matrix of

the AR(1)-innovations is time varying and changes according to a Wishart

1This contributes also to the discussion whether it is a trend decrease or whether it is
a one-time drop in post-war GDP volatility.
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autoregressive process of order one. I use the particle filter to draw from

the posterior distribution of the covariance matrices. The results show that

the standard deviation of GDP would have been 25.6% lower in the period

1949-1984 and 16.4% lower in the period 1984-2005 if the sectoral shares had

been already in 1949 equal to what they were in 2005.

Besides simulating unconditional standard deviations, I use the filtered

sequence of covariance matrices to express the conditional standard deviation

of GDP growth in every period as a function of sectoral shares. I find that

if the sectoral shares had been equal to what they were in 2005 during the

entire postwar period, then the conditional standard deviation would have

been, on average, 24.7% lower to what it would have been if the shares had

been equal to their 1949 values during the entire period. I argue therefore

that sectoral shifts made GDP easier to forecast.

The paper is structured as follows. Section 2 analyzes the conditional

volatility of GDP growth using ARCH-GARCH methods. Section 3 studies

the dynamics of sectoral growth rates and presents the first set of Monte

Carlo simulations. Section 4 introduces the Wishart process and the particle

filter and shows how conditional and unconditional GDP volatility depend

on sectoral shares. Section 5 concludes.
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2 GDP Growth and Volatility Revisited

Fang and Miller (2006) and Blanchard and Simon (2001) estimate univari-

ate ARCH-GARCH processes for real GDP and its volatility and both find

that the Great Moderation is best explained by a decrease in the innovation

variance of GDP growth whereas they do not find breaks in its mean and

first order autocorrelation. They disagree, however, on the nature of this

decrease: Fang and Miller (2006) find a one time drop in the unconditional

GDP growth variance, which they date in the first quarter 1982 (1982:1),

whereas Blanchard and Simon (2001) claim that it is a trend decline which

was temporarily interrupted in the 1970s and early 1980s.

In this chapter, I shortly review this discussion and give evidence in favor

of the trend decline hypothesis. I show that a quadratic time trend in the

conditional variance equation can not be rejected as easily as a linear trend

when a dummy for a one time break in the early 1980s is included. The

conjecture that a part of the Great Moderation is caused by sectoral shifts

even calls for a non-linear trend because GDP variance is a quadratic function

in the sectoral shares which can be seen as follows. Denote by yt real GDP

and by vi
t the value added in sector i. Since yt =

∑
i v

i
t, it is straightforward

to get

∆yt

yt−1

=
∑

i

τ i
t−1x

i
t

⇒ V art

(
∆yt

yt−1

)
=

∑
i

(τ i
t−1)

2V ar(xi
t) +

∑∑
i�=l

τ i
t−1τ

l
t−1Cov(xi

t, x
l
t)

where xi
t = ∆vi

t/v
i
t−1 and τ i

t = vi
t/yt. Hence, linear trends in the shares

translate into a quadratic trend for the conditional GDP growth variance

(and standard deviation).

Since the shares are bounded between zero and one, it is even likely that

already trends in shares are non-linear, implying a polynomial of order higher

than two for the time trend in GDP growth variance. However, if one includes

such higher order terms in the estimation, one finds coefficients that are close

to zero.
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Instead of estimating a polynomial, one can also approximate a non-linear

trend by a piecewise linear one with changing coefficient. Doing this, I

find a significant negative coefficient for the period prior to 1972:1 and non-

significant coefficients for the periods afterwards.

In the following subsections, the results of Fang and Miller (2006) are first

presented and then extended estimations with non-linear trend specifications

are done. The conclusions remain the same with quarterly and annual GDP

growth.

2.1 Linear Trend versus Break

Fang and Miller (2006) find that the volatility of quarterly GDP growth

in the postwar period is well modeled by either a GARCH or an ARCH

model where a dummy variable is included in order to capture the Great

Moderation. Using a procedure based on an iterated cumulative sums of

squares (ICSS) algorithm (this algorithm allows to detect multiple points of

variance change), proposed by Inclán and Tiao (1994), they identify one and

only one change in volatility at 1982:2 and therefore allow the intercept in

the variance equation to change in 1982:1. Adding a time trend to these

volatility models does not improve significantly the fit. Concerning the serial

correlation of GDP growth rates, they find that it is well captured by an

AR(2) model, written as

yt = a0 + a1yt−1 + a2yt−2 + εt.

For the innovation variance, they assume once a GARCH(1,1), written as

σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1 + ω t + γ dt,

and once an ARCH(2), written as

α0 + α1ε
2
t−1 + α2ε

2
t−2 + ω t + γ dt,

where yt is the growth rate, t a time trend, dt a dummy variable which
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equals 1 for t ≥ 1982 : 1. In their original specification, they also tested

for GARCH-in-mean effects by including σ in the AR(2) equation. Since σ

proved insignificant, I do not include it in my estimations in order to gain

efficiency. The estimations are summarized in Table 1.
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Table 1: Linear Trend and Break 1982:1, Period 1947-2006

GARCH Results

Growth rate equation: yt = a0 + a1yt−1 + a2yt−2 + εt

a0 a1 a2

0.4763∗∗∗ 0.2651∗∗∗ 0.1673∗∗

(0.0770) (0.0687) (0.0716)

Volatility equation: σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1 + ω t + γ dt

α0 α1 β1 ω γ
0.4089∗ 0.0155 0.6188∗∗∗ -0.0001 −0.3290∗∗

(0.2265) (0.0688) (0.1898) (0.0005) (0.1745)

Test statistics
LBQ(3) LBQ(6) LBQ2(3) LBQ2(6) Jarque-Bera
2.1781 5.21766 0.9390 4.6395 0.6590
[0.536] [0.521] [0.816] [0.591] [0.719]

ARCH Results

Growth rate equation: yt = a0 + a1yt−1 + a2yt−2 + εt

a0 a1 a2

0.4777∗∗∗ 0.2903∗∗∗ 0.1486∗∗

(0.0805) (0.0735) (0.0718)

Volatility equation: σ2
t = α0 + α1ε

2
t−1 + α2ε

2
t−1 + ω t + γ dt

α0 α1 α2 ω γ
1.0494∗∗∗ 0.1705∗ 0.0964 -0.0007 −0.7443∗∗∗

(0.2129) (0.0873) (0.1064) (0.0011) (0.2077)

Test statistics
LBQ(3) LBQ(6) LBQ2(3) LBQ2(6) Jarque-Bera
2.0795 5.0338 0.8096 3.8642 0.8167
[0.556] [0.539] [0.847] [0.695] [0.665]

Standard errors are in parentheses, p-values in brackets; LBQ(k) and LBQ2(k) are the
Ljung-Box Q-statistics for the standardized residuals and the squared standardized
residuals testing for autocorrelation up to k lags. ∗, ∗∗ and ∗∗∗ denote 10, 5 and 1 %
significance level.

None of the Ljung-Box Q-statistics2 is significant which is evidence for

2Q-statistic = T (T + 2)
∑k

j=1
corr(et,et−j)

n−j

H0→ χ2
k where H0 is absence of serial correla-

tion.
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absence of remaining autocorrelation in the standardized residuals and the

squared standardized residuals. The Jarque-Bera3 test indicates that the

standardized residuals are normal giving support for the model.

The insignificant time trend is contrary to what find Blanchard and Simon

(2001). Based on a panel regression with the G7 countries, they argue that it

was the increased inflation inflation volatility which temporarily took output

volatility off its trend decline in the 1970s and early 1980s. In order to test

this hypothesis, I add to the variance regression a dummy variable which

is one from 1973:14 until 1981:4 (the results are similar when the dummy

is one until 1983:4); I denote it by d70s
t . The result, however, is the same

as before, the linear trend is not significant in neither the ARCH nor the

GARCH specification. The same is true for the d70s-dummy, which goes

against the claims of Blanchard and Simon (2001). The one time only break

hypothesis cannot be rejected. In order to make the model parsimonious,

and the estimates more precise, I continue using an ARCH(1) specification

only. The Jarque-Bera test and Ljung-Box statistics indicate that this model

is still rich enough to capture the volatility dynamics. The results of this

model are in Tables 2 whereas the results of a model with ARCH(2) and one

with GARCH(1,1) specification can be found in the appendix in Table 15.

The reader can verify that the findings remain the same.

3Jarque-Bera = T
6

(
S2 + (K−3)2

4

)
H0→ χ2

2 where S is the sample skewness and K the
sample kurtosis.

4The oil embargo of the Arab nations against the countries supporting Israel in the
Yom Kippur War took place in 1973 which caused the first oil-price shock
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Table 2: Linear Trend, Break 1982:1 and 70s Dummy, Period 1947-2006

Growth rate equation: yt = a0 + a1yt−1 + a2yt−2 + εt

a0 a1 a2

0.4588∗∗∗ 0.2740∗∗∗ 0.1724∗∗

(0.0748) (0.0747) (0.0609)

Volatility equation: σ2
t = α0 + α1ε

2
t−1 + ω t + γ1 dt + γ2 d70s

t

α0 α1 ω γ1 γ2

0.9875∗∗∗ 0.2282∗∗∗ -0.0011 −0.5916∗∗ 0.6236
(0.2033) (0.0982) (0.0013) (0.2680) (0.4105)

Test statistics
LBQ(3) LBQ(6) LBQ2(3) LBQ2(6) Jarque-Bera
2.1331 6.0040 0.9630 3.9274 0.6607
[0.545] [0.423] [0.810] [0.687] [0.719]

Standard errors are in parentheses, p-values in brackets; LBQ(k) and LBQ2(k) are the
Ljung-Box Q-statistics for the standardized residuals and the squared standardized
residuals testing for autocorrelation up to k lags. ∗, ∗∗ and ∗∗∗ denote 10, 5 and 1 %
significance level.

2.2 Non-linear Trend versus Break

The conclusions are different if a quadratic trend-term is included in the

variance equation. The coefficients of the trend polynomial and of the dummy

for the period 1973:1-1981:4, d70s
t , are now significant (at the 10% level)

whereas the dummy for post 1982:1 period no longer is (the conclusions are

the same if 1984:1 is taken as the break point; the corresponding results are in

the appendix in Table 16). This is supportive for the argument of Blanchard

and Simon (2001) stating that the 1970s were special (the results are in Table

3). Within a GARCH(1,1) or a ARCH(2) model, the trend coefficients are

even significant at the 1% level (the corresponding results are in Table 17 in

the appendix).
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Table 3: GDP - Quadratic Trend in Volatility, Period 1947-2006
Growth rate equation: yt = a0 + a1yt−1 + a2yt−2 + εt

a0 a1 a2

0.4659∗∗∗ 0.2644∗∗∗ 0.1774∗∗∗

(0.0754) (0.07344) (0.06242)

Volatility equation: σ2
t = α0 + α1ε

2
t−1 + ω1 t + ω2 t2 + γ1 dt + γ2 d70s

t

α0 α1 ω1 ω2 γ1 γ2

1.4578∗∗∗ 0.2084∗∗ −0.0120∗ 0.00003∗ −0.1069 1.0330∗∗∗

(0.4312) (0.0982) (0.0073) (0.00002) (0.3637) (0.4564)

Test statistics
LBQ(3) LBQ(6) LBQ2(3) LBQ2(6) Jarque-Bera
2.0013 5.7139 0.6396 3.3593 0.4992
[0.572] [0.456] [0.887] [0.763] [0.779]

Standard errors are in parentheses, p-values in brackets; LBQ(k) and LBQ2(k) are the
Ljung-Box Q-statistics for the standardized residuals and the squared standardized
residuals testing for autocorrelation up to k lags. ∗, ∗∗ and ∗∗∗ denote 10, 5 and 1 %
significance level.

Finally, I estimated an ARCH model with a piecewise linear trend in GDP

volatility. It can be summarized by the following equations.

yt = a0 + a1yt−1 + a2yt−2 + εt

σ2
t = α0 + α1ε

2
t−1 + ω1 t + ω2 (t ∗ d70s

t ) + ω3 (t ∗ dt) + γ dt

In this model, the dummy for the 1970s, d70s
t , is omitted. According to the

Q-statistics and the Jarque-Bera test (reported in Table 4), also this model

is rich enough to capture excess kurtosis of GDP volatility. One can see

that there was a significant negative trend in GDP volatility in the pre-1972

period. A Wald test reveals that afterwards, no significant trend remains (I

tested the hypotheses H1 : ω1+ω2 = 0 and H2 : ω1+ω3 = 0 and cannot reject

one of them; the respective p-values are 0.88 and 0.57). If one estimates the

model with the 1970s-dummy, one finds that this dummy is not significant

and that its inclusion only lowers the p-value of the trend coefficient ω1, giving

even more support for the trend. At the same time, the 1982 - dummy dt is

13



significant again.

The lack of a significant time trend in the second half of my sample goes

in no way against my conjecture, that a part of the decline in GDP volatil-

ity is caused by sectoral shifts. It could just be evidence that the growing

service sector first diversified the economy and therefore made GDP growth

more stable; but that eventually these stabilization gains from diversifica-

tion became smaller. It is even conceivable that in the future GDP volatility

starts to increase when the service sector continues to grow, thus making the

economy less diversified again. Figure 1 shows the evolution of the shares of

private service-producing and private goods-producing industries.

1940 1950 1960 1970 1980 1990 2000 2010
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

Services
Goods

Figure 1: Shares of Goods and Service Sector
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Table 4: GDP - Piecewise Linear Trend in Volatility, Period 1947-2006
Growth rate equation: yt = a0 + a1yt−1 + a2yt−2 + εt

a0 a1 a2

0.4581∗∗∗ 0.2684∗∗∗ 0.1806∗∗∗

(0.0738) (0.0733) (0.0619)

Volatility equation: σ2
t = α0 + α1ε

2
t−1 + ω1 t + ω2 (t ∗ d70s

t ) + ω3 (t ∗ dt) + γ dt

α0 α1 ω1 ω2 ω3 γ
1.4244∗∗∗ 0.2227∗∗ −0.0093∗ 0.0100∗∗∗ 0.0086∗ −1.1123∗∗∗

(0.4094) (0.0991) (0.0053) (0.0041) (0.0054) (0.4559)

Test statistics
LBQ(3) LBQ(6) LBQ2(3) LBQ2(6) Jarque-Bera
1.8853 5.7425 0.5838 3.3685 0.6907
[0.597] [0.453] [0.900] [0.761] [0.708]

Standard errors are in parentheses, p-values in brackets; LBQ(k) and LBQ2(k) are the
Ljung-Box Q-statistics for the standardised residuals and the squared standardised
residuals testing for autocorrelation up to k lags. ∗, ∗∗ and ∗∗∗ denote 10, 5 and 1 %
significance level.

2.3 Annual Data

Since the sectoral series, which I use for the analysis of the sectoral shifts,

are annual and not quarterly, I do a short analysis for annual GDP growth

as well (I use annual GDP from BEA and deflate it with the implicit GDP

deflator5 and population then I calculate discrete time growth rates: 100 ×
(GDPt-GDPt−1)/GDPt−1). First, I estimate an AR(1) process and check

whether one can find significant breaks in the innovation variance using also

the ICSS algorithm described in Inclán and Tiao (1994). In order to get

the correct asymptotic distribution of the test statistic under the null of

no break in the conditional variance, it is important that the residuals are

serially uncorrelated. A Fischer test reveals there are no significant partial

autocorrelations in the residuals up to two lags.6 I find one and only one

5The implicit GDP deflator is from the BEA and given by the ratio of the GDP current-
dollar value to its chained-dollar value.

6The p slope coefficients of an AR(p) are estimates of the partial autocorrelations up
to lag p. Since I suspect heteroskedastic errors, I use robust standard errors as proposed
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break point in 1984 (the results are summarized in Table 5). This is in line

with existing literature: Stock and Watson (2003), McConnell and Perez-

Quiros (2000) and Andrews and Ploberger (1994) also detect a unique break

in GDP growth variance in 1984. It suggests estimating a ARCH model with

a dummy in the variance equation that equals zero before 1984 and one from

1984 on.

The results in the first panel of Table 6 reveal a significant quadratic time

trend, giving support for the idea that sectoral shifts have an influence on

GDP volatility. The Jarque-Bera test does not reject normality and the Q-

statistics do not detect remaining correlation in standardized and squared

standardized residuals. This is evidence that the estimated ARCH model is

rich enough to describe GDP growth and volatility. Figure 3 shows a graph

of the ARCH implied conditional standard deviation for this model.

If the quadratic trend is replaced by a linear one with changing coefficients,

the results are less clear because no coefficient is significant. I suspect that

this is due to the small number of observations in the annual dataset (57

yearly growth rates for 1949-2005 whereas with the quarterly data set 240

observations for 1947:1-2006:4 are available). (Figure 2 shows real per capita

GDP growth for 1948-2005).

Table 5: AR(1) - Annual GDP Growth, Period 1948-2005

AR(1) equation: yt = a0 + a1yt−1 + εt

a0 a1 R2 F-test Break Date(s)
1.8539∗∗∗ 0.1117 0.01 0.0453 1984
(0.4841) (0.1572) [0.956]

White’s robust standard errors are in parentheses, p-values in brackets; F-test is for joint
significance of ε−AR(2) coefficients. ∗, ∗∗ and ∗∗∗ denote 10, 5 and 1 % significance level.

by White (1980). This potential heteroskedasticity is also the reason why Box-Pierce and
Ljung-Box tests are inappropriate.
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Figure 2: Real GDP growth rate for the US, 1948-2005
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Figure 3: Conditional standard deviation with a quadratic trend
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Table 6: Annual GDP - ARCH with Non-Linear Trend, Period 1948-2005
Quadratic Trend

Growth rate equation: yt = a0 + a1yt−1 + εt

a0 a1

2.0219∗∗∗ 0.2762∗∗

(0.4404) (0.1506)

Volatility equation: σ2
t = α0 + α1ε

2
t−1 + ω1 t + ω2 t2 + γ1 dt + γ2 d70s

t

α0 α1 ω1 ω2 γ1 γ2

9.2599∗∗∗ 0.2015 −0.2968∗∗∗ 0.0030∗∗∗ −1.0123 4.1049
(3.3731) (0.2673) (0.0401) (0.0001) (3.3098) (4.9508)

Test statistics
LBQ(2) LBQ2(2) Jarque-Bera
0.2161 1.3333 1.8763
[0.642] [0.248] [0.391]

Trend with changing coefficients

Growth rate equation: yt = a0 + a1yt−1 + εt

a0 a1

2.0079∗∗∗ 0.2979∗

(0.4191) (0.1611)

Volatility equation: σ2
t = α0 + α1ε

2
t−1 + ω1 t + ω2 (t ∗ d70s

t ) + ω3 (t ∗ dt) + γ dt

α0 α1 ω1 ω2 ω3 γ
9.8500 0.1986 −0.2976 0.2215 0.2829 −8.0961

(8.7045) (0.2750) (0.4503) (0.2401) (0.4542) (9.1925)

Test statistics
LBQ(2) LBQ2(2) Jarque-Bera
0.3014 1.7013 1.7589
[0.583] [0.192] [0.415]

Standard errors are in parentheses, p-values in brackets; LBQ(k) and LBQ2(k) are the
Ljung-Box Q-statistics for the standardized residuals and the squared standardized
residuals testing for autocorrelation up to k lags. ∗, ∗∗ and ∗∗∗ denote 10, 5 and 1 %
significance level.
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3 Sectoral Growth and Volatility

3.1 The Data

The data used are the two digits annual US-GDP by industry series from the

Gross-Domestic-Product-by-Industry Accounts (Bureau of Economic Analy-

sis) ranging from 1948 to 2005. These series sum up to nominal GDP. They

were deflated using the implicit GDP deflator7 and expressed in per capita

terms using the Civilian non-institutional Population index from the Bureau

of Labor Statistics. The dataset consists of the following 22 sectors (in brack-

ets are the abbreviations): Agriculture - forestry - fishing - hunting (Agri-

culture), mining (Mining), utilities (Utilities), construction (Construction),

durable goods (Durables), nondurable goods (NonDurables), wholesale trade

(Wholesale), retail trade (Retail), transportation & warehousing (Transp-

Ware), information (Information), finance & insurance (FinInsur), real estate

- rental & leasing (ReEstatRent), professional - scientific & technical services

(ServScieTech), management of companies & enterprises (ManagComp), ad-

ministrative & waste management services (ManagAdminWaste), education

services (ServEduc), health care & social assistance (ServicesHealth), arts -

entertainment & recreation (Recreat), accommodation & food services (Serv-

FoodAcc), other services without government (ServOth), federal government

(GovFed) and state & local government (GovLocal).

The correlation coefficient between the averages and the standard devia-

tions of the sectoral growth rates (both computed over the entire time period)

is −0.47. This is reflected in Figure 4 where a scatter plot of the mean growth

rates and the coefficient of variation8 of the series is shown. It means that

the stable sectors have grown faster than the volatile ones. The aim of the

remaining part of the paper is to find out, how much of the Great Moderation

is due to this growth and volatility pattern.

7The implicit GDP deflator is from the BEA and given by the ratio of the GDP current-
dollar value to its chained-dollar value.

8The coefficient of variation is a normalization of the standard deviation and is obtained
by dividing the standard deviation with the mean of the serie. I took the absolute values
of the means because agriculture had negative average growth.
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Figure 4: Growth and Coefficient of Variation

3.2 Dynamics of Sectoral Growth and its Volatility

In this section, I look for a process which can describe the dynamics of sectoral

growth rates. In a first step, for each sectoral growth rate, denoted by xi
t, an

AR(1) is estimated. Then, parameter stability is analyzed and, in a second

step, it is tested whether there are breaks in the innovation variance. The

aim is to get models which can be used to simulate sectoral growth (this is
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done in the subsequent sections).

The AR(1) for sector i is written as

xi
t = ci + ρixi

t−1 + εi
t. (1)

The estimations of this process are in Table 7. It shows that, with the excep-

tion of agriculture, there is either positive or insignificant autocorrelation in

the growth rates. Almost all service related sectors have a significant positive

constant, which implies that they have a positive mean growth rate. This

is not the case for the non-service sectors agriculture, mining, and durable

goods production. Such a finding reflects sectoral shifts. The reported F-

statistics (F-stat) come from testing whether two additional lags should be

included in the AR regressions. They indicate that there is significant partial

autocorrelation up to lag two left in the residuals of agriculture, health care

& social assistance and federal government.9

9F-stat test the joint significance of ai
1 and ai

2 in

εi
t = ai

0 + ai
1ε

i
t−1 + ai

2ε
i
t−2 + νi

t

where instead of Newey-West robust standard errors White (1980)’s robust standard errors
are used because under the null, there is no serial correlation left, however, there could
still be potential heteroskedasticity.
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Table 7: AR(1) for sectoral growth rates

Sectors ci σ(ci) ρi σ(ρi) F-stat R2

Agriculture -1.09 1.47 −0.25∗∗ 0.11 3.32 0.06
Mining 1.91 1.79 0.22∗∗ 0.09 2.22 0.05
Utilities 1.72∗∗ 0.73 0.27 0.17 1.63 0.08
Construction 1.44∗ 0.82 0.41∗∗∗ 0.2 0.36 0.17
Durables 1.08 0.92 0.03 0.15 0.33 0.001
Nondurables 0.48 0.42 -0.02 0.13 0.51 0.0004
Wholesale 1.99∗∗∗ 0.61 0.01 0.10 1.78 0.0000
Retail 1.21∗∗∗ 0.42 0.19 0.13 0.10 0.03
TranspWare 0.87 0.57 0.01 0.12 0.07 0.0001
Information 2.83∗∗∗ 0.59 0.06 0.14 0.02 0.004
FinInsur 2.85∗∗∗ 0.54 0.29∗∗∗ 0.10 0.41 0.10
ReEstRentLeas 1.33∗∗∗ 0.34 0.50∗∗∗ 0.10 0.69 0.26
ServScieTech 3.10∗∗∗ 0.78 0.36∗∗∗ 0.13 0.46 0.13
ManagComp 2.24∗∗∗ 0.58 0.02 0.13 0.02 0.0004
ManagAdminWaste 3.39∗∗∗ 0.74 0.33∗∗∗ 0.11 0.0011 0.11
ServEduc 1.26∗∗ 0.56 0.65∗∗∗ 0.10 0.17 0.42
ServHealth 4.61∗∗∗ 1.26 0.02 0.23 4.07 0.0003
Recreat 2.82∗∗∗ 0.59 0.03 0.12 0.17 0.0008
ServFoodAcc 1.88∗∗∗ 0.35 0.14 0.11 0.05 0.02
ServOth 1.27∗∗∗ 0.47 0.25∗ 0.14 0.25 0.06
GovFed 0.75 0.60 0.31∗∗ 0.13 28.16 0.10
GovLocal 0.52∗∗ 0.26 0.80∗∗∗ 0.08 1.10 0.69

Newey-West robust standard errors (computed with one lag) are reported. ∗, ∗∗ and ∗∗∗

denote 10, 5 and 1 % significance level. The theoretical 95th quantile of the
F-distribution for testing significance of autocorrelation in residuals is 3.18.

The remaining autocorrelation could come from structural changes in pa-

rameters. Andrews and Ploberger (1994) proposed a procedure to test the

null of constant regression parameters against the alternative of a single un-

known break time. This test can be implemented as follows. For each growth

rate and for each integer τ for which [T ∗ 0.15] ≤ τ ≤ T − [T ∗ 0.15], the

following regression equation is estimated with ordinary least squares (T is
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the sample size and [x] returns the rounded down part of x).

xi
t = (1 − dt(τ))ci

1 + dt(τ)ci
2 + (1 − d(τ)t)ρ

i
1x

i
t−1 + dt(τ)ρi

1x
i
t−1 + εi

t (2)

dt(τ) is a dummy variable which is equal to zero for all t < τ and equal to one

for t ≥ τ . This dummy variable divides the data in two subsamples where cp

and ρp for p = 1, 2 are the coefficients of the AR(1) equation (1) restricted

to subsample p. Potential variations in the variance of εi
t are accounted

of by using White’s robust standard errors. The advantage of writing the

test regression in this way is that covariances between estimators in different

subsamples are easily computed. The Wald statistic is then given by

W (τ) =

(
c1 − c2

ρ1 − ρ2

)′(
V ar(c1 − c2) Cov(c1 − c2, ρ1 − ρ2)

Cov(c1 − c2, ρ1 − ρ2) V ar(ρ1 − ρ2)

)−1(
c1 − c2

ρ1 − ρ2

)

where the apostrophe stands for transpose. Under the null of constant pa-

rameters, the biggest W (τ), given by ξW = supτ (W (τ) : [T ∗ 0.15] ≤ τ ≤
T − [T ∗ 0.15]), converges to a Brownian bridge. The τ for which W (τ)

is maximized, is an estimate of the break period. Using the critical values

provided by Andrews and Ploberger (1994), I find significant breaks (at the

5% level) for mining, utilities, retail trade, real estate - rental & leasing,

professional - scientific & technical services, education services, health care

& social assistance, accommodation & food services and state & local gov-

ernment but none for agriculture and federal government (the results are in

Table 2). Therefore, it seems that the remaining autocorrelation in these

two latter sectors, detected in the regression over the entire sample, can not

be attributed to parameter changes. For health care & social assistance,

however, the F-statistic for testing remaining autocorrelation in residuals

dropped from 4.18 (Table 1) to 0.17 (Table 8) and is no longer significant at

the 5% level.

I conclude that for all sectors, except agriculture and federal government,

an AR(1), if necessary with changing coefficients, is sufficient to capture the

autocorrelation in yearly growth rates.
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Table 8: Andrews Parameter Stability Test

Sectors ĉi
1 ĉi

2 ρ̂i
1 ρ̂i

2 µ̂1 µ̂2 max W F-stat τ

Mining 2.18 1.02 0.30 0.13 3.11 1.17 10.11 2.29 ‘56
(1.81) (3.35) (0.17) (0.16) (5.69) (3.96)

Utilities 3.73 1.71 0.33 0.09 5.58 1.88 17.74 0.32 ‘87
(2.15) (0.79) (0.20) (0.20) (10.39) (1.17)

Retail 1.35 0.81 0.15 0.35 1.60 1.25 13.23 0.06 ‘60
(0.64) (0.56) (0.17) (0.27) (0.83) (0.50)

ReEstat- 1.24 2.93 0.56 -0.31 2.79 2.23 20.46 0.21 ‘86
RentLeas (0.47) (0.91) (0.12) (0.31) (0.82) (1.54)
ServScie- 8.18 2.95 -0.21 0.35 6.75 4.55 24.95 0.36 ‘67
Tech (1.60) (0.76) (0.23) (0.13) (9.57) (2.78)
ServEduc 1.18 3.01 0.67 0.21 3.54 3.79 20.58 0.22 ‘77

(0.59) (1.21) (0.10) (0.25) (1.46) (3.51)
ServHealth 9.21 2.25 -0.55 0.43 5.96 3.97 26.35 0.17 ‘92

(1.64) (0.65) (0.22) (0.16) (8.96) (1.67)
ServFood- 2.25 1.83 -0.73 0.26 1.30 2.46 22.43 0.01 ‘62
Acc (0.60) (0.38) (0.23) (0.07) (0.68) (0.87)
GovLocal 0.73 1.02 0.77 0.36 3.23 1.60 64.42 1.01 ‘56

(0.39) (0.46) (0.09) (0.24) (0.75) (0.28)

White’s robust standard deviations are in parentheses. max W is the maximum Wald
statistic from Andrews test; the 5% critical value is 8.68. The F-stat comes from testing
significance of remaining autocorrelation in residuals up to two lags; its theoretical 95th
quantile is 3.18. τ is an estimate of the break period.
The estimated mean growth rate for sector i is calculated as µ̂i = ci

1−ρi and its standard
deviation is obtained using the delta method. The delta method consists of doing a first
order Taylor expansion of µ̂i in ĉi and ρ̂i and then using the covariance matrix of the
parameter estimators.

In order to get an accurate stochastic model for sectoral growth rates, I

also need an idea of how their innovation variances evolved.

According to proponents of the good luck theory, economic fluctuations

have moderated thanks to less volatile shocks. If this is true, then there

should be breaks in the innovation variances of sectoral growth rates, i.e. the

variances of the εi
ts should have decreased. This is tested using the ICSS

test of Inclán and Tiao (1994) on the residuals of the AR(1) regression where
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(1) is replaced by (2) for the series for which Andrews test detects breaks in

parameters. The results give evidence for one-time breaks in the variances of

the residuals of mining, utilities, durable goods and information with break

dates 1973, 1973, 1959 and 1995.10 In Table 9 are estimates of the conditional

standard deviations before and after the break date. Also reported are the

unconditional standard deviations of the respective growth rates, xi
t.

Table 9: Variance Breaks

Sectors Break Date τ σ(εi
t<τ ) σ(εi

t≥τ ) σ(xi
t<τ ) σ(xi

t≥τ )

Mining 1973 5.66 16.47 5.92 16.84
Utilities 1973 2.10 4.19 3.46 4.14
Durables 1959 11.22 5.74 9.50 6.02
Information 1995 2.30 4.32 2.36 4.15

Interestingly, the innovation variances in mining, utilities and information

increased. This goes against the wisdom that GDP growth has become more

stable thanks to less volatile economic shocks.

Comparing these results with the results of the parameter break tests in

Table 8, it can be seen that there is no clear relationship between parameter

breaks and conditional variance breaks. Only for mining and utilities there is

evidence for breaks in both, parameters and innovation variance; the break

periods, however, lie several years apart. This extends the GARCH-in-mean

analyzes of Fang and Miller (2006) to sectoral data. Similar to their findings

for real GDP growth, I do not find (G)ARCH-in-mean-like effects for sectoral

data.11

Inclán and Tiao (1994) point out that their test is not sure to detect

small variance changes in series of 100 observations or less. Therefore, I

10The ICSS test also indicates significant volatility breaks for agriculture (the one period
forecast standard deviation increased from 5.90 to 13.75 in 1972) and federal government
(the conditional standard deviation decreased from 14.70 to 2.13 in 1953). However, since
there is significant autocorrelation in these residuals, an assumption for the application of
the ICSS test is not satisfied and therefore, the results are not reliable.

11I do not report explicit GARCH-in-mean estimations because for many sectors, I did
not find GARCH specifications which produce homoskedastic standardized residuals.
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assume now that the potential break date is 1984. If the Good Luck theory is

true, according to which GDP volatility decreased thanks to absence of large

shocks, then the innovation variances of the sectoral growth rates should have

decreased at the same time as GDP growth variance (which the ICSS test

finds to be in 1984 for annual GDP growth). The test statistic is given by

F =
σ̂2(εi

t<1984)

σ̂2(εt≥1984)i

where εi
t is the residual from regression (1), respectively (2). It follows, under

the null of equal variances, a F-distribution with n1 −K and n2 −K degrees

of freedom (ni is the number of observations in subsample i and K the

number of regressors). The alternative hypothesis is, in this case, a decrease

in sectoral innovation variance.

The test finds significant decreases in the variances for durable goods,

nondurable goods, retail trade, transportation & warehousing and state &

local government (the results are in Table 10).12

I conclude that there are changes in the innovation variances. In order to

take them into account, I model the covariance matrix of sectoral growth rates

explicitly in section 4 using a Wishart specification. This has two advantages

over letting the univariate innovation variances change according to what the

break tests indicated. First, it takes into account potential changes in the

covariances of the AR(1)-innovations of different sectors. Second, it does not

require to take a stand on break dates. However, before introducing this new

methodology, I present the results of some simple Monte Carlo simulations

in the next subsection.

12It also indicates a significant decrease in federal government variance, however, this
could be spurious since there is significant correlation left in these residuals.
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Table 10: Standard Deviations - Break Date 1984

Sectors σ(εi
t<1984) σ(εi

t≥1984) σ(xi
t<1984) σ(xi

t≥1984) F-stat

Agriculture 11.42 11.21 11.09 13.12 1.04
Mining 11.31 16.03 11.61 16.25 0.50
Utilities 3.71 2.91 4.36 3.11 1.63
Construction 5.09 4.27 5.37 4.87 1.42
Durables 8.03 4.67 8.04 4.61 2.95∗

Nondurables 3.62 2.17 3.66 2.27 2.79∗

Wholesale 3.81 2.94 3.92 2.87 1.68
Retail 3.12 1.90 2.85 2.54 2.70∗

TranspWare 4.72 2.84 4.68 2.92 2.76∗

Information 2.36 3.34 2.33 3.41 0.50
FinInsur 2.56 2.35 3.02 2.40 1.18
ReEstRentLeas 1.83 1.63 2.26 1.77 1.60
ServScieTech 2.81 3.15 2.82 3.71 0.80
ManagComp 3.72 3.51 3.64 3.55 1.12
ManagAdminWaste 3.12 3.77 3.06 4.18 0.69
ServEduc 2.80 2.01 4.00 1.95 1.96
ServHealth 2.17 2.10 2.62 2.36 1.06
Recreat 3.06 3.99 3.00 3.90 0.59
ServFoodAcc 2.40 1.89 2.59 2.05 1.61
ServOth 2.87 2.17 2.73 2.45 1.74
GovFed 4.85 2.19 5.06 2.35 4.89∗

GovLocal 1.44 0.80 2.65 1.08 3.26∗

The theoretical 95th quantile of the F-distribution for testing equality in εi
t-variance is

2.04.
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3.3 Monte Carlo Simulations with counter-factual Co-

variance Matrices

In order to get a first idea of the importance of sectoral shifts, I divided the

data into two subsamples, one with the data 1948-1983 and one with the data

1984-2005. Assuming that each sectoral growth rate follows an autoregression

as described in equation (1) respectively (2) (i.e. coefficients which were found

to change are allowed to do so), GDP growth is simulated 100’000 times for

each subsample (agriculture and federal government is omitted because the

AR(1) representation was found to be insufficient).

In a first set of simulations, the covariance matrix of the AR-innovations

εi
t is allowed to change in 1984 and assumed to be constant otherwise (this

assumption is relaxed in the Section 4 where the covariance matrix is allowed

to change according to a Wishart transition.). In a second set, it is assumed

to equal its pre-84 sample analogue throughout the entire sample whereas in

a third set of simulations, it is set to its post-84 sample analogue for both

subsamples. Then, for each set of simulations, the average (median) GDP

standard deviation is computed. The purpose is to get an idea of what GDP

volatility would have been with different underlying sectoral covariance ma-

trices but with the same average sectoral growth. This isolates the influences

of sectoral share movements on GDP volatility from the influences coming

from changes in the covariance matrix.

The first set of simulations yields an average (median) GDP volatility of

2.93 (2.92) in the first and 1.55 (1.51) in the second period. For 95% of the

simulations, the standard deviations are inside the interval [2.21, 3.76] in the

first subsample and inside [0.99, 2.35] in the second subsample. Observed

GDP volatility (without agriculture and federal government), which is 3.02

pre-84 and 1.49 post-84, lies inside the respective confidence interval. With

the second simulation, where only the covariance matrix of the first period

is used, I find that average (median) standard deviation decreased from 2.93

(2.92) in the first period to 2.49 (2.45) in the second period. The ratio of

this difference over the difference from the previous simulation (where the

average fell from 2.93 to 1.55) equals 31.9% (33.3%). It can be interpreted as
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a measure for the part of the Great Moderation which is due to sectoral shifts.

The remaining 68.2 % can be attributed to the changes in the covariance

matrix. We might compute different contributions if instead of the covariance

matrix of period 1, the one of period 2 is used. I find an average (median)

standard deviation of 1.80 (1.78) for period 1 and one of 1.60 (1.54) for period

2. The ratio of the differences is now 14.5% (17.0%). Table 11 shows the

results of these simulations.

In the appendix, results can be found for three additional sets of simu-

lations. In the first one, agriculture and federal government are included.

Using averages (medians), the estimated part of the moderation due to sec-

toral shifts is 33.9% (33.3%) with the covariance matrix of period 1 and 13.9%

(24.4%) with the covariance matrix of period 2. In the second set of simula-

tions, all sectors are included but the coefficients in the AR(1) processes are

not allowed to change. This might be an incorrect description for some of

the sectors, but on the other hand, there are no effects of coefficient-breaks

on simulated GDP volatility. With the covariance matrix of the first period,

I find that sectoral shifts explain 34.5% (33.3%) whereas with the covariance

matrix of the second period they explain 21.8% (25.0%). The most pes-

simistic results are received with the third simulation where only sectors are

included for which an AR(1) with constant coefficients fully captures serial

correlation (giving a sample with 11 of the 22 sectors). The share attributed

to sectoral shifts is 19.5% (20.6%), respectively 6.3% (6.7%).
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Table 11: Simulation Results

Simulation 1: Different Covariances in Period 1 and Period 2

Period 1 Period 2
Average (Median) 95% Interval Average (Median) 95% Interval

2.93 (2.92) [2.21, 3.76] 1.55 (1.51) [0.99, 2.35]

Simulation 2: Covariances of Period 1 in both Periods

Period 1 Period 2
Average (Median) 95% Interval Average (Median) 95% Interval

2.93 (2.92) [2.21, 3.75] 2.49 (2.45) [1.62, 3.61]

Simulation 3: Covariances of Period 2 in both Periods

Period 1 Period 2
Average (Median) 95% Interval Average (Median) 95% Interval

1.80 (1.78) [1.36, 2.35] 1.60 (1.54) [1.02, 2.58]
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4 Wishart Specification

In this section the latent covariance matrix of the sectoral growth rates are

assumed to follow a Wishart autoregressive process of order one (henceforth

WAR(1)). Conditional on their covariance matrix, the processes of the sec-

toral growth rates are assumed to be Gaussian AR(1). Thereby, the breaks

in the coefficients detected by the ICSS test in the previous section are con-

sidered. This can be summarized in the following state-space system.

xt|Wt ∼ N(ct + ρtxt−1, Wt) (3)

Wt|Wt−1 ∼ WAR(1) (4)

The observed sectoral growth rates xi
t are stacked in vector xt, the vector ct

has elements ci
t and ρt is a diagonal matrix with elements ρi

t.

The above state-space system provides a structure which allows to esti-

mate the sequence of Wts. I use the filtered covariance matrices (Wt) for two

purposes. The first one is to infer how the conditional standard deviation of

GDP growth depends on sectoral shares whereas the second one is to infer

how the unconditional standard deviation depends on sectoral shares. While

the first purpose is straight forward to do given the Wts, the second one

requires Monte Carlo simulations due to the non-linearity of the problem.

This way of estimating the covariance matrices (Wt) of the sectoral growth

rates can be viewed as a Bayesian estimation where the WAR(1) is the prior

distribution of the covariance matrices. This procedure is simply a multi-

variate extension of the univariate case where the prior of a standard devi-

ation is assumed to be a Gamma distribution. This interpretation then jus-

tifies calibrating the parameters of the WAR(1) instead of estimating them,

just as one would calibrate the parameters of the Gamma prior in the uni-

variate case.

Before the implementation and the results are presented, however, I dis-

cuss the Wishart distribution and my motivation to use it.13

13A detailed discussion of WAR(1) processes can be found in Gourieroux, Jasiak, and
Sufana (2005). The following paragraphs are based on their paper.
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Intuitively, the Wishart process (Wt) is an autoregressive process for co-

variance matrices of dimension ns. Its dynamics is specified by the moment

generating function which is defined by

MWt+1|Wt(Γ) = Et[exp(Tr(ΓWt+1))]

where Et is the conditional expectation on information up to time t, Γ is

a deterministic and symmetric matrix of real numbers and Tr denotes the

trace operator. Since Wt+1 is symmetric, we can write

Tr(ΓWt+1) =

n∑
i=1

n∑
l=1

(Γ)il(Wt+1)il.

The explicit moment generating function of a WAR(1) is given by

MWt+1|Wt(Γ) = Et[exp(Tr(ΓWt+1))]

=
exp(Tr[M ′Γ(Ins − 2ΣΓ)−1MWt])

[det(Ins − 2ΣΓ)]K/2

where K is a scalar degree of freedom strictly larger than n − 1, Ins the

identity matrix of dimension ns, M the ns × ns matrix of autoregressive

parameters and Σ is a ns × ns symmetric, positive definite matrix. The

moment generating function is defined for matrices Γ which satisfy ‖ 2ΣΓ ‖<
1, where ‖ · ‖ is the operator norm.14

The beauty of this process is, that it gives positive definite matrices. For

14The norm of a matrix A of dimension r × c (or, more precisely, of a linear operator
A : R

c → R
r), is defined to be the supremum of all numbers |Ax| where | · | is any norm

in R
r and where x ranges over all vectors in R

c with |x| ≤ 1.
If A is symmetric it can be written as PDP ′ where P is an orthogonal eigenvector

matrix and D a diagonal eigenvalue matrix. With the Euclidean norm, we get

|Ax| = (x′A′Ax)(1/2) = (x′P ′D2Px)(1/2) = (y′D2y)(1/2)

and since |y| = |Px| the maximization can be done over y. We see that |Ax| is maximal
if the element in y corresponding to the biggest absolute eigenvalue in D is 1. Hence,
for a symmetric matrix, the norm corresponds to the biggest absolute eigenvalue. Since
‖ ΣΓ ‖≤‖ Σ ‖‖ Γ ‖, the condition is satisfied if the product of the two largest eigenvalues
is less than 0.5.
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integer K, it can be interpreted as follows:

Wt =
K∑

k=1

zk,tz
′
k,t

where the processes (zkt), k = 1, . . . , K are independent vector processes,

each of length ns, that satisfy

zk,t = Mzk,t−1 + ek,t ek,t ∼ N(0, Σ)

If K = 1, M = 0 and Σ = 1, one can recognize the χ2(1) distribution

(Chi-squared with one degree of freedom) as a special case of the Wishart

distribution.15

The stochastic matrix Wt is of full rank with probability one if the degree

of freedom, denoted by K, is equal to or greater than ns. This can be seen

with the following argument. If K = 1, then each column in Wt is a multiple

of the vector z1,t. Therefore, the columns of Wt span a space of dimension 1

which means that the matrix is singular if ns > 1. If K = 2, then column i of

Wt is a linear combination given by z1,t(i)z1,t + z2,t(i)z2,t where zk,t(i) is the

ith element of vector zk,t. Since the zk,t-vectors are continuously distributed,

they are almost surely different16 and therefore, the columns of Wt span a

room of dimension 2. Continuing the argument, one finds that the dimension

of the column-space equals min(K, ns).

It is interesting to see how Wt behaves when K increases. Obviously, if the

covariance matrix Σ of the ek,t vectors is not decreasing in K, then Wt has

an exploding second moment matrix and therefore it does not converge to

a constant real matrix. Hence, the calculation must be done for Σ = K−1Σ̃

where Σ̃ is a constant matrix. Setting z̃k,t :=
√

Kzk,t allows to write

Wt =
1

K

K∑
k=1

z̃k,tz̃
′
k,t (5)

15It is however not correct to say that the Wishart distribution is a multivariate χ2-
distribution because off-diagonal elements of Wt have positive probability mass on negative
values.

16almost surely means with probability one
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where

z̃k,t = Mz̃k,t−1 + ẽk,t ẽk,t ∼ N(0, Σ̃) (6)

If all the eigenvalues of M are strictly inside the unit circle, the unconditional

distribution of z̃k,t is N(0, Σ̃(∞)) where Σ̃(∞) solves

Σ̃(∞) = MΣ̃(∞)M ′ + Σ̃.

Hence, {z̃k,tz̃
′
k,t}K

k=1 is a sample of identically and independently distributed

random variables having finite second moment matrices. This enables the

application of the strong law of large numbers according to which the sum

(5) converges almost surely to E[z̃k,tz̃
′
k,t]. Therefore, in the limit, the WAR(1)

process is a degenerated process with constant matrices as its realizations.

The degree of freedom K can be fractional. However, in this case, the

interpretation of the VAR(1) processes (zk,t) is no longer valid. For the

univariate case, this corresponds to generalizing the χ2-distribution to the

Gamma-distribution.

It is important to understand that the Wishart specification is different to

the concept of multivariate generalized ARCH (MGARCH)17 in the following

senses.

(i) In a MGARCH model, the volatility of xt+1 conditional on information

up to time t depends on past realizations which is not the case for the

state-space system with the Wishart specification. Technically speak-

ing, for the MGARCH model the conditional volatility in time t + 1

is measurable with respect to the Borel algebra generated by (xi)
t
i=1

(it is said to be predictible) whereas for the Wishart specification it is

measurable with respect to the Borel algebra generated by the innova-

tions of the WAR(1) up to t + 1. Consequently, the MGARCH is has

undesirable properties for the intended simulations.

(ii) Compared to the Wishart distribution, the MGARCH cannot be in-

terpreted as a prior distribution for the volatility matrix. While it is,

17Engle and Kroner (1993) and Tse and Tsui (2000) discuss MGARCH models.
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within a Bayesian framework, justified to use a fully calibrated Wishart

distribution as a prior for filtering conditional volatility matrices, the es-

timation of volatility matrices in a MGARCH framework requires esti-

mating a great number of parameters. Even the multivariate ARCH(1)

model, given by

vech(Σt) = b + A vech(xtx
′
t)

involves
(

ns(ns+1)
2

)2

+ ns(ns+1)
2

parameters (ns is, in my case, the number

of sectors).18 The literature has proposed to put restrictions on the

parameters (see for example Engle and Kroner (1993)) which however

can be “complicated and hard to interpret”19 because they have to be

such that the conditional volatility matrices are positive definite.

For a discussion of further differences between MGARCH and WAR(1), I re-

fer to Gourieroux, Jasiak, and Sufana (2005) and the literature cited therein.

Compared to a nonparametric covariance matrix estimator, like the Na-

daraya -Watson estimator, the Wishart specification has the advantage of

yielding positive definite covariance matrices. The Nadaraya-Watson estima-

tor is a weighted average of the cross-product matrices of the AR-residuals

(denoted by εt), i.e. it is of the from

W NW
t =

∑
τ ω
(

τ−t
b

)
ete

′
t∑

τ ω
(

τ−t
b

) .

Since I want to filter a covariance matrix of dimension 19,20 it gives only

positive definite matrices if the range over which these averages are computed

is at least 19 years long. Given that I have observations for only 58 years, I

prefer not using it.

18The operator vech(.) stacks the different elements in Σ; since there are ne := ns(ns+1)
2

such different elements, there are ne equations each involving ne regressors which gives
the n2

e parameters in A.
19see Gourieroux, Jasiak, and Sufana (2005)
20Since the AR(1) process is not rich enough to capture the autocorrelation in agriculture

and federal government, these two sectors are omitted. In order to consider the private
economy only, the sector state & local government is also omitted. This leaves 19 sectors
in the dataset.
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4.1 Particle Filter

The observation equation (3) and the transition equation (4) form a non lin-

ear state space system. Therefore, the particle filter, also known as sequential

Monte Carlo filter, can be used to draw from the posterior distribution of the

covariances Wt given the observed growth rates up to time t. This posterior

distribution is denoted by p(Wt|x1:t, θ) where x1:t are the observations up to

time t and θ = {M, Γ, Σ, K}. The sample average of these draws is an esti-

mation of E[Wt|x1:t], which is the minimum mean squared error estimator for

the conditional covariance matrix. In the following, fx(xt|Wt) is the density

of xt given Wt (and also given ct + ρtxt−1). The transition density of the

WAR(1) is written as fw(Wt|Wt−1, θ). The procedure to be implemented has

three steps.

Step 1, Initialization Draw N times from the unconditional distribution

of W0, p(W0|θ). This gives a sample of N particles which is designed by

{wi
0|0}N

i=1.

Step 2, Prediction For each of the particles in the sample from the previ-

ous step, given by {wi
t−1,t−1}N

i=1, generate one draw from fw(Wt|wi
t−1,t−1, θ).

The result is a sample of N particles, {wi
t|t−1}N

i=1 that are drawn from

p(Wt|x1:t−1, θ). This follows from

p(Wt|x1:t−1, θ) =

∫
p(Wt, Wt−1|x1:t−1, θ)dWt−1

=

∫
fw(Wt|Wt−1, θ)p(Wt−1|x1:t−1, θ)dWt−1

= EWt−1[fw(Wt|Wt−1, θ)|x1:t−1, θ]

≈ 1

N

N∑
i=1

fw(Wt|wi
t−1,t−1, θ)

where EWt−1 is the expectation taken over Wt − 1. The Markov property al-

lows to replace fw(Wt|Wt−1, x1:t−1, θ) by fw(Wt|Wt−1, θ) in the second equa-

tion. Intuitively, the density p(Wt|x1:t−1) can be approximated by a mixture

of conditional transition densities where the probability that we draw from

fw(Wt|wi
t−1,t−1, θ) equals 1/N for each i. This uniform probability mass dis-
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tribution justifies drawing once from each fw(Wt|wi
t−1,t−1, θ) to get a sample

from p(Wt|x1:t−1, θ).

Step 3, Updating Draw, with replacement, N times from the previous

sample, {wi
t|t−1}N

i=1. The probability to draw wi
t|t−1 is given by the so called

normalized importance weight, denoted by πi
t, which is calculated according

to:

πi
t =

fx(xt|wi
t|t−1)∑N

i=1 fx(xt|wi
t|t−1)

The resulting sample is a draw from the discretized density p(Wt|x1:t, θ) which

can be seen from the following argument.

According to Bayes rule, it is

p(Wt|x1:t, θ) =
fx(xt|Wt)p(Wt|x1:t−1, θ)

fx(xt|x1:t−1)

where the denominator can be approximated by

fx(xt|x1:t−1) =

∫
fx(xt|Wt)p(Wt|x1:t−1, θ)dWt

= EWt [fx(xt|Wt)|x1:t−1, θ]

≈ 1

N

N∑
i=1

fx(xt|wi
t|t−1)

I abuse notation and write

P(Wt = wi
t|t−1|x1:t, θ) ≈ fx(xt|Wt)∑N

i=1 fx(xt|wi
t|t−1)︸ ︷︷ ︸

=πi
t

P(Wt = wi
t|t−1|x1:t−1, θ)

where P is a probability measure. In words, I express it as follows. Since,

in Step 2, each element in {wi
t|t−1}N

i=1 is drawn from p(Wt|x1:t−1, θ), if the

i’th element is drawn with probability πi
t, the overall probability mass of this

element is approximately p(wi
t|t−1|x1:t, θ).

The drawn sample is referred to by {wi
t|t}N

i=1 and is the input to Step 2 for

the next iteration.

37



The minimum mean squared error estimate of the latent covariance matrix

at time t is given by

1

N

N∑
i=1

wi
t|t

A detailed discussion of particle filtering methods can be found in Arulam-

palam, Maskell, Gordon, and Clapp (2002). These methods have been used

by Sungbae (2005) and by Fernandez-Villaverde and Rubio-Ramirez (2006)

to estimate a second order approximated DSGE model.

4.2 Implementation - A Bayesian Estimation

I estimate the latent covariances assuming that their prior distribution is a

fully calibrated WAR(1) process. This procedure can be considered as the

multivariate extension of a Bayesian estimation of a standard deviation where

a Gamma-prior is assumed for the standard deviation. Posterior draws of

the covariance matrix are then filtered using the observed sectoral growth

rates in the updating step.

The parameters that I have to choose are the elements of the matrices

M and Σ and the degree of freedom K. For simplicity, I assume M to be

diagonal with identical elements
√

λ where λ = 0.8.21 The matrix KΣ is set

equal to the sample covariance matrix of the data multiplied by (1− λ) and

K equal to 19.

I justify the calibration of KΣ by the discussion in the previous section

according to which Wt converges to Σ̃(∞). If Σ̃(∞) is assumed to be close

to the sample covariance matrix, the calibration follows from equation (6)

which implies KΣ = Σ̃ = (1 − λ) ˜Σ(∞). The calibration of K is justified

by the number of sectors in my data set, which is 1922 (K = 19 is thus the

minimal degree of freedom that gives regular Wt matrices).

Due to limited computer capacity, I run the particle filter 20 times drawing

20’000 particles each time. Then, I compute the mean of the posterior means

21I have also tried λ = 0.2 and λ = 0.5. The conclusions regarding the contribution of
sectoral shares in GDP volatility remain the same. A higher λ means that the Wishart is
more persistent and has weaker innovations.

22Agriculture, federal government and state & local government are left out.
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and take this as an estimation for the standard deviation.23 Since the covari-

ance matrices, which I want to filter, are quite big, it is well possible that

even 100’000 particles are not enough to get precise estimates. Therefore,

instead of drawing the 19 initial zk,0s from their unconditional distribution,

I set them equal to the residual vectors from the AR(1) estimations (i.e. to

xt − ct − ρtxt−1) using the residual vectors of the first 9 years twice. The

filtered covariance matrix in the first period, W1, is therefore based on zk,1s

which should not be too far away from the zk,1s obtained with enough par-

ticles.

4.3 Results

As a first assessment of the econometric model, one can compare the results in

Table 9 in section 3.2 (which contains the results of the ICSS variance break

tests) with Figures 11, 12, 13 and 14 in the appendix. These figures show

that the filtered AR(1) innovation standard deviations of mining, utilities,

durable goods and information square well with the findings of the ICSS

variance break test.24

4.3.1 Conditional GDP Volatility

I use the filtered covariance matrices to assess how the conditional standard

deviation of GDP growth depends on sectoral shares. Formally, since GDP

growth is given by
∆yt

yt−1
=
∑

i

τ i
t−1x

i
t

the conditional variance of GDP growth as a function of sectoral shares is

V art−1

(
∆yt

yt−1

)
= τ ′

t−1Wtτt−1 (7)

23I have some evidence that the algorithm’s covering of the domain is not too bad: when
I run the algorithm ten times drawing 10’000 particles each time, I find approximately the
same results.

24Graphs of filtered standard deviations of other series as well as graphs of filtered
covariances are available from the author upon request.
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where τt is a column vector with the shares τ i
t−1 of sectoral production in

real GDP. The conditional standard deviation is just the square root of this

expression. It is plotted in Figure 5 for the period 1949-2006. We can see that

it decreased from above 3.5 to below 2. It looks similar to the conditional

standard deviation obtained with the ARCH model in Section 2 and plotted

in Figure 3. However, a difference is, that the standard deviation in Figure

5 is smoother than the one obtained with the ARCH model. This reflects

that the variance obtained with the Wishart specification is more robust to

extreme realizations of squared GDP growth rates.

In order to compare the two models explicitly, I regress the conditional

variance, obtained by equation (7), on the following variables: a constant,

the residual from the univariate GDP growth AR(1), a time trend, a squared

time trend, a dummy variable for the post-84 period and a dummy variable

for the ’70s. This can be written as:

V art−1

(
∆yt

yt−1

)
= α0 + α1ε

2
t−1 + ω1t + ω2t

2 + γ1dt + γ2dt70s + vt,

where vt is the error term. This corresponds to the ARCH model esti-

mated in Section 2. The results of both estimations are reported in Table

12. It can be seen that compared to the ARCH models, all coefficients in

the OLS regression are significant. The coefficients of the trend components

are, in absolute value, slightly larger in the OLS equation than in the ARCH

equation. The constants are of similar size.
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Table 12: Annual ARCH with Quadratic Trend, Period 1948-2005
OLS Results

α0 α1 ω1 ω2 γ1 γ2

13.3607 0.0244 −0.4159 0.0044 0.8540 1.4023
(0.3728) (0.0104) (0.0286) (0.0005) (0.4721) (0.3456)

Results from Section 2
α0 α1 ω1 ω2 γ1 γ2

9.2599 0.2015 −0.2968 0.0030 −1.0123 4.1049
(3.3731) (0.2673) (0.0401) (0.0001) (3.3098) (4.9508)

Standard errors are in parentheses.

Figure 5: Conditional GDP Standard Deviation
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A big advantage of computing the GDP volatility using equation (7) over

using an ARCH model, is that changes in the GDP volatility can be related

to changes in the GDP composition. This is done next.

In order to get an idea of how GDP volatility is influenced by its composi-

tion, I compute three counter-factual paths for the conditional GDP standard
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deviations. The first one is obtained by evaluating equation 7 in each period

at the shares of 1949. The second and third one are obtained by evaluating

the same equation at the shares of 1977, respectively 2005. While the shares

are kept constant when computing the GDP volatility paths, the same time-

varying Wt is used for all three paths. Hence, the three paths differ only by

the underlying assumed GDP composition. Their evolutions are plotted in

Figure 6. The top graph corresponds to the shares of year 1949, the middle

one to the shares of year 1977 and the bottom one to shares of year 2005.

On average, the conditional standard deviations with 2005-shares are 24.7%

(19.1%) lower than the ones with 1949-shares (1977-shares).

The difference remains important if instead of end of period shares, av-

erage shares are used. In Figure 7, the upper graph is the counter-factual

conditional GDP standard deviation where sectoral shares are set to their

pre-84 averages whereas the lower graph is the conditional GDP standard

deviation with sectoral shares set to their post-84 averages. The standard

deviation with post-84 shares is, on average, 17.7% lower than the standard

deviation with pre-84 shares.

This suggests that an important part of the drop in the conditional GDP

standard deviation can be explained by sectoral shifts. The findings are the

same if a less persistent WAR(1) is assumed. The results of two alternative

calibrations are in the appendix in Figures 15 and 16.
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Figure 6: Conditional GDP Standard Deviation with given constant shares
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Figure 7: Conditional GDP Standard Deviation with average shares
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4.3.2 Unconditional GDP Volatility

Computing the unconditional GDP volatility analytically as a function of

initial (1949) sectoral shares is very hard. Therefore, I simulate it for the

post-war period in the following way. I set initial shares and then I simulate

sectoral productions using the AR(1)s as estimated in Section 3.2 (taking

into account the parameter breaks) where the innovations are drawn from

multivariate normals with covariance matrices equal to the filtered Wts.
25 I

further compute the standard deviation of the implied GDP growth rate for

the pre-84 and the post-84 period. I repeat this 100’000 times and finally

compute the average standard deviations.

The resulting average standard deviations, when initial shares are equal

to what they were in 1949, 1977 and 2005, are reported in Table 13. The

1949-share simulation can be used to test my specification. GDP volatility

in the data is 3.21 in the pre-84 and 1.63 in the post-84 period. These

numbers are inside the intervals [2.06, 3.24] and [1.38, 2.62] which contain

90% of the simulated standard deviations of the pre-84, respectively of the

post-84 period.26

Table 13: Simulated GDP standard deviation

Initial Shares 1950-1984 1985-2005
1949 2.62 1.95
1977 2.37 1.75
2005 1.95 1.63

We can see that the average simulated standard deviations depend on the

chosen initial sectoral shares. The simulated standard deviation for the 2005

(1977) initial shares is 25.6% (17.7%) lower in the pre-84 period than the

25Since the AR(1) parameters are different, sectors grow at different rates in my simu-
lations, and therefore, shares depart from their initial values. I did not choose to calibrate
the AR(1) parameters such that shares stay, on average, close to their initial values. The
reason is, that there are many different possible calibrations which can do this and which
have, by themselves, different implications on simulated GDP volatility. In my view, this
makes the results hard to interpret.

26These intervals are symmetric, i.e. obtained using the 5% and 95% quantiles.
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simulated standard deviation for the 1949 initial shares. For the post-84

period, the respective percentage is 16.4% (10.3%).27

4.3.3 Relevant Sectoral Shifts

In the previous sections, I have found that GDP volatility depends, to a

non-negligible extend, on its decomposition. The purpose of this section is

to determine the relevant sectoral changes behind this relationship.

The five most important sectoral shifts - in absolute value and in order of

decreasing importance - took place in the sectors durable goods, nondurable

goods production, finance & insurance, professional - scientific and technical

services and in the sector health care & social assistance.28 The numbers

in Table 14 show that both durable and nondurable goods production have

become less important than the three service sectors finance and insurance,

professional - scientific and technical services and health care & social assis-

tance. In the years 2001-2005, these three service sectors made up over 20%

of real GDP.

The question is, whether these shifts have had a relevant impact on real

GDP volatility. In order to answer this, the evolutions of the conditional

standard deviations of all five sectors are plotted in Figure 8. We can see

that in every period, the standard deviations of the two production sectors

are bigger than the standard deviations of the three service sectors. This

suggests that indeed, these five shifts have had a dampening effect on GDP

volatility.

27The results do barely change with different Wishart calibrations: For λ = 0.2, sim-
ulated standard deviation for the 2005 (1977) initial shares is 24.4% (9.6%) lower in the
pre-84 period and 17.5% (10.9%) in the post-84 period. For λ = 0.5, the respective
percentages are 24.7% (9.6%) and 17.7% (11.1%).

28The absolute difference of the average shares in the years 1948-1952 and the average
shares in the years 2001-2005 is computed. The list hardly changes if, instead, the absolute
difference between pre-84 and post-84 average shares is taken. The only difference is, that
finance and insurance experiences now the least important change of these five sectors.
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Table 14: Average shares (in %)
Sector average share average share

1948-1953 2001-2005
Durables 17.86 8.39
NonDurables 15.04 6.14
FinInsur 3.27 9.19
ServScieTech 1.93 7.84
ServicesHealth 2.02 7.83

Figure 8: Conditional Standard Deviations
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The above analysis does not take into account the evolution of covariance

terms. Therefore, I now use another way to identify the relevant sectoral

shifts. This way refers to equation (7). Concretely, I analyze the evolution of

the terms τ i
t−1τ

k
t−1(Wt)ik where (Wt)ik is the ikth element of the covariance

matrix Wt and τ i
t−1 the share of sector i at time t − 1. Hence, this analysis

takes into consideration the path of the entire covariance matrices (Wt). My

findings are the following. The τ i
t−1τ

k
t−1(Wt)ik-term, which decreased the

most, corresponds to the variance of durable goods growth. Other terms,
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which decreased significantly, correspond - in order of descending magnitude

- to:

(i) the covariance between durable and nondurable goods production,

(ii) the covariance between durable and retail sales,

(iii) the covariance between durable goods and wholesale trade and

(iv) the variance of nondurable goods production.

(These fives terms are plotted in Figure 9).

Figure 9: Five most important τ i
t−1τ

k
t−1(Wt)ik-terms
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In order to disentangle the changes in the shifts from the changes in the

covariance matrix, I also computed τ i
t−1τ

k
t−1(W )ik where W is the average

covariance matrix of the entire sample 1949-2005. Once more, the most im-

portant drop is found in the term corresponding to the variance of durable

goods production. The other four significant drops are, in order of decreasing

importance, the covariance between durable and nondurable goods, the co-

variance between durable goods and retail trade, the variance of nondurable

goods and the covariance between durable goods and wholesale trade. These

five τ i
t−1τ

k
t−1(W )ik-terms are plotted in Figure 10.

47



Figure 10: Five most important τ i
t−1τ

k
t−1(W )ik-terms
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Based on these calculations, I conclude that the shift out of durable goods

production has significantly stabilized real GDP growth. It has done so

not only through a decreasing variance term, but also through decreasing

covariance terms.
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5 Conclusion

I analyzed how real GDP volatility is influenced by the composition of GDP

and came to the conclusion that sectoral shifts had a non-negligible influence

on output volatility.

Using simple Monte Carlo simulations, I found that the unconditional real

GDP standard deviation would have dropped from 2.93 to 2.49 (-15%) in

1984, even if the covariance matrix of sectoral growth rates had not changed

(i.e. had stayed equal to its pre-84 average). Hence, sectoral shifts alone

would have produced a moderation of around 30% of the observed modera-

tion.

Furthermore, I developed a new methodology - based on the particle filter

and on the autoregressive Wishart process - to filter unobserved covariance

matrices. With it, I expressed both, the conditional and unconditional stan-

dard deviation GDP growth as a function of the composition of GDP. This

allowed me to show that if in the year 1949 sectoral shares had been equal

to what they were in 2005 (1977), then the conditional standard deviation

of GDP growth would have been, on average, 24.7% (19.1%) lower during

the postwar period. Therefore, I argued that sectoral shifts made GDP eas-

ier to forecast. Concerning the unconditional standard deviation, I found

that it would have been 25.6% (17.7%) lower in the postwar period had the

composition of GDP been already in 1949 what it was in 2005 (1977).

I further found that an important component of the increased stability

in real GDP growth was the shift out of durable goods production. This

extends the findings of McConnell and Perez-Quiros (2000) who argue that

the reduction in the variance of durable goods production alone can account

of the break in GDP volatility.

Moreover, I gave evidence against the good luck hypothesis using the

cumulative sums of squares test of Inclán and Tiao (1994): I found that only

the conditional variance of durable goods production experienced a significant

drop whereas the conditional variances of mining, utilities and information

increased during the postwar period.

Finally, I showed that the hypothesis of a relationship between GDP com-
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position and its volatility is not in contradiction with volatility inference

made from a univariate ARCH model of GDP growth. This contributes to

the discussion launched by Fang and Miller (2006) and Blanchard and Si-

mon (2001) whether GDP volatility experienced a one time drop or a trend

decrease.

Many of the existing economic models, which focus on business cycles,

shut out the growth component. However, as I have shown, this leaves out

an important part of the story. Therefore, future research should aim at

developing behavioral models which rationalize the observed sectoral shifts,

thus linking growth and volatility aspects.

Promising sources of inspiration could be Bernanke (1983) and Pindyck

(1991). They show that if investment is irreversible, it can become sensitive

to risk. Uncertainty can push the investor to postpone projects and wait

for new information about prices, costs and other market conditions. This

leads to a negative relationship between growth and volatility. Martin and

Rogers (1987) argue that if human capital growth is an increasing and con-

cave function in the cyclical component of output, then should GDP growth

be negatively correlated with its volatility. Blackburn and Galindev (2003)

show that if growth is mainly fostered by internal learning (people within

the firm reduce production in order to have time to learn how to improve the

productivity), then the correlation between growth and its volatility is more

likely to be positive whereas it is more likely to be negative when external

learning (meaning that aggregate labor supply has a positive spill-over effect

on productivity growth) is more important. This emerges because the en-

dogenous productivity growth rate is an increasing and convex function in

the sole shock (a demand shock) when internal learning is more important

whereas it is an increasing and concave function in predominance of external

learning.

One of my conjectures is that increased openness allowed the US economy

to export durable goods production. This would be consistent with (Barrell

and Gottschalk, 2004) who find that changes in openness are important in

explaining the decline in US-output volatility. Developing a model which

incorporates all this is a challenging task I intend to go about in future
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A Appendix

A.1 Quarterly GDP with GARCH(1,1) and ARCH(2)

Specifications

Table 15: Linear Trend in Volatility
GARCH Results

Growth rate equation: yt = a0 + a1yt−1 + a2yt−2 + εt

a0 a1 a2

0.4819∗∗∗ 0.2687∗∗∗ 0.1630∗∗

(0.0782) (0.0719) (0.0720)

Volatility equation: σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1 + ω t + γ1 dt + γ2 d70s

t

α0 α1 β1 ω γ1 γ2

0.4884∗ 0.1218 0.4882∗ −0.0004 −0.3207∗ 0.2504
(0.2955) (0.0837) (0.2749) (0.0008) (0.1980) (0.2644)

Test statistics
LBQ(3) LBQ(6) LBQ2(3) LBQ2(6) Jarque-Bera
2.2515 5.7859 0.5587 3.9173 0.6548
[0.522] [0.448] [0.906] [0.688] [0.721]

ARCH Results

Growth rate equation: yt = a0 + a1yt−1 + a2yt−2 + εt

a0 a1 a2

0.4743∗∗∗ 0.2827∗∗∗ 0.1566∗∗

(0.0791) (0.0748) (0.0690)

Volatility equation: σ2
t = α0 + α1ε

2
t−1 + α2ε

2
t−1 + ω t + γ1 dt + γ2 d70s

t

α0 α1 α1 ω γ1 γ2

0.9436∗∗∗ 0.2045∗∗ 0.0581 -0.0011 −0.5611∗∗ 0.5296
(0.2183) (0.0922) (0.0964) (0.0012) (0.2663) (0.3901)

Test statistics
LBQ(3) LBQ(6) LBQ2(3) LBQ2(6) Jarque-Bera
2.2147 5.8575 0.4828 3.6617 0.6449
[0.529] [0.439] [0.923] [0.722] [0.724]

Standard errors are in parentheses, p-values in brackets; LBQ(k) and LBQ2(k) are the
Ljung-Box Q-statistics for the standardised residuals and the squared standardised
residuals testing for autocorrelation up to k lags. ∗, ∗∗ and ∗∗∗ denote 10, 5 and 1 %
significance level.
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Table 16: GDP - Quadratic Trend in Volatility, Break 1984:1
Growth rate equation: yt = a0 + a1yt−1 + a2yt−2 + εt

a0 a1 a2

0.4827∗∗∗ 0.2342∗∗∗ 0.1809∗∗∗

(0.0762) (0.0723) (0.0647)

Volatility equation: σ2
t = α0 + α1ε

2
t−1 + ω1 t + ω2 t2 + γ1 dt + γ2 d70s

t

α0 α1 ω1 ω2 γ1 γ2

1.4729∗∗∗ 0.1348 0.0114∗ 0.00003∗ −0.2702 0.8159∗∗

(0.4061) (0.0909) (0.0071) (0.00002) (0.3872) (0.4257)

Test statistics
LBQ(3) LBQ(6) LBQ2(3) LBQ2(6) Jarque-Bera
2.5148 5.0328 0.7492 3.9438 0.1138
[0.473] [0.540] [0.862] [0.684] [0.945]

Standard errors are in parentheses, p-values in brackets; LBQ(k) and LBQ2(k) are the
Ljung-Box Q-statistics for the standardised residuals and the squared standardised
residuals testing for autocorrelation up to k lags. ∗, ∗∗ and ∗∗∗ denote 10, 5 and 1 %
significance level.
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Table 17: Quadratic Trend in Volatility

GARCH Results

Growth rate equation: yt = a0 + a1yt−1 + a2yt−2 + εt

a0 a1 a2 λ
0.4838∗∗∗ 0.2464∗∗∗ 0.1837∗∗∗

(0.0765) (0.0684) (0.0696)

Volatility equation: σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1 + ω1 t + ω2 t2 + γ1 dt + γ2 d70s

t

α0 α1 β1 ω1 ω2 γ1 γ2

0.7526∗∗∗ 0.1214 0.4353∗∗ −0.0061∗∗∗ 0.00002∗∗∗ −0.0885 0.5197∗∗

(0.2731) (0.0980) (0.2829) (0.0006) (0.000003) (0.2344) (0.3812)

Test statistics
LBQ(3) LBQ(6) LBQ2(3) LBQ2(6) Jarque-Bera
1.9575 5.4704 1.0291 3.7182 0.3554
[0.581] [0.485] [0.794] [0.715] [0.837]

ARCH Results

Growth rate equation: yt = a0 + a1yt−1 + a2yt−2 + εt

a0 a1 a2 λ
0.4547∗∗∗ 0.2897∗∗∗ 0.1767∗∗

(0.0728) (0.0697) (0.0631)

Volatility equation: σ2
t = α0 + α1ε

2
t−1 + α2ε

2
t−1 + ω1 t + ω2 t2 + γ1 dt + γ2 d70s

t

α0 α1 α1 ω1 ω2 γ1 γ2

1.2525∗∗∗ 0.1748∗∗ 0.02475 −0.0079∗∗∗ 0.00002∗∗∗ −0.2374 0.5903∗∗

(0.1947) (0.0849) (0.0714) (0.0005) (0.000003) (0.2278) (0.2915)

Test statistics
LBQ(3) LBQ(6) LBQ2(3) LBQ2(6) Jarque-Bera
1.8534 5.2437 0.8888 3.7556 0.486
[0.603] [0.513] [0.828] [0.710] [0.784]

Standard errors are in parentheses, p-values in brackets; LBQ(k) and LBQ2(k) are the
Ljung-Box Q-statistics for the standardised residuals and the squared standardised
residuals testing for autocorrelation up to k lags. ∗, ∗∗ and ∗∗∗ denote 10, 5 and 1 %
significance level.
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A.2 Simple Two Period Monte Carlo Simulation

Table 18: With Agriculture and Federal Government
Simulation 1: Different Covariances in Period 1 and Period 2

Period 1 Period 2
Average (Median) 95% Interval Average (Median) 95% Interval

2.87 (2.85) [2.16, 3.66] 1.77 (1.65) [1.04, 3.33]

Simulation 2: Covariances of Period 1 in both Periods

Period 1 Period 2
Average (Median) 95% Interval Average (Median) 95% Interval

2.87 (2.85) [2.16, 3.66] 2.50 (2.46) [1.62, 3.62]

Simulation 3: Covariances of Period 2 in both Periods

Period 1 Period 2
Average (Median) 95% Interval Average (Median) 95% Interval

2.00 (1.95) [1.47, 2.87] 1.85 (1.66) [1.07, 4.22]
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Table 19: Constant AR(1) Coefficients

Simulation 1: Different Covariances in Period 1 and Period 2

Period 1 Period 2
Average (Median) 95% Interval Average (Median) 95% Interval

2.87 (2.85) [2.17, 3.66] 1.77 (1.65) [1.05, 3.34]

Simulation 2: Covariances of Period 1 in both Periods

Period 1 Period 2
Average (Median) 95% Interval Average (Median) 95% Interval

2.87 (2.85) [2.16, 3.66] 2.49 (2.45) [1.62, 3.61]

Simulation 3: Covariances of Period 2 in both Periods

Period 1 Period 2
Average (Median) 95% Interval Average (Median) 95% Interval

2.01 (1.95) [1.47, 2.87] 1.77 (1.65) [1.05, 3.34]
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Table 20: Series without breaks and remaining correlation

Simulation 1: Different Covariances in Period 1 and Period 2

Period 1 Period 2
Average (Median) 95% Interval Average (Median) 95% Interval

4.13 (4.11) [3.14, 5.22] 2.18 (2.16) [1.47, 3.04]

Simulation 2: Covariances of Period 1 in both Periods

Period 1 Period 2
Average (Median) 95% Interval Average (Median) 95% Interval

4.13 (4.11) [3.14, 5.22] 3.75 (3.71) [2.54, 5.18]

Simulation 3: Covariances of Period 2 in both Periods

Period 1 Period 2
Average (Median) 95% Interval Average (Median) 95% Interval

2.33 (2.32) [1.77, 2.93] 2.20 (2.18) [1.50, 3.02]

A.3 Filtered Standard Deviations Using a Wishart Prior

In order to save space, only the filtered standard deviations for mining, utili-

ties, durable goods and information are reported. All other graphs are avail-

able upon request. For these four sectors, the ICSS test detected breaks in

the conditional variance (see Table 9) which is reflected in the below graphs.
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Figure 11: Mining
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Figure 12: Utilities
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Figure 13: Durables

1950 1960 1970 1980 1990 2000 2010
6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

Figure 14: Information
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A.4 Alternative Wishart Specifications

Figure 15: Conditional GDP Standard Deviation with given constant shares
and λ = 0.2
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On average, the conditional standard deviations with 2005-shares are

24.3% (18.7%) lower than the ones with 1949-shares (1977-shares).
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Figure 16: Conditional GDP Standard Deviation with given constant shares
and λ = 0.5
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On average, the conditional standard deviations with 2005-shares are

24.3% (18.8%) lower than the ones with 1949-shares (1977-shares).
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