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1. Introduction

There are three major views of why we might expect to see equilibrium in a game:

the most traditional introspective view has players study the rules closely, and consider

their opponents motivation to calculate what strategy they should play.  Evolutionary and

learning models see equilibrium rather as the outcome of a process in which less than fully

rational players grope for optimality over time.  Evolutionary models focus on a

population of players and the non-modeled idea that the number of players playing actions

that have historically been successful will increase over time at the expense of actions that

have historically been less successful.  Learning models take a more individualistic point of

view, focusing on how an individual player might try to deduce from careful observation

of opponents’ past play how they will play in the future1.  The focus of this paper is on the

issue of individual learning.

There are two types of questions that can be asked about particular learning rules:

How well do they do?  That is, how much utility do they generate in different

environments?  Second, what happens in a game if particular learning rules are used? The

latter question has been the focus of a number of recent papers, including Fudenberg and

Kreps (1993), Fudenberg  and Levine (1993), Jordan (1993) and Young (1993), as well as

the earlier literature on the process of fictitious play (Brown (1951), Shapley (1964), and

so forth).

 This paper focuses more on the former question:  how well do learning rules do,

and what are sensible criteria for evaluating the performance of a learning rule?  We

propose as desiderata  for learning rules that they be “safe”- meaning that they guarantee

the player at least his minmax payoff- and “consistent”, meaning that they should do at

least as well as playing the best response to the empirical average of play if the opponents’

                                               
1  There are some close connections between dynamics induced by evolutionary and learning processes,
that have been explored, for example, by Gaunersdorfer and Hofbauer (1994).
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play is given by independent draws from a fixed distribution.  We then suggest that

behavior rules should be not just consistent, but “universally consistent,”  meaning that the

player should get at least the payoff of playing a best response to the empirical distribution

whether or not the environment is in fact i.i.d.  Such a universally consistent rule is both

consistent and safe.

Standard fictitious play is consistent, but not safe.  Our main result is that there is a

very simple modification of fictitious play which is universally consistent and so both safe

and consistent.  We also show that fictitious play itself is consistent provided that it does

not alternate “too quickly” between actions.2  In addition, we investigate the long-run

consequences of both players using such rules.

We do not model the internal thought processes of the players, and instead phrase

our conditions, assumptions, and results solely in terms of players’ behavior.  In particular,

we will not make separate assumptions about how players update their beliefs on the one

hand, and how they use their beliefs on the other.  (However, the particular rules we

construct can be interpreted as an “almost-best-response” to beliefs of the type used in

fictitious play.)  Consequently, the object of our analysis is the set of  “behavior rules”,  by

which we mean maps from observations to actions.

It should be emphasized that how well a behavior rule performs depends on the

environment it is in.  For example, consider the game of matching pennies:  a single player

must guess each period whether nature will choose “Heads” (H) or “Tails” (T).  He earns

a payoff of 1 if he guesses correctly, -1  otherwise.  The rule “always guess H”  will

perform quite well if the environment is one in which nature always plays H.  Of course in

other environments, this rule will perform quite badly.   Implicitly, behavior rules based on

learning attempt to “learn” about the environment they are in, so that in the long-run they

                                               

2 This has been shown independently by Monderer, Samet and Sela (1994).
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perform well in a broad class of environments.  Generally, this at least includes those

environments that converge to long-run equilibrium.

One obvious question is whether there are behavior  rules that perform well in the

long run against all environments.  If performing well means optimization against the true

environment it is well known that there can be no such rule.  Indeed, Nachbar (1993a,b)

has refined this result with a counter-example showing that no rule drawn from a

sufficiently rich set of rules can be even  approximately optimal against all rules  in that

set.3  One way to think about what is going on is to begin with Blackwell and Dubin’s

(1962) observation that a Bayesian optimizer will perform optimally in the long-run

against any environment to which positive probability is associated.  The problem shown

by Nachbar is that such a Bayesian optimizer may through his behavior generate behavior

that did not receive positive weight in his own prior.  That is, individuals may easily

generate behavior more complicated than that they contemplate as possible for their

opponents.  In particular, as a practical observation, in learning models in which learning

rules fail to converge to an equilibrium, as for example in cobweb cycles, the behavior of

agents  may seem implausibly stupid.4

In this paper we lower our sights somewhat, and look for rules that have sensible

properties in all environments even though they are not asymptotically optimal in all

environments.   We begin with the observation that the world may be more complex than

players contemplate in their models, and that players are aware of this.  What then is a

sensible criterion when a very complicated sequence of Heads and Tails has been

observed?  It may well be that the environment  is generated by a complicated chaotic

deterministic model, for example, but to figure this out may be difficult or impossible.

                                               
3 Work in progress by Anderlini and  Sabourian (1993) may yield such a result in an evolutionary rather
than learning setting.
4  This critique is applicable to any adaptive expectations model where behavior follows an explosive
cobweb, as for example in DeCanio [1979]. It is particularly applicable to models where agents
persistently predict that behavior at date t  will be exactly the same as that at the previous date t-1 even
when that prediction has proved false in every preceding period.
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Hence, from the player’s point of view, it may be sensible to view such a sequence as

random, and to at least try to play optimally with respect to the frequencies of heads and

tails.  Put another way, a player may simply choose to ignore the order in which the

observations occur, even though this information is potentially useful.  This motivates our

desiderata that the behavior rule be universally consistent, in the sense that the rule should

(asymptotically) ensure that the player’s realized average payoff is not much less than the

payoff from playing the best response to the empirical distribution, uniformly over all

possible environments.

If players know they are boundedly rational, they may also wish to allow for the

possibility that they are playing against opponents who are cleverer than they are. One

way that players might do this is to only use behavior rules that guarantee that their

realized payoff is not much lower than their minimax payoff.  It is fairly easy to see that

any universally consistent rule will be “safe” in this sense, since the best response to the

any distribution must be at least the minmax.

The “calibration” result of Foster and Vohra (1994) shows that universally

consistent rules exist, but since the proof is existential, it does not indicate the forms that

such rules might take. This paper shows that a particular randomized version of fictitious

play in which actions are played in proportion to their utility with exponential weights

(exponential fictitious play) is universally consistent.  Moreover, such a policy can be

implemented even in an extensive form game in which opponents strategies are not

observed.

Beyond this result, we explore the possible long-run outcomes when all  players

use rules that guarantee they do at least as well as playing a best response to the empirical

frequency distribution.  This gives rise to the notion of marginal best-response

distributions, which are the only points such a learning process can pass through in the

long run.  We give some examples and results to show what these types of distributions

are like.
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2. The Model

We begin by considering a single agent.  This agent repeatedly chooses a

probability distribution α , called a mixed action, over a finite space of actions A , and

observes an outcome in a finite set Y .  If a A y Y∈ ∈, , the agent receives a utility of

u a y( , ) .  We use ∆  to denote the space of probability distributions over a set.  If

α ∈∆( )A  and γ ∈∆( )Y  then the expected utility is also denoted u( , )α γ .  We say that α

is an ε -best response to γ  if

 u u( , ) (~, )α γ ε α γ+ ≥

for all alternative mixed actions ~α .  If ε = 0 , we refer simply to a best response.

Since we are considering a repeated situation, we define a history as a sequence of

actions and outcomes h a y a yt t= ( , , , , )1 1 .  The number of actions (or outcomes) t h( )  is

called the length of the history. The history truncated by one period is

h a y a yt t− = − −1 1 1 1 1( , , , , ) .   It is useful also to define the null history h0  of zero length.

The space of all histories is denoted by H .   The outcome frequency distribution of a non-

null history is the empirical probability distribution over outcomes, and is denoted by

γ ( )h .

The agent chooses a (mixed) behavior rule, which is a map from histories to

probability distributions over actions σ: ( )H A→ ∆ .   An important example of a behavior

rule is that of fictitious play:  this requires the existence of a probability distribution over

outcomes γ 0 , called the prior, and an integer n0  called the prior precision such that σ ( )h

places weight only on actions that are best responses to

n
n t h

t h
n t h

h0

0
0

0+
+

+( )
( )

( )
( )γ γ ,

called the posterior. We will be particularly interested in rules which depend on the history

only through the empirical distribution of outcomes, that is rules of the form
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α: ( ) ( )∆ ∆Y A→ , with the corresponding behavior rule given by σ α γ( ) ( ( ))h h≡ . We call

these stationary  rules.

The agent is also faced with an unknown environment which is a rule mapping

histories to probability distributions over outcomes ρ: ( )H Y→ ∆ .  In our applications this

environment will correspond to the behavior rules of other players.  Notice that the

outcome cannot depend on the current action taken by the agent.  An important example

of an environment is the i.i.d. environment which is history independent:  ρ ρ( ) (~)h h=  for

all pairs of histories h h, ~ .

Our interest is in behavior rules that enable an agent to “learn” about an unknown

environment.  Our goal is to assess behavior rules by how well they perform.  There are

two performance criterion of interest:  long-run performance, and the rate at which the

learning behavior rule converges to this long-run payoff.  In this paper we will focus solely

on the long-run performance.  Consequently our criterion for assessing performance will

be the time-average payoff with a “long” time horizon.  For any given behavior

rule/environment pair, we may define a probability distribution over histories p( , )σ ρ .

The time average realized payoff U h t h u a yt tt
t h( , )[ ] ( / ( )) ( , )( )σ ρ = =∑1 1  is a random variable

with respect to this probability distribution in the obvious way.  It is also useful to define

the optimized payoff against the empirical history to be ( ) max ( , ( ))U h u h≡ α α γ  with

corresponding argmax ( )α h .

Definition 2.1:  A behavior rule σ  is ε -consistent if there exists a T  such that for any

i.i.d. environment ρ  and for any T T≥  there is a subset of histories of length T , HT ,

with p HT( , )[ ]σ ρ ε≥ 1−  and for all h HT∈

U h U h( , )[ ] ( )σ ρ ε+ ≥

A behavior rule is consistent  if it is ε-consistent for every positive ε.
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In other words a behavior rule is ε-consistent if in an i.i.d. environment it does about as

well as playing a best response against the empirical distribution, or (equivalently for large

T) the true probability distribution in that environment. Notice that this a bit stronger than

the usual notion of consistency in the statistics literature in  that the rate of convergence

here is independent of the environment ρ .  However, for the multinomial distribution, is

well known that the rate of convergence is uniform, and the following lemma is immediate

from Chebychev’s inequality.

Proposition 2.1:  If σ  is a fictitious play behavior rule, then it is consistent.

The limitation of consistency is that there is no reason the agent should think that he is

facing an i.i.d. environment.  Indeed, if a game is played between agents who both use

fictitious play, for most initial conditions on beliefs (those that do not begin at an exact

equilibrium), the resulting environment will not be i.i.d..  More to the point, a consistent

behavior rule can be fooled quite badly by a clever opponent.  One additional criterion

beyond consistency that seems desirable is that of safety:  a player should not get

significantly less than his minmax payoff in the long run.

Definition 2.2:  A behavior rule σ  is ε -safe if there exists a T  such that for any

environment ρ  and for any T T≥  there is a subset of histories of length T , HT , with

p HT( , )[ ]σ ρ ε≥ 1−  and for all h HT∈

U h u( , )[ ] min max ( , )σ ρ ε α γγ α+ ≥ .

A behavior rule is safe if it is ε-safe for every positive ε.

Fictitious play is well known not to be safe.  Suppose the game is matching

pennies, with the agent trying to match the play of the environment.  If fictitious play

begins with a prior γ 0
1

1 2
2

1 2
=

+ +
( , )  and prior precision n0 1= , and the environment

alternates deterministically between heads and tails, starting with heads, then fictitious play
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always plays the opposite of the environment, and the agent gets -1,  considerably less

than the minmax of 0 .  Indeed, fictitious play can fail in this way, not only against a clever

opponent out to trick the agent, but also in a game in which all players use fictitious play:

Fudenberg and Kreps (1993) give an example of this sort.

 It is easy to see that fictitious play is not the only vulnerable rule.  In particular,

deterministic  behavior rules can be exploited by an opponent who knows the rule, and

chooses in each period an action that minimizes the agent’s payoff given the action that

the agent will play that period. (For example, if the agent uses a deterministc rule in

matching pennies, consider the environment which always picks the exact opposite of the

choice made by the agent.)  This is essentially the point made by Oakes (1985).

There are obviously behavior rules that are safe:  playing the maxmin every period

is safe, for example.  Unfortunately this does not have the minimal learning property of

consistency.  An obvious question is whether there is any behavior rule that is both safe

and consistent.  We will find such a behavior rule below, but first it is useful to define a

property that combines both safety and consistency:

Definition 2.3:  A behavior rule σ  is ε -universally consistent if there exists a T  for any

environment ρ , and for any T T≥  there is a subset of histories of length T, HT , such that

p HT( , )[ ]σ ρ ε≥ 1−  and for all h HT∈

U h U h( , )[ ] ( )σ ρ ε+ ≥ .

For small ε, ε-universal consistency means doing more-or-less as well as playing a

best response to the historical frequency distribution.  In effect, the player ignores all

information about the order in which the outcomes occur, and the extent to which they

might be correlated with his own play.

There are potentially two problems with playing a best response to the frequency

distribution:  First, it ignores information about the way the agent’s play influences the
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play of the environment.  Suppose for example that the game is the Prisoner’s dilemma

and the environment is one in which the opponent plays tit-for-tat.  Then it is universally

consistent to cheat all the time (this is a best response to any frequency distribution)  but

the opportunity to get a higher payoff by cooperating is being ignored.

However,  ignoring causality in this way need not be troubling.   In an environment

where a large number of players interact anonymously either through market prices or

through a random matching procedure, the actions of individual players can have

essentially no effect on the future of prices or the population distribution of opponents.  In

such an environment there is no causality running from the agent’s action to future

outcomes, so such information is irrelevant.  We refer to the learning problem in such an

environment as a pure forecasting problem.

Note, though, that  even with a pure forecasting problem, an agent who plays a

best response to the empirical frequency distribution is ignoring the order in which

observations occur:  For example, in matching pennies if the environment alternates in a

deterministic manner between H and T, a best response to the frequency distribution of

1/2-1/2 yields a payoff of 0.  This, however, overlooks the opportunity to do even better

by guessing correctly every period and getting a payoff of 1.

One desirable property of universally consistent learning rules is that they are safe.

Proposition 2.2:  If σ  is ε -universally consistent it is ε -safe and ε -consistent.

Proof:  This follows immediately from max ( , ( )) min max ( , )α γ αα γ α γu h u≥ .

Because no deterministic rule is safe, no deterministic rule can be universally

consistent.   Moreover, simply adding an arbitrary form of noisy mixing does not make a

behavior rule universally consistent.  Again in matching pennies, suppose that the agent

uses a modified version of fictitious play that assigns probability (1-ε) to the action that is

the best response to the agent’s posterior, and divides the remaining ε probability equally

among the other actions.  With the prior we gave earlier, and a “malicious” opponent, the
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agent still plays the “wrong” action with probability (1-ε) in each period, and so the

agent’s expected average payoff is only 2ε-1, which is less than the minmax value of 0.

Intuitively, if the agent’s play is very sensitive to small changes in the empirical average,

then there are environments where the empirical average is converging, but the agent’s

play oscillates in such a way that the agent’s realized payoff is lower than the best

response to the limit of the empirical averages.  Conversely, if the agent not only plays a

mixed action, but also varies his mixing probabilities “smoothly” with changes in the

empirical average then (since the empirical average adjusts at the inverse of the sample

size) the agent’s play cannot oscillate wildly from period to period.  This is the motivation

for our restricting attention to smooth behavior rules in the next section, and also for

proposition 4.1, which shows that fictitious play performs well along histories where it

exhibits “infrequent switches.”

It is easy to give an existence proof showing that for every ε  there is a behavior

rule that is ε -universally consistent.  The idea originates with Foster and Vohra (1993)

who use the same idea to establish a stronger property called calibration, introduced by

Dawid (1982).  The idea is to consider a hypothetical perverse opponent whose objective

is to choose a behavior rule that tricks the agent in the sense that U h U h( , )[ ] ( )σ ρ ε+ ≥

will fail.  This gives rise to a T-period zero sum game where the agent’s payoff is

U h U h( , )[ ] ( )σ ρ − and the opponent’s payoff is the negative of this amount.  The perverse

opponent has a behavior rule that yields him the value of this zero sum game, and by the

minmax theorem, the agent has a behavior rule that guarantees him this value.  To

calculate the value, we know that it is at least what the agent gets from playing any

behavior rule against the perverse opponents minmaxing behavior rule.  In particular, the

agent can in each period play a best response to the conditional distribution (given the

history ) of the perverse opponent’s minmaxing behavior rule.  This behavior rule for the

agent yields approximately zero in a large sample by the weak law of large numbers.  Thus

we conclude that the value of the game is at worst −ε , where ε → → ∞0 as T , which is
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the desired result.  Note, though, that to actually find the desired behavior rule requires

solving a dynamic stochastic zero sum game with a very long horizon which is

computationally impractical.

However, as we will see below, a very simple randomized and ‘“smooth” variation

of fictitious play has the desired property.
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3. Cautious Fictitious Play

In light of our observations in the previous section, we are led to consider behavior

rules where the agent’s mixing probabilities depend smoothly on the empirical average. If

the stationary behavior rule  α  is a smooth (twice continuously differentiable) ε -best

response to the average, we say that it represents ε -cautious fictitious play.  We will

show that any such rule can be made ε ' -universally consistent for any given ε '   by taking

ε  small enough, if there are only two outcomes. (Remember that the outcomes

correspond to the profile of opponents’ actions in a game.)

If there are more than two outcomes, then we cannot show that ε -cautious

fictitious play is ε ' -universally consistent even for very small ε .  However, we can show

that a particular  variation on fictitious play called κ -exponential fictitious play is ε -

universally consistent.  A κ -exponential fictitious play is given by specifying fixed weights

wa > 0  and using the stationary rule

α γ
κ γ

κ γ
( )[ ]

exp ( , )
exp ( , )

a
w u a

w u b
a

bb

≡
∑

b g
b g .

Notice that for fixed weights and κ  sufficiently large, this scheme assures that the agent is

playing an ε  best response to the historical average so that this is indeed an ε -fictitious

play.5

Proposition 3.1:

(a)  For all weights wa  and every ε '  there exists a κ  such that κ -exponential fictitious

play is ε ' -universally consistent.

                                               
5 This is a special form of the exponential weighting considered in Blume’s (1993), (1994) papers on
stochastic adjustment.  Blume’s papers consider “myopic” adjustments, in the sense that agents in a large
population respond to the current  distribution of opponents’ actions, and do not use past observations in
making their choices.
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(b)  If there are only two outcomes, then for every ε '  there exists a ε  such that every ε -

cautious fictitious play is ε ' -universally consistent.

To prove the proposition, we use a method from stochastic approximation theory

of approximating a system that involves averaging with a differential equation in virtual

time.  Fix σ ρ, .  The equation of motion for the time average of utility is

U h
t h

u a y t h U ht h t h[ ]
( )

( , ) ( ( ) ) [ ]( ) ( )= + − −
1

1 1 .

Abbreviating U U ht ≡ [ ] , this may also be written as

(3.1)

U U
t

u a y U

t
u a y u a u a U

t
u a y u a U

t t t t t

t t t t t t t

t t t t t t t

− = −

= − + −

= −
L
NM

O
QP + −

RST
UVW

− −

− − −

− − − −

1 1

1 1 1

1 1 1 1

1

1

1

( , )

( , ) ( , ) ( , )

( , ) ( , )

γ γ

∂
∂γ

γ γ γ

m r
b g

where the final line makes use of the fact that the per-period utility function is bilinear.

To find a continuous virtual time approximation, consider a piecewise Lipshitz

function α: ( )∆ Y A→ ℜ  and a piecewise smooth curve ~:[ , ] ( )γ τ0 → ∆ Y  in the space of

probabilities measures over outcomes.  The curve ~γ  should be thought of as a continuous

time approximation to the time average γ t .  Let Fα γ,~  be a solution to the differential

equation analog of (3.1)

(3.2) (~ ),~ ~ (~ ),~,~ ,~F u u Fα γ τ τ τ τ τ α γ
∂

∂γ
α γ γ γ α γ γ= + −b g b g

along this curve.  To avoid having to keep track of inessential constants that depend only

on the payoffs, we use the order notation.  We say that a family of bounded random

variables ~( )r x  is of order x, written ~ ( )r O x=  if there are constants B ,b independent of x

and α  such that E r x Bx x b|~( )|2 ≤ ≤ if .
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Lemma 3.2:  For any smooth α , δ > 0  and ( ) arg max ( , )α γ α γα∈ u , there exists a T

such that for any t h t h T( ' ) ( )≥ ≥

( ' ) [ ' ] ( ) ( ) ( ) ( ) ( )[ ],~ ,~ ,~U h U h F O F F O− = + = − +−α α γ α γ α γτ δ τ τ δd i
F U h U h[ ],~ ( ) [ ] [ ]α α γ− = −0

for some piecewise linear curve ~γ  connecting γ γ( ) ( ' )h h and  with τ = log ( ' ) / ( )t h t hb g
and ~γ ≤ 1.

Proof:  in Appendix A.   Note that the conclusion of the lemma uses the fact that solutions

to the differential equation (3.2) have the property that F F F,~ ,~ ,~α γ α γ α α γ− = − . (This follows

from the linearity of the payoffs in α.)

From lemma 3.2, the problem of universal consistency is reduced to the study of the

differential equation

(3.3) ( , ~) ( , ~) ~ ( , ~) ( , ~)F u u u u F= − + − −∂
∂γ

α γ α γ γ α γ α γ .

In the absence of the first two terms, this differential equation is stable, so that the distance

between the optimized and actual payoff tends to be reduced.  The second term is of order

ε , if α γ( )  is an ε -best response to γ  for all γ .  If the first term were also small, it

would follow that the solution to the differential equation would remain uniformly close to

zero, which is the desired conclusion.

The first term is the product of the sensitivity of the payoff loss to the opponents’

average play, ∂
∂γ

α γ α γu u( ,~) ( ,~)− , and the rate at which the average is changing; this

rate can be viewed as the extent to which the  opponent is trying to trick the agent.  Since

the exact best response α  and the smoothed  response α may differ significantly, the

payoff difference between them when being tricked may be quite large.  (The fact that α is

an ε best response to ~γ  only means that the payoff loss is small against distribution ~γ .)
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The key idea of the proof is that the agent cannot be “substantially tricked” for a long

time,  as α  and α must be nearly the same, except in  regions where several actions are

nearly indifferent.  To prove this we observe that over sufficiently short curves F  does

not change very much, and there is an obvious bound:

Lemma 3.3:  If F  solves (3.3) and α  is ε -cautious fictitious play then

F
u u

dt F Ot t t t
t≤

−
+ + − +z ∂ α γ γ α γ γ

∂γ
γ ετ τ τ

τ (~ ),~ (~ ),~ ~ ( ) ( ) ( )
b g b g

0
21 0

Proof:  To show this we integrate (3.3) term by term.  The first term is exact.  The second

term is bounded using the definition of ε -fictitious play.  The error in the remaining term

is bounded by using the fundamental theorem of calculus and the mean value theorem:  for

some 0 ≤ ≤t t*  the error is [ ( ) ( )] ( *)F t F dt F t t dt− =z z0
0 0

τ τ
.   By Lemma 3.2 ~γ  can be no

greater than one in norm, and all remaining terms in (3.3) are also bounded independent of

α .  We conclude that ( *)F t  is bounded independent of α , so that the integral is of

order τ 2  as desired.  Note that the result would be completely trivial if not for the fact

that O( )τ 2  means a uniform bound independent of α .

Lemma 3.4:  If α  is κ -fictitious play (or #Y = 2 ) then

∂ α γ γ α γ γ

∂γ
γ

τ u u
dtt t t t

t

(~ ),~ (~ ), ~
~b g b g−z0  depends on ~γ  only through the endpoints of ~γ .

Proof:  Since (~)α γ  is piecewise constant, 
∂

∂γ
α γ γ

γ
α γ γu

d
d

u( (~), ~) ~ ( (~),~)=  except on the

lower dimensional set of discontinuities of (~)α γ , so  
∂

∂γ
α γ γ γ

τ
u dt( (~),~)~

0z  depends only on

the endpoints of ~γ .6   In the case #Y = 2  the integral  
∂

∂γ
α γ γ γ

τ
u dt( (~),~)~

0z  is one-

dimensional, so path independence is immediate.  In the higher dimensional case, the result

                                               
6 Monderer, Samet and Sela (1994) considering continuous time fictitious play, use a similar argument in
the proof of their Theorem B.
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will follow provided D u~[ ( (~),~)]γ
∂

∂γ
α γ γ  is a symmetric matrix.  With exponential

weighting

D
y

u D
y

w u a
w u b

u a y y

D
w u a

w u b
u a y

w u b u b z w u a

w u

z z
a

bb
ay

z
a

bb
a

bb aa

b

~( ) ~ ( ) '

~( )

( )
( (~),~))

( )
exp( ( , ~))

exp( ( , ~))
( , ' )~( ' )

exp( ( , ~))
exp( ( , ~))

( , )

exp( ( ,~)) ( , ) exp( ( , ~))

exp( (

γ γ

γ

∂
∂γ

α γ γ
∂

∂γ
κ γ

κ γ
γ

κ γ
κ γ

κ κ γ κ γ

κ

L
NM

O
QP =

L
NMM

O
QPP =

L
NMM

O
QPP =

−

∑∑∑

∑∑

∑ ∑c h
b

u a y
u a z w u a u a y

w u b
b

aa

bb, ~))
( , )

( , ) exp( ( , ~)) ( , )
exp( ( ,~))γ

κ κ γ
κ γ∑

∑
∑

+2

which is certainly symmetric.

Finally, the integral over a straight line between the endpoints can be bounded:

Lemma 3.5:  For every δ  and τ  there exists an ε  such that if α  is ε -fictitious play
∂ α γ γ α γ γ

∂γ
γ δ

τ u u
dtt t t t

t

(~ ),~ (~ ),~ ~b g b g−
≤z0 .

Proof: In Appendix B.  The basic idea is illustrated in Figure 1.

α

~γ
a

1 − a
α

α

Figure 1
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Basically the integral can be broken into two parts:  over the region in which α α and  do

not differ by much the integral is small.  On the other hand, because α  is ε -cautious, the

size of the region over which α α and  differ by a great deal can be large only if payoffs

are not very sensitive to the outcome, that is ∂ α γ γ α γ γ ∂γu ut t t t(~ ),~ (~ ),~ /b g b g−  is small.

Proof of Proposition 3.1:  Fix a tolerance ε ' . First use Lemma 3.5 with δ ε τ= ' / 6 to pick

an ε  with

∂ α γ γ α γ γ

∂γ
γ ε τ

τ u u
dtt t t t

t

(~ ),~ (~ ),~ ~ ' /
b g b g−

≤z0 6

along straight lines for all ε -fictitious play.  Now use Lemma 3.3 with ε ε ε≤ , '/6  and

O( )τ ε= .  This gives the long-run bound of F

F
u u

dtt t t t
t≤

−
+z ∂ α γ γ α γ γ

∂γ
γ τ ε

τ (~ ),~ (~ ),~ ~ / '/3
b g b g

0
.

In the two outcome case, let α  be any ε -cautious fictitious play, and in the general case,

let α  be a κ -exponential fictitious play that is also ε -cautious.  By virtue of Lemma 3.4,

the restriction of the integral to a straight line is not a limitation, so this gives the further

bound on F of F ≤ ε '/2 .  Now we may simply use Lemma 3.2 together with Chebychev’s

inequality to give the desired conclusion.

Since the use of exponential weights may seem somewhat mysterious, it may be

useful to look back and see what role they played in the proof.  The only use of the

exponential weighting was in the proof of Lemma 3.4,  where it was used to show that the

derivative of the integrand of 
∂

∂γ
α γ γ γ

τ
u dt( (~),~)~

0z  was symmetric, and consequently that

the integral itself is path independent.  The remaining parts of the proof show that to a
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good approximation, the loss from using α  in place of α  is to a good approximation

made up of two parts:  the loss from the fact that α  is only an approximate best-response

to the historical average, and the “loss” from being tricked if  the actual outcomes are not

drawn from the historical average.  This latter “loss” may actually be a gain, since the trick

may actually favor α  over α , but in any case it is measured by the flow

(3.4)  
∂ α γ γ α γ γ

∂γ
γ

u ut t t t(~ ), ~ (~ ),~ ~b g b g−
.

Notice that the method of proof yields not only an upper bound on the loss, but a lower

bound as well.  Consequently if the integral of (3.4) is large, the loss will be large.

Moreover, if the integral fails to be path independent, there must be closed loops over

which it has a non-zero integral:  this integral will be positive in one direction and negative

in the other.  The implication is that a “tricky” opponent can create a continuing loss by

moving γ  repeatedly around the loop in the positive direction, and a continuing gain by

moving it in the opposite direction.  The greater the failure of path independence as

measured by the size of this integral, the greater the potential loss or gain.

The conclusion we reach is that if we use the size of the integral (3.4) as a measure

of the failure of symmetry, the greater departure from symmetry, the greater the departure

from universal consistency.  On the other hand, we cannot conclude that a universally

consistent strategy dominates an ε -fictitious play, since the failure of path independence

also guarantees that a “tricky” but “benevolent” opponent could actually provide a higher

level of utility than merely the best response to the historical average.

Finally, we should add that the exponential weighting case is the only rule we

know of that yields symmetry and so path independence.  We do not know whether other

such rules exist.
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4. Fictitious Play

Before discussing learning in games in which different players are playing

particular types of behavior rules, it will be helpful to establish a necessary condition for

fictitious play to be consistent.

Definition 4.1:   A behavior rule σ  is ε -consistent against ρ  if there exists a T  such

that for any T T≥  there is a subset of histories of length T, HT , with

p HT( , )[ ]σ ρ ε≥ 1 − ,  and U h U h( , )[ ] ( )σ ρ ε+ ≥  for all h HT∈ .

Given a history h we define the frequency of switches η( )h  to be the fraction of

periods t in which a at t≠ −1 .

Definition 4.2:  A behavior rule σ  exhibits infrequent switches against ρ  if for every ε

there exists a T  and for any T T≥  there is a subset of histories of length T , HT , such

that p HT( , )[ ]σ ρ ε≥ 1 −  and for all h HT∈

η ε( )h ≤ .

Proposition 4.1:  If σ  is fictitious play and exhibits infrequent switches against ρ  then

for every ε > 0  it is ε -consistent against ρ .

Remark:  This result has been independently obtained by Monderer, Samet, and Sela

[1994]. 7

Proof:  Fictitious play plays a best response to the posterior beliefs γ ( )h formed by taking

a weighted average of the empirical distribution  γ ( )h  at the end of the previous period

and the prior beliefs γ 0 .

                                               
7 To compare their result and ours, note that what we call “infrequent switches” they call “smooth,” and
that their  “belief affirming process” are pairs ( , )σ ρ  such that each is consistent against the other.
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Fix the distribution over histories generated by ( , )σ ρ , and let  h be any history

that this distribution assigns positive probability; in the following we will suppress the

dependence on h to lighten the notation.  Set T t h= ( ) .

Define U u a h hT ≡ ( ( ( )), ( ))γ γ  to be the payoff from playing a best response to

posterior beliefs at the end of period T when the opponent’s play is given by the empirical

distribution, and define U u a h hT ≡ ( ( ( )), ( ))γ γ , which is the payoff that the player

“expects” to get when he believes the distribution of opponents’ play is given by ( )γ h .

Also define U UT ( )0  recursively by

U
T

u y T UT T T T= + − −
1

1 1( ( ), ) ( )α γc h .

This is the expected payoff that would result if the agent’s action at each period

t T∈{ , , }1  is a best response to the end-of-period t beliefs γ t  , averaged with an

exogenous “initial utility U0 .  (Of course the agent does not have the information to

actually implement this path; we use it only for an upper bound.)

 We will show inductively that U h U U U U UT T T T( , )[ ] ( )σ ρ ≡ ≤ ≤ and 0 .  For

T = 0 ,  U0  and U U0 0( )  are equal by definition, while both U U0 0 0 and  both equal .

Suppose that the inequalities hold at date T −1.  From the definitions and the

linearity of payoffs in the opponent’s distribution, we have

U
T

u y T U

U
T

u y T U T u U

U
T

u y T U T u U

T T T T

T T T T T T T

T T T T T T T

= + −

= + − + − −

= + − + − −

−

− − −

− − −

1
1

1
1 1

1
1 1

1

1 1 1

1 1 1

( , ) ( )

( ( ), )) ( ) ( )[ ( ( ), ) ]

( ( ), )) ( ) ( )[ ( ( ), ) ]

σ

α γ α γ γ

α γ α γ γ

b g
d i
e j

Moreover, u UT T T( ( ), )α γ γ − −− <1 1 0  from the definition of U .  This plus the inductive

hypothesis that ( )U U UT T− −≤1 1 0 establishes U U UT T≤ ( )0 .   To establish U UT T≤ ,

observe
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U
T

u y T U T u U

T
u y T U T u u

T
u y T U T u u

T T T T T T T

T T T T T T T

T T T T T

= + − + − −

= + − + − −

≥ + − + − −

− − −

− − − −

− − − −

1
1 1

1
1 1

1
1 1

1 1 1

1 1 1 1

1 1 1 1

( ( ), ) ( ) ( )( ( ( ), )

( ( ), ) ( ) ( )( ( ( ), ) ( ( ), )

( ( ), ) ( ) ( )( ( ( ), ) ( (

α γ α γ γ

α γ α γ γ α γ γ

α γ α γ γ α γ

d i
d i

T T

T T T T T TT
u y T U

T
u y T U

− −

− − −= + − = + −

1 1

1 1 1
1

1
1

1

), )

( ( ), ) ( ) ( , ) ( )

γ

α γ σ

d i
d i d i

so that the desired inequality  follows directly from the inductive hypothesis.

Finally,  since ( ) ( )α γ α γT T− =1  except in periods when switches occur, we know

that lim | ( )|T T TU U→∞ − =0 0  along any history with infrequent switches. Moreover, it is

clear that lim | ( ) ( )|T T TU U U→∞ −0 0  and lim | |T T TU U→∞ − = 0 , since the averaging

asymptotically eliminates the initial utility difference.  Consequently

lim | ( )|T T TU U U→∞ − =0 0 .  Since we just showed U U UT T≤ ( )0  we must have

limT T TU U→∞ − ≥ 0.  A similar argument using U UT T≤  and lim | |T T TU U→∞ − = 0  shows

limT T TU U→∞ − ≤ 0, so that lim | | lim | |T T T T T TU U U U→∞ →∞− = − = 0 .  This yields the

conclusion of the proposition.

Obviously any behavior rule that is asymptotically the same as fictitious play has the same

property.
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5. Learning in Games

We turn now to a setting where a number of agents play each other in a game.  We

will assume that there are N agents i N= 1 2, , , , and that each has an action space Ai .

The space of outcomes for agent i is simply that actions taken by opponents Y Ai j i j= × ≠  ,

and the payoff function is ui .

We suppose that every agent is playing a universally consistent learning rule.

Denote distributions over action profiles by µ , with corresponding marginals over × ≠j i jA

denoted by µ −i .  It is convenient also to denote the expected utility from the distribution

as ui ( )µ .  Then to a good approximation in the long run each agent will be getting at least

the same utility as he could get by playing a best response to the marginal empirical

distribution of opponents’ play.  This motivates the following definition.

Definition 5.1:  A (correlated) distribution µ  has the marginal best-response property if

for each agent i   max ( , ) ( )α α µ µ
i
u ui i i i− ≤ .  The marginal best-response property is

called exact if max ( , ) ( )α α µ µ
i
u ui i i i− = .

A behavior profile b specifies a behavior rule for each player i. Given behavior

profile b,  we can compute the resulting probability distribution p(b) over outcomes, and

hence obtain probability distributions over the empirical distributions from period 1 to T

for any T.  Denote these empirical distributions by µT , and let νT   denote the probability

distribution over the  µT .  In general there is no reason to expect that the νT   will

converge, but since the space of measures on a compact set is compact (in the topology of

weak convergence) we know the sequence will have accumulation points. Note moreover

that these accumulation point need not be a degenerate measures: for example, the long-

run empirical distribution might take on one of two values, depending on the realization of

play in the first period.  However, if every player is using an ε-universally consistent rule,

then except on a set of histories with probability ε the long-run empirical distribution must
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have (within ε) the marginal best response property. Passing to the limit yields the

following proposition.

Proposition 5.1:  Consider a sequence of ε-universally consistent behavior rules with ε

converging monotonically to 0, and let T( )ε → ∞  be such that each T( )ε  is greater than

the T ( )ε  in the definition of universal consistency.   For each ε, let νε  denote the

probability distribution over empirical distributions from periods 1 to T( )ε  induced by the

associated ε-universally consistent behavior profile.  If ν*  is any accumulation point (in

the topology of weak convergence) of the νε ,  then ν*  assigns probability 1 to

distributions with the marginal best-response property.

In other words, if agents are universally consistent, in the long run we will see the

empirical time average distribution over profiles move only within the set of distributions

having the marginal best-response property.  This suggests that it is of interest to

understand how big and what the set of distributions having the marginal best-response

property looks like.  Of even greater importance is to understand the utilities that can arise

from these distributions.  We refer to such utility vectors as marginal best-response

points.  Moreover, if players actually use cautious fictitious play, and not some other

universally consistent behavior rule, then the exact same method of proof that establishes

that cautious fictitious play is universally consistent shows that players can do no more

than ε  better than playing a best response to the historical frequency.  In this case

Proposition 5.1 can be strengthened from marginal best-response to exact marginal best

response.  In other words, we may view the set of marginal best-response points as the set

of asymptotic possibilities when players play some universally consistent behavior rules,

and the set of exact marginal best-response points as the set when they play cautious

fictitious play.

It is immediate from the definition that the set of correlated equilibria are a subset

of the set of distributions with the marginal best-response property, while the set of Nash
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equilibria are a subset of the set of distributions with the strict marginal best-response

property.  We shall see below that the converses of these results are false.

In zero sum games we have a very quick result:  since each player is getting at

least the minmax, any distribution with the marginal best-response property must give each

player at least (and so exactly) the value of the game.  This in turn implies the opponent

must be playing a minmaxing behavior rule.  In other words

Proposition 5.2:  If  µ  is has the marginal best-response property in  a zero sum game,

then u ui i i ii i
( ) min max ( , )µ α αα α=

− − , and  ( , )µ µ1 2  is a Nash equilibrium.

Note however that this result cannot be strengthened to show that µ  is actually a Nash

equilibrium, that is, that play is independent.  (This is true in 2x2 games.)  Consider the

following “Rock, Scissors and Paper” game

0 1 1
1 0 1

1 1 0

−
−

−

F
H
GG

I
K
JJ

The value of this zero sum game is 0, and the unique equilibrium point is (1/3,1/3,1/3).

Consider on the other hand the distribution over profiles given by

1 9 0 2 9
0 2 9 1 9

2 9 1 9 0

/ /
/ /

/ /

F
H
GG

I
K
JJ

It is easily checked that both marginals are (1/3,1/3,1/3), and since the matrix is

symmetric, both players get an expected payoff of zero.  In other words, this distribution

has the exact marginal best-response property, but is not a Nash equilibrium.

Another interesting case to consider is the non-zero sum Shapley game

0 0 0 1 1 0
1 0 0 0 0 1
0 1 1 0 0 0

, , ,
, , ,
, , ,

F
H
GG

I
K
JJ
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It has been shown by Shapley [1964] (see also Gaunersdorfer and Hofbauer [1994]) that

in this game fictitious play cycles ever more slowly through (UM,DM,DL,ML,MR,UR).

Because switching between profiles drops in frequency to zero, the condition of

Proposition 4.1 is satisfied, and fictitious play is consistent in this example.  We conclude

from Proposition 5.1 that when T is large, to a good approximation the empirical time

average distribution of profiles (which never puts any weight on the diagonal) is always a

distribution with the exact marginal best-response property.  Obviously in this example

there are many distributions with this property.  Note moreover, that this shows that the

set of distributions that have the exact marginal best-response property are not a subset of

the set of correlated equilibria, as it is known from Foster and Vohra (1993) that in the

Shapley game utility remains bounded away from that at any correlated equilibrium.

This leaves the question of whether there are actually correlated equilibria that are

not exact marginal best-responses.  The following Battle-of-the-Sexes example shows

there are:

1,2 0,0
0,0 2,1
F
HG

I
KJ

The distribution

1 2 0
0 1 2
/

/
F
HG

I
KJ

clearly a correlated equilibrium, indeed, it is a public randomization over Nash equilibria.

Given the marginal, player 1 prefers to play D and player 2 prefers to play L.  Each

receives an expected utility against the marginal of 1 against the correlated equilibrium

payoff of 1.5.

One crucial question is whether there are broad classes of games in which the

marginal best-response property imposes no restrictions on payoffs, that is, that the set of

marginal best-response points are the entire socially feasible individually rational set.
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Consider the generic case in which no pair of profiles yield exactly the same utility for all

players.  In this case extremal points in the socially feasible set can be achieved by only

one distribution that places all weight on a single profile.  This implies that extremal points

are marginal best-response points only if they are Nash equilibrium payoff vectors.

Combining this with the obvious fact that the set of marginal best-response point is closed

yields the following proposition.

Proposition 5.2:  Suppose that no pair of profiles yields exactly the same utility for all

players.  Then an extremal point that is not a Nash equilibrium is contained in an open set

that has no marginal best-response points.

In other words, the set of marginal best-response points is bounded away from the

extremal points.
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6. Incomplete Observation

We wish to conclude by considering settings such as extensive form games and

moral hazard models, in which the player does not actually observe the outcome y , but

only a noisy signal that may depend on his own action.  A useful example to have in mind

is a two-period prisoner’s dilemma.  If the agent chooses cheat in the first period he will

never learn how his opponent will respond to cooperation in the first period.  We know,

for example, from Fudenberg and Levine [1993] and Fudenberg and Kreps [1993] that in

such models learning rules that do not experiment frequently may fail to learn a best

response.  However, cautious fictitious play experiments infinitely often, so it seems

plausible that it could be modified to perform in a universally consistent manner, even with

imperfect information.

We will consider the extreme case of the least amount of information that might be

available to an agent about the outcome:  we assume that the agent does not observe y

but only his own utility u.   Notice that exponential fictitious play requires only historical

average utilities, and not actual observations of y.   This motivates the definition of a κ -

exponential fictitious play with respect to the utility rule U ha ( )  as

α
κ

κ
( )[ ]

exp ( ))

exp ( ))
h a

w U h

w U h
a

a

b
b

b

≡
∑

c h
c h .

Now if U ha ( )  is asymptotically the same as u a h( , ( ))γ , this rule will have properties

identical to those of κ -exponential fictitious play.

 Consider a long period over which two actions are played with (approximately)

fixed positive probabilities.  Since the probabilities of the actions fixed and positive the

frequency of outcomes conditional on either of the two actions is approximately the same

over this period.  Notice that this would not be the case if the action probabilities are time

dependent:  time dependent outcome frequencies can then cause the conditional

frequencies to differ between the two actions.
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Since each action has the same conditional frequency of outcomes, the only issue is

the appropriate assignment of weights to the observations.  If we update utility by

weighting observations in inverse proportion to the likelihood that the action is taken, then

asymptotically the utility average corresponding to each action is based on the same

underlying frequency.  In other words, if we use the updating rule

U h
U h a a

T h a
u a y T

h a
U h a a

a

a
T

T
a

T
( )

( )

( )[ ]
( , ) (

( )[ ]
) ( )

=
− ≠

−
+ −

−
−

F
HG

I
KJ =

R
S|
T|

1
1 1

1
1
1

1
α α

then universal consistency is achieved despite the fact that only the agent’s own utility is

observed.
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7. Appendix A: Proof of Lemma 3.2

Lemma 3.2 follows directly from the linearity of the differential equation and Lemmas A.1

and A.2 below.

Lemma A.1:  If α  is smooth, then any δ > 0 , there exists T  such that for any

t h t h T( ' ) ( )≥ ≥

U h F O

F U h

[ ' ] ( ) ( )

( ) [ ]

~

~

= +

=
αγ

αγ

τ δ

0
,

for some piecewise linear curve ~γ  connecting γ γ( ) ( ' )h h and  with τ = log ( ' ) / ( )t h t hb g
and ~γ ≤ 1.

Proof:  A standard weak law of large numbers calculation using Chebychev’s inequality

shows that

(A.1)
( ( | ))

( / )
y E y h

T
O Ttt T

T T
t=

+∑ − −
=

λ

λ
λ

1
1 .

Similarly for payoffs we have

(A.2)

O T
u a y u E y h

T
u a y u E y h

T
O D

u a y u y
T

O D O T

t t t tt T

T T

t tt T

T T
T tt T

T T

t tt T

T T
T tt T

T T

( / )
( ( , ) ( , ( | )))

( , ) ( , ( | ))
( )

( , ) ( , )
( ) ( / )

1
1

1

1

λ
α

λ
α
λ

α λ

α
λ

α λ λ

λ

λ λ

λ λ

=
− −

=
− −

+

=
−

+ +

=

+

=

+

=

+

=

+

=

+

∑

∑ ∑

∑ ∑

where the second line follows from Taylor’s theorem, and the final line by making use of

(A.1).  Let γ λ( )hT
T T+  denote the empirical distribution of outcomes between

T T T and + λ .  We may rearrange (A.2) as
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(A.3)
u a y
T

u h O D O T

t tt T

T T

T T
T T

( , )

( , ( )) ( ) ( / )

=

+

+

∑

= + +

λ

λ

λ
α γ α λ λ1

Next, we turn to the movement of the empirical distribution itself.  We have

γ
λ

γ
λ

λ
γλ

λ( ) ( ) ( )h
T

T T
h

T
T T

hT T T T
T T

+
+=

+
+

+

or

(A.4)
γ

λ
λ

γ
λ

γ

λ
λ

γ γ γ

λ
λ

λ

( ) ( ) ( ))

( ( ) ( )) ( )

h h h

h h h

T
T T

T T T

T T T T

+
+

+

=
+

−

=
+

− +

1 1

1

Combining (A.3) and (A.4) we have

U U
u a y
T

U

u h U O T O D

u h u h u h U

O T O D

u h u h

T T T
t tt T

T T

T

T T
T

T

T T T T T T T T

T T T T

+
=
+

+

+

+

− =
+

−

=
+

− + +

=
+

+ − + + −

+ +

= −

∑

F
HG

I
KJ

F
HG

I
KJ

L
NM

O
QP

λ

λ

λ

λ

λ

λ
λ λ

λ
λ

α γ λ α λ

λ
λ

α λ
λ

γ α λ
λ

γ α γ

λ α λ

α γ α γ

1

1
1

1
1 1

1

(
( , )

)

( ( , ( )) ) ( / ) ( )

, ( ) , ( ) ( , ( )) )

( / ) ( )

, ( ) , (

Τ

c h T T T T

T T T T T T T T

u h U O T O D

u h u h u h U O T O D

) ( ( , ( )) ) ( / ) ( )

, ( ) , ( ) ( ( , ( )) ) ( / ) ( )

b g
c h b g

+
+

− + +

= − + − + ++

λ
λ

α γ λ α λ

α γ α γ λ α γ λ α λλ

1
1

1

Taking 1 / ,λ δ α λ δT D≤ ≤  and observing that d T T dlog( ) /+ =λ λ 1  then yields the

desired conclusion.

Lemma A.2:  If ( ) arg max ( , )α γ α γα∈ u , then

( ' ) ( ) ( ),~U h U h F− = α γ τ ,

for every piecewise linear curve ~γ  connecting γ γ( ) ( ' )h h and  with τ = log ( ' ) / ( )t h t hb g .
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Proof: Follows from the fact that α  is locally constant and changes only at points of

indifference to ~γ .  This is the virtual time analog of Proposition 4.1, and the interested

reader may wish to refer to the proof of that proposition in the text.  See also Monderer,

Samet and Sela (1994) Theorem B.
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8. Appendix B:  Proof of Lemma 3.5

Lemma 3.5:  For every δ  and τ  there exists an ε  such that if α  is ε -fictitious play
∂ α γ γ α γ γ

∂γ
γ δ

τ u u
dtt t t t

t

(~ ),~ (~ ), ~
~b g b g−

≤z0
Proof:  By Lemma 3.4 it suffices to consider lines of the form ~( ) ~ *γ γ γt t= +0 .  Define

a (~) (~) (~)γ α γ α γ≡ − , and let Φ  be the payoff matrix with elements Φ ay u a y= ( , ) .  Then

we must evaluate

∂ α γ γ α γ γ

∂γ
γ

α γ α γ
∂ γ

∂γ
γ

γ γ γ

τ

τ

τ

u u
dt

dt

t dt

t t t t
t

t t
t

t

(~ ), ~ (~ ),~ ~

(~ ) (~ )
~

~

(~ *) *

b g b g

b g

−

= −

= +

z
z

z

0

0

00

Φ

Φa

.

Since a aa ( )γ∑ = 0 , for any  a we may write

a a(~) ' (~) 'γ γ γ γΦ Φ= −a
a

where a −a  is the vector of all components except a and Φ Φ Φby
a

by ay= − .  Note that

Φb
a
⋅
~γ  is the payoff difference between a and b against ~γ .  Consequently we may write the

integral as

a

a

a

(~ *) *

(~ *) *

(~ *) *

γ γ γ

γ γ γ

γ γ γ

τ

τ

τ

00

00

00

+

= +

= +

z
z

∑z
−

≠ ⋅

t dt

t dt

t dt

a
a

bb a b
a

Φ

Φ

Φ

It is clearly sufficient, therefore, to show that term-by-term that

| (~ *) * |a b b
at dtγ γ γ δ

τ

00
+ ≤⋅z Φ

Because ~γ  is restricted to varying along a straight line, the set on which a

particular action is a best response is a (connected) subinterval.  Consequently we may
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break the integral up into an integral over subintervals along which one action remains a

best response.  Since there are at most as many such subintervals as there are actions, it

suffices to prove the desired bound separately in each such subinterval.  Let a be the best

response over some such subinterval: for ~γ  in this subinterval either b is a best response

also, in which case Φb
a
⋅ =~γ 0 , or a b a(~) (~)γ α γ= − ≥0 0  and Φb

a
⋅ ≥~γ 0 .  Consequently

a b b
a(~) ~γ γΦ ⋅ ≥ 0 .

Suppose that there are two points γ γ, '  for which a is a best response, and such

that | ( )|, | ( ' )|a a ab bγ γ ≥ .  If α  is an ε -cautious fictitious play then

ε γ γ γ γ≥ = −a a(~) ~ (~) ~Φ Φa
a , and it follows for all b that ε γ γ≥ ≥⋅a b b

a(~) ~Φ 0 .  Since this

bound holds for both ~ , 'γ γ γ= , and noting that γ γ γ γ γ γ= + = +~ *, ' ~ ' *0 0t t   we may

conclude that | *| / | '|Φb
a t t⋅ ≤ −γ ε a .  In other words, if  b is played with significant

probability over a long subinterval where a is a best response, it must yield essentially the

same payoff against γ *  as a.

Let s be the total length of time over the subinterval of length τ a  in which

a a(~ )γ t ≥ .  Then

| (~ *) * |

( ) /

/

a

a a

a a

b b
a

a
a

a

t dt

s s s

γ γ γ

τ ε

τ ε

τ
00

+

≤ − +

≤ +

z Φ

Φ

Φ

The desired result now follows by choosing a ≤ δ τ/ Φ a  and ε δ≤ a .
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