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Independent random variables

E6711: Lectures 3
Prof. Predrag Jelenkovic

1 Lasttwo lectures

e probability spaces
e probability measure
e random variables and stochastic processes

distribution functions

independence

conditional probability

memoriless property of geometric and exponential distributions

expectation

conditional expectation (double expectation)

mean-square estimation
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Let {X;,7 > 1} be a sequence of independent random variables

and .
No=) X,
j=1

be a partial sum of the first n of these r.v.s. In many applications un-
derstanding the statistical behavior of these sums is very important.
Thus, a big part of probability theory studies the characteristics of
N,,.

In this lecture we review some of the well-known theorems of
probability theory:

e Markov and Chebyshev’s inequalities
e Laws of Large Numbers

e Central Limit Theorem

2 Inequalities

Proposition 2.1 (Markov’sinequality) If X is a nonnegative ran-
dom variable, then for any a > 0

P[X > a EA

a
Proof: For a > 0, let us define an indicator function

1 if X >a
> — -
”X - a] { 0 otherwise.

Then,
X

1[X >a] <
a

)

2



thus, by taking the expected value on both sides in the preceding
inequality we obtain

El[X > a] =PX > q] B

a

&

Corollary 2.1 (Chebyshev’'sinequality) If X isarandom variable
with finite mean . and variance o? = E(X — u)?, thenfor any e > 0
2

PIX — | 24 < 5.
Proof: LetY = (X — p)?, then
PlIX — g > e = B(X — p)* > €
=PY > €
Y o?
< RERRE
where the last inequality follows from Markov’s inequality. &

Coroallary 2.2 (Chernoff’sbound) Let M (¢) Y EetX < oo for some
t > 0, then

PIX >y <e WM(t).
Proof: LetY = e and a = €%, then



note that the last inequality follows from Markov’s inequality. <

3 Lawsof Large Numbers: ergodic theorems

Ergodic theory studies the conditions under which the sample path

average

of X1+ -+ X,
v def i i (3.1)

n
converges to the mean p = EX; as n — oo.

Theorem 3.1 (Weak Law of Large Numbers) Let X, X5, ..., bea
sequence of independent random variables with finite mean ;. and
variance 0. Then, for any e > 0

P[&+&+m+%

n
Proof: Recall the definition of Y from equation (3.1), then

4&+Xﬁ-~+x1ﬂ
n

—

26]—>O as n — 00.

IEYE[

and

Xi+ X9+ + X,
wmqw4 kit ]
n

- Var(Xy) + - - - + Var(X,,)

n2

o

n
Thus, by Chebyshev’s inequality
2

PlY —pu| > ¢ < — 0 as n — oo,

ne?
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we conclude the proof of the theorem. &

.

converges to zero, however it is not clear how fast? This problem is
investigated by the theory of L arge Deviations.
Recall M (t) = Ee*1 and define the rate function

Now we know that

P[‘X1+X2+”°+X”
n

[(a) ¥ —log (inf emM(t)) — sup(ta — log M(t)).

t>0 >0

Then

Theorem 3.2 For everya > EX; andn > 1
P[X1+X2++Xn a/] ée_nl(a).

>
n

Proof: Foranyt > 0

]P) [Xl + X2 4+ o+ Xn 2 a] _ ]P) |:6t(X1+X2+"'+Xn) > etan

n
(Chernoff’s inequality) < e ~tan ot (X1+Xo+-+Xn)

= (e_t“IEetXl)n :




The preceding two theorems estimate the probabilities that a sam-
ple path mean is close to the (ensemble) mean. The following the-
orem goes one step further in showing that for almost every fixed
omega the sample path average converges to the mean (in the ordi-
nary deterministic sense).

Theorem 3.3 (Strong Law of Large Numbers) Let X, X5, ..., be

a sequence of independent random variables with finite mean . and

K ¥ EX4 < 0o. Then, for almost every w (or with probability 1)

X1+ X0+ + X,
n
Remark: For this theorem to hold it is enough to assume that the
mean p = [EX; exists (i.e., it could be even infinite). However, in
order to present a simpler proof, we impose a stronger assumption
EX}] < co.
Proof: To begin, assume that ;, = EX; = 0; then

EN;LI - E[(X1+' . "|'Xn)(X1+' : "|'Xn)(X1+' ’ '+Xn)(X1+' ’ +Xn)]

— b as n — 00.

Now, expanding the right-hand side of the equation above will result
in terms of the form (i #£ 5 # k)

EX}

E[X?X;] = EX’EX,; =0 by independence

EX; X7

E[X?X,;X;] = EX;EX;EX; =0 by independence
E[X; X, X X)) = EX;EX,EX,EX; =0 by independence.



Next, there are n terms of the form EX ! and for each i # j there are

(;) = 6 terms in the expansion that are equal to EX ?.X?. Hence,

ENY = nEX? 46 <Z> (EX2)?
=nK +3n(n — 1)(EX})?. (3.2)
Also, K < oo implies EX? < oo, since
0 < Var(X}) = EX| — (EX?)? = (EX{)’<K (3.3)

Now, by replacing (3.3) in (3.2), we obtain
EN! K 3K 4K
< < :

nt —nd  n?

“N! &K EN! N4K
EY =2 5S> g <o
n=1 n=1

n=1

Thus,

Therefore, with probability 1

which implies that, with probability 1

. N
lim —* =0,

or equivalently
Ny,
]P’[lim —O] = 1.

n—oo 1

This concludes the proof of the case ;1 = 0. If u # 0, then define
X = X; — EX; and use the same proof. &



4 Central Limit Theorem

Central Limit Theorem, Similarly to the Large Deviation Theorem,
measures the deviation of the sample mean from the expected value

L.

Theorem 4.1 (Cental Limit Theorem (CLT)) Let X;,57 > 1 bea
sequence of i.i.d. r.v.swith mean p and variance 0 < oo. Then, the
distribution of
def X1+ -+ X, —nu
Ly =

o\/n
tends to standard normal distribution asn — oo, i.e., for any real
number a

ST, Tt LV a]—)—/ e 2y as n — oo.
O'\/ﬁ \/ 21

First, we state the following key lemma that will be used in the

proof of CLT.

P

Lemmad4.l Let 71, Z,, . . ., beasequenceof r.v.shaving distribution
functions £z, and moment generating functions M (t) = Ee'%n n >
1; And let Z be a random variable having distribution F';, and mo-
ment generating function My(t). It My (t) — Mz(t) asn — oo,
for all ¢, then

Fy (x) = Fy(z) as z — 0.

Proof: Omitted. &



Proof of CLT: Assume that x = 0 and 0> = 1. Then, moment
generating function (m.g.f.) of X;//n is equal to

E [eth/ﬁ] — M(t//n) where M(t) = Eei.
Thus, the m.g.f. of 37, X;/\/n is equal to

R

Now, if L(t) = log M(t), then
s ()] o () -2
Thus

_L(t/m) . —L'(t/n)n
i = o = i 5

N {ON!

noo  —2n~1/2

9/ —3/242
_ L"(t/y/n)n="/*t
n—00 —9n-3/2

= lim L"(t/\/ﬁ)g

n—oo

(by L’Hospital’s rule)

(by L’Hospital’s rule)

Next, note that
M'(0)

LO)=0 L'(0)= O
woy . MO)M"(0) — (M'(0))* oo
L"(0) = MO —EX2=1.

Hence, for any finite ¢

lim L"(t/v/n) = 1

n—o00
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and, therefore
t2

lim nL(t/\/n) = —

n—00 27

t " 2
lim |M(—=])| =€/
im | (7)) =

On the other hand, if Z is a standard normal r.v., then

or, equivalently

tN _ _t?)2
Ee —e/,

which, by Lemma 4.1, concludes the proof of the theorem for . = 0
and o2 = 1.

For the general case u # 0 and o2 # 1, we can introduce new
variables

)

X! det Xj — 1
o
clearly

EX? =0 and Var(X7) =1,
and, therefore, we can use the already proved case. &
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