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Abstract

We consider a median voter model with uncertainty about how the

economy functions. The distribution of income is exogenously given and

the provision of a public good is financed through a proportional tax.

Voters and politicians do not know the true production function for the

public good, but by using Bayes rule they can learn from experience. We

show that the economy may converge to an inefficient policy where no

further inference is possible so that the economy is stuck in an information

trap.
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...for after falling a few times they would in the end certainly learn

to walk...

Immanuel Kant

1 Introduction

We consider a median voter model with uncertainty about how the economy

functions. The distribution of income is exogenously given and the provision

of a public good is financed through a proportional tax. Voters and politicians

do not know the true production function for the public good, but by using

Bayes rule they can learn from experience. We show that the economy may

converge to an inefficient policy where no further inference is possible so that

the economy is stuck in an information trap.

We introduce uncertainty by making the following two assumptions about

the production of the public good. First, there are two production functions,

and voters do not know which one is true. Second, the production of the public

good is disturbed by exogenous shocks. In each period voters and politicians

observe the implemented policy and the associated random output of the public

good. Using this information and Bayes rule they update their beliefs about

which production function is true. Each voter has a most preferred policy, which

depends on these common beliefs and her personal income. In every period,

the election outcome and consequently the production of the public good is

determined by the median voter.1

1Blendon et al. (1997) conducted an opinion survey showing that there is a substantial gap

between economists’ and the public’s beliefs about how the economy functions. Fuchs et al.

(1998) report findings from another survey that there are significant differences even among
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We consider two questions. (1) Does the stochastic process of beliefs and

associated policies converge? (2) If so, where do they converge to? We show

analytically that the policies converge to a random variable. The support of this

random variable includes two policies. Interestingly, one of the policies can be

Pareto inefficient. We use numerical methods to approximate the distribution

of the random variable. The probability of converging to the inefficient policy

increases in the variance of the shocks and in voters’ initial beliefs attributed

to the wrong production function.

There is a substantial political economy literature that deals with incomplete

information. However, most of this literature deals with asymmetric informa-

tion in the sense that some types of agents are better informed than others.2

Closer related to our work is the seminal paper by Piketty (1995), in which

agents have to learn the parameters of the model. In his model, agents have

heterogenous initial beliefs and have access to heterogenous private informa-

tion, which is why they end up with heterogenous beliefs even in the long run.

Obviously, at most one of these beliefs can be correct. In contrast, in our model

all voters share the same information and beliefs, but are eventually hindered

from learning the truth because further inference becomes impossible once they

always observe the same outcome (or more precisely, once they always observe

outcomes that have the same probability under either production function).

Spector (2000) builds on Piketty’s paper and considers a cheap talk game in

professional economists about policy questions as well as parameter estimates. This can be

regarded as evidence of uncertainty about which is the correct model.
2See, for example, Feddersen and Pesendorfer (1996), Blumkin and Grossmann (2004) or

Schultz (2004).
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which all agents derive identical utility from a collective decision, but differ with

respect to their beliefs. His assumptions are the converse of ours as we assume

that all voters have the same information but are affected in different ways from

the same policy. Our paper also relates to the literature on Bayesian learning

(see, e.g., McLennan, 1984; Easley and Kiefer, 1988), which has established that

impatient optimizers may optimally fail to learn the true parameter values. The

model of Alesina and Angeletos (2003) is very similar to ours in that different

beliefs are consistent with different equilibria, so that different social beliefs and

political outcomes are self-reproducing. An important difference is that in their

model the equilibria can be ranked unambiguously only from the point of view

of the median voter. Moreover, the sources of multiplicity are quite different. It

stems from differences in social beliefs about which fraction of income is fair or

merited in their model, whereas in ours it arises from incomplete information

and eventually incomplete learning.

The remainder of the paper is structured as follows. In section 2, the basic

model is outlined. In section, 3 we introduce uncertainty and the dynamic

learning process of voters, and we show that this process converges. We derive

also a lower bound for the probability that in the long run a Pareto efficient

policy is adopted. In section 4, we then report simulation results that strongly

support the view that the probability of reaching a Pareto inefficient policy is

strictly positive for a wide set of initial conditions. Section 5 concludes.
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2 The basic model

Our starting point is the model developed by Persson and Tabellini (2000, ch.

3), which builds on the seminal work of Meltzer and Richard (1981).3 We first

describe the model without uncertainty.

2.1 The Hotelling-Downs model with a public good

There is a continuum of individuals whose total mass is normalized to one.

Individual income yi is distributed according to the differentiable distribution

function F (yi), where f(yi) = F ′(yi) denotes the probability density function.

The mean income is denoted by y and the median income by ym. The support

of the distribution is [0, ysup] with ysup < ∞. Each individual i derives utility

from private consumption ci and from a public good H(g), which is a function

of government expenditure g. Therefore, individual i’s utility is

ui = ci + H(g). (1)

Note that individuals differ only with respect to their private consumption, but

are identical with respect to their valuation of the public good.

The government’s budget constraint is

g = τy, (2)

where 0 ≤ τ ≤ 1 is a flat tax rate. Accordingly, individual i’s consumption is

ci = (1− τ)yi. (3)

We make the following assumptions for the production function H(g). As-

sumption 1: H(g) is twice differentiable and strictly concave. Assumption 2:
3We thank Roland Hodler for suggesting writing down the model in this way.
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∂H
∂g (0) > ysup

y > 0. Assumption 3: ∂H
∂g (y) < 0. These assumptions imply that

H(g) has a unique interior maximum in [0, y] which avoids boundary solutions

in the voting model we consider below.

Using the budget restrictions (2) and (3) and normalizing mean income y

to one, we can rewrite (1) to get i’s utility from policy τ

ui(τ) = (1− τ)yi + H(τ). (4)

Note that H(τ) is concave in τ . Moreover, because of Assumption 2, we have

∂H
∂τ (0) > ysup.

By τ i we denote individual i’s optimal tax rate, which is implicitly defined

by

∂H

∂τ
(τ i) = yi. (5)

Since H(τ) is concave, τ i is decreasing in yi. Thus, the single crossing property

is satisfied (see Persson and Tabellini, 2000, ch. 2, condition 2.4). Denote by

τm the optimal tax rate of the median income voter.

2.2 Pareto efficient and Pareto inefficient policies

The optimal tax rate of the richest individual τ I is defined by H ′(τ I) = ysup.

Assumption 2 implies τ I > 0; some government activity is better than none for

all individuals, even for the richest one. The optimal tax rate of the poorest

individual τ II is defined by H ′(τ II) = 0. Assumption 3 implies τ II < 1, so

even the poorest individual will prefer τ II to any higher tax rate. The interval

P ≡ [τ I , τ II ] ⊂ [0, 1] contains all Pareto efficient tax rates. Accordingly, the

regions [0, τ I) and (τ II , 1] contain Pareto inefficient policies.
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Figure 1: Pareto efficient and inefficient policies.

Figure 1 illustrates the set of Pareto efficient tax rates. This is also the

interval of conflictual politics since voters do not unanimously agree which of

these policies are better or worse. This is in contrast to policies τ /∈ P , which

are considered by all individuals worse than either τ I or τ II .

2.3 Median voter equilibrium

We assume that every individual votes for the policy available which is closest

to the policy that maximizes its utility given in (4). We focus on two party

competition. Parties (or candidates) are opportunistic and derive utility solely

from being in office. Parties simultaneously choose a policy τ ∈ [0, 1], which

they commit to implement. The parties maximize the number of votes as

opposed to maximizing the probability of winning. If both parties get the

same number of votes, the winner is drawn by flipping a fair coin. Under

the assumptions made, the unique equilibrium of the game is the well-known

median voter equilibrium. Both parties choose τm as their policy and the winner
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is chosen randomly.

3 The model with uncertainty

In this section, we introduce uncertainty by making the following two assump-

tions. First, there are two possible production functions, labelled HA(τ) and

HB(τ), only one of which is true, both satisfying the assumptions of section 2.

Second, the production of the public good is disturbed by some factors exoge-

nous to the model. Voters and politicians have some initial beliefs about which

production function is the true one. They use the observed outcomes to update

their beliefs.

3.1 Uncertainty and its unravelling

Without loss of generality, we assume that HA(τ) is the true production func-

tion. Let PA ≡ [τ I
A, τ II

A ] and PB ≡ [τ I
B, τ II

B ] be the sets of Pareto efficient tax

rates associated with the production function HA and HB, respectively. Let τm
A

and τm
B be the optimal tax rates for the median voter under HA and HB, i.e.,

∂HA

∂τ
(τm

A ) = ym and
∂HB

∂τ
(τm

B ) = ym. (6)

Note that τm
A ∈ PA and τm

B ∈ PB. Without loss of generality we assume that

τm
A < τm

B . Furthermore, we assume that the two functions cross exactly once

at τ̃ , and that τ̃ ∈ [τm
A , τm

B ].

The production of the public good is exposed to uncertainty. If τt is the tax

rate in period t, then voters (and politicians) observe the outcome

ht(τt, εt) = HA(τt) + εt , (7)
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Figure 2: Two production functions.

where εt is an error term drawn randomly in every period.4 It is common

knowledge that the error terms are normally and i.i.d. with mean 0 and variance

σ2; we denote its probability density function by φ(εt). Note that without

noise, the learning process, described below, would be degenerate since one

observation would be sufficient to identify the true production function.

The time line is as shown in Figure 3. In every period t, an election takes

t=1 t=2
        policy
implementation 

α
1
 α

2
 τ

1
 

realization
 of shock

election
outcome

updatingvoting

  policy
outcome

ε
1
 h

1
 

initial
belief

updated
 belief

Figure 3: The time line.

place, t = 1, 2, ... . Both implemented policies and the outcomes from these
4The error term ε captures factors influencing the policy outcome except the policy itself.
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policies are observed ex post. That is, in period t + 1, the entire history

Ht ≡ {(hj , τj)}t
j=1 of previously implemented tax rates and associated pol-

icy outcomes is common knowledge. The beliefs of voters and politicians in

period t that HA is the true production function are denoted by αt. Then the

expected level of the public good in period t for tax rate τt is

Ht(τt) ≡ αtHA(τt) + (1− αt)HB(τt) . (8)

Proposition 1 In every period t, both candidates take the position τm
t , where

τm
t is implicitly defined by

H ′
t(τ

m
t ) = αtH

′
A(τm

t ) + (1− αt)H ′
B(τm

t ) = ym . (9)

Proof. Since HA and HB are concave, Ht(τt) is concave. For any concave

function and beliefs αt, the distribution function for τ i
t can be derived using

standard techniques for the transformation of random variables.5 Let τ i
t = κ(yi)

denote the inverse of the function yi = H ′
t(τ

i
t ) derived from the optimality

condition (5) of the model without uncertainty. Since H ′′
t (τ i

t ) exists, dyi

dτ i
t

=

H ′′
t (τ i

t ). If we denote by Ω(τ i
t ) the distribution of τ i

t , then the density ω(τ i
t ) of

Ω(τ i
t ) is given by

ω(τ i
t ) = f(κ(τ i

t )) |
dyi

dτ i
t

|, (10)

where | dyi

dτ i | denotes the absolute value of the derivative dyi

dτ i
t

= H ′′
t (τ i

t ). Conse-

quently, the optimal tax rate of the voter with the median income is the median

optimal tax rate, which is denoted by τm
t . The median voter theorem applies

and the median optimal tax rate will be implemented. 2

Figure 4 depicts the equilibrium outcome, as stated in Proposition 1. Initial
5See, e.g., Hogg and Craig (1995).
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Figure 4: Equilibrium outcome in period 1.

beliefs α1 are such that the expected production function in period 1 is H1, so

that the policy implemented in period 1 is τm
1 .

Figure 5 illustrates the impact of the error term on the beliefs and on the

equilibrium tax rate in the next period. After implementing τm
1 , the shock

ε1 materializes. If ε1 > 0, the outcome is better than expected under H1,

and therefore, updated beliefs are α2 > α1 and the new expected production

function H2 is as shown in the left hand panel. On the other hand, if ε1 < 0, the

outcome is worse than expected under H1, and therefore, beliefs are downgraded

to α2 < α1, yielding H2 as shown in the right hand panel. In both cases, the

expected production function H2 is the basis for equilibrium in period 2.

Next we show that only a strict subset of the feasible tax rates τ ∈ [0, 1] are

implemented in equilibrium.

Proposition 2 Let τm
t be the median tax rate in any period t. Then,

τm
t ∈ [τm

A , τm
B ] ∀t.

Proof. By Proposition 1, in any period t the median voter’s optimal tax rate



Berentsen, Bruegger and Loertscher 12

0  0.2 0.4 0.8 1  
0

0.5

1

1.5

2

2.5

3

H
A
 

H
B
 

τm
1

 

o

H
1
 

o 

H
2
 

τm
2

 

ε
1
>0 

0  0.2 0.4 0.8 1  
0

0.5

1

1.5

2

2.5

3

H
A
 

H
B
 

τm
1

 

o 
H

1
 

o 

H
2
 

τm
2

 

ε
1
<0 

Figure 5: Inferences and outcome in period 2, as a function of ε1.

under the expected production function Ht(τt) defined in (8) is implemented

in equilibrium. Since by definition ∂HA
∂τ (τm

A ) = ∂HB
∂τ (τm

B ) and since HA(τ) and

HB(τ) are both concave, we know that ∂HA
∂τ > ym and ∂HB

∂τ > ym for all τ < τm
A .

Hence, since αt ≤ 1 for all t, τm
t ≥ τm

A for all t follows. Symmetric arguments

can be applied to rule out τm
t > τm

B . 2

Proposition 2 is illustrated in Figure 6.
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Figure 6: Range of equilibrium tax rates.
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3.2 An informal discussion of the convergence results

The voters’ problem in our model is basically a problem of inference. Recall that

Ht ≡ {(hi, τi)}t
i=1 is the publicly observed history up to date t. Accordingly,

let Pr(HA

∣∣Ht) denote the conditional probability that HA is true given history

Ht. Denote by Pr(ht

∣∣HA, τt) the probability of observing ht given that HA is

true and given that policy τt is implemented. Then, by Bayes rule

Pr(HA|Ht) = Pr(HA|Ht−1) Pr(ht|HA,τt)
Pr(HA|Ht−1) Pr(ht|HA,τt)+(1−Pr(HA|Ht−1)) Pr(ht|HB ,τt)

. (11)

Since voters are rational, they use Bayes rules (11) to update their beliefs, i.e.,

αt+1 = Pr(HA|Ht). For the initial period, we assume 0 < α1 < 1. Since the

probability of observing ht is higher under the true production function HA

than under the wrong one HB, αt+1 should be expected to converge to 1 as

the number of observations gets large. However, recall that the two produc-

tion functions intersect at τ̃ which implies that Pr(ht|HA, τ̃) = Pr(ht|HB, τ̃).

Inspection of (11) reveals that in this case, αt+1 = αt. The observation ht is

equally likely under production function HA as under HB. In this case, the

learning process comes to a halt. Let α̃ be the belief such that in political

equilibrium τ̃ is implemented. That is, α̃ solves

α̃H ′
A(τ̃) + (1− α̃)H ′

B(τ̃) = ym,

where τ̃ is such that HA(τ̃) = HB(τ̃). Clearly, α̃ ∈ (0, 1) exists. Moreover,

the fact ∂α̃
∂ym < 0 is readily established by noting that for a given belief α,

the preferred tax rate of any voter decreases in her income. Therefore, as the

median income increases, a higher belief that HB is true is required for the

median voter’s preferred tax rate to be τ̃ , and hence, α̃ decreases in ym.
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This raises two important questions: (1) Does the stochastic process of

beliefs and policies converge? (2) If so, to what beliefs and policies does it con-

verge? In Section 3.3 we show that the process of beliefs converges to a random

variable whose support consists solely of α̃ and 1 and that this is equivalent to

saying that the policy converges to a random variable whose support is τ̃ and

τm
A .

Another question is how likely the convergence to the policy τ̃ is. In Section

4 we use numerical methods to approximate the probability of reaching α̃ and

1 (or equivalently τ̃ and τm
A ) as a function of initial conditions such as initial

beliefs, the shape of the production functions and the variance of shocks. Our

simulations suggest that convergence to τ̃ occurs for a wide range of initial

conditions. This is interesting because τ̃ can be Pareto inefficient.

3.3 Convergence of the stochastic process

We now state our main results. These are (1) that in the long-run, the equilib-

rium policy and equilibrium beliefs converge and (2) that they do not necessarily

converge to a Pareto efficient policy and the true probability, respectively. We

comment on these findings after the proposition and its proof.

Proposition 3 There exists a random variable τ∞ ∈ [0, 1] such that

1. τm
t → τ∞ almost surely as t →∞, and

2. the support of τ∞ is {τ̃ , τm
A }.

Proof. We prove Proposition 3 by showing that the voters beliefs αt converge

to a random variable α∞ almost surely. From Proposition 1 we then get the

convergence result for τm
t .
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We first define the function

s(τ) ≡ HA(τ)−HB(τ) for τ ∈ [τm
A , τm

B ] . (12)

The fact that s′(τ) < 0 for τ ∈ [τm
A , τm

B ] is readily established, using H ′
A(τ) <

H ′
B(τ) for τ ∈ [τm

A , τm
B ], which follows from concavity of both HA and HB and

the fact that H ′
A(τm

A ) = H ′
B(τm

B ), noted in (6). Note that for τ̃ ∈ [τm
A , τm

B ],

s(τ̃) = 0. Therefore, s(τm
A ) > 0 and s(τm

B ) < 0. Figure 7 provides an illustra-

tion.
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Figure 7: An illustration of the function s(τ).

Let us also define the function τm(αt), which is the tax rate solving equation

(9) as a function of the beliefs αt. So for a given belief αt we have τm
t = τm(αt),

the unique optimal tax rate of the median voter. Using the implicit function

theorem, we have

∂τm
t

∂αt
=

−s′(τm
t )

αtH ′′
A(τm

t ) + (1− αt)H ′′
B(τm

t )
< 0 , (13)

since −s′ > 0 and αtH
′′
A + (1 − αt)H ′′

B < 0 by concavity. This is also quite

intuitive. As the beliefs that HA is true increase, the equilibrium tax rate

decreases, i.e., is closer to τm
A . Finally, let us define

w(αt) ≡ s(τm(αt)), (14)
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which gives us the difference between the two production function in equilibrium

as a function of the beliefs in period t. The function w is defined on the

interval [0, 1]. The fact that ∂w
∂αt

= s′τm′ > 0 follows immediately from the

above observations. Moreover, because with τ̃ ∈ [τm
A , τm

B ], s(τ̃) = 0, we have

w(α(τ̃)) = 0 for a unique α̃ ∈ (0, 1) and −∞ < w(0) < 0 < w(1) < ∞.

Let α1 = Pr(HA) and 1−α1 = Pr(HB) be the exogenously given prior beliefs

that HA and HB are true, respectively. After observing history H1 = (h1, τ1),

voters apply Bayes rule to get

α2 = Pr(HA|H1) =
α1 Pr(h1|HA)

α1 Pr(h1|HA) + (1− α1) Pr(h1|HB)

=
Pr(HA) Pr(h1|HA)

Pr(HA) Pr(h1|HA) + Pr(HB) Pr(h1|HB)
.

After observing history H2 = {(hi, τi)}2
i=1, they use α2 and Bayes rule to get

α3 = Pr(HA|H2) =
α2 Pr(h2|HA)

Pr(HA) Pr(h2|HA) + (1− α2) Pr(h2|HB)

=
Pr(HA) Pr(h1|HA) Pr(h2|HA)

Pr(HA) Pr(h1|HA) Pr(h2|HA) + Pr(HB) Pr(h1|HB) Pr(h2|HB)
.

By induction, after observing history Ht = {(hi, τi)}t
i=1, we’ll have

αt+1 =

Pr(HA) Pr(h1|HA) Pr(h2|HA)... Pr(ht|HA)

Pr(HA) Pr(h1|HA) Pr(h2|HA)... Pr(ht|HA) + Pr(HB) Pr(h1|HB) Pr(h2|HB)... Pr(ht|HB)

or equivalently

αt+1 =
1

1 + Pr(HB) Pr(h1|HB) Pr(h2|HB)... Pr(ht|HB)
Pr(HA) Pr(h1|HA) Pr(h2|HA)... Pr(ht|HA)

. (15)

Since by assumption εt is distributed according to the normal with mean zero

and variance σ2, which we denote as φ(.), substituting yields6

Pr(ht|HA) = φ(ht −HA(τt)) = φ(εt) and

Pr(ht|HB) = φ(ht −HB(τt)) = φ(s(τt) + εt) .

6Note that for a continuous random variable any single observation has probability zero.

Nonetheless, L’Hopital’s rule can be used to determine to posterior probability, so that the

density rather than the cdf is appropriate.
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Thus, using (14) we can write (15) as

αt+1 =
1

1 + (1−α1)φ(w(α1)+ε1)φ(w(α2)+ε2)...φ(w(αt)+εt)
α1φ(ε1)φ(ε2)...φ(εt)

. (16)

Define

Nt+1 ≡ (1− α1)φ(w(α1) + ε1)φ(w(α2) + ε2) · ... · φ(w(αt) + εt)
α1φ(ε1)φ(ε2) · ... · φ(εt)

, (17)

such that (16) becomes

αt+1 =
1

1 + Nt+1
. (18)

That is, (18) defines αt = α(Nt) with ∂α(Nt)
∂Nt

< 0. Note also that αt+1 ∈ (0, 1] ⇔
Nt+1 ∈ [0,∞). Moreover, we can now define a sequence of random variables

{Ni}t
i=1, the initial value of which is exogenously given as N1 = 1−α1

α1
. Finally

define r(Nt) ≡ w(α(Nt)), where

∂r

∂Nt
=

∂w

∂αt

∂αt

∂Nt
< 0

is readily established. It is also easy to see that r(0) = w(1) > 0 and that

limNt→∞ r(Nt) = w(0) < 0. Thus, for τ̃ ∈ [τm
A , τm

B ], there is a unique Ñ such

that

r(Ñ) = 0. (19)

In light of these new definitions,

Nt+1 = N1 · φ(r(N1) + ε1)
φ(ε1)

· φ(r(N2) + ε2)
φ(ε2)

· ... · φ(r(Nt) + εt)
φ(εt)

= Nt · φ(r(Nt) + εt)
φ(εt)

= Nt · e−
r(Nt)

2σ2 (r(Nt)+2εt) . (20)

Notice that (20) is a non-linear stochastic first-order difference equation.

Observe first that if the sequence takes either the value 0, the value Ñ , or

is infinity, it will take this value forever. This becomes immediate for Nt = 0

by inserting Nt = 0 into (20). For Nt = Ñ , note that r(Ñ) = 0 implies that the

exponent in (20) becomes 0 for any εt, implying Nt+1 = Ñ . If Nt is infinity,

Nt+1 will be too, since limNt→∞ r(Nt) is a finite negative number.

Note also that the sequence {Nt} is a martingale. The reason is first that

E[Nt+1]

=
∫ ∞

−∞

∫ ∞

−∞
...

∫ ∞

−∞
Nt+1 · φ(ε1, ε2, ..., εt) dε1 dε2 ... dεt

=
∫ ∞

−∞

∫ ∞

−∞
...

∫ ∞

−∞
N1 · φ(r(N1) + ε1) · ... · φ(r(Nt) + εt) dε1 dε2 ... dεt

= N1 < ∞,
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where the joint normal φ(ε1, ε2, ..., εt) = φ(ε1) ·φ(ε2) · ... ·φ(εt) by independence.

Second,

E[Nt+1|{Ni}t
i=1] = Nt

∫ ∞

−∞

φ(r(Nt) + εt)
φ(εt)

φ(εt) dεt

= Nt

∫ ∞

−∞
φ(r(Nt) + εt) dεt = Nt .

The martingale convergence theorem (e.g., Durrett, 2005, p. 233) states that Nt

converges almost surely to a limit N∞ with E[N∞] < ∞. For the interpretation

of our model, it is necessary to evaluate the random variable N∞. Lemma 1

states that the martingale either converges towards 0 or towards Ñ .

Lemma 1 The support of the random variable N∞ is {0, Ñ}.

Proof. From the observation we made above, we know that Pr(Nt+1 =

0|Nt = 0) = 1 and Pr(Nt+1 = Ñ |Nt = Ñ) = 1. We now prove by contradiction

that there exists no other value C the martingale Nt can converge to. Note that

the martingale convergence theorem directly states that Nt cannot converge to

infinity.

Assume there exists a number C ∈ (0,∞) where Nt can converge to. Then,

for every δ ∈ IR such that 0 6∈ [C− δ, C + δ] and Ñ 6∈ [C− δ, C + δ], there exists

a time period tδ, for which we have Ntδ+i ∈ [C − δ, C + δ] for i = 0, 1, ... . Note

that δ can be chosen arbitrarily small. Now define the variable εtδ+i by

εtδ+i ≡ σ2

r(Ntδ+i)
· ln Ntδ+i

C + δ
− 1

2
r(Ntδ+i) . (21)

Note that εtδ+i is a shock such that Ntδ+i+1 = C + δ. Assume that C < Ñ .

Then, the variable εtδ+i is negative and finite for all Ntδ+i ∈ [C − δ, C + δ],

because all terms in (21) are finite. Therefore, for every Ntδ+i ∈ [C − δ, C + δ],

Pr(εtδ+i < εtδ+i) = Φ(εtδ+i) > 0 , (22)

which means that the probability to draw an εtδ+i < εtδ+i is strictly positive

for every Ntδ+i ∈ [C − δ, C + δ]. Thus, with a positive probability we observe

an Ntδ+i+1 > C + δ for every period tδ + i because Ntδ+i+1 depends negatively

on εtδ+i. This means, that

inf
Ntδ+i∈[C−δ,C+δ]

Pr(Ntδ+i+1 6∈ [C − δ, C + δ]) > 0 ,

which is a contradiction to the assumption of convergence of Nt. Hence, Nt

cannot converge to C.
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In order to prove non-convergence towards a C > Ñ , we define εtδ+i as

εtδ+i ≡ σ2

r(Ntδ+i)
· ln Ntδ+i

C − δ
− 1

2
r(Ntδ+i)

and use the equivalent reasoning as above.

We are now only left to show that the probability of Nt converging to the set

union of all C is still 0. By choosing intervals around C with rational endpoints,

the probabilities can be summed up for the union set. Since we can choose δ

arbitrarily, it is always possible to find an interval with rational endpoints for all

C. Therefore, the sum of probabilities over these intervals is 0. This completes

the proof of Lemma 1. 2

From Slutzki’s Theorem we know that if Nt converges to N∞ with support

{0, Ñ} almost surely, then αt converges to α∞ with support {α̃, 1} almost

surely. For the belief αt = 1 the tax rate τm
A is implemented, for α̃ it is τ̃ .

Therefore, the support of τ∞ is {τm
A , τ̃}. This completes the proof of Proposi-

tion 3. 2

3.4 The efficiency potential

Proposition 3 states that the economy converges to either τm
A or τ̃ . If τ II

A <

τ̃ < τ I
B the Pareto sets of HA and HB are disjoint and τ̃ lies in between them,

i.e., is Pareto inefficient. The conditions for this require that HA and HB are

sufficiently different. From now on we assume that τ̃ is Pareto inefficient.

Corollary 1 If τ II
A < τ̃ < τ I

B, then the economy can converge to a Pareto

inefficient policy.
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An interesting question is how likely it is that voters end up with a Pareto

efficient policy. However, the distribution of τ∞ cannot be determined analyti-

cally. That means, the probabilities that the political economy converges to τ̃

and to τm
A cannot be derived analytically as a function of initial conditions. In

Section 4 we will use numerical simulations to approximate this distribution.

Yet we attain an analytical result for the lower bound of the probability that

the policy converges to τm
A . For that purpose, we define the efficiency potential

as this minimal probability, which we denote as ξ. That is,

ξ ≡ inf Pr
(

lim
t→∞ τt → τm

A | α1, τ̃
)

.

Proposition 4 ξ = max
{

0, α1−α̃
α1(1−α̃)

}
.

Proof. From Proposition 3 we know that αt either converges to 1 or to α̃.

What we need to characterize in order to prove Proposition 4 is actually the

distribution of the random variable N∞ over {0, Ñ}, from which we can then

deduce the distribution of the random variable α∞ over {1, α̃}

Corollary 2.11 in Durrett (2005) implies that E[N∞] ≤ E[N1]. Let µ be the

probability of convergence towards Ñ . Then

E[N∞] = (1− µ) · 0 + µ · Ñ = µ · Ñ

⇒ µ ≤ N1

Ñ
⇒ (1− µ) ≥ 1− N1

Ñ
,

where it will be recalled that N1 = 1−α1
α1

. As it is a probability, ξ must be

nonnegative. It equals the minimum value of (1− µ) if (1− µ) > 0. It follows

that

ξ = max
{

0, 1− N1

Ñ

}
= max

{
0, 1−

1−α1
α1

1−α̃
α̃

}
= max

{
0,

α1 − α̃

α1(1− α̃)

}
.
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2

Note that unless α1 = 1 (in which case the problem is degenerate), ξ is strictly

less than one. Taking first derivatives, we get ∂ξ
∂α1

> 0 and ∂ξ
∂α̃ < 0 for ξ > 0.

Clearly, these derivatives are only valid for α1 > α̃. Otherwise, ξ′ = 0.

The first observation is intuitive, since it is natural to expect voters who are

initially better informed to be more likely to converge to the correct belief in the

long run. The sign of the derivative ∂ξ
∂α̃ < 0 is also intuitive, but understanding

it requires a moment’s reflection. For a given α1 > α̃, a series of bad shocks

is required for the beliefs to be downgraded to α̃. Obviously, as α̃ decreases, a

longer series of bad shocks is required for beliefs to be downgraded to α̃. Since

a longer series of bad shocks is less likely, the efficiency potential increases as

α̃ decreases. As noted above, ∂α̃
∂ym < 0. Therefore, the efficiency potential

increases in the median income. That is, on average richer countries should be

associated with better policies. Note, though, that this prediction of the model

hinges on the assumption that HA is the true production function. Were HB

true, then the efficiency potential would decrease in ym.

4 Numerical Results

Of course, we are not only interested in determining the efficiency potential,

which after all gives us only a minimal probability of reaching the good policy.

It is equally interesting to learn something about the probability of implement-

ing the bad policy in the long run. Unfortunately, as explained above, the

distribution of α∞ cannot be calculated explicitly. We therefore have to rely

on simulations in order to approximate the probability that beliefs converge
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to α∞ = α̃ and α∞ = 1, respectively. This probability is a function of initial

beliefs, the noisiness of the production functions, and the production functions,

and in particular of the slope s(τ̃).

4.1 Simulations for different initial beliefs

The simulation results are collected in the two tables below for two different

constellations of production functions. Figure 8 shows three functions which are

taken as the production function of the public good. For Table 1, we use the blue

function (HA) as the true production function, and the green function (HG) as

the alternative production function. For Table 2, again the blue function (HA)

is the true production function and the red one (HR) is the alternative. An
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Figure 8: The functions used for the simulations reported in Tables 1 and 2.

entry in the table is the share of draws for which the belief converged to 1 for

a given combination of initial belief α1 and noise σ. For every entry we did

a hundred draws. One minus the table entry gives the share of draws that

converged to the inefficient tax rate.7 For example, the 1 in the top left entry

of Table 1 means that for α1 = 0.1 and σ = 0.2 every draw converged to 1, for

the blue (true) and green (untrue) production function. Note that the smaller
7It is reassuring that all draws either converge to τm

A or to τ̃ .
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HA and HG

α̃ = 0.47
σ = 0.2 σ = 0.5 σ = 1 σ = 2 ξ

α1 = 0.1 1 0.99 0.21 0.01 0

α1 = 0.2 1 0.98 0.26 0.02 0

α1 = 0.3 1 0.98 0.24 0 0

α1 = 0.4 1 0.99 0.21 0 0

α1 = 0.5 1 0.97 0.25 0.10 0.12

α1 = 0.6 1 1 0.57 0.48 0.42

α1 = 0.7 1 0.99 0.76 0.67 0.62

α1 = 0.8 1 1 0.94 0.76 0.78

Table 1: Results when HA is true and HG is the alternative.

HA and HR

α̃ = 0.52
σ = 0.2 σ = 0.5 σ = 1 σ = 2 ξ

α1 = 0.1 0.99 0.36 0.01 0 0

α1 = 0.2 1 0.29 0 0 0

α1 = 0.3 1 0.28 0 0 0

α1 = 0.4 1 0.29 0 0 0

α1 = 0.5 1 0.21 0 0 0

α1 = 0.6 1 0.58 0.31 0.29 0.27

α1 = 0.7 1 0.75 0.59 0.58 0.53

α1 = 0.8 1 0.92 0.76 0.71 0.73

α1 = 0.9 1 0.96 0.91 0.90 0.88

Table 2: Results when HA is true and HR is the alternative.
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σ, the higher the probability of reaching τm
A . This is intuitive because a smaller

variance of the shocks increases the informativeness of the policy outcome.

4.2 Probability of convergence as a function of noise

It is also interesting to see how the long run equilibrium depends on the noise in

the production function. For that purpose, we simulated an economy with two

given production functions and given initial beliefs, and let only the variance

of the error term vary. The results are depicted in Figure 9.

Specifically, we simulated for the functions HA(τ) = ln(τ + 0.003) − 4(τ +

0.003) + 6 and HB = 8.9τ − 5.5τ2, which gives us a τ̃ = 0.543. We set α1 = 1
2

and ym = 1
2 . Note that the maximal value of HA is 3.61. Then α̃ = 0.5744,

and the efficiency potential of this political economy is 0. The results are very

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ili

ty
 o

f 
Pa

re
to

 o
pt

im
al

 τ

Standard deviation of shock N(0,σ2)

Figure 9: Simulation results when only the variance of the error varies.

intuitive as it is natural to expect that the noisier public production, the harder

it is to learn the truth and consequently, the less likely it is to converge to τm
A .

As we discuss in the conclusions, this indicates that if it is possible to reduce

σ2, this would be very effective in increasing the likelihood of convergence to
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τm
A .

4.3 The information trap

The reason why there is an environment around τ̃ from which the policy can

eventually not escape is that the two production functions have very similar

values in the neighborhood of τ̃ . The closer one gets to τ̃ , the less distinguishable

the true and the false production function become. Once one is close enough

to τ̃ , it thus becomes very difficult to learn anything from observations. Hence,

the economy becomes stuck with its current beliefs once these are sufficiently

close to α̃, as a consequence of which policy will not change anymore. Hence,

one can speak of an information trap around τ̃ , because voters cannot gather

any new information.

All voters then know and perfectly agree that policy τ̃ is not Pareto efficient.

That is, they are all perfectly aware that their policy is lost somewhere in the

middle. So, why do they not just change the policy? As the same policy affects

different people in different ways, they do not agree in which direction they

should move. Given beliefs α̃, low income voters would prefer tax rates τ > τ̃ ,

while rich individuals would prefer smaller tax rates, and the median voter ym

finds τ̃ optimal. Since once τ̃ is implemented, it will be implemented forever,

there is a kind of prisoner’s dilemma flavor associated with this outcome.

The simulation results reported above strongly suggest that the economy

can converge to τ̃ for a wide range of initial conditions. This suggests that

even if the median voter (and all his neighbors) could coordinate on some small

policy experiments and vote for tax rates slightly higher or lower than τ̃ , the
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society still faces the problem that it will eventually fall back into the trap.

In order to truly escape the trap, some large scale experimentation would be

required, like, e.g., implementing τ̃
2 or 2τ̃ , in order to induce beliefs to change

substantially enough. So as to make clear how voters could coordinate on such

a change, a very different model would have to be developed.

5 Conclusions

Putnam (1993) has raised the question why some democratic governments fail

and others succeed. He explains the failure and success of democracies by refer-

ring to differences in political institutions and attitudes. We have provided an

alternative explanation why, in general, political outcomes in initially identical

societies may differ in the long run and more specifically, why some democra-

cies may adopt Pareto inferior policies even in the long run. Our explanation,

which we see largely as complementary to Putnam’s, rests on the assumption

that voters face uncertainty and that uncertainty can only be unravelled by

experience. The basic reason why initially identical countries may end up with

different outcomes is that in combination with bad luck the political equilibrium

may impede further inferences, so that uncertainty is never abolished.8 Since

in our model economies may fail to converge to Pareto efficient policies as a

consequence of bad shocks, its predictions are consistent with the observations

of Easterly (2001), who notes that some countries’ meager growth performance
8Among other things, we have shown that initial beliefs may be crucial for the long run

political outcome. This may help better understand the economic and political difficulties

former colonies face who may have been endowed with bad initial beliefs at the time of

independence, as emphasized, e.g., by Bauer (1981).
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may be caused by bad luck.

Are there any lessons to be learnt from our model for policy makers and

policy advisors? Though it is arguably hard or even impossible to directly affect

people’s beliefs, it is not necessarily true that these beliefs cannot be influenced

at all. Anything that reduces the variance in the public production function

has a positive effect on the probability of converging to a Pareto efficient policy.

So, if it is possible to reduce this variance, e.g., by sharpening the predictions of

the competing models a society believes in, the long run beliefs of a society, and

consequently its policies, may be different. Thus, even in our model societies

are not simply doomed to fail.
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