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Abstract

Consider a two-person intertemporal bargaining problem in which players
choose actions and collect payo¤s while bargaining proceeds. Theory is
silent regarding how the surplus is likely to be split, because a folk theorem
applies. Perturbing such a game with a rich set of behavioral types for each
player yields a speci�c asymptotic prediction for how the surplus will be
divided, as the perturbation probabilities approach zero. Behavioral types
may follow nonstationary strategies and respond to the opponent�s play.
How much should a player try to get, and how should she behave while
waiting for the resolution of bargaining? In both respects she should build
her strategy around the advice given by the �Nash bargaining with threats�
theory developed for two-stage games. The results suggest that there are
forces at work in some dynamic games that favor certain payo¤s over all
others. This is in stark contrast to the classic folk theorems, to the further
folk theorems established for repeated games with two-sided reputational
perturbations, and to the permissive results obtained in the literature on
bargaining with payo¤s-as-you-go.



1 Introduction

What kind of reputation should a bargainer try to establish? Should she
claim that her demand will never change, or that she will become more ag-
gressive over time? Should improvements in her opponent�s o¤er be punished
as signs of weakness or should she promise to reward them with a softening
of her own position? Is it useful to announce deadlines after which o¤ers
will be withdrawn? This paper addresses these questions in an essentially
full-information two-person bargaining model in which there is a small possi-
bility that each player might be one of a rich variety of behavioral types. For
example, to use the terminology of Myerson (1991), rather than optimizing
as a fully rational player would, the player might use an "r-insistent strat-
egy" that always demands the amount r and never accepts anything less.
But the player might instead employ a complex history-dependent strategy,
a possibility not considered by previous papers in the behavioral bargaining
literature.1

Now think about broader bargaining problems in which the players in-
teract in payo¤-signi�cant ways BEFORE an agreement is reached. Such
considerations were introduced by Fernandez and Glazer (1991) and Haller
and Holden (1990).2 For example, before two countries sign a treaty on
trade or pollution abatement, their unilateral policies a¤ect one another�s
payo¤s. Here, possibilities for strategic posturing are even more interest-
ing. Does each party maximize its immediate payo¤ before agreement, or
is some degree of cooperation possible during negotiations? As time passes
without agreement, do players treat one another more harshly? Is a player�s
behavior related to her demand, and to the opponent�s demand?

Since our framework will generalize the model of Abreu and Gul (2000)
in two ways, we pause now to summarize their work. An exogenous proto-
col speci�es the times at which each of two impatient bargainers can make
o¤ers about how a �xed surplus will be divided. When an o¤er is made, the

1Adopting the idea of introducing behavioral perturbations from KMRW (1982), My-
erson (1991) studied a two-person bargaining game with one-sided uncertainty, one-sided
o¤ers and a single type. Abreu and Gul (2000) performed a two-sided analysis with mul-
tiple types that we will summarize below, prompting Kambe (1999) to do a limit analysis
of a related model as the probabilities of behavioral types approaches zero.

2Fernandez and Glazer (1991) is notable in particular for its demonstration that even
in an alternating o¤ers bargaining game with symmetric information, it is possible to
have a multitude of subgame perfect equilibria, including many with substantial delay to
agreement.
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other party can accept (and the proposed division is implemented) or re-
ject (and the bargaining continues). Payo¤s of rational players are common
knowledge, but for each player i, there are exogenous initial probabilities
�i(k) > 0 that player i is a k-insistent type (see footnote 2 above) who will
never settle for any amount less than k. At the start of play normal players
mimic behavioral types. Following the initial choice of types, in the limit as
one looks at bargaining protocols allowing more and more frequent o¤ers, a
war of attrition ensues in which players either simply stick with their initial
demands or concede to their opponent�s. Equilibrium outcomes are essen-
tially unique and do not depend on the �ne details of the protocol. The
way the surplus is divided, and the delay to agreement, depend on the set of
behavioral types available for each player to imitate and their initial prob-
abilities, and the discount factors of the players. If initial probabilities that
players are behavioral are su¢ ciently low, there is usually almost no delay to
agreement. In the limit as the �i(k)�s approach zero, each player�s expected
payo¤ coincides with the payo¤ she would get if the Nash bargaining solu-
tion (Nash (1950)) were used to divide the surplus (with disagreement point
zero). Kambe (1999) was the �rst to obtain this kind of Nash bargaining
result, in his modi�cation of the Abreu and Gul model.

Our paper considers two impatient players who are bargaining over the
surplus generated by the "component game" G that they play in each period.
After any history of play and of o¤ers that have been made, the players
have the option of entering into an enforceable Pareto e¢ cient agreement
governing play of both parties from that time on. There is some chance that
either bargainer might be a behavioral player drawn from a rich �nite set of
behavioral types. Each of those types plays a particular dynamic strategy
in the bargaining game. Its actions and demands might vary over time, and
might respond in complicated ways to what the other side o¤ers and does.
Both the complexity of behaviors allowed in the sets of types and the fact
that a game is played while bargaining proceeds make this a much more
complicated model than that of Abreu and Gul.

We obtain strong characterizations of equilibria in the limit analysis as
the probabilities of behavioral types approach zero. In particular, the "Nash
bargaining with threats" concept (Nash (1953)) describes the equilibrium be-
havior and expected payo¤s in a manner analogous to how the simpler Nash
bargaining solution describes the asymptotic equilibria in Kambe (1999) and
Abreu and Gul (2000). Thus, perturbing the full-information, simultane-
ous o¤ers, play-as-you-bargain game with the slight possibility of behavioral
types replaces a vast multiplicity of equilibria with a strong prediction about
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outcomes. This strong prediction is more striking when one views the model
as a repeated game in which players can sign binding contracts. When those
contracts are unavailable, the problem of multiple sustainable expectations
about future play is so powerful that folk theorems persist even in the face
of reputational perturbations (see especially Chan (2000) and Dekel and Pe-
sendorfer (2003)). The contractual option provides enough stability to allow
reputational perturbations to resolve the issue of how surplus is divided.

Section 2 introduces the model. Section 3 establishes the result for the
special case of stationary postures. In Section 4 we provide the general
characterization result. Section 5 establishes existence of equilibrium and
Section 6 concludes.

2 The Model

In each round ` = 0; 1; 2; : : : ;the actions chosen in a �nite game G =
(Si; Ui)

2
i=1 determine the �ow payo¤s of players 1 and 2. Payo¤ streams

are discounted according to the common interest rate r > 0. Thus, when
players use actions (s1; s2) 2 (S1; S2), player i�s payo¤ in that round is
Ui(s1; s2)

R 1
0 e

�rtdt: If at any time players agree on a payo¤ pair in the fea-
sible set F of G, that payo¤ is realized in all subsequent rounds: players
sign an enforceable contract and there are no further strategic decisions. In
any round before agreement is reached, each player chooses a demand and
action pair (ui;mi) 2 (Fi;Mi);where Fi is the set of feasible payo¤s of i (the
ith coordinate projection of F ) and Mi is the set of mixed strategies in G.

While actions and demands can be changed only at integer times, one
player�s demands can be agreed to at any time t � 0 by the other player3.
A demand ui by player i can be interpreted as an o¤er to j 6= i of the
best payo¤4 for j consistent with i receiving ui, which we denote by hj(ui).
Thus, an o¤er made at integer time l is valid ("stands") until it is replaced by
another o¤er (possibly the same) at l+ 1; a standing o¤er may be accepted
at any time. Bargaining terminates at the �rst instant that o¤ers made are

3This mixture of discrete and continous time simpli�es the analysis of the "war of attri-
tion" that arises, without causing problems with the de�nition of strategies and outcomes.

4This is well-de�ned because F is a compact set.
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mutually compatible or that a standing o¤er is accepted. If two standing
o¤ers are accepted at the same instant, the �nal agreement is taken to be
either of the standing o¤ers with equal probability. A similar tie-breaking
rule applies when players make mutually compatible o¤ers. Until agreement
is reached, a player�s choice of a (demand, action) pair at any l > 1 can
depend on the entire past history of (demand, action) pairs.

Each player is either "normal" (an optimizer) or with initial probability
zi;"behavioral". A behavioral player i may be one of a �nite set of types
i 2 �i: Each type is a strategy in the dynamic bargaining game. At the
start of play behavioral players simultaneously announce their type i 2
�i: We interpret this as an announcement of a bargaining posture. Each
i 2 �i is a machine de�ned by a �nite set of states Qi, an initial state
q0i 2 Qi, an output function �i : Qi ! (Fi �Mi), and a transition function
 i : Qi�Fj�Mj ! Qi. Denote by �i(i) the conditional probability that a
behavioral player i adopts the posture/machine i. The set of postures and
these conditional probabilities are held �xed throughout.

A normal player i also announces a machine in �i as play begins, but
of course she need not subsequently conform to her announcement. More
generally, we could allow her to announce something outside �i or to keep
quiet altogether. Under our assumptions, however, in equilibrium she never
bene�ts from exercising these additional options. A normal player can con-
dition her choice of demand and mixed action in the nth stage game on the
full history of play in the preceding rounds, including both players�earlier
mixed actions (assumed observable) and initial announcements.

Interpreting the interval over which players can concede as the limit of
a sequence of increasingly �ne discrete divisions of time, we assume that if
players adopt a pair of mixed actions (m1;m2) in the nth round, as round
n progresses they experience the �ow payo¤s (U1(m1;m2)); (U2(m1;m2));
rather than payo¤s associated with the realization of a particular pure strat-
egy pair. It is as if randomization were done not once at the beginning of
the round, but over and over again5.

5There is a sense in which this continual randomization makes it redundant to assume
observable randomizing devices. For generic games, realized payo¤s reveal in any time
interval, no mater how short, what mixed strategy pair is governing play.
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3 Stationary Postures

This section studies the case where each behavioral type i 2 Mi; i =
1; 2; is stationary, that is, i demands the same amount in any period,
regardless of the history of play (and never accepts less), and plays the same
action in every period until settlement is reached. These are the natural
generalizations of the behavioral types of Myerson (1991) and Abreu and Gul
(2000), to settings in which bargainers make payo¤-relevant strategic choices
in each period before reaching agreement. Whereas Abreu and Gul (2000) do
a stationary perturbation of a bargaining game similar to that of Rubinstein
(1982), with many behavioral types on each side, this section does the same
sort of perturbation of much more complex bargaining problems of the kind
introduced by Fernandez and Glazer (1991) and Haller and Holden (1990)
and generalized by Busch and Wen (1995).

The equilibrium existence result of Section 5 applies immediately to this
setting; we do not duplicate it here. At the heart of our characterization
of equilibrium payo¤s is the idea of "Nash bargaining with threats" (Nash
(1953)), which is summarized below:

Recall the (standard) Nash (1950) bargaining solution for a convex non-
empty bargaining set F � R2, relative to a disagreement point d 2 R2:
The Nash bargaining solution, denoted uN (d), is the unique solution to the
maximization problem

max
u2F

(u1 � d1)(u2 � d2)

when there exists u 2 F s:t: u � d: If there does not, uN (d) is de�ned to
be the strongly e¢ cient point u 2 F which satis�es u � d.

In Nash (1953) the above solution is derived as the unique limit of solu-
tions to the non-cooperative Nash demand game when F is perturbed slightly
and the perturbations go to zero. Nash�s paper also endogenizes the choice
of threats, and consequently disagreement point, and this second contribu-
tion plays a central role here. Starting with a game G, the bargaining set F
is taken to be the convex hull of feasible payo¤s of G. The threat point d is
determined as the non-cooperative (Nash) equilibrium of the following two
�stage�game:

Stage 1 The two players independently choose (possibly mixed) threatsmi,
i = 1; 2. The expected payo¤ from (m1;m2) is the disagreement payo¤
denoted d(m1;m2).
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Stage 2 The player�s �nal payo¤s are given by the Nash bargaining solution
relative to the disagreement point determined in Stage 1.

Thus players choose threats to maximize their Stage 2 payo¤s given the
threats chosen by their opponent. Note that the set of player i�s pure strate-
gies in the threat game are her set of mixed strategies in the game G. Since
the Nash bargaining solution yields a strongly e¢ cient feasible payo¤ as a
function of the threat point, the Nash threat game is strictly competitive
in the space of pure strategies (of the threat game). Nash shows that the
threat game has an equilibrium in pure strategies (i.e., players do not mix
over mixed strategy threats), and consequently that all equilibria of the
threat game are equivalent and interchangeable. In particular the threat
game has a unique equilibrium payo¤ (u�1; u

�
2) where u

� = uN (d(m�
1;m

�
2))

and m�
i is an equilibrium threat for player i. To avoid distracting quali�-

cations we assume henceforth that the stage game is non-degenerate in the
sense that it yields u� > d(m�

1;m
�
2). Our solution essentially yields (u

�
1; u

�
2)

as the only equilibrium payo¤ which survives in the limit as the probability
of behavioral types goes to zero.

We assume that one of the behavioral types on each side plays the "Nash
bargaining with threats" (NBWT) strategy, demanding the Nash payo¤ and
playing the Nash threat action. There are no restrictions on the demands
and threats of all the other types that may be present; a clumsier assumption
that would have essentially the same e¤ect would be the requirement of
a rich set of types on each side. The earliest analog of Assumption 1 in
the reputational literature is the presence of a "Stackelberg leader" type in
Fudenberg and Levine (1989).

Assumption 1 (NBWT) : For each player i, there exists �i 2 �i, such
that in each period �i demands u

�
i (and accepts nothing less) and takes

action m�
i .

Why does this setting always lead to a war of attrition? Here is a preview
of the argument. If player 1 is pretending to be some greedy type, but 2
admits to rationality, 2 should give up and accept 1�s o¤er right away (for
reasons akin to the Coase conjecture (Coase (1972))). Thus, there can be no
equilibrium in which neither rational player imitates an advantageous type,
or else player 1, say, could deviate and imitate his greediest behavioral type,
and be conceded to immediately. Similarly, if only player 1 were imitating
a behavioral type, it would have to be his greediest one; if it asks for more
than his NBWT payo¤, we will show that if 2 imitates her NBWT type,
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she will win the ensuing war of attrition with player 1 with high probability,
making this a pro�table deviation. The only remaining possibility (other
than nonexistence, which is ruled out by Proposition 2) is that each rational
player adopts a behavioral posture and hopes the other will concede soon.

Lemma 1 establishes that being the �rst to reveal rationality is tanta-
mount to conceding to one�s opponent. We remark that this will emphati-
cally not be the case in Section 4, where nonstationary postures necessitate
quite a di¤erent line of attack.

For a given stationary posture i, let ui denote player i0s stationary de-
mand, and mi her stationary action. Recall that hj(ui) is the corresponding
o¤er to player j (that is, (ui; hj(ui)) is an e¢ cient feasible payo¤ in the stage
game).

We will assume that (stationary) postures penalize non-acceptance. No
analogous assumption is required in the general non-stationary environment
of Section 4, where we develop a quite di¤erent line of attack.

Assumption 2 : For all postures (1; 2) 2 �1��2, such that u1 > h1 (u2) ;

hj(ui) > dj(m
0
j ;mi) 8m0

j 2Mj i 6= j; i; j = 1; 2:

Lemma 1 Suppose Assumptions 1 and 2 and for any perfect Bayesian
equilibrium �, consider the continuation game following the choice of a pair
of postures (1; 2), such that u1 > h1(u2). Suppose that at time t player j
reveals rationality and that player i still has not done so. Then the resultant
equilibrium continuation payo¤ is (hj(ui); ui); player j, in e¤ect, accepts i0s
o¤er immediately.

Proof. See Appendix
Once each side has adopted a posture, players concede with constant

hazard rates. At no time other than 0 does anyone concede with strictly
positive probability (as opposed to conditional density). Again, the analo-
gous results in Section 4 below take a much more complicated form, and
require a novel approach.

Lemma 2 Suppose Assumptions 1 and 2 and for any perfect Bayesian
equilibrium �, consider the continuation game following the choice of a pair
of postures (1; 2), such that u1 > h1(u2). This game has a unique perfect
Bayesian equilibrium. In that equilibrium, at most one player concedes with
positive probability at time zero. Thereafter, both players concede continu-
ously with hazard rates �i =

r(hj(ui)�dj)
uj�hj(ui) i 6= j, i; j = 1; 2 until some common
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time T � <1 at which the posterior probability that each player i is behav-
ioral reaches 1. Furthermore the probability with which player j concedes to

player i at the beginning of the continuation game is max
�
0; 1� �j

(�i)
�j=�i

�
,

where �i denotes the posterior probability that a player i who chooses i is
behavioral.

The proof is omitted. It is similar to Proposition 1 of Abreu and Gul
(2000) and follows as a special case of the discussion in the following section.
We provide an intuitive treatment below starting with the analysis of the
standard (without reputational elements) war of attrition.

Fixing an equilibrium � and postures (1; 2) denote by Fi (t) the prob-
ability that player i (unconditional upon whether i is behavioral or normal)
will reveal rationality (in the setting of this section, equivalent to conceding)
by time t, conditional upon j 6= i not revealing rationality prior to t.

Recall the analysis of the usual war of attrition in which the �rst player
to drop out receives the �low� prize while his opponent wins the �high�
prize. This game has two extreme asymmetric equilibria (in pure strategies)
corresponding to 1 dropping out with probability 1 at t = 0, and conversely,
to 2 dropping out immediately. There are in addition a continuum of mixed
equilibria in which players randomize over concession times according to
equilibrium distribution functions Fi (�).In any such (non-extreme) equilib-
rium F1 (�) ; F2 (�) have no discontinuities except possibly at t = 0; identical
supports, and no gaps. These basic equilibrium properties are consequences
of the fact that the only reason for a player to delay conceding is the prospect
that his opponent will concede in the interim. In addition, the equilibrium
distribution functions are absolutely continuous.

Let �1(t) =
f1(t)

1�F1(t) denote 1�s hazard rate of concession at t. This
is calibrated to keep 2 indi¤erent between conceding at t or t + �. In our
context the cost to 2 of delaying concession is (h2(u1)�d2)� while the bene�t
is (u2�h2(u1))r �1(t)� (ignoring terms of order �2 and higher). Equating costs
and bene�ts yields

�1(t) =
r(h2(u1)� d2)
u2 � h2(u1)

� �1; a constant independent of t:

Hence,

1� F2(t) = c2e
��2t

where c2 2 (0; 1] is a constant of integration to be determined by equilibrium
conditions. Observe that, Fj(0) = 1�cj ; where Fj(0) is the probability with
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which j concedes at t = 0: In the standard war of attrition, the constants
c1; c2 de�ne an equilibrium if and only if, ci 2 [0; 1] i = 1; 2 and (1 �
c1)(1 � c2) = 0: In the event that neither player concedes with probability
1 at t = 0 (that is, ci > 0; i = 1; 2) then neither player concedes with
probability 1 by any time t <1:

In our reputational war of attrition, the above conditions are necessary
but since behavioral types never concede we in addition require that,

1� Fi(t) � �i all t � 0;

where

�i =
zi�i(i)

zi�i(i) + (1� zi)�i(i)
is the posterior probability that player i who chooses posture i is behavioral.

This additional condition pins down the equilibrium uniquely. It follows
from the latter condition that a normal player i must concede with proba-
bility 1 in �nite time, indeed, at the latest, by Ti where

e��iTi = �i and

Ti =
� log �i
�i

is the instant by which normal i would �nish conceding if ci = 1, or equiv-
alently if player i did not concede with positive probability at t = 0: In
equilibrium, normal types of the both players must �nish conceding at the
same instant, and at most one player can concede with positive probability
at t = 0.

Let T � = minfT1; T2g. If Ti = T � then ci = 1 and cj 2 (0; 1] is deter-
mined by the requirement that

1� Fj(t) = cje
��iT � = �j

=) 1� cj = Fj (0) = 1�
�j

(�i)
�j=�i

More generally,

Fj(0) = maxf0; 1�
�j

(�i)
�j=�i

g

independently of whether Tj < Ti or Tj � Ti.
Let �i(t) denote the posterior probability that player i is behavioral

absent concession until time t. Then, �i(t) =
�i

1�Fi(t) =
1
ci
�ie

�it. That is,
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�i is the rate of growth of player i�s reputation (for being behavioral). If
Ti > T �, then ci < 1, and is chosen to boost i�s reputation conditional upon
non-concession at t = 0, by just enough for both players� reputations to
reach 1 simultaneously at T �.

It follows that, the player with the larger concession hazard rate is at
an advantage in the war of attrition. Suppose for example that in equilib-
rium, after adopting some particular pair of pro�les, players have the same
initial reputations. If �1 >�2, player 1�s reputation will reach 1 before 2�s
reputation does, in violation of Lemma 2. The only way to keep this from
happening is for 2 to concede with enough probability at time zero so that
in the event that she is observed not to have conceded, her reputation jumps
just enough that the two players�reputations will reach 1 together after all.
If initial reputations are tiny, even a small di¤erence in hazard rates must
be compensated for by concession at zero with probability close to 1. This
follows from the formula for Fj(0) given above.

Naive intuition might suggest that player i will tend to imitate the greed-
iest possible type. But the formula in Lemma 2 indicates that by moderating
the demand, i increases �i and decreases �j , which may serve i better in the
war of attrition. The formula further shows that i should choose an action
(while waiting) that hurts the opponent j without hurting i too much. Of
course that is also what a player has in mind when choosing a threat in the
Nash bargaining with threats (NBWT) game. The connection can be made
precise as follows.

Lemma 3 Suppose that player 1 adopts his NBWT posture. Then for
all postures 2 could adopt, except ones that give 1 at least as much as he is
asking for, �1 > �2.

Proof. This is most easily seen graphically. Let 1 adopt the NBWT position
�i = (u�i ;m

�
i ) and 2 adopt any posture 2 = (u2;m2) with u2 > u�2. The

NBWT threat point and allocation are denoted D and u�; respectively. Let
D = d(m�

1;m2) and A = (h1(u2); u2). See Figure 1.
By Assumption 2, D1 < h1(u2). Since (m�

1;m
�
2) is an equilibrium of the

Nash threat game, D lies on or below the line throughD�u� (if not,m2 would
be a strictly improving deviation for player 2 in the Nash threat game). By
Nash�s (1950) characterization of the Nash bargaining solution, the slope of
the line D�u� equals the absolute value of some supporting hyperplane to
the set F at u�. Hence slope DE > slope Du� � slope D�u� � jslope Au�j.

But

�1 =
r(u�2 �D2)
h2(a)� u�2

>
r(a�D1)
u�1 � a

= �2
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if and only if
slope DE > jslope Au�j:

d*
D

u1

u*E

A

Figure 1

Lemma 4 Suppose Assumptions 1 and 2. Then for any � > 0, R 2
(0;1) and � > 0 there exists � > 0 such that if zi � �; i = 1; 2 and

max
n
z1
z2
; z2z1

o
� R, then for any perfect Bayesian equilibrium � the payo¤ to

a rational player 1 in the continuation game (�1; 2) is at least (u
�
1��=2) for

any 2 2 �2 which a rational player 2 adopts in equilibrium with probability
�2(2) � �.

Proof. Consider the continuation game with (�1; 2). By Lemma 3, either
2 entails u2 with h1(u2) � u�1, or �1 > �2. Suppose u�1 > h1(u2) and that
rational 2 adopts 2 with at least probability � > 0. Then

�1 � z1�1(1)

(1� z1) � 1 + z1�1(1)

�2 � z2�2(2)

(1� z2) � �+ z2�2(2)
� z2B

) �2
�1
� z2
z1
� �2(2)
�1(1)

� (1� z1) + z1�1(1)
(1� z2) � �+ z2�2(2)

� RC

for given R and some �nite constants B;C independent of (z1; z2). Recall
that the conditional probabilities �i(i) are exogenous constants.
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From Lemma 2,

F2(0) = 1�
�2
�1
(�1)

1��2
�1

if the latter term is non-negative. By the preceding inequalities,

F2(0) � 1�RC(z2B)
1��2

�1

� 1�R�1�
�2
�1

where R = RCB
1��2

�1 <1: Hence for � small enough, F2(0) is close to 1.
Player 1�s payo¤ is:

F2(0)u
�
1 + (1� F2(0))h1(u2)

� u�1 �
�

2

for � small enough and (consequently) F2(0) close enough to 1.

Proposition 1 Suppose Assumptions 1 and 2. Then for any " > 0 and R 2
(0;1) there exists � > 0 such that if zi � �; i = 1; 2 and max

n
z1
z2
; z2z1

o
� R

then for any perfect Bayesian equilibrium � of G(z); jU(�)� u�j < ".

Proof. For any given perfect Bayesian equilibrium �; and � > 0; letb�2 = f2 2 �2 j �2(2) � �g : Then
P

22b�2 �2(2) � jb�2j� � j�2j�: HenceP
22�2=b�2 �2(2) = 1 �

P
22b�2 �2(2) � 1 � j�2j�: Under the conditions of

Lemma 4, for any 2 2 �2=b�2; the payo¤ to a rational player 1 in the con-
tinuation game (�1; 2) is at least (u

�
1 � �=2); and consequently the payo¤

to adopting �1 is at least

(1� j�2j�)(u�2 �
�

2
) + j�2j�wi

where wi is the lowest payo¤ to i in the (�nite) stage game G.
Clearly we can choose � > 0 such that j�2j� � 1 and

(1� j�2j�)(u�2 �
�

2
) + j�2j�wi � u�2 � �

For such a � > 0 Lemma 4 immediately implies that under the stated
conditions, the payo¤ to adopting �1 is at least u

�
1 � �, in any PBE �. If

follows that U1(�) � u�i � �. Since this is true for both players and u� is a
(strongly) e¢ cient feasible payo¤6 of the stage game, the Proposition follows
directly.

6That is, there does not exist feasible u0 s.t. u0i > u
�
i and u

0
j � u�j .

12



4 Nonstationary Postures

Following Fernandez and Glazer (1991) and Haller and Holden (1992), Busch
and Wen (1995) have provided a general analysis for repeated games with
complete information where a long-run enforceable contract can be signed.
In conformity with the earlier result, in many games there is a signi�cant
multiplicity of equilibrium outcomes.7 Our goal is to be able to say that any
rich perturbation of such a game leads to an essentially unique outcome,
and that the outcome is not sensitive to the small ex ante probabilities of
the respective behavioral types. That is true if perturbations are restricted
to stationary strategies, as Section 3 has shown. Which of the results there
survive the introduction of nonstationary strategies?

We revert now to the general model speci�ed in Section 2. Behavioral
types are �nite automata that announce and follow repeated game strate-
gies that may have complicated intertemporal features and can respond to
the opponent�s play. Suppose one asks how well player 1�s stationary Nash
bargaining with threats (NBWT) strategy would do against any nonstation-
ary posture 2 might adopt. How di¤erent from Section 3 would the analysis
look, and does 1 do himself harm by not taking advantage of the opportunity
to use a dynamic closed-loop strategy himself?

We formulate a hybrid discrete/continuous model of time that simpli-
�es the war of attrition calculations without introducing any of the logical
di¢ culties associated with games played in continuous time. Each round
of bargaining lasts for a period of length one. A player can accept at any
moment within a round but can only change his own o¤er/demand and ac-
tion between rounds. The analysis is facilitated by assuming that there is no
discounting between rounds: one can interpret this as the limit of bargaining
protocols in which the time between rounds goes to zero. We operationalize
this assumption by the following device. Our primitive notion of time is a
�date�. The set of dates is T . A date � 2 T has two dimensions; � = (t; k)
where t 2 R+ and k 2 f�1; 0; 1g. For � 2 T let t (�) denote the �rst di-
mension and k(�) the second. For n 2 N � f0; 1; 2; :::g, f(n;�1); (n; 0);
(n;+1)g � T . For � such that t (�) =2 N ; k(�) = 0. At date (n; 0), n 2 N
players can make new (o¤er, action) choices. The new o¤er can be accepted

7Busch and Wen work with an alternating o¤er structure in the spirit of the Rubinstein
model. In our formulation o¤ers are simultaneous and it is easy to establish a folk theorem
type result. See Section 5 for a discussion of this point.
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at dates (n;+1); ((n+1);�1) and all dates in between. Thus the beginning
of a round and the end of a round are well-de�ned. There is no discounting
between the dates (n;�1); (n; 0) and (n;+1): discounting only depends on
the pure time component of a date. The ordering on T is lexicographic: for
any � ; � 0 2 T , � 0 � (t0; k0) � (t; k) � � if t0 > t or if t0 = t and k0 > k. A
player�s choices at date (n;+1); say, can be conditioned on observed choices
at dates (n; 0); (n;�1) and, of course, all preceding dates.

For later reference, we de�ne the in�mum of a set of dates � � T .
Denote � � inf �. Let �t = ft(�) j � 2 �g and t � inf �t: If t 62 N , then
� � (t; 0): If t 2 N , de�ne �(t) = f� 2 � j t(�) = tg: If �(t) 6= ; then
� � f� 2 �(t) j k(�) � k(�0) all �0 2 �(t)g: If �(t) = ; then � � (t;+1):
The supremum is de�ned analogously. These are the natural extensions of
the usual de�nitions.

With 1�s strategy �xed at the stationary NBWT action and demand,
player 2�s situation is similar in some ways to what she faced in Section 3.
Whenever 2 reveals rationality, one can show that she does so by, in e¤ect,
accepting 1�s o¤er. This is the one-sided analog of Lemma 1 in Section 3.
But the same is not true for player 1. Suppose that 1 is o¤ered 5 until some
date � , and 10 thereafter. Rather than wait to get 10 at � , at an earlier time
� 0 he might o¤er a Pareto-superior contract: give me 9 right now. Player 2
might accept this (as long as she doesn�t expect to do better in the subgame
in which she instead reveals rationality without accepting 1�s o¤er). Thus,
the o¤er from 2�s machine 2; at �

0 is just a lower bound on 1�s equilibrium
expectation of the payo¤s he would receive if � 0 arrives without either player
having revealed rationality. This simple example is illustrated in Figure 2.
The fact that 1 expects a payo¤ of 9, conditional on arriving at period � 0,
is indicated by the dot at point (� 0; 9) on the graph.
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The reader may wonder why 1 would wait until � 0 to make this sugges-
tion, and for that matter, why 1 doesn�t ask for an even greater amount. The
answer lies in the full-information subgames after 1 and 2 have both revealed
rationality. These typically have a continuum of subgame perfect equilibria,
and in the construction of a solution of the full game, the selection from this
set can depend on arbitrary details of the history of play. For example, if 1
demands 9 at � 00 prior to � 0 instead of at � 0, or 9:3 at � , say, 2 could believe
that she would fare extremely well, and 1 badly, if she revealed rationality
instead of accepting 1�s o¤er. The problems this multiplicity of expectations
causes in behaviorally perturbed repeated games with two long-run players
are explored in Schmidt (1993), and are the reason the ensuing literature8

has been unable to provide precise payo¤ predictions for repeated games
with players of comparable patience.

The example of Figure 2 might leave the impression that 1�s expected
payo¤ at � 0 could exceed 2�s o¤er there only because 2 later makes a more
generous o¤er in response to 1�s constant play of his NBWT position. This
is not true. At � , for example, if 1 reveals rationality without accepting
the o¤er of 10, he may be able to manipulate 2 into o¤ering him 15. His
expected payo¤ at � could therefore easily exceed 10.

To summarize, when 1�s static NBWT strategy faces more complex

8 (to be completed)
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strategies of 2, 1�s expected payo¤ in a particular continuation game is no
longer given by what 2 o¤ers him, and may vary greatly across di¤erent
equilibria of that continuation game. A rational player 1 may want to re-
veal rationality (by abandoning the NBWT posture at some point) but not
accept 2�s o¤er. Further we shall see that nonstationarity in 2�s posture
induces discontinuities in the war of attrition, with one or more players
conceding away from time zero with strictly positive probability.

All of the above makes it impossible to replicate the line of attack of
Section 3. Perhaps surprisingly, the main result concerning players�payo¤s
is essentially unchanged, along with the power of the static NBWT posture.
The proofs, however, are quite di¤erent, and much more elaborate. This
Section states and proves the main Proposition.

To avoid complicating an already di¢ cult argument, we make a gener-
icity assumption about behavioral types.

Assumption 3 (Generic Types) For all 2 2 �2= f�2g in the continua-
tion game de�ned by (�1; 2), and for all n, h1 (u2 (n)) 6= d1 (n). A corre-
sponding assumption applies to types 1 2 �1= f�1g.

Proposition 2 Invoke Assumptions 1 and 3. Then for any " > 0 and R 2
(0;1) there exists � > 0 such that if zi � �; i = 1; 2 and max

n
z1
z2
; z2z1

o
� R

then for any perfect Bayesian equilibrium � of G(z); jU(�)� u�j < ".

Proposition 2 says that no matter how high you allow the bound on
the relative probabilities that the respective players are behavioral to be,
and no matter how close to u�i you want 1�s expected utility to be, you can
achieve this uniformly across all perfect Bayesian equilibria, by ensuring that
behavioral players have su¢ ciently low prior probabilities.

Before providing the proof, we give a quick account of the main ideas.
Given the unavoidable fact that a typical continuation game (following the
choice of postures) su¤ers from a vast multiplicity of perfect Bayesian equi-
libria, our strategy is as follows. Any particular equilibrium of the full game
o¤ers player 1 expected payo¤s at each date in each continuation game, fol-
lowing the realization of 2�s choice of posture 2. Just as one can graph the
o¤ers 2 makes to 1 over time, one can graph the payo¤s 1 would get by
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revealing rationality at any L, without accepting 2�s o¤er. It is the maxi-
mum of these two values that drives the war of attrition. In analyzing that
war of attrition, one can treat the stream of these maxima as exogenous
variation, just as one accepts the possibility of arbitrary strategies 2. Once
the characterization result is established for all possible streams, it holds a
fortiori for all graphs that could actually arise in equilibrium.

Recall from Section 3 that the more player i demands, the slower i�s
rate of concession must be, and the slower i�s reputation will grow. If i�s
demand is su¢ ciently greedy, this will require i to concede at time 0 with
high probability. The same basic force is at work here. If 2 is asking for
more than her NBWT payo¤, she has to concede slower than 1 (if he chooses
his NBWT posture). The rate changes as her demands change, and one has
to integrate these rates and add them to discrete probability concessions.
It is necessary to make cross-player comparisons of payo¤ discontinuities
of di¤erent sizes and with qualitatively di¤erent e¤ects. This is the most
delicate part of the argument. But the same picture ultimately emerges: over
all, 2�s reputation grows more slowly than 1�s and this becomes decisive when
prior behavioral probabilities are low.

Non-stationarities in player 2�s posture typically induce discrete conces-
sion episodes by both players. The simplest case, which we call a "downward
jump", involves a decrease in the value of 2�s o¤er to 1. Suppose that be-
tween rounds n and (n + 1) (that is, at date (n; 0)) and before ��, player
2�s o¤er falls from a to b < a. If 1 ever accepts the o¤er of b in equilibrium
after (n; 0), he must be compensated at (n;+1) for letting the o¤er fall from
a to b, by a probabilistic concession from 2. The probability P2 of 2�s con-
ceding at (n;+1) that makes 1 indi¤erent between accepting the o¤er of a
or waiting satis�es:9

a = P2u
�
1 + (1� P2)b

"Upward jumps" have more interesting repercussions. Assume for sim-
plicity that 2�s action choice is constant and that at some date � 2 (0; ��],

9More generally, b < a could be player 1�s expected equilibrium payo¤ at (n;+1). This
could exceed 2�s starting o¤er at (n;+1) because of future (o¤er, action) choices of 2
which are more attractive to 1 or future equilibrium payo¤s from revealing rationality.
Furthermore a could be player 1�s equilibrium payo¤ from revealing rationality at (n; 0)
and exceed 2�s o¤er at (n;�1) and (n;+1).

17



2�s o¤er jumps up from b to a > b (or alternatively, that at � , the equilib-
rium implicitly o¤ers 1 the payo¤ a for revealing rationality at � without
accepting 2�s o¤er). For some time interval of length � before � , 1 would
rather wait until � to get a, than to concede immediately and get b (see
Figure 3). Since 1 experiences �ow payo¤s while waiting, � solves:

b

r
=

Z t1

t1��
d1(s)e

�r(s�(t1��))ds+ e�r�
a

r

where t1 � t(�) and d1(s) is player 1�s �ow payo¤ (given (�1; 2)) at time s.

a

b

u1

time∆−)(τt )(τt

∆

Figure 3

Notice that 2 will not concede in the � interval before t(�) either: since
1 never concedes in that interval, 2 should either concede before the interval
is reached, or wait until it is over. For 2 to be just compensated for waiting
through the barren interval �, 1 must concede at t(�) with probability P1
solving:

u�2
r
=

Z t1

t0

d2(s)e
�r(s�t0)ds+ e�r(t1�t0)

�
P1
v22(�)

r
+ (1� P1)

u�2
r

�
(1)

where t0 � t1 � � and v22(�) is player 2�s payo¤ when player 1 reveals
rationality at � .

We say that the jump at � �casts a shadow�of length � over the time
period preceding � . What if no P1 � 1 solves the equation? Then 2 cannot
be induced to wait, and rational 2 should concede with probability 1 weakly
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before the shadow begins (contradicting our assumption that � 2 (0; ��]).
This expression makes it clear that changes in �ow payo¤s d1(s) can also
contribute to or even cause �shadows�. For instance even if b = a; if there
are changes in 2�s action choices so that initially player 1�s �ow payo¤s d1(s)
are less than a and later d1(s) exceeds a, so thatZ t1

t1��
d1(s)e

�r(s�(t1��)ds = a

Z t1

t1��
e�r(s�(t1��)ds

then we have a shadow of length � generated exclusively by changes in �ow
payo¤s.

Interestingly, there can be an upward jump at � , followed by a downward
jump �at the same instant�. Suppose that 2�s posture 2 is as illustrated
in step 3 above, but that the equilibrium o¤ers c > a at � � (n; 0) (and
nowhere else, for simplicity). Clearly 1�s option of getting c at (n; 0) casts a
shadow (a longer one than that cast by a) over an interval in which neither
1 nor 2 will concede. Player 1 reveals rationality probabilistically at (n; 0)
(without accepting 2�s o¤er). In the event that he does not concede, he faces
an immediate drop in expected payo¤ to a. To make 1 indi¤erent between
revealing rationality and waiting, 2 must concede with probability

P2 =
c� a
u�1 � a

at (n;+1), conditional on 1�s not revealing rationality at (n; 0).
Proof of Proposition 2. Proposition 2, the analogue of Proposition
1, follows from Lemma 5 below in the same way as Proposition 1 follows
from Lemma 4 (see the proof of Proposition 1). Lemma 5 establishes the
e¤ectiveness of player 1�s NBWT posture �1 against any relevant posture of
player 2. The following notation will be used in the proof.

Fix z = (z1; z2) and an equilibrium of the overall game, and consider
the continuation game following the choice of (arbitrary) postures (1; 2).
The dependence of various functions and terms introduced below on z, the
equilibrium in question, and on (1; 2) is not made explicit in the notation
but should be understood in what follows.

Let ui(t(�)) denote player i�s demand at time t(�) if both players con-
form with their postures until and including date � . Let di(t(�)) denote the
�ow payo¤ to i at time t(�) when neither player has revealed rationality
prior to or at � .

Associated with the continuation game are �distribution functions�Fi(�),
i = 1; 2 where Fi(�) is the probability that player i reveals rationality by
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� conditional upon player j not revealing rationality prior to � . Note that
the distribution functions and the terms de�ned below are speci�c to the
equilibrium in question.

De�ne vji (�) as the supremum over possible (given player j�s strategy)
payo¤s to i, conditional upon revealing rationality at � (given that i and j
have not revealed rationality prior to �). If t(�) =2 N , and player j does not
reveal rationality at � with strictly positive probability, vji (�) = hi(uj(�));
the only way for i to reveal rationality within a round is to accept the oppo-
nent�s standing o¤er at � . Let vii(�) denote player i�s expected equilibrium
payo¤ conditional upon player j revealing rationality at � .

The proof proceeds by demonstrating the e¤ectiveness of player 1�s NBWT
posture �1 against any relevant posture of player 2. This is formalized in
Lemma 5 below.

Lemma 5 Invoke Assumption 1. Then for any � > 0, R 2 (0;1) and
� > 0 there exists � > 0 such that if zi � �, i = 1; 2 and max

n
z1
z2
; z2z1

o
� R,

then for any perfect Bayesian equilibrium � the payo¤ to a rational player
1 in the continuation game (�1; 2) is at least (u

�
1 � �=2) for any 2 2 �2

which a rational player 2 adopts in equilibrium with probability �2(2) � �.

The proof of Lemma 5 is presented in eleven steps.

1.Implications of Stationarity of �1
Fix a PBE � and a posture 2 for 2, and consider the continuation game

starting from date (0,0) after 1 has adopted his NBWT posture and 2 has
adopted 2. The pro�le � induces an equilibrium on that continuation game.
Denote by �i; i = 1; 2 the initial probability that player i is behavioral,
conditional on the observed posture. Recall that �i =

zi�i(i)
zi�i(i)+(1�zi)�i(i)

is
the posterior probability that player i who chooses i, is behavioral.

Because of the stationarity of 1�s o¤er and the nature of the Nash threat
a rational type of player 2 must concede with probability 1 in �nite time (see
Lemma 6 in the Appendix). Moreover a rational player 2 reveals rationality
by, in e¤ect, accepting 1�s o¤er (see Lemma 7 in the Appendix). These
"Coasean" results are closely related to Lemma 1 of Section 3, and do not
hold for arbitrary non-stationary 1:

De�nition 1 �� = inff� ju�1 � h1( u2(�)) or 1�F1(�) = �1 or 1�F2(�) =
�2g

Thus �� is the �rst date by which (1) a rational type of either players 1 or
2 reveals rationality (i.e. does not follow i), or (2) the demands generated
by the pair of postures (�1; 2) are mutually compatible.
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2. Concession Distribution Functions
Concession behavior strictly within rounds is driven by the familiar logic

of the war of attrition, with parameters given by the constant o¤ers and �ow
payo¤s corresponding to the round in question. Speci�cally, suppose that
� 0; � 00 are dates within round n 2 N with �� � � 00 � � 0, and (n + 1) >
t(� 00) > t(� 0) > n , and that Fi(� 00) > Fi(�

0) for some i = 1; 2:
We �rst argue that hi( uj(�)) > di(�) for all � 2 ((n;+1); � 00) and i =

1; 2: For i = 2 this follows from the de�nition of the NBWT posture �1
(and our regularity assumption which excludes the exceptional case u�2 =
d2(m

�
1;m

�
2)). Recall also our second regularity assumption that for all 2; the

pair (�1; 2) generate o¤ers and �ow payo¤s such that h1( u2(�)) 6= d1(�):
Finally suppose that h1( u2(�) < d1(�): We show that this contradicts our
initial assumption that Fi(� 00) > Fi(�

0) for some i = 1; 2: The inequality
h1( u2(�) < d1(�) implies that player 1 is strictly better-o¤ conceding at the
end of the round than at any date within the round, independently of 2�s
concession behavior. Hence F1(� 00) = F1((n; 0)): Since u�2 > d2(�) it follows
that 2 is strictly better-o¤ conceding at (n;+1) than at � 00 or at any date
in between. Hence F2(� 00) = F2(�

0) also, a contradiction.

For all n 2 N let

��(n) = inff� j Fi(�) = Fi((n+ 1;�1))g:

By the preceding argument, hi(uj(t(�))) > di(t(�)) for all � 2 ((n;+1); ��)
and i = 1; 2: The analysis within the time interval (n; t(��)) is as in the usual
war of attrition, with equilibrium behavior governed by the basic principle
that a normal player delays conceding only in the expectation that the other
player might concede in the interim. Thus we have the familiar result that
the players concede with constant hazard rates �i(s) for s 2 (n; t(�� (n)))
where

�i(s) = r � hi (uj ((n;+1)))� di (n)
ui ((n;+1))� hi (uj ((n;+1)))

Integrating this expression yields:

(1� Fi(�)) = e��i(s)(t(�)�n)(1� Fi((n;+1)))

This discussion is summarized in Lemma 8 below where �� is de�ned as above.
Lemma 8 For all � 0; � 00 and n 2 N with �� � � 00 � � 0, and (n+ 1) >

t(� 00) > t(� 0) > n , if Fi(� 00) > Fi(�
0) for some i = 1; 2 then for k = 1; 2

(1� Fk(�)) = e��k(n)(t(�)�n)(1� Fk((n;+1))) for all � 2 ((n;+1); ��)
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Let

�i(s) =

(
r � hi(uj((n;+1)))�di(n)

ui((n;+1))�hi(uj((n;+1))) for s 2 (n; t(�� (n)))
0 otherwise

Note for later use that �1 (s) > �2 (s) for s 2 (n; t(�� (n))). The argument
is exactly the same as in Lemma 3 of Section 3.

Let Qi(�) denote the probability with which i reveals rationality at �
conditional upon not having revealed rationality prior to � :

De�ne Pi(n) by

(1� Pi(n)) =
Y

k2f�1;0;1g
(1�Qi((n; k)))

An implication of Lemma 8 is that positive probability concessions can
only occur at the end, between or at the beginning of rounds, but not strictly
within rounds. Thus the only dates at which player imight reveal rationality
with strictly positive probability are those � for which t(�) 2 N . (In fact,
in addition, it is necessary that k(�) 6= �1.)

Hence,

1� Fi(�) = e�
R t(�)
0 �i(s)ds

Y
���
(1�Qi(�))

and for � =2 N 0;

(1� Fi(�)) = e�
R t(�)
0 �i(s)ds

Y
n2N
n�t(�)

(1� Pi(n))

3. Discrete Concessions by Player 2
We seek to show that after time 0, player 1 reveals rationality faster than

2. This is the case in regions of continuous concession, for the same reasons
as in Section 3. It will also be necessary to compare discrete concession
probabilities by 1 and 2.

Each discrete concession by 2 is tightly linked to a contemporaneous
reduction in what 1 can extract from 2, that is, to a "down jump" (see the
preamble to the proof of Proposition 2). Lemma 9 provides an upper bound
on the concession probability by 2 that can be provoked by a down jump
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from value a to b < a:

a

b

u1

timet1t0

Figure 4

Let w1(�) be the expected equilibrium payo¤ to 1 (discounted to �)
conditional upon neither player revealing rationality prior to and including
� .

The total size of the down jump at round n is denoted Jd(n) and :

Jd(n) = max
�
0;maxfv21((n;�1); v21((n; 0)g � w1((n;+1)

	
Lemma 9

P2(n) �
Jd(n)

u�1 � w1((n;+1))

Proof. Suppose by way of contradiction that P2(n) >
Jd(n)

u�1�w1((n;+1))
: Then

P2(n)u
�
1 + (1� P2(n))w1((n;+1)) = P2(n)(u

�
1 � w1((n;+1)) + w1((n;+1))

> maxfv21((n;�1); v21((n; 0); w1(n;+1)g

That is, 1�s payo¤ from conceding after (n;+1) strictly exceeds 1�s payo¤
from conceding at (n;+k) or just prior to (n;+k) for k = �1; 0;+1. Hence
F1((n;+1)) = F1(�) for some � � (n;+1) with t(�) < n. It follows that
2�s payo¤s from conceding at � 0 2 (� ; (n;+1)] strictly exceeds 2�s payo¤s
from conceding at (n;+k) for k = �1; 0;+1. However our initial hypothesis
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implies that P2(n) > 0: Hence Q2((n; k)) > 0 for some k = �1; 0;+1, a
contradiction.

4. Neutral Subdivision of Downward Jumps

The nonstationarity of some postures 2 may induce frequent �uctua-
tions in 1�s continuation values. The discrete concessions by 2 associated
with the numerous down jumps could give 2 an insurmountable advantage in
the war of attrition, unless the �uctuations induce concessions by 1 of similar
or greater magnitude. Comparing the e¤ects of up and down jumps of dif-
ferent sizes is di¢ cult. Fortunately, if down jumps are subdivided arbitrarily
into smaller jumps, this is neutral with respect to the overall probability of
concession by 2. Neutrality is demonstrated in the following paragraph, and
used in Step 6.

Let P2 > 0 be associated with a down jump from u1 � maxfv21((n;�1); v21((n; 0)g
to w1 � w1((n;+1). By Lemma 9, 1 � P2 � u�1�u1

u�1�w1
. Consider the strictly

decreasing sequence ul1; l = 0; 1; : : : ; L such that u
0
1 = u1 and uL1 = w1, and

de�ne P l2 =
ul�11 �ul1
u��ul1

. Then 1� P l2 =
u�1�u

l�1
1

u�1�ul1
. Consequently

(1� P 12 )(1� P 22 ) � � � (1� PL2 ) =
u�1 � u1
u�1 � w1

� 1� P2

Thus a down jump may be broken up into an �equivalent�sequence of smaller
down jumps which span the same range.

5. Paired Up and Down Jumps

In general, it is possible to have multiple up and down jumps in
1�s continuation value, all in a single interval of non-concession by player
2. Comparison of the respective concession probabilities of players 1 and
2 can be extremely involved, and this is relegated to the Appendix. To
provide a more accessible treatment, we limit attention here to a simple
case involving two perfectly complementary jumps. Readers interested in
the Appendix may �nd it useful to get a motivating overview by looking at
Steps 5 and 6 here before turning to the material in the Appendix concerning
Section 4.

Figure 4 illustrates a scenario in which 1�s continuation value is initially
a < u�1, then falls to b < a, and later returns to a. We assume for simplicity
that these continuation values coincide with what 2�s posture 2 o¤ers 1
(there are no endogenous rewards to 1 that augment what 2 o¤ers). One
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can solve for the concession probability P1 induced by the increase in value,
and the concession probability P2 induced by the earlier fall in value. As
noted earlier:

P2 =
a� b
u�1 � b

(2)

and
b

r
=

Z t1

t0

d1(s)e
�r(s�t0)ds+ e�r(t1�t0)

a

r

or,
(b� d1) = e�r(t1�t0)(a� d1) (3)

where � � (t1 � t0), di (1�e
�r�)
r �

R t1
t0
di(s)e

�r(s�t0)ds.
(di is the �average��disagreement�payo¤ over the interval (t0; t1)).
Equation (1) may be rewritten as:

(u�2 � d2)(1� e�r�) = e�r�P1(h2(a)� u�2) (4)

where we have replaced v22(�) with h2(a).
Combining (3) and (4) yields

P1 =
u�2 � d2

h2 (a)� u�2
� a� b
b� d1

Hence P1 > P2 if and only if

u�2 � d2
b� d1

>
h2 (a)� u�2
u�1 � b

To see that this inequality does hold, note that:

1. (d1; d2) must be on or below the line joining d(m�
1;m

�
2) and u

�

2. the slope of the latter line equals the (absolute value) of the slope of
some supporting hyperplane to the set of feasible payo¤s, at u�

3. a lies to the left of u� on the (concave) frontier of the feasible set and
b lies to the left of a.
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See Figure 5.
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Figure 5

Thus, although the decline in 1�s value from a to b appears to give 2
an advantage in the war of attrition (by inducing a discrete concession by 2),
this advantage is outweighed by the larger discrete concession by 1 induced
by the return from b to a. Player 1�s overall advantage is even greater if
there are many of these paired discrete concessions, rather than the single
pair illustrated here.

What if there are more (or bigger) decreases in value than increases?
For example, if value decreases from a to b, and then stays there forever, 2
has a discrete concession not matched by one from 1. This turns out to have
an e¤ect similar to 2�s having a moderate reputational advantage over 1. It
is swamped by other e¤ects as the z0is approach 0. The argument in the
Appendix shows that as long as all repeated down jumps are matched by (or
"covered by" �see the Appendix) up jumps, 1�s asymptotic advantage will
be decisive. But repeated down jumps are indeed matched by up jumps: if
value falls from 6 to 4, say, it can�t fall through that range again until it
has �rst risen through that range. Among the di¢ culties dealt with in the
Appendix is the fact that where 1 has multiple concession episodes in the
same interval of non-concession by 2, the respective concession probabilities
often are not uniquely de�ned.

We are implicitly assuming that 1 obtains the payo¤ a by accepting
an improved o¤er from b; it might also be that 1 obtains a by revealing
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rationality but not accepting 2�s o¤er. In this case the resultant equilibrium
payo¤ to 2 may be less than h2(a). It may be seen that this only strengthens
the �gap�between P1 and P2. This subtlety and related issues are dealt with
in the Appendix.

6. Modi�ed Distribution Functions.
By Lemma 10 in the Appendix, when t(��) = 0; the conclusion of Lemma

5 follows straightforwardly. Now suppose t(��) > 0: Recall that �2 (�) is the
posterior probability that 2 is behavioral conditional upon 2 not revealing
rationality up until and including date � : By Lemma 12 in the Appendix,
there exists � � �� such that �2 (�) � e�: Let e� = inff� j �2 (�) � e�g and
�i denote the posterior probability (at the start of the continuation game)
that a player who adopts the posture i is behavioral. Then

�2 (e�) = �2
1� F2(e�) � e�:

Furthermore,

�1 (e�) = �1
1� F1(e�) � 1:

The goal is to establish that for small z0is the only way for the above
inequalities to be satis�ed is for P2(0) to be close to 1. However the true
distribution functions are di¢ cult to work with. Instead we de�ne mod-
i�ed functions bFi(�) for which bPi(0)=Pi(0) but which otherwise (weakly)
underestimate 1�s probability of concession and overestimate 2�s. That is,

�2 � e� (1� F2(e�)) � e�(1� bF2(e�))
and (1� bF1(e�) � 1� F1(e�) � �1

We show below that for small z0is the above inequalities imply that bP2(0)
is close to 1. That is, 2 concedes "too slowly" relative to 1 even when we
overestimate 2�s rate of concession and underestimate 1�s.

Recall from Step 2 that

1� Fi (e�) = e�
R t(e�)
0 �i(s)ds(1� P 0i )(1� P 1i ):::(1� PLii )

where l = 0; 1; :::; Li indexes positive probability concessions by player i
until date e� :
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For Player 2, any positive probability concession must be associated with
a down jump (Lemma 9). Let the lth down jump occur at date �(l) (assumed
to be increasing in l) and entail a drop in payo¤ to player 1 from a(l) to b(l):
For any l such that a(l + 1) > b(l): Lemma 13 in the Appendix establishes
the intuitively plausible result that between dates �(l) and �(l + 1) there
must exist a consecutive sequence of "shadows" corresponding to up jumps
in 1�s payo¤s from a payo¤ b � b(l) to a � a(l + 1): Down jumps over
payo¤ drops which have also occurred at an earlier date are o¤set by up-
jumps covering (at least) the same range. By Step 4, we can match (by
subdividing and agglomerating as required) such �repeated� down jumps
with up jumps which span the same range. Thus one can construct new
functions bFi; i = 1; 2 for which up jumps and down jumps are matched as
follows. Let

1� bF1 (e�) = (1� bP 01 )(1� bP 11 ) : : : (1� bPK1 )e� R t(e�)0 �1(s)ds

1� bF2 (e�) = (1� bP 02 )(1� bP 12 ) : : : (1� bPK2 )(1� bPK+12 )e�
R t(e�)
0 �2(s)ds

where for k = 1; : : : ;K; bP k2 corresponds to a �down-jump� from some uk1
to uk1 � � and bP k1 corresponds to a matched up-jump from uk1 � � to uk1
between time times tk and �tk respectively. We set bP 0i = P 0i : The latter is the
probability of revealing rationality at the very start of the game and is the
same for the original and modi�ed distributions. The unmatched term bPK+12

accounts for the possibility of �non-repeating�down-jumps . The modi�ed
distribution function bF1 neglects some concession episodes, since
1. it is possible that some P l1 > 0 are not associated with up jumps (see
the remarks preceding the proof of Proposition 2), and

2. some up jumps might not simply be �o¤setting�repeated down jumps.

Of course this is consistent with underestimating 1�s distribution func-
tion, and as desired we have:

(1� bF1(e�)) � (1� F1(e�)).
By setting bPK+12 "generously" we can furthermore guarantee that (1 �bF2(e�)) � (1 � F2(e�)): By Lemma 11, u�1 � " is an upper bound on player

1�s expected equilibrium payo¤ at any � � e� : The highest possible bPK+12 is
associated with an o¤er that drops from u�1� " to u1, the smallest payo¤ to
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1 in the e¢ ciency frontier of the stage game. Thus a generous speci�cation
of bPK+12 is

(1� bPK+12 ) =
"

u�1 � u1
� a2 > 0:

By the analysis of Step 4, all non-repeating down jumps are covered by
the term bPK+12 as de�ned above.

7. Comparing Matched Concession Episodes.

As noted following Lemma 8,

�1 (s) > �2 (s) for s 2 (n; t(�� (n)))
�1 (s) = �2 (s) = 0 otherwise.

Can we compare P̂ k1 corresponding to an up jump from wk1 to �w
k
1 between

times tk and �t
k to P̂ k2 corresponding to a down jump from �wk1 to w

k
1? As

de�ned in the Appendix (see proof of Lemma 14), P̂ k1 solves

u�2
r
=

Z �tk

tk

e�r(s�tk)d2 (s) ds+ e
�r(�tk�tk)

"
h2
�
�wk1
�

r
P̂ k1 +

u�2
r

�
1� P̂ k1

�#

where wk1 2 (wk1; �wk1 ], and P̂ k2 =
�wk1�wk1
u�1�wk1

as usual.

Now it follows that P̂ k1 > P̂ k2 exactly as in Step 5. The only di¤erence
is that instead of h2 ( �w

y
1) ( �w

y
1 plays the same role as a in Step 5) we have

h2 (w
y
1). This does not impact the argument.
By Lemma 11 there exists " > 0 such that � � �� , w+1 (�) � u�1 � " uni-

formly across (z1; z2) 2 (0; 1)2 and possible equilibria. Hence u1 ((n;+1)) �
u�1 � " and �wk1 � u�1 � ". It follows that there exists � > 1 such that

�1 (s) � ��2 (s) for all s and�
1� P̂ l1

�
�
�
1� P̂ l2

��
for all l = 1; :::; L

uniformly across z1, z2 and possible equilibria.
Recall that

�1 � 1� bF1(��) = (1� bP 01 )A1
�2 � 1� F2(b��) = (1� bP 02 )A2(1� bPL+12 )

where Ai = e�
R t(��)
0 �i(s)ds(1 � bPi(1)):::(1 � bPi(L)), and bPi(0) is the initial

probability with which player i concedes.
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It follows that

�1 � (1� P1(0))A�2
�2

(1� P2 (0))(1�cP2(L+ 1)) � [
�1

(1� P1 (0))
]1=�

�2
�1
� ���12 � (1� P2 (0))�

(1� P1 (0))
� a�2 (5)

where a2 �
�
1� P̂2 (L+ 1)

�
> 0.

This analysis applies to any z1; z2. Suppose z2
z1
� R and �2(2; z2) � �.

Then

�1 � z1�1(1)

(1� z1) � 1 + z1�1(1)

�2 � z2�2(2)

(1� z2) � �+ z2�2(2)
� z2B

) �2
�1
� z2
z1
� �2(2)
�1(1)

� (1� z1) + z1�1(1)
(1� z2) � �+ z2�2(2)

� RC

for a given R and some �nite constants B;C independent of (z1; z2). Re-
turning to (5) we obtain

RC(z2B)
��1 � (1� P 02 )�

(1� P 01 )
� a�2

Hence P 02 � 1 � (RC)
1
�
�
1� P 01

� 1
� 1
� (z2B)

��1
� , which is close to 1 for

� > 0 small enough and z2 � �. Normal player 1�s payo¤ is at least
P2 (0)u

�
1+(1� P2 (0)) d1 which in turn is at least u�1�

�
2 for � small enough

and (consequently) P2 (0) close enough to 1. (Recall that d1 is the lowest
possible payo¤ to 1 in the stage game G:)
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Appendix

Section 3: Stationary Postures

Proof of Lemma 1
Proof. Suppose w.l.o.g. that i = 1 and j = 2.

Step 1 Exists eT < 1 such that 2 accepts 1�s demand with probability
1 by t+ eT if 1 continues to be played until t+ eT .

Since (1) h2(u1) > max
m0
2

d2(m
0
2;m1) (2) (Player) 2 is impatient (3) 2�s

payo¤s in G are bounded above (G is �nite), it follows that there exist
� > 0 and T <1 such that player 2 will accept 1�s o¤er right away unless
2 believes that 1 will reveal rationality with probability at least �, between
t and t+ T .

Let � satisfy

�u2 + (1� �)max
m0
2

d2(m
0
2;m1) < h2(u1)

and T <1 satisfy

�u1 + (1� �)[(1� e�rT )max
m0
2

d2(m
0
2;m1) + e

�rTu1] < h2(u1)

Conditional upon player 2 not accepting 1�s o¤er and upon 1 continuing
to conform with 1 until t + T , a similar conclusion follows between t + T
and t + 2T , and so on. Since �1(1) > 0 the posterior probability �1 that
1 is behavioral at t is strictly positive, and conditional upon conformity by
1 and non-acceptance by 2 the posterior probability that 1 is behavioral
at t + nT is �1

(1��)n . Since it is also necessary that
�1

(1��)n � 1, this leads

to contradiction for large n. It follows that there exists T < 1 such that
player 2 accepts 1�s demand u1 by T with probability 1, conditional upon
1 continuing to conform with 1 between t and t+ T . Suppose T is chosen
such that the preceding statement is false for any eT < T .

Step 2 T = 0
Suppose not. Then fu2, 2�s demand immediately prior to T + t; exceeds

h2(u1); and there exists " > 0 such that 1 strictly prefers u1e�" to h1(fu2). It
follows that conditional upon sticking with 1 until T + t�", 1 will continue
to stick with 1 with probability 1 until T+t. It follows that 2 should accept
1�s demand u1 with probability 1 strictly prior to T + t, contradicting the
de�nition of T .
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Section 4: Nonstationary Postures
Lemma 6 There exists � with t(�) <1 such that 1� F2(�) = �2.

Proof. By our regularity assumption , max
m0
2

d2(m
�
1;m

0
2) < u�2. The rest of

the argument is virtually identical to Step 1 of the proof of Lemma 1.
Lemma 7 Consider equilibrium in the continuation game following the

choice of postures (�1; 2). Suppose that player 2 is the �rst to reveal ratio-
nality and does so at date � . Then the resultant equilibrium continuation
payo¤ is (u�1; u

�
2); player 2, in e¤ect, always reveals rationality by accepting

2�s stationary o¤er.

Proof. The lemma follows directly from the proof of Lemma 1.
Lemma 10 If t(��) = 0 then a rational player 1�s payo¤ is at least

(1� �2)u�1 + �2u1

Proof. We argue that if t(��) = 0 the strategy "always conform with �1"
yields a rational player 1 a payo¤ which is at least (1 � �2)u

�
1 + �2u1. If

u�1 � h1(u2(�
�)) then the conclusion follows directly. If (1 � F2(�

�)) = �2
then the result follows since by Lemma 4, player 2 reveals rationality by, in
e¤ect, accepting 1�s stationary demand. Finally, if (1 � F1(�

�)) = �1 then,
in the event of player 1 not revealing rationality at ��, a rational player
2 should reveal rationality immediately thereafter. The conclusion again
follows directly.

The faster rate of concession by 1 (both continuous and lumpy) is driven
by the GAP between what 1 can extract from 2 by revealing rationality
and 1�s �reasonable�demand u�1. If the gap goes to zero then the di¤erence
in the rates goes to zero also and 1 no longer �wins�the �race�by an over-
whelming margin and the argument that 2 needs to give in at the start with
probability close to 1 breaks down. The next lemma establishes that this
gap (which is date dependent) is uniformly bounded above zero, until 2�s
posterior probability of being behavioral reaches a threshold ~�.

Let w+1 (�) be the expected equilibrium payo¤ to 1 at � conditional upon
neither player revealing rationality strictly prior to � .

Recall that di is the lowest possible payo¤ to Player i in G; and that
ui and ui are respectively the minimum and maximum payo¤s to i on the
(strictly) Pareto e¢ cient frontier of G:

Lemma 11 For all 2 2 �, there exists ~� 2 (0; 1) and " > 0 such that
~�u1 + (1� ~�)u�1 > u�1 � " and such that for all (z1; z2) 2 (0; 1)2 and for

32



all perfect Bayesian equilibria in the continuation game given (z1; z2), when
(�1; 2) are chosen, either (1) t(�

�) = 0 or (2) for all � � �� if �2 (�) � ~�
then w+1 (�) � u�1 � ":

Proof. Suppose t(��) > 0. Since �1 and 2 have a �nite number of states,
then exists "1 > 0 such that h1 (u2 (�)) < u�1�"1 for all � such that u2 (�) >
u�2 (equivalently h1 (u2 (�)) < u�1). Hence there exists 0 < "2 < "1 and � > 0
such that u�1 � "1 < e�r� (u�1 � "2) +

�
1� e�r�

�
d1 where d1 is the lowest

possible payo¤ to 1 in G: (The rhs of the preceding inequality is the payo¤ to
1 if 1 waits for time � to receive (u�1 � "2) while receiving the lowest possible
�ow payo¤ in the interim.) It follows that if at some � , w+1 (�) � u�1� "2 for
the �rst time, then player 1 will reveal rationality with probability zero for
an interval of time � > 0, prior to � . (Note that we can choose � > 0 such
that � < t(�):)

For normal 2 not to concede with probability 1 prior to � , it must be
the case that u�2 � e�r�u2+

�
1� e�r�

�
d2, where u2 is normal 2�s expected

equilibrium payo¤ at � and d2 is 2�s (discounted average) �ow payo¤ in the
interim. By the de�nition of �1 and m

�
1, 2�s payo¤ in any round must be

less than or equal to u�2; and by our regularity assumption must, in fact, be
strictly less. Since each posture has a �nite number of states there exists
a > 0 such that d2 < u�2�a:Hence u2 � u�2+b for some b > 0. It follows that,
conditional upon 2 being normal, 1�s expected payo¤ at � is at most u�1� "3
for some "3 > 0. Consequently w+1 (�) � �2 (�)u1 + (1� �2 (�)) (u�1 � "3).
Let " = "3

2 : Clearly there exists ~� 2 (0; 1) such that ~�u1 + (1� ~�)u�1 >
u�1 � " and �2 (�)u1 + (1� �2 (�)) (u�1 � "3) < u�1 � " for all �2 (�) � ~�. (Set
~� = min

n
"

u�1�u1
; "
u1�u�1+2"

o
):

Lemma 12 For any equilibrium consider the continuation game follow-
ing the choice of (�1; 2). Let ~� be de�ned as in Lemma 11. Then either
t (��) = 0 or �2 (�

�) � ~�.

Proof. Suppose t (��) > 0 and �2 (�
�) < ~�. Then 1 � F2 (�

�) > �2. (If
1� F2 (��) = �2 then �2 (�

�) = 1 > ~�): Also, by Lemma 11, w+1 (�) < u�1 � "
for all � � �� (since �2 (�) � �2 (�

�) � ~� for all � � ��). From the de�nition
of �� it therefore follows that 1�F1 (��) = �1. Consequently normal player
2 must reveal rationality/concede immediately after ��. Hence, w+1 (�

�) �
~�u1 + (1� ~�)u�1 > u�1 � " (see Lemma 11), a contradiction.

The discussion below elaborates elements of Step 10 in the text, in par-
ticular the discussion of repeated down jumps. As in the text, consider the
lth down jump and suppose that player 1�s payo¤ b(l) after the lth down
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jump is strictly less than 1�s payo¤ a(l + 1) at the �start�of the (l + 1)th

down jump. Between these down-jumps we wish to argue that there are
o¤setting up jumps.

Recall from step 5 of the proof of Proposition 2 that there is a formula for
the conditional concession probability by player 1 that is needed to compen-
sate player 2 for waiting while player 1 waits for an upward jump of a given
size in 1�s value. Call this the canonical formula. There are complicated
cases in which this formula does not apply directly. For example, suppose
that an increase in value from b to a at some time �2 casts a shadow over
the interval [�0; �2]. There might be some date �3 2 (�0; �2) at which the
continuation equilibrium rewards 1 for revealing rationality (but not conced-
ing) just enough so that he is indi¤erent between doing so or waiting until
�2. His indi¤erence means that there are many combinations of concession
probabilities at �1 and �2 by 1 that are compatible with maximizing his
utility, and which exactly compensate 2 for her wait from �0 to �2. In such
cases one cannot use the canonical formula to associate with the jumps at
�2, a particular concession probability by 1.

Because of the indeterminacy just described, it is important to look at
the interval [�0; �2] as a whole, rather than at the concession episodes at �1
and �2 separately (and hence the introduction of De�nition 2).

De�nition 2 The interval I is an interval of zero concession by player 2 if
for all � 0; � 00 2 I; F2(� 0) = F2(�

00). Such an interval is a maximal interval of
zero concession by player 2, if for all I+ � I; I+ 6= I there exist � 0; � 00 2 I+
such that F2(� 00) > F2(�

0):

Lemma 13 asserts that between any two episodes in which 1�s value falls
over a certain range, say from 20 to 14, there must be a sequence (called
a "spanning sequence" - see De�nition 5 following Lemma 13) of (weakly
overlapping) up-jumps whose union covers the interval [14; 20]. For example,
if the value falls from 22 to 13, it might later fall from 20 to 14, but before
doing so it would have to somehow rise to at least 20.

Lemma 13 Suppose for some n0; n00 2 N , n0 < n00; P2(n) = 0 for all n 2
N; n0 < n < n00, P2(n0); P2(n00) > 0 and w1 ((n0;+1)) < maxfv21((n00;�1)); v21((n00; 0))g.
Then there exists a sequence of maximal intervals of zero concession by 2,
I(q); q = 1; : : : ; Q; with associated left and right end-points �(q) � inf I(q)
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and �(q) � sup I(q) respectively, such that

w1(�(1)) � w1(�
0), w1(�(Q)) � w1(�

00)

w1(�(q + 1)) � w1(�(q)) q = 1; : : : ; Q� 1 and (6)

w1(�(q)) < w1(�(q)) q = 1; : : : ; Q (7)

� 0 4 �(1) � �(Q) 4 � 00, �(q) � �(q + 1), q = 1; : : : ; Q (8)

Proof. Since w1 ((n0;+1)) < maxfv21((n00;�1)); v21((n00; 0))g, there must
exist a �rst date ~� � (n0;+1) at which v21(~�) > w1 ((n

0;+1)). It follows
that Player 1 does not concede immediately prior to ~� . Hence neither does
2 in an interval prior to ~� . It follows that there exists a maximal interval
I with associated left and right end-points � and � respectively, containing
~� ; such that w1(�) � w1 ((n

0;+1)). It is however possible that w1(�) <
w1 ((n

0;+1)). In this case, t(�) < n00 and we can repeat the preceding
argument replacing (n0;+1) with � . Proceeding in this manner we obtain
a �rst maximal interval (�(1); �(1)) for which w1(�(1)) � w1 ((n

0;+1)) and
w1(�(1)) < w1(�(1)). If w1(�(1)) < maxfv21((n00;�1)); v21((n00; 0))g, �(1)
now plays the role of (n0;+1) in the initial argument. And so on, until the
required sequence is obtained. Since P2(n00) > 0, t (�(q)) � n00 for all q.

De�nition 3 A sequence as speci�ed in Lemma 13 is said to span [b; a],
where b = w1 ((n

0;+1)) and a = maxfv21((n00;�1)); v21((n00; 0))g:

By our regularity assumption regarding generic type sets (Assumption
2), h1 (u2 (�)) 6= d1 (�) for all � 4 ��. It follows that if within a round n
there is zero concession by player 2, conceding at (n;+1) strictly dominates
conceding at any subsequent date within round n, for player 1 if h1 (u2 (�)) >
d1 (�), while conceding at (n+ 1;�1) strictly dominates conceding at a prior
date within the round, if the opposite inequality is satis�ed. Hence within
an interval such as I(q), player 1 reveals rationality or concedes only at the
beginning, in between, or at the end of rounds contained within I(q).

For a sequence of maximal intervals as in Lemma 13 and De�nition 5,
let x = 1; : : : ; X index the �nite set of instances at which 1 concedes at
a date in I(q) for some q 2 f1; : : : ; Qg. Let P x1 denote the corresponding
conditional probability of concession by 1.

Lemma 14 translates the probabilities P x1 just de�ned, into modi�ed
probabilities P̂ 11 ; : : : ; P̂

Y
1 such that (i) the overall probability of concession

by 1 is weakly lower according to the modi�ed probabilities than the true
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probabilities, and (ii) the modi�ed probabilities are less than or equal to
the numbers one would obtain by applying the canonical formula (see Step
5 in the text) to the respective up jumps in 1�s value that occur in the
maximal interval in question. Property (ii) is useful because if a probability
P1 is obtained by applying the canonical formula to an up jump, it can be
compared easily (see Step 5) to the concession probability by 2 associated
with a down jump over the same interval. Both (i) and (ii) are consistent
with our need to underestimate 1�s concession probabilities (see Step 6).

Lemma 14 Consider a sequence of maximal intervals of zero concession
by 2 which span [a; b] and suppose that �2(�(Q)) � e� where �(Q) is as de�ned
in Lemma 13. Let P 11 ; :::; P

X
1 be a sequence of (conditional) probabilities as

speci�ed above. Then there exists a sequence of probabilities P̂ 11 ; : : : ; P̂
Y
1 and

a corresponding sequence of values and dates wy1; �w
y
1 ; w

y
1 2 (w

y
1; �w

y
1 ] ; ty and

�ty, y = 1; : : : ; Y , such that:

wy1 < �wy1

wy1 < wy+11 � �wy1

�wy1 < �wy+11

ty � �ty

w11 � a; �wY1 � b

and such that the P̂ y 01 s solve the �canonical�equation

u�2
r
=

Z �ty

ty

e�r(s�ty)d2 (s) ds+ e
�r(�ty�ty)

�
h2 (w

y
1)

r
P̂ y1 +

u�2
r

�
1� P̂ y1

��
and �

1� P 11
�
: : :
�
1� PX1

�
�
�
1� P̂ 11

�
: : :
�
1� P̂ Y1

�

We prove the lemma by establishing the result for any single maximal
interval (of zero concession by player 2) I and the �nite set of instances
l = 1; : : : ; L (with corresponding conditional probabilities P l1; l = 1; : : : ; L)
at which 1 concedes within such an interval.
Proof. Let I be a maximal interval as de�ned above and let � and � , re-
spectively be the left and right end points of the interval. Let f�1; : : : ; �Lg �
N+ \ I be the �nite set of dates at which 1 reveals rationality within I.
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De�ne

�0 �
�
(t(�);+1) if t(�) 2 N

� otherwise

tl � t(� l):

Let wl2 be player 2�s expected (discounted average) payo¤ at date � l,
conditional upon player 1 not having revealed rationality until � l (inclusive).
Then

wl2
r
=

�Z tl+1

tl

d2(s)e
�r(s�tl)ds

�
+e�r(tl+1�tl)

"
v22(� l)

r
P l+11 +

wl+12

r
(1� P l+11 )

#

where v22(�) denotes the expected equilibrium payo¤ to 2, conditional upon
1 revealing rationality at � .

Let �0; : : : ; �L be as de�ned above. We will de�ne a new sequence
�̂0; : : : ; �̂K and corresponding sequence of probabilities P̂ 11 ; : : : ; P̂

K
1 such that

(1� P 11 ) � � � (1� PL1 ) � (1� P̂ 11 ) � � � (1� P̂K1 )

where P̂ k1 corresponds to an up-jump from wk1 to w
k
1 which can be matched

with a down-jump from wk1 to w
k
1. Furthermore, w

1
1 � w11; w

k
1 < wk+11 � wk1;

and wK1 = wL1 .
The argument proceeds by modifying the original P l1�s in successive steps

such that the modi�ed P l1�s (call them P l1 (h)�s in step h) yield a product
(1� P 11 (h)) � � � (1� PL1 (h)) which is weakly higher than the corresponding
product from the preceding step.

Within any maximal interval of concession (by 2), we wish to assign con-
cession probabilities by 1 in the most conservative way, so that our approxi-
mate concession distribution function F̂1, will underestimate 1�s probability
of conceding by any date, as desired. The following procedure achieves this,
while respecting the incentive constraints of both players. Begin by de�ning
a sequence

q(0) = 0; and for k = 1; : : : ;K

q(k) = max

�
l

���� v21(� l) � v21(�);
� = � q(k�1)+1; : : : ; � l:

�
The new sequence terminates at K such that q(K) = L. Observe that
v21(� q(k)) is strictly increasing in k.

De�ne
k�(l) = minfk j q(k) � lg
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Let

P l1(0) = P l1 l = 1; : : : ; L

and wl2(0) = wl2 l = 0; 1; : : : ; L

We seek to inductively de�ne P l2(1) and w
l
2(1) starting with l = L and

moving backwards to l = 0 (or 1 as the case may be). Recall that h in P l2 (h)
refers to the hth step in modifying the initial P l1�s. Each step itself involves
an inductive de�nition starting with l = L and moving backwards to l = 1.

We set wL2 (1) = wL2 (0).
At each stage, P l+11 (1) = max f0; xg where x solves:

wl2(0) = r

Z ti+1

ti

d2(s)e
�r(s�ti)ds+e�r(ti+1�ti)

h
wl+12 (1) + x(h2(v

2
1(k

�(l)))� wl+12 (1)
i

(9)
The de�nition of P l+11 also leads to the de�nition of wl1(1) as follows:

wl1(1) = r

Z ti+1

ti

d2(s)e
�r(s�ti)ds+e�r(ti+1�ti)

h
wl+12 (1) + P l+11 (h2(v

2
1(k

�(l)))� wl+12 (1)
i

Because v22(�L) � h2(v
2
1(k

�(L))); these de�nitions imply:

PL1 (1) � PL1 (0) and

and wL�12 (1) � wL�12 (0)

Since
v22(� l+1) � h2(v

2
1(k

�(l + 1))), wl+12 (1) � wl+12 (0)

at stage (l + 1) of the inductive de�nition,

P l+11 (1) � P l+11 (0) and wl2(1) � wl2(0)

The next step in the argument relies on the result that wl2 (1) � u�2
l = 0; 1; :::; L � 1. To demonstrate these inequalities we �rst establish the
following useful fact for l = 1; :::L � 1: If wl2(0) < u�2 then k(� l) = �1,
� l+1 = (t(� l); 0) and v22(� l+1) < u�2. To see this note that, strictly within a
round player 1 can only reveal rationality by conceding to player 2�s current
demand, which prior to �� must exceed u�2 when �2 (�) � ~� (See Lemmas 11
and 12). Furthermore, strictly within a round player 2 can always obtain u�2
by conceding to player 1. The only possibility of payo¤s below u�2 arises due
to 1 revealing rationality between rounds in a manner which yields 1 less
than u�2. Player 2 accepts this eventuality precisely because of the possibility
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of positive probability concession by player 1 a moment earlier at the end
of the preceding round [� l = (t(� l);�1)] which yields player 2 strictly more
than u�2 (that is, her demand in the preceding round).

These considerations, and the de�nition of �0 directly imply that w02 � u�2
also.

Finally, we argue that wL�12 (1) � u�2. Recall that by de�nition, w
L
2 (1) =

wL2 (0) � wL2 . Suppose that w
L�1
2 (1) < u�2. By Lemma 14, this is only

possible if k(�L�1) = �1, �L = (t(�L�1); 0) and v22(�L) < u�2. Now k(�L) = 0
implies (by the de�nition of w2(�)) that w2(�L) � wL2 � u�2. By lemma ??
v21(�L) < u�1; hence h2(v

2
1(�L)) > u�2:Then the de�nition of P

L
1 yields:

PL1 (1) = 0

and wL�12 (1) = 0 + e�r0wL2 (1)

= wL2 � u�2,

a contradiction.
Continue to suppose that the lemma is false and let

l = maxfm � L� 1 j wm2 (1) < u�2g

Now we can repeat the preceding argument with l replacing L� 1 to obtain
the same contradiction as before.

This demonstrates that wl2(1) � u�2 l = 0; 1; :::; L� 1, as required.
Let

wL2 (2) � wL2 (1)

wl2(2) = u�2 l = 1; : : : ; L� 1
w02(2) = w02(1)

The P l1(2)�s are uniquely de�ned by the equations:

wl�12 (2) = dl�12

�
1� e�r(tl�tl�1)

�
+e�r(tL�tL�1)

h
wl2(2) + P

l
1(2)

�
h2(k

�(l))� wl2(2)
�i

where dl�12 is the average discounted �ow payo¤ to 2 between tl�1 and tl.
Since dl�12 < u�2 (see proof of Lemma 11), P

l
1(2) so de�ned exist, are

strictly positive and unique. Furthermore, we show that

(1� P 11 (1))(1� P 21 (1)) � � � (1� PL1 (1))
� (1� P 11 (2))(1� P 21 (2)) � � � (1� PL1 (2))
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as required.
To see why this is the case, consider

w2 = d̂1
�
1� e�r�1

�
+ e�r�1

�
a+ x(h1 � a)

�
b = d̂2

�
1� e�r�2

�
+ e�r�2

�
w2 + y(h

2 � w2)
�

where a; b; h1; h2; d̂1 and d̂2 are �xed, and we think of the probabilities x
and y as functions of w2.

Totally di¤erentiating these equations with respect to w2 yields

1 = e�r�1(h1 � a)
dx

dw2

0 =
�
h2 � w2

� dy

dw2
+ (1� y)

It follows that

d (1� x(w2)) (1� y(w2))
dw2

= �(1� y) dx
dw2

� (1� x) dy
dw2

< 0

, e�r�1
�
h2 � w2

�
> (1� x)(h1 � a)

, h2 � w2 > e�r�1h1 � e�r�1a� e�r�1x
�
h1 � a

�
, h2 � e�r�1h1 > d̂1

�
1� e�r�1

�
It follows that if, d̂1; d̂2 < u�2, h

2 � h1 > u�2 and b � u�2, then indeed

d (1� x(w2)) (1� y(w2))
dw2

< 0 (10)

Now, if we set

a = wL2 (2); �1 = tL � tL�1

d̂1
�
1� e�r�1

�
= r

Z tL

tL�1

d2(s)e
�r(s�tL�1)ds

h1 = h2
�
v21 (k

� (L))
�

b = wL�22 (1), �2 = tL�1 � tL�2

d̂2
�
1� e�r�2

�
= r

Z tL�1

tL�2

d2(s)e
�r(s�tL�2)ds
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then the latter inequalities indeed hold. Hence (10) implies

(1� x (u�2;L)) (1� y (u�2;L))

�
�
1� PL1 (1)

� �
1� PL�11 (1)

�
since

PL1 (1) = x
�
wL�12 (1)

�
PL�11 (1) = y

�
wL�12 (1)

�
and wL�12 (1) � u�2. (The argument L in x (u

�
2;L), indexes the values chosen

for a; b; h1; h2; d̂1; d̂2 and the time arguments in the integral.)
Notice that PL1 (2) = x (u�2;L). Proceeding inductively in this manner

we see that PL�11 (2) = x (u�2;L� 1) ; PL�21 (2) = x (u�2;L� 2) ; and so on.
For instance, the next step would entail a = wL�12 (2), �1 = tL�1 � tL�2,
b = wL�32 (2); h1 = h2

�
v21 (k

� (L� 1))
�
and so on. It follows that,

(1� P 11 (1))(1� P 21 (1)) � � � (1� PL1 (1))
� (1� P 11 (2))(1� P 21 (2)) � � � (1� PL1 (2))

Finally, we set

P̂ k = P
q(k)+1
1 (2)

wk1 = v21(� q(k))

wk1 = v21(� q(k)+1)

tk = t
�
� q(k)

�
�tk = t

�
� q(k)+1

�
to obtain the desired result for a single interval I(q). The extension to the
collection of intervals is immediate.

Lemma 15 uses the collection of up-jump intervals constructed in Lemma14
to de�ne modi�ed conditional concession probabilities for 2, to be used in
the modi�ed distribution functions of Step 6 in the text. It applies the for-
mula for P2 from Step 5 to those constructed intervals to get the modi�ed
probabilities for 2; this overestimates (as desired) 2�s probability of conces-
sion (away from 0) because, as Lemma 15 shows, there is a partition of the
actual down-jump range whose elements are subsets of the constructed in-
tervals in question (and by the neutrality result of Step 4, every partition of
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that range has the same aggregate implication for concession probability).
Lemma 14 guarantees that the modi�ed concession probabilities it assigns
to player 1 yield lower overall concession probability than the true value for
1 (as desired). The �rst paragraph of Step 7 adapts the analysis for perfectly
paired jumps in Step 5 to ensure that the modi�ed up-jump probabilities
(uniformly) outweigh the modi�ed down-jump probabilities.

Lemma 15 Consider the sequence of values wy, �wy y = 1; :::; Y from
the previous lemma. De�ne

P̂ y2 =
�wy1 � w

y
1

u�1 � w
y
1

y = 1; :::; Y

and

P2 =
a� b
u�1 � b

then,

(1� P2) �
�
1� P̂ 12

�
:::
�
1� P̂ Y2

�
Proof. Consider the sequence of values as de�ned in Lemma 14, and
construct the following new sequences vy1; �v

y
1 y = 1; : : : ; Y where vy1 =

min
�
b; �wy�1

	
and �vy1 = min fa; �wyg.

The sequence of intervals [vy1; �v
y
1 ] are mutually exclusive and partition

[b; a]. Down jumps over the range [b; a] may be neutrally (see Step 4) sub-
divided into Y down jumps from vy1 to �v

y
1 , y = 1; : : : ; Y respectively. Let ~P

y
2

denote the positive probability of concession by 2 associated with a down

jump from vy1 to �v
y
1 . Then

�
1� ~P y2

�
� u�1��v

y
1

u�1�v
y
1
by Lemma 9. Let P̂ y2 be

de�ned by
�
1� P̂ y2

�
=

u�1� �w
y
1

u�1�w
y
1
, that is correspond to a down jump from

�wy1 to w
y
1. Then clearly

�
1� ~P y2

�
�
�
1� P̂ y2

�
. Consequently, (1� P2) =�

1� ~P 12

�
:::
�
1� ~P Y2

�
�
�
1� P̂ 12

�
:::
�
1� P̂ Y2

�
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