Independent random variables

E6711: Lectures 3 Prof. Predrag Jelenković

1 Last two lectures

- probability spaces
- probability measure
- random variables and stochastic processes
- distribution functions
- independence
- conditional probability
- memoriless property of geometric and exponential distributions
- expectation
- conditional expectation (double expectation)
- mean-square estimation

Let $\{X_j, j \ge 1\}$ be a sequence of independent random variables and

$$N_n = \sum_{j=1}^n X_j$$

be a partial sum of the first n of these r.v.s. In many applications understanding the statistical behavior of these sums is very important. Thus, a big part of probability theory studies the characteristics of N_n .

In this lecture we review some of the well-known theorems of probability theory:

- Markov and Chebyshev's inequalities
- Laws of Large Numbers
- Central Limit Theorem

2 Inequalities

Proposition 2.1 (Markov's inequality) If X is a nonnegative random variable, then for any a > 0

$$\mathbb{P}[X \ge a] \le \frac{\mathbb{E}X}{a}$$

Proof: For a > 0, let us define an indicator function

$$1[X \ge a] = \begin{cases} 1 & \text{if } X \ge a \\ 0 & \text{otherwise.} \end{cases}$$

Then,

$$1[X \ge a] \le \frac{X}{a};$$

thus, by taking the expected value on both sides in the preceding inequality we obtain

$$\mathbb{E}1[X \ge a] = \mathbb{P}[X \ge a] \le \frac{\mathbb{E}X}{a}.$$

Corollary 2.1 (Chebyshev's inequality) If X is a random variable with finite mean μ and variance $\sigma^2 = \mathbb{E}(X - \mu)^2$, then for any $\epsilon > 0$

$$\mathbb{P}[|X - \mu| \ge \epsilon] \le \frac{\sigma^2}{\epsilon^2}.$$

Proof: Let $Y = (X - \mu)^2$, then

$$\mathbb{P}[|X - \mu| \ge \epsilon] = \mathbb{P}[(X - \mu)^2 \ge \epsilon^2]$$
$$= \mathbb{P}[Y \ge \epsilon^2]$$
$$\le \frac{\mathbb{E}Y}{\epsilon^2} = \frac{\sigma^2}{\epsilon^2},$$

where the last inequality follows from Markov's inequality. \diamond

Corollary 2.2 (Chernoff's bound) Let $M(t) \stackrel{\text{def}}{=} \mathbb{E}e^{tX} < \infty$ for some t > 0, then

$$\mathbb{P}[X \ge y] \le e^{-ty} M(t).$$

Proof: Let $Y = e^{tX}$ and $a = e^{ty}$, then

$$\mathbb{P}[X \ge y] = \mathbb{P}[tX \ge ty]$$

= $\mathbb{P}[e^{tX} \ge e^{ty}]$
= $\mathbb{P}[Y \ge a]$
 $\le \frac{\mathbb{E}Y}{a} = e^{-ty}M(t);$

note that the last inequality follows from Markov's inequality. \diamond

3 Laws of Large Numbers: ergodic theorems

Ergodic theory studies the conditions under which the sample path average

$$Y \stackrel{\text{def}}{=} \frac{X_1 + \dots + X_n}{n} \tag{3.1}$$

converges to the mean $\mu = \mathbb{E}X_1$ as $n \to \infty$.

Theorem 3.1 (Weak Law of Large Numbers) Let $X_1, X_2, ..., be$ a sequence of independent random variables with finite mean μ and variance σ^2 . Then, for any $\epsilon > 0$

$$\mathbb{P}\left[\left|\frac{X_1 + X_2 + \dots + X_n}{n} - \mu\right| \ge \epsilon\right] \to 0 \quad \text{as} \quad n \to \infty.$$

Proof: Recall the definition of Y from equation (3.1), then

$$\mathbb{E}Y = \mathbb{E}\left[\frac{X_1 + X_2 + \dots + X_n}{n}\right] = \mu$$

and

$$\operatorname{Var}(Y) = \operatorname{Var}\left[\frac{X_1 + X_2 + \dots + X_n}{n}\right]$$
$$= \frac{\operatorname{Var}(X_1) + \dots + \operatorname{Var}(X_n)}{n^2}$$
$$= \frac{\sigma^2}{n}$$

Thus, by Chebyshev's inequality

$$\mathbb{P}[|Y - \mu| \ge \epsilon] \le \frac{\sigma^2}{n\epsilon^2} \to 0 \text{ as } n \to \infty,$$

we conclude the proof of the theorem.

Now we know that

$$\mathbb{P}\left[\left|\frac{X_1 + X_2 + \dots + X_n}{n}\right| \ge \epsilon\right]$$

converges to zero, however it is not clear how fast? This problem is investigated by the theory of **Large Deviations**.

Recall $M(t) = \mathbb{E}e^{tX_1}$ and define the *rate function*

$$l(a) \stackrel{\text{def}}{=} -\log\left(\inf_{t\geq 0} e^{-ta} M(t)\right) = \sup_{t\geq 0} (ta - \log M(t)).$$

Then

Theorem 3.2 For every $a > \mathbb{E}X_1$ and $n \ge 1$

$$\mathbb{P}\left[\frac{X_1 + X_2 + \dots + X_n}{n} \ge a\right] \le e^{-nl(a)}.$$

Proof: For any t > 0

$$\mathbb{P}\left[\frac{X_1 + X_2 + \dots + X_n}{n} \ge a\right] = \mathbb{P}\left[e^{t(X_1 + X_2 + \dots + X_n)} \ge e^{tan}\right]$$

(Chernoff's inequality) $\le e^{-tan} \mathbb{E}e^{t(X_1 + X_2 + \dots + X_n)}$
 $= \left(e^{-ta} \mathbb{E}e^{tX_1}\right)^n.$

Thus,

$$\mathbb{P}\left[\frac{X_1 + X_2 + \dots + X_n}{n} \ge a\right] \le \inf_{t \ge 0} \left(e^{-ta} \mathbb{E}e^{tX_1}\right)^n = e^{-nl(a)}.$$

 \diamond

 \diamond

The preceding two theorems estimate the probabilities that a sample path mean is close to the (ensemble) mean. The following theorem goes one step further in showing that for almost every *fixed* omega the sample path average converges to the mean (in the ordinary deterministic sense).

Theorem 3.3 (Strong Law of Large Numbers) Let X_1, X_2, \ldots , be a sequence of independent random variables with finite mean μ and $K \stackrel{\text{def}}{=} \mathbb{E}X_1^4 < \infty$. Then, for almost every ω (or with probability 1)

$$\frac{X_1 + X_2 + \dots + X_n}{n} \to \mu \quad \text{as} \quad n \to \infty.$$

Remark: For this theorem to hold it is enough to assume that the mean $\mu = \mathbb{E}X_1$ exists (i.e., it could be even infinite). However, in order to present a simpler proof, we impose a stronger assumption $\mathbb{E}X_1^4 < \infty$.

Proof: To begin, assume that $\mu = \mathbb{E}X_j = 0$; then

$$\mathbb{E}N_n^4 = \mathbb{E}[(X_1 + \dots + X_n)(X_1 + \dots + X_n)(X_1 + \dots + X_n)(X_1 + \dots + X_n)].$$

Now, expanding the right-hand side of the equation above will result in terms of the form $(i \neq j \neq k)$

$$\mathbb{E}X_i^4$$

$$\mathbb{E}[X_i^3 X_j] = \mathbb{E}X_i^3 \mathbb{E}X_j = 0 \text{ by independence}$$

$$\mathbb{E}X_i^2 X_j^2$$

$$\mathbb{E}[X_i^2 X_j X_k] = \mathbb{E}X_i^2 \mathbb{E}X_j \mathbb{E}X_k = 0 \text{ by independence}$$

$$\mathbb{E}[X_i X_j X_k X_l] = \mathbb{E}X_i \mathbb{E}X_j \mathbb{E}X_k \mathbb{E}X_l = 0 \text{ by independence.}$$

Next, there are *n* terms of the form $\mathbb{E}X_i^4$ and for each $i \neq j$ there are $\binom{4}{2} = 6$ terms in the expansion that are equal to $\mathbb{E}X_i^2 X_j^2$. Hence,

$$\mathbb{E}N_n^4 = n\mathbb{E}X_1^4 + 6\binom{n}{2}(\mathbb{E}X_1^2)^2$$

= $nK + 3n(n-1)(\mathbb{E}X_1^2)^2.$ (3.2)

Also, $K < \infty$ implies $\mathbb{E}X_1^2 < \infty$, since

$$0 \le \operatorname{Var}(X_1^2) = \mathbb{E}X_1^4 - (\mathbb{E}X_1^2)^2 \implies (\mathbb{E}X_1^2)^2 \le K$$
 (3.3)

Now, by replacing (3.3) in (3.2), we obtain

$$\frac{\mathbb{E}N_n^4}{n^4} \le \frac{K}{n^3} + \frac{3K}{n^2} \le \frac{4K}{n^2}.$$

Thus,

$$\mathbb{E}\sum_{n=1}^{\infty}\frac{N_n^4}{n^4} = \sum_{n=1}^{\infty}\frac{\mathbb{E}N_n^4}{n^4} \le \sum_{n=1}^{\infty}\frac{4K}{n^2} < \infty.$$

Therefore, with probability 1

$$\sum_{n=1}^{\infty} \frac{N_n^4}{n^4} < \infty,$$

which implies that, with probability 1

$$\lim_{n \to \infty} \frac{N_n^4}{n^4} = 0,$$

or equivalently

$$\mathbb{P}\left[\lim_{n \to \infty} \frac{N_n}{n} = 0\right] = 1.$$

This concludes the proof of the case $\mu = 0$. If $\mu \neq 0$, then define $X'_j = X_j - \mathbb{E}X_j$ and use the same proof.

4 Central Limit Theorem

Central Limit Theorem, Similarly to the Large Deviation Theorem, measures the deviation of the sample mean from the expected value μ .

Theorem 4.1 (Cental Limit Theorem (CLT)) Let $X_j, j \ge 1$ be a sequence of *i.i.d.* r.v.s with mean μ and variance $\sigma^2 < \infty$. Then, the distribution of

$$Z_n \stackrel{\text{def}}{=} \frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}}$$

tends to standard normal distribution as $n \to \infty$, i.e., for any real number a

$$\mathbb{P}\left[\frac{X_1 + \cdots + X_n - n\mu}{\sigma\sqrt{n}} \le a\right] \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^a e^{-x^2/2} dx \quad \text{as} \quad n \to \infty.$$

First, we state the following key lemma that will be used in the proof of CLT.

Lemma 4.1 Let Z_1, Z_2, \ldots , be a sequence of r.v.s having distribution functions F_{Z_n} and moment generating functions $M_{Z_n}(t) = \mathbb{E}e^{tZ_n}, n \ge 1$; And let Z be a random variable having distribution F_Z and moment generating function $M_Z(t)$. It $M_{Z_n}(t) \to M_Z(t)$ as $n \to \infty$, for all t, then

$$F_{Z_n}(x) \to F_Z(x)$$
 as $x \to \infty$.

Proof: Omitted.

 \diamond

Proof of CLT: Assume that $\mu = 0$ and $\sigma^2 = 1$. Then, moment generating function (m.g.f.) of X_j/\sqrt{n} is equal to

$$\mathbb{E}\left[e^{tX_j/\sqrt{n}}\right] = M(t/\sqrt{n})$$
 where $M(t) = \mathbb{E}e^{tX_j}$.

Thus, the m.g.f. of $\sum_{j=1}^{n} X_j / \sqrt{n}$ is equal to

$$\left[M\left(\frac{t}{\sqrt{n}}\right)\right]^n.$$

Now, if $L(t) \stackrel{\text{def}}{=} \log M(t)$, then

$$\log\left[M\left(\frac{t}{\sqrt{n}}\right)\right]^n = nL\left(\frac{t}{\sqrt{n}}\right) = \frac{L(t/\sqrt{n})}{n^{-1}}$$

Thus

$$\lim_{n \to \infty} \frac{L(t/\sqrt{n})}{n^{-1}} = \lim_{n \to \infty} \frac{-L'(t/\sqrt{n})n^{-3/2}t}{-2n^{-2}} \quad \text{(by L'Hospital's rule)}$$
$$= \lim_{n \to \infty} \frac{-L'(t/\sqrt{n})t}{-2n^{-1/2}}$$
$$= \lim_{n \to \infty} \frac{-L''(t/\sqrt{n})n^{-3/2}t^2}{-2n^{-3/2}} \quad \text{(by L'Hospital's rule)}$$
$$= \lim_{n \to \infty} L''(t/\sqrt{n})\frac{t^2}{2}$$

Next, note that

$$L(0) = 0 \quad L'(0) = \frac{M'(0)}{M(0)} = \mu = 0$$
$$L''(0) = \frac{M(0)M''(0) - (M'(0))^2}{(M(0))^2} = \mathbb{E}X^2 = 1.$$

Hence, for any finite t

$$\lim_{n \to \infty} L''(t/\sqrt{n}) = 1$$

and, therefore

$$\lim_{n \to \infty} nL(t/\sqrt{n}) = \frac{t^2}{2},$$

or, equivalently

$$\lim_{n \to \infty} \left[M\left(\frac{t}{\sqrt{n}}\right) \right]^n = e^{t^2/2}.$$

On the other hand, if Z is a standard normal r.v., then

$$\mathbb{E}e^{tN} = e^{t^2/2},$$

which, by Lemma 4.1, concludes the proof of the theorem for $\mu = 0$ and $\sigma^2 = 1$.

For the general case $\mu \neq 0$ and $\sigma^2 \neq 1$, we can introduce new variables

$$X_j^* \stackrel{\text{def}}{=} \frac{X_j - \mu}{\sigma};$$

clearly

$$\mathbb{E}X_j^* = 0 \quad \text{and} \quad \operatorname{Var}(X_j^*) = 1,$$

and, therefore, we can use the already proved case.

 \diamond