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Abstract

We consider successive generations of non-altruistic individuals carrying a
good or bad gene. Daughters are more likely to carry their mother’s gene than
the opposite one. Competitive insurers can perform a genetic test revealing
an agent’s gene. They may condition their quotes on the agent’s or on her
ancestors’ genetic status. In equilibrium generation one is bribed to take
the test with an unconditional quote. The insurer uses this information
to profitably screen a finite number of generations of their offspring. The
offspring of good gene carriers subsidize the tested generation.
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1. Introduction

In recent years genetic tests have developed rapidly. These tests enable

the prediction of a higher than normal risk of developing specific diseases.

For insurers genetic tests constitute new possibilities for more precise risk

classification of their clients. These developments have, however, started a

debate on whether insurance companies should be allowed to use genetic

information to calculate premia according to the applicant’s genetic risk: to

many people it seems unfair charging individuals identified with a higher

than average risk of developing severe diseases substantially higher insurance

premia.

Despite this intensive political discussion the theoretical literature to the

specific case of genetic testing and health insurance has remained rather lim-

ited (Tabarrok (1994), Strohmenger and Wambach (2000), Andersson (2001),

Hoel and Iverson (2202), Hoy et al. (2203)). All of these papers consider

Rothschild and Stiglitz (1976) type static one-period insurance markets and

analyze the effects of genetic testing on the risk categorization of individuals

in the spirit of Hoy (1982).

It is, however, obvious that genetic information may also allow intertem-

poral discrimination. Information about the mothers’ genes may allow an

insurer to screen their offspring. If the mother carried the good gene, her

daughter is less likely to develop a disease than if her mother carried the bad

gene. Accordingly, it may be profitable for insurers to quote the offspring of

good gene carriers better rates than the offspring of bad gene carriers. The

purpose of this paper is to analyze the impact of genetic testing when such

intertemporal discrimination is possible.

We consider successive generations of individuals carrying a good or bad

gene. Daughters are more likely to inherit their mother’s gene than being

endowed with the opposite one. The fractions of the good and bad gene

carriers are constant through time.

Risk averse individuals must purchase full insurance. They are not altru-

istic, i.e., they do not care about the well-being of their offspring. At the

outset agents do not know which genes they carry. Insurers can, however,

perform a test which reveals an agent’s genes. Insurers quote prices for the

mandatory insurance which may be unconditional or may depend on the

agent’s or her ancestors’ test results. Insurers engage in price competition.
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Insurers cannot attract agents with non-loss making quotes conditional

on the agents’ genetic status. Competition ensures that a fair one-period

pooling quote is available under which the individual is fully insured. Prices

conditional on the genetic status expose the agent to risk to which she is,

however, averse. Accordingly, agents prefer the unconditional pooling con-

tract; see Tabarrok (1994).

Nevertheless, an insurer can exploit the fact that agents are not altruistic.

With a multi-period pricing strategy he can induce mothers to take the test

and then use this information to profitably screen their offspring.

Our equilibria have the following structure: An insurer bribes the first

generation to take the test with an unconditional quote which is below their

average probability to fall sick. The insurer then uses this information about

generation one to profitably screen their offspring. The offspring of the bad

gene carriers get their fair quotes. By contrast, the offspring of the good

gene carriers get unfair quotes and the insurer makes a profit on them. Price

competition ensures that these profits equal the subsidy given to the first

generation so that total profits sum up to zero. Moreover, due to competition

the price charged to the offspring of good gene carriers is constant through

time and equal to the price charged to generation one. Insurers use the

information about generation one to profitably screen a finite number of

generations of their offspring. When the last offspring generation has been

screened, the process starts all over again with testing the next generation.

Comparing these intertemporal screening equilibria to fair unconditional

pooling in each period, the tested generation is clearly better off: they pay a

price below their average probability of falling sick. The offspring of agents

carrying good genes pay a price above their probability of developing the

disease; they subsidize the tested generation. Nevertheless, they are still

better off than under unconditional pooling. The offspring of mothers with

the bad gene are worse off than under unconditional pooling: they pay the

price reflecting their higher than average risk of developing the disease. Since

the information about a mother’s bad gene becomes less precise as one moves

up the family tree, daughters of tested mothers pay a higher price than

granddaughters and so on.

The paper is organized as follows. The next section introduces the basic

model. In section three we introduce the genetic test. As a preliminary step

we first consider the scenario where information about the genes of mothers
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may only be used to screen daughters. Granddaughters have to be tested

anew. In the next subsection we allow the genetic information to be used for

any number of generations of the offspring. Section 4 concludes.

2. The Model

We consider successive generations of individuals Dt, t = 1, 2, . . .. Genera-

tions live for one period. Each member of generation t (mother) has exactly

one offspring (daughter) so that the size of all generations is the same. We

normalize the size of the generations to 1, i.e., f(Dt) = 1, t = 1, 2, . . ..

Each member of generation t, dt, can carry an `- or h-gene, i.e., dt ∈
{`, h}. If an individual is of type h, the probability of developing a disease is

h ∈ (0, 1); if she is of type `, the probability is ` ∈ (0, h), i.e., lower than for

the h-types. Denote the members of generation t with the `-gene by `t and

the ones with the h-gene by ht. Let the fraction of the h-types in generation

1 be f(h1) < 1/2 and the fraction of the `1’s accordingly f(`1) = 1− f(h1).

A daughter is more likely to be of type ` if her mother is of this type;

likewise, she is more likely to be of type h if her mother is so. A daughter

can, however, also carry the opposite gene as her mother. Formally, 1 >

f(`t+1|`t) > f(ht+1|`t) > 0 which implies f(`t+1|`t) > 1/2; 1 > f(ht+1|ht) >

f(`t+1|ht) > 0 so that f(ht+1|ht) > 1/2. Here f is the transition probability

of being of a certain type conditional on the type of the mother. These

transition probabilities are constant through time.

Let f(ht+1|`t) = f(`t+1|ht)f(ht)/f(`t), t = 1, 2, . . .. Then we have f(ht+1)

= f(ht) := f(h) and f(`t+1) = f(`t) := f(`), t = 1, 2, . . .; that is, the

fraction of `- and h-gene carriers are constant through time. Let, for example,

f(`) = 3/4, f(`t+1|`t) = 8/9, and f(ht+1|ht) = 2/3.

To sum up: We consider generations of size 1 in which the fractions of

`- and h-gene carriers are constant through time. The average probability

to develop the disease is the same in each generation and equals p̄(dt) =

f(h)h + f(`)` := p̄. Let h = 1/2 and ` = 1/4 so that in our example

p̄ = 5/16.

We normalize the cost of treating the disease to 1. Individuals are risk

averse which is represented by their utility function U(·) over income with

U ′ > 0 and U ′′ < 0.1 Individuals have initial income M > 1. To keep

1Our utility function is thus state independent. For an analysis with state contingent
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matters simple we assume that insurance is mandatory and equal to the size

of the treatment, i.e., individuals must purchase full insurance.2 Individuals

do not know which genes they carry. We further assume that agents are not

altruistic, i.e., mothers do not care about the well-being of their offspring.3

The mandatory insurance of 1 is provided by n ≥ 2 insurance companies

engaging in Bertrand competition. Insurer i, i = 1, . . . , n, quotes qi
t(·) for

the mandatory insurance in period t. The quotes may be unconditional or

they may depend on the result of a genetic test which we describe in the

next section. Insurers are risk neutral. They maximize the sum of expected

profits over time. For the ease of exposition we set the discount rate to zero.

Due to price competition equilibrium profits will be zero.

Without the genetic test neither the first generation’s insured know which

genes they carry nor do insurers, implying that any discrimination among

agents of generation 1 is impossible. From the second generation on insur-

ers could try to condition their quotes on the illness history of an agent’s

ancestors. To focus on the role of genetic tests, we rule out this possibil-

ity. Therefore, without the genetic test insurers can offer only unconditional

quotes in each period. Each insurer i will offer each period an unconditional

quote qi
t for the mandatory insurance of 1. Bertrand competition drives

profits down to zero so that in equilibrium qi
t = p̄, t = 1, 2, . . . , i = 1, . . . , n.

3. Genetic Test

Now assume a genetic test becomes available that reveals an individual’s

genes. We consider the case where only insurance companies can perform the

test.4 Let the test be costless. If an agent is tested, the insurer can condition

his quote on her genetic status. Moreover, the quotes for the individual’s

descendants can also depend on the agent’s test result.

utility functions see Strohmenger and Wambach (2000).
2Note that our mandatory insurance differs from the compulsory insurance in Hoel and

Iversen (2002). There all agents pay the same price but the insurance may be less than
complete. In our set-up insurance is full, yet prices may depend on individual risk.

3For our results to hold it is sufficient that mothers care less about their daughters’
well-being than their own.

4If the agents can take the test, the test results will also become known to the insurers.
If the test shows the `-gene, an agent will happily release this information to the insurer.
If the test result is h, the information will be kept secret. Accordingly, those individuals
who do not reveal their test are potentially high risk. See Tabarrok (1994).
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Suppose an insurer tries to attract individuals with prices qt(`t) < p̄ <

qt(ht) conditional on the test outcome. If the agent carries the `-gene, she gets

a better quote than if she carries the h-gene. Suppose further the prices do

not yield losses, i.e., f(h)qt(ht) + f(`)qt(`t) ≥ p̄. Then no agent will accept

this offer as long as pooling is available. With the fair pooling quote the

individual’s utility is U(M − p̄): the agent is fully insured and bears no risk

at all. With conditional prices the expected utility amounts to f(`)U(M −
qt(`t))+f(h)U(M−qt(ht)): the agent is fully insured but bears the price risk

generated by the genetic test. Jensen’s inequality together with the fact that

the conditional prices do not yield losses imply that the agents are better off

with the fair pooling quote p̄. Conditional pricing introduces risk to which

the agents are averse; see Tabarrok (1994).

Given that a one-period pricing strategy conditional on the test results

does not work out, an insurer can try to exploit the fact that agents are

not altruistic. With a multi-period pricing strategy he can try to induce

mothers to take the test and then use this information to profitably screen

their offspring.

To induce agents of generation t to take the test, the insurer must offer

them terms generating at least the expected utility of p̄. Since agents are risk

averse and insurers risk neutral, the best way to achieve this is by requiring

to take the test and then quoting qt ≤ p̄ which is not conditional on the test

outcome (we suppress the index for the insurer wherever possible). For the

agents’ daughters the insurer then quotes qt+1 = (qt+1(`t), qt+1(ht)), for their

granddaughters qt+2 = (qt+2(`t), qt+2(ht)), and so on.

3.1 Two-period Pricing Strategy

To fix ideas, suppose insurer 1 induces generation 1 to take the test and

then uses the genetic information about mothers to make a profit on their

daughters. The insurer may not use the information about mothers to screen

granddaughters. He has to start the process again with testing granddaugh-

ters. We consider at the moment only such two-period pricing strategies

together with with the one-period pricing strategy, i.e., unconditional pool-

ing. We will give up this assumption in the next section.

In equilibrium the market shares of insurers are undetermined. They may

share the market equally, or market shares may be asymmetric. To save on
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notation for market shares, in the following argument we look at the case

where insurer 1 serves the whole market as he may well do in equilibrium.

Suppressing the insurer index company one offers quotes q1 and q2 =

(q2(`1), q2(h1)). Here q2(`1) [q2(h1)] is the quote for daughters whose mothers

were of type ` [h]. With this two-period pricing strategy, his profits amount

to π1 = q1− p̄ and π2 = [q2(`1)−p(d2|`1)]f(`)+[q2(h1)−p(d2|h1)]f(h). There

are f(`) [f(h)] daughters whose mothers had the `- [h]-gene. The insurer’s

profits on the first group is the quote q2(`1) minus the expected probability

of developing the disease conditional on the mothers’ `-genes, and, likewise,

for the second group. In our example p(d2|`1) = 5/18 and p(d2|h1) = 5/12.

Let us first consider the quote q2(h1) the insurer charges daughters whose

mothers were of type h. This price is obviously restricted by what the com-

petition offers in period 2. This in turn depends on whether the competitors

can attract the entire generation or only those agents with type h-mothers.

Suppose the quote q2(`1) is such that the agents with type `-mothers

continue buying from firm 1. If q2(h1) > p(d2|h1), another firm can undercut

insurer 1 and make a positive profit on this group. Insurer 1 will not charge

q2(h1) < p(d2|h1) because this reduces his period two profit. Accordingly,

q2(h1) ≥ p(d2|h1). If the equality holds, the insurer serves this group while

making zero profits; if the inequality is strict, he loses this group and also

makes zero profits. We assume that he quotes q2(h1) = p(d2|h1) and serves

this group.

The insurer can, therefore, only make a profit on agents with type `-

mothers. This profit is, however, restricted. First note that q2(`1) ≤ p̄. If

this were not the case, another firm, say company 2, could enter the market

with an unconditional quote q2
2 ∈ (p̄, q2(`1)). He attracts the whole generation

2 and makes a profit because his quote is above the average probability of

falling sick.

Yet q2(`1) is further restricted by q1. To see this, suppose insurer 1 makes

zero profits with his two-period pricing strategy (q1,q2), i.e., π1 + π2 = 0.

Now let q2(`1) > q1. Then insurer 2 can enter the market with a two-period

pricing strategy (q2
2,q

2
3). With his price q2

2 ∈ (q1, q2(`1)) he attracts both

groups who happily take the test. In period 3 he charges q2
3(`2) < q2(`1).

If q2
2, q2

3(`2) are appropriately chosen, insurer 2 makes positive profits with

this two-period pricing strategy. Consequently, q2(`1) = q1 and Bertrand

competition ensures that (q1,q2) generate overall zero profits. Formally, π1 =
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q1 − p̄, π2 = [q1 − p(d2|`1)]f(l), and π1 + π2 = 0. Solving for q1 yields

q1 =
p̄ + f(`)p(d2|`1)

1 + f(`)
. (1)

To summarize our findings:

Proposition 1: Suppose firms are restricted to one- and two-period pricing

strategies. Then there exists an equilibrium where firm 1 charges generation

1 q1
1 as defined by (1) and generation 2 q1

2(`1) = q1
1, q1

2(h1) = p(d2|h1). The

process starts all over again with generations 3, 5, . . .. Firm 1 serves the

entire market and the other firms are inactive.

In each odd period, say period 1, firm 1 induces all agents to take the

test at a quote q1 below the average probability to fall sick p̄. In our example

q1 = 75/252 < 5/16 = p̄ and π1 = −15/1008. In each even period the insurer

recoups his investment with the daughters whose mothers had the `-gene,

p(d2|`1) < q2(`1) = q1. In our example p(d2|`1) = 5/18 and π2 = 15/1008.

Let us use the example to show that in equilibrium indeed q2(`1) = q1.

Suppose on the contrary that insurer 1 charges, e.g., q1 = 291/1008 < 75/252

and q2 = 78/252. With these prices π1 +π2 = 0. Yet now insurer 2 can enter

with, say, q2
2 = 76/252 and q2

3 = (75/252; 5/12). He attracts both groups in

period 2 and everybody takes the test. His profits in period 3 on daughters

of `-mothers outweigh his losses from period 2.

Note that this equilibrium is not unique. To save on notation for the

market shares, we look at the case where firm 1 serves the entire market and

the other firms are inactive. It is of course possible that, e.g., all firms quote

the equilibrium prices and share the market equally.

Let us compare this two-period pricing equilibrium with the one-period

one where firms charge p̄ in each period. The tested generations are clearly

better off because they pay a price below their average probability of falling

sick. By paying a price q1 above their probability of falling ill p(d2|`1), daugh-

ters of type `-mothers cross-subsidize the entire preceding generation. Yet

they are still better off than under one-period pooling. By contrast, daughters

of type h-mothers are worse off than in the one-period pooling equilibrium.

To summarize: In the two-period pricing equilibrium the tested generations

and their offspring with type `-mothers gain at the expense of their descen-

dants with type h-mothers.
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3.2. Arbitrary Pricing Strategies

We have seen that the two-period pricing strategy drives out the one-period

one. The next question to ask is whether insurer 1 should use his informa-

tional advantage about generation 1 also for generations 3, 4, . . .. To answer

this question we allow now for arbitrary pricing policies.5

As a first step we define k-period pricing policies starting from generation

1 on. Under such a policy generation 1 is tested and their genetic information

is then used on (k − 1) generations of their offspring. More specifically, we

define k-period pricing as follows:

For k = 2, 3, . . . the quotes q1,k, qt,k = (q1,k, p(dt|h1)), give rise to profits

π1 = p̄ − q1,k and πt = [q1,k − p(dt|`1)]f(`), t = 2, . . . , k. The zero profit

condition
∑k

t=1 πt = 0 then gives us

q1,k =
p̄ + f(`)

∑k
t=2 p(dt|`1)

1 + (k − 1)f(`)
. (2)

To complete the definition let q1,1 = p̄; with one-period pricing only uncon-

ditional pooling is possible.

We have defined k-period pricing rather narrowly. We have already taken

into account that k-period pricing must lead to zero profits. Moreover, we

have determined q1,k such that it is an equilibrium if only one-period and

k-period pricing are allowed for. A firm offering q1,k as defined by (2) cannot

be driven out of the market by the one-period pooling price q1,1 = p̄. We

have q1,k < p̄ because p(dk|`1) < p̄ for all k = 2, 3, . . ..

It is, however, unclear which k-period pricing policy firms will follow. If,

e.g., q1,3 > q1,4, a firm with the 3-period pricing policy will be driven out of

the market by a firm using the 4-period one. In a second step we analyze,

therefore, the prices q1,k, k = 1, 2 . . . in detail. It turns out that these prices

are U-shaped in k.

Proposition 2: The set of quotes {q1,k}, k = 1, 2, . . ., defined by (2) is

U-shaped in k and attains its minimum at some finite κ ≥ 2.

5We assume that, say, an agent of generation 3 does not know her mother’s quote.
Otherwise, she could use her mother’s low rate to convince another insurer that her grand-
mother must have been of type `.
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Proof: Straightforward computations show that q1,1 = p̄ > q1,2. Next note

that

q1,k < (≥) q1,k+1 ⇔

p̄− p(dk+1|`1) < (≥) f(`)[(k − 1)p(dk+1|`1)−
k∑

t=2

p(dt|`1)], k = 2, 3, . . . .

The LHS is positive and monotonically decreasing in k with limk→∞ LHS = 0.

The RHS is positive and increasing in k. Consequently, either κ = 2 or it is

defined by the k where the strict inequality first holds. q1,k is decreasing in

k for k < κ and increasing for k > κ.

Q.E.D.

Proposition 2 states that a κ-period pricing strategy leads to the lowest

price q1,k that can be charged to the tested generation 1 and all (k − 1)

descendant generations of the `1-types. In our example κ = 3. We have

p̄ = 5/16, p(d2|`1) = 5/18, p(d3|`1) = 95/324, p(d4|`1) = 220/729, q1,1 =

5/16, q1,2 = 75/252, q1,3 = 8/27, and q1,4 = 2820/9427 > q1,3.

Increasing the pricing strategy from k to k+1 increases profits by πk+1 =

(q1,k+1− p(dk+1|`1))f(`). If πk+1 > 0, the profits made on the descendants of

types `1 increases. Hence, q1,k+1 < q1,k. The tested generation gets a larger

cross-subsidy so that total profits sum up to zero.

Conversely, if πk+1 < 0, q1,k+1 > q1,k. The profits made on the offspring of

types `1 decreases and so does the subsidy for the tested generation. Straight-

forward computations show that πk+1 < 0 is equivalent to q1,k < p(dk+1|`1).

If the price q1,k charged under k-period pricing is lower than the conditional

probability of falling ill of generation k+1, adding this cohort lowers the prof-

its made on the descendants of types `1’s. The existence of such a critical

cohort is ensured because p(dk+1|`1) converges to p̄ as k becomes large.

To put it differently: The informational advantage of having tested gen-

eration 1 dilutes with successive generations: p(dk+1|`1) increases with k

and converges to p̄. Adding additional generations to the pricing strategy

becomes less and less attractive as one moves up the family tree.

As long as it is profitable to add a generation to the pricing policy, the

price q1 falls. If the additional generation adds to profits made on the off-

spring of the tested generation 1, the price q1 has to fall so that overall profits

sum up to zero. Yet, there is some generation (κ+1) where p(dκ+1|`1) exceeds
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the price q1,κ charged under the κ-period pricing policy. Adding this gener-

ation to the pricing policy lowers profits made on the offspring and actually

increases q1. This reasoning is similar to the well-known textbook result that

average costs are decreasing as long as they are higher than marginal costs

and increasing when the are smaller than marginal costs.

It is now clear how an equilibrium looks like:

Proposition 3: There exists an equilibrium where firm 1 follows a κ-period

pricing policy with κ defined by Proposition 2. It charges the first generation

q1
1,κ as defined by (2) and its offsprings q1

t,κ(`1) = q1
1,κ, q1

t,κ(h1) = p(dt|h1), t =

2, . . . , κ. The procedure starts all over again with generations κ+1, 2κ+1, . . ..

Firm 1 serves the entire market and the other firms are inactive.

If firm 1 charges q1,κ, it can not be driven out of the market by another

pricing policy because they all command higher prices. Let us compare the

κ-period pricing equilibrium to the one-period pooling equilibrium q1,1 = p̄.

The advantage of the tested generation 1 and the descendants of the types

`1 is greatest because q1,κ is minimal. Bertrand competition ensures that the

surplus of these groups is maximized.

What about the offspring of the types h1? They are worse off than under

under pooling because p(dt|h1) > p̄, t = 2, 3, . . .. Note that p(dt|h1) is de-

creasing in t. Generation (t+1) gets a lower quote than generation t because

the information about them from their ancestor is less precise. Accordingly,

daughters of tested h-mothers suffer more than granddaughters and so on if

genetic tests become available.

4. Conclusions

The purpose of this paper is to analyze intertemporal screening through

genetic tests. We show that generation one is bribed to take the test with

an unconditional quote. The insurer then uses this information to profitably

screen a finite number of generations of their offspring. The offspring of

good gene carriers subsidize the tested generation. Yet they are still better

off than under unconditional pooling. The offspring of bad gene carriers lose

compared to pooling because they have to pay a price reflecting their higher

than average risk of developing the disease.

10



In this paper we abstract from many important aspects of genetic tests in

health insurance markets. We assume that only the insurer can take the test

and that the test results are not observable by any other party. The testing

insurance company thus has a monopoly for the information. Agents cannot

take the test themselves so that we do not run into the problems of strategic

revelation of the results. Moreover, the assumption of compulsory complete

insurance rules out further screening possibilities of the insurers.

The assumption that agents are non-altruistic is, by contrast, not critical;

all we need is that they care more about their own than the well-being of their

offspring. The cost of the test may also be positive. As long as the test cost

is below the profits made on the screened generations, our results still hold

qualitatively. Only when the test cost is above these profits, intertemporal

screening does not pay.

We hope that despite these simplifying assumptions we shed some light on

how intertemporal screening with genetic tests might work. In particular, we

are able to identify the winners and the losers compared to the unconditional

pooling situation. This might be helpful in the ongoing political discussion

about the pro and cons of allowing genetic tests for health insurance.
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