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Abstract
We show that a simple “reputation-style” test can always identify

which of two experts is informed about the true distribution. The test
presumes no prior knowledge of the true distribution, achieves any
desired degree of precision in some fixed finite time, and does not use
“counterfactual” predictions. Our test relies on a simple reputation
argument due to Fudenberg and Levine (1992).

We then use our setup to shed some light on the apparent paradox
that a strategically motivated expert can ignorantly pass any test. We
point out that this paradox is a consequence of the fact that, in the
single-expert setting, any mixed strategy for Nature is reducible to a
pure strategy, thus eliminating any meaningful sense in which Nature
can randomize. Comparative testing reverses the impossibility result
because the presence of an informed expert eliminates the reducibility
of Nature’s mixed strategies.
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1 Introduction

A recent literature emerged studying whether an expert’s claim to knowledge
can be empirically tested. Specifically, assume that there is an unknown
underlying probability distribution P generating a sequence of observations
in some finite set. For example, observations may be weather conditions,
stock prices, or GDP levels, while P is the true stochastic process governing
changes in the weather, stock returns, or GDP. In each period, the expert
makes a probabilistic forecast that he claims is based on his knowledge of
the true process P . Can this claim be tested?

The seminal paper in this literature is that of Foster and Vohra (1998),
who showed that a particular class of test, known as calibration tests, can
be passed by a strategic but totally ignorant expert.1 Their main insight
is that a strategic expert who knows nothing about the underlying process
can pass a calibration test on any sample path. A calibration test, there-
fore, cannot distinguish between an informed expert who knows P and an
ignorant expert. Fudenberg and Levine (1999) provided a simpler proof of
this result, Lehrer (2001) generalized the result to passing many calibration
rules simultaneously, and Kalai, Lehrer, and Smorodinsky (1999) establish
various connections to learning in games.

In a striking result, Sandroni (2003) proved the following impossibility
result in a finite horizon setting: Any test that passes an informed expert
can be ignorantly passed by a strategic expert on any path of play. The
remarkable feature of this result is that it is not limited to any special class
of tests, and it requires only that the test is not so stringent that an expert
who knows the truth cannot pass it.

This disturbing result motivated a number of authors to consider models
that can circumvent its conclusions. Dekel and Feinberg (2006) consider in-
finite horizon problems and show that there are tests that reject an ignorant
expert in finite (but unbounded) time. Olszewski and Sandroni (2006b) re-
fine these findings and obtain additional results. These tests, however, will
not validate a true expert in finite time. Olszewski and Sandroni (2006a)

1A calibration test compares the actual frequency of outcomes with the corresponding
frequencies in the expert’s forecast in each set of periods where the forecasts are similar.
See, for example, Sandroni (2003, Sec. 3) for precise statement.
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show that the impossibility result is restored if one also requires a test not
to condition on counterfactual predictions, namely forecasts at unrealized
future histories.

In this paper we show that these impossibility results do not extend
to tests that compare two (or more) experts. For expository clarity, we
shall ignore quantifiers on probabilities and degrees of approximation in the
introduction. We also confine our discussion to the finite horizon case where
the issues are conceptually clearer, unmarred by technical considerations
arising in infinite horizon settings. We believe, however, that the points we
make extend naturally to the infinite horizon case.

Our first theorem shows that in a setting with two experts there is a
simple reputation-style test with the following property: If one expert knows
the true process P and the other is uninformed, then either

1. the test will pick the informed expert; or

2. the uninformed expert makes forecasts that are close to the truth in
most periods.

The test does not rely on counterfactuals of any kind: no information about
the experts’ forecasts at unrealized histories is used. The theorem uses a
remarkable property of the rate of convergence of martingales, discovered
by Fudenberg and Levine (1992).

Case (2) of the conclusion above cannot be eliminated entirely, since an
uninformed expert who randomizes will pick forecasts that are close to the
truth with positive probability. The intuition, of course, is that this is an
unlikely event. Our second theorem shows that this is indeed the case: We
compute an upper bound on the uninformed expert’s value in a zero-sum
game where Nature chooses a true P and informs the other expert. We use
the first theorem to show that the uninformed expert’s value can be made as
small as one wishes if the (finite) horizon is long enough. Finally, our third
result shows that when using our test with two partially informed experts,
the expert with better information always does better.

The comparative testing setting explored in this paper makes a slightly
more general point by shedding light on the source of the impossibility re-
sults. Roughly speaking, we argue that the impossibility results are con-
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sequences of the facts that: (1) a stochastic process P typically has many
equivalent representations, and (2) these representations are observation-
ally indistinguishable based on a single observation of the process. In the
zero-sum game between an expert and Nature, this observational equiva-
lence effectively impoverishes Nature’s strategy sets, making it possible for
a strategic expert to win. These observations provide, we believe, a unified
explanation why impossibility results require tests and auxiliary assump-
tions with seemingly odd properties. For instance, impossibility results are
incompatible with tests that reward information (in a sense we make pre-
cise), with repeated observations of the stochastic process, or with com-
parison across experts, as we do here. All of these variants either fully or
partially restore the richness of Nature’s strategy set and they are conse-
quently incompatible with the impossibility result. Section 5 elaborates on
these points extensively.

2 Model

Fix a finite set A representing outcomes in any given period. For any set let
∆(·) denote the set of probability distributions on that set.

There are n periods, t = 1, . . . , n. The set of complete histories is Hn =[
A,∆(A),∆(A)

]n, with the interpretation that the tth element(
a(t), α0(t), α1(t)

)
of a history h consists of an outcome a(t), and αi(t), i =

0, 1, is the probabilistic forecast of expert i for that period.2 Define the null
history h0 to be the empty set. A partial history of length t, denoted ht, is
any element of

[
A,∆(A),∆(A)

]t.
A time t forecasting strategy is any t−1-measurable function f t : Ht−1 →

∆(A), interpreted as a probabilistic forecast of the time t outcome contingent
on a partial history ht−1. A forecasting strategy f ≡ {f t}n

t=1 is a sequence of
time t forecasting strategies. It is standard to show that any such strategy
defines a unique stochastic process, where we interpret f t as the one-step-
ahead conditionals. Let Fn denote the set of all forecasting strategies.

We shall think of Fn as an expert’s set of pure strategies. Experts may
2To minimize repetition, from this point on, all product spaces are endowed with the

product topology and the Borel σ-algebra.
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randomize by choosing ϕ ∈ ∆(Fn) representing a probability distribution ϕ

on pure strategies. 3

Notational Conventions. A superscript t will denote either the t-fold product
of a set (as in At), an element of such product (e.g., the vector at), or a
function measurable with respect to the first t components of a history (e.g.,
a time t forecast f t or a test T t).

There is a true stochastic process P on An that generates outcomes.
Note that any stochastic process defines a forecasting strategy as one-period-
ahead conditionals at partial histories with positive probability, and setting
forecasts on zero-probability events arbitrarily.

An n-period comparative test is any measurable function4

Tn : Hn → {0, 1}.

Here, i = Tn(hn) is interpreted to mean that the test picks expert i after
observing the history of forecasts and Nature’s realizations for the past n

periods.
Note the following:

• The test does not presume any structure on the underlying law;

• The test does not condition on counterfactuals of any kind: What
the experts would have forecasted at unrealized histories is not taken
into account; the test only uses the experts’ forecasts along the actual
history;

• Each expert can condition not only on his own past forecasts and past
outcomes, but also on the past forecasts of the other expert;

• The test is symmetric, in the sense that which expert is chosen by the
test does not depend on the that expert’s label.

3All probabilities on a product space are assumed to be countably additive and defined
on the Borel σ-algebra generated by the product topology. Spaces of probability measures
are endowed with the weak topology.

4Here, measurability is with respect to σ-algebra generated by the Borel sets on the
product space Hn.
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3 A comparative test of experts

An expert is informed if he forecasts outcomes using the true distribution.
Formally, his forecasting strategy ϕ puts unit mass on the deterministic
forecast f in which, for every action a, f t(ht−1)(a) = P

(
a(t) = a|at−1

)
for

any history ht−1 whose outcome component at−1 has positive probability
under P .

We say that two forecasts f t
i (h

t−1), i = 0, 1, are ε-close if |f t
0(h

t−1)(a)−
f t
1(h

t−1)(a)| < ε for every outcome a.

Theorem 1 Fix ε > 0. There is an integer K such that for all n there is
an n-period comparative test Tn such that for any distribution P and any
mixed forecasting strategies ϕ0, ϕ1 with at least one informed expert then,
with P -probability 1− ε, either

(a) Tn picks an informed expert; or

(b) The two experts’ forecasts are ε-close in all but K periods.

Case (a) is, in a sense, the desired outcome of the test. Case (b) reflects
the possibility that uninformed forecaster may get lucky and correctly guess
the true law P . Note that the theorem has no bite when n is small relative
to K, because case (b) will trivially obtain. The crucial point is that K

is independent of the true distribution and the forecasters’ strategies, so
by setting n large enough case (b) says that the uninformed forecaster must
have an excellent guess of what the true law is. We will subsequently confirm
(Theorem 2) that case (b) is “unlikely” to obtain when n is large relative to
K.

Proof: The idea is to convert the game to a Bayesian game in which the
test compares the “reputation” of the two experts, choosing the one with the
highest posterior odds of being a better forecaster. We introduce a stochastic
process Lt reflecting the evolution of the odds ratio (the ratio of the experts’
scores, or the probability that each is informed) as a function of the realized
outcome and the experts’ forecasts. The test begins by assigning an initial
score 0.5 to each expert, which we shall interpret as the prior probability
that the expert is a better forecaster.
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Define L0(h0) = 1 and let

Lt(ht) =
f t
1(h

t−1)(a(t))
f t
0(ht−1)(a(t))

Lt−1(ht−1) (1)

be the updating rule for the odds ratio along a history hn.
The argument relies on a result by Fudenberg and Levine (1992) (hence-

forth denoted FT) on the rate of convergence of supermartingales. Assume
for the moment that Expert 0 is informed and that he reports the truth.5

It is a standard observation that the stochastic process {Lt} is a super-
martingale under the distribution induced by the strategy of Expert 0 (FL,
Lemma 4.1). As in FL, define {L̃t} to be the faster process obtained from
{Lt} through a sequence of stopping times that contains all finite histories
at which |f t

0(h
t−1)(a(t))− f t

1(h
t−1)(a(t))| > ε.

FL show that {L̃t} is an active supermartingale with activity ε. We
refer the reader to their paper for definitions. Their Theorem A.1 implies
that for any ε > 0, z ∈ (0, 1) there is an integer K such that for any active
supermartingale {L̃t}

P

[
sup
k>K

L̃k < 1
]

> 1− ε.

The key point is that K depends only on ε and z, and not on the true
stochastic process P or the forecasting strategy f1.

We can now define the test: given a history hn Expert 1 is chosen if
Ln(hn) > 1, Expert 0 is chosen if Ln(hn) < 1, and an expert is chosen at
random if Ln(hn) = 1.

Assume that Expert 1 uses a deterministic strategy. Under the assump-
tion that Expert 0 is informed, with probability 1 − ε, on any history of n

periods, either |f t
0(h

t−1)(a(t))− f t
1(h

t−1)(a(t))| < ε, t ≤ K or Ln < 1.
If Expert 1 uses a mixed strategy ϕ, the same conclusion still follows via

an application of Fubini’s theorem using the assumption that Tn is jointly
measurable and the fact that the constant K is uniform over all forecasting
strategies.

Finally, we note that if there are two informed experts, then the conclu-
sion of the theorem is trivial.

5The informed expert may have a strategy that does better than reporting the truth;
if so, this only strengthens our conclusion.
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To further elucidate the second part of the conclusion of the theorem,
suppose that A = {Heads, Tails} and P is an i.i.d. distribution with prob-
ability of Heads α. Assume that the strategic expert knows that P is i.i.d.,
but does not know the value α. If this expert estimates the true value of α

from the data then whether or not he will be picked will depend on how fast
he comes close to learning α relative to the size of K. Unfortunately, useful
bounds on the value of K are not known, but if the true value of K happens
to be large, then the expert who only knows the process is i.i.d. may end up
being picked. Note, however, that such an expert is hardly uninformed; after
all, he knows that the true distribution belongs to a simple one-parameter
family and he eventually forecasts outcomes almost as well as the informed
expert.

What happens if neither experts is informed? We suspect, but we haven’t
verified, that the theorem is “continuous” in the sense that if its setting is
slightly perturbed by assuming that the informed expert’s knowledge is not
exact that its conclusion continues to hold. A more interesting, and more
difficult enterprise, is to show that there are simple test like ours that always
pick the most informed expert. Part of the difficulty may be finding the right
definition for “most informed.”

Notwithstanding this issue, one should not lose sight of the bottom line of
the impossibility results: A test that passes an informed expert can be passed
by an ignorant expert. Here we point out that this is an issue only when an
informed expert and an ignorant expert cannot be directly compared.

4 A Game Against Nature

As indicated earlier, one cannot rule out in the conclusion of Theorem 1 the
possibility that a completely uninformed expert might make a lucky guess
that lands him close to P . Intuitively, however, the odds of this happening
ought to be remote.

To make this formal, consider the following sequence of zero-sum games,
where the nth game, Γ(n), has the following properties:

• Two players, Nature and Expert 1, move simultaneously;
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• Tn is the odds ratio test constructed in Theorem 1;

• Nature’s set of pure strategies is ∆(An), and Expert 1’s is Fn;

• Expert 0 reports the correct forecast f0P derived from Nature’s choice
P ;

• The payoff of Expert 1 is equal to the probability of being chosen:

z(P, f1) ≡
∫

Hn

Tn
(
hn, f0P , f1

)
dP (hn). (2)

Nature’s payoff is −z.

This is a game between Nature and Expert 1 since Expert 0 is completely
non-strategic. Both Nature and Expert 1 may play mixed strategies. An
expert’s mixed strategy is generically a ϕ ∈ ∆(Fn), while a mixed strategy
by Nature is generically a µ ∈ ∆(∆(An)). Expected payoffs are defined in
the obvious way, namely:

z(µ, ϕ) ≡
∫

∆(An)

∫
F n

[∫
Hn

Tn
(
hn, f0, f1

)
dP (hn)

]
dϕ(f1) dµ(P ). (3)

Informally, the next theorem is an “anti-impossibility” result: It says
that if one expert knows Nature’s distribution, an uninformed strategic ex-
pert cannot guarantee success simultaneously against all distributions. That
is, for any mixed strategy over forecasts, there is a distribution P ∈ ∆(An)
for Nature such that the uninformed expert passes the test with probability
at most ε.

Theorem 2 For every ε > 0 there is an integer n such that the value of the
zero-sum game Γ(n) to Expert 1 is no more than ε.

The reader should recall that the test is symmetric, so there is no pre-
sumption that the tester knows that it is Expert 0 who is informed. Indeed
the same theorem holds if the experts’ roles are switched.

Proof: We apply the Minimax Theorem to this problem. A classic reference
is Fan (1953). The strategy sets ∆(∆(An)) and ∆(Fn) are compact (in the
weak topology, which we assume throughout). From Eq. 3, it is clear that
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z is continuous in both of its arguments. And since z is defined in terms of
integrals, it is linear in µ given ϕ, and linear in ϕ given µ. This verifies the
conditions of the Minimax Theorem, which implies:

max
ϕ∈∆(F n)

min
µ∈∆(∆(An))

z(µ, ϕ) = min
µ∈∆(∆(An))

max
ϕ∈∆(F n)

z(µ, ϕ).6 (4)

Clearly,
min

µ∈∆(∆(An))
max

ϕ∈∆(F n)
z(µ, ϕ) ≤ max

f∈F n
z(µ̄, ϕ),

where µ̄ is the mixed strategy characterized by the following process: for
each partial history ht−1, a one-step-ahead conditional p(ht−1) is chosen
according to the uniform distribution on ∆(A), independently across par-
tial histories. The resulting system of one-step-ahead conditionals defines
uniquely an element of ∆(An), and thus the process of uniform independent
draws defines an element µ̄ ∈ ∆(∆(An)).

On the other hand, to fall within an ε-neighborhood of p(ht−1), the
optimal pure strategies consist of the forecasts f t

1(h
t−1) ∈ ∆ε(A), where the

latter expression denotes the subsets of ∆(A) such that each of its entries
is at least ε. Any such choice guarantees only a probability equal to the
µ̄-measure of any ε ball contained within the interior of ∆(A). Denote this
probability by α. Call a pure strategy f1 optimal, if it selects an optimal
forecast at each history.

Expert 1 can win only when case (b) of Theorem 1 holds. Since Nature
is randomizing independently, for any n, any optimal pure strategy f1 and
along any history hn, the probability that forecasts will be ε-close to the
truth on at least n−K periods is no greater than(

n

n−K

)
αn−K . (5)

This is also true for any optimal mixed strategy, i.e., one whose support
consists of optimal pure strategies. The term

(
n

n−K

)
is polynomial in n

while αn−K is exponential in n, so the expression in 5 converges to 0 as n

goes to infinity (the fact that K does not depend on n is used to show that
the polynomial is of fixed degree).

6Of the course, the inner min’s and max’s can be equivalently stated in terms of pure
strategies. We do not do so for expository reasons.
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Taking n large enough therefore guarantees that we can make

max
ϕ∈∆(F n)

min
µ∈∆(∆(An))

z(µ, ϕ) = max
ϕ∈∆(F n)

min
P∈∆(An)

z(µ, ϕ)

as small as we wish.

5 Discussion

For expositional clarity, we shall assume that the forecaster submits a mea-
sure Q, rather than just a forecast that is observed along the actual history.
With this, a strategic expert’s pure strategy set is ∆(An), and his mixed
strategies are in ∆(∆(An)), exactly the same as Nature’s. Note that this,
if anything, strengthens the tests as it reveals the expert’s counterfactual
predictions along unrealized histories.

5.1 Key intuition underlying impossibility results

We begin with an informal review of the typical minimax argument used to
prove impossibility. Our prototype is Sandroni (2003)’s disarmingly elegant
argument. His full argument is more involved; our description here provides
just the intuition necessary to make our point.

In the single-expert setting a test is a function of the form:

Tn
s : An ×∆(An) → {0, 1}

with the interpretation that the test decides whether or not to pass the
expert based on the sequence of outcomes an and the expert’s forecast Q ∈
∆(An). A strategic expert’s payoff is the expected probability of passing
the test:

zs(P,ϕ) =
∫

An

∫
∆(An)

Tn
s (an, Q) dϕ(Q) dP (an).

Here, expectation is taken with respect to the expert’s randomization ϕ over
forecasts and Nature’s randomization over the sequence of outcomes an.

An impossibility result asserts that the expert has a strategy ϕ that
guarantees him a high payoff regardless of what Nature does. The key tool

10



is the Minimax Theorem, whose assumptions can be readily verified, and
asserts:

max
ϕ∈∆(∆(An))

min
P∈∆(An)

zs(P,ϕ) = min
P∈∆(An)

max
ϕ∈∆(∆(An))

zs(P,ϕ). (6)

The impossibility theorem boils down to putting a lower bound on maxmin
value in the above expression.

This is where the crucial assumption that a test must pass the truth
comes into play. Formally, a test Tn

s passes the truth with probability 1 − ε

if:
zs(P, P ) ≡ P{Tn

s (an, P ) = 1} > 1− ε. (7)

This condition ensures that the RHS of Eq. 6 is close to 1: if the expert knew
that Nature has chosen P , then he has an obvious best response, namely
to report a forecast P , which by the above requirement guarantees him a
payoff of 1− ε. This delivers the conclusion that it is impossible to design a
test that a strategic expert cannot pass with high probability.

To summarize, the impossibility theorem consists of two key steps:

• The Minimax Theorem;

• A test must pass the truth.

We examine these two steps in turn.

5.2 Nature’s Strategies and the Minimax Theorem

In a game between an expert and Nature, mixed strategies µ, ϕ ∈ ∆(∆(An))
are two stage lotteries. Let Pµ, Qϕ ∈ ∆(An) denote the corresponding prob-
ability measures obtained from µ and ϕ through the usual reduction of
compound lotteries.

In the proof of Theorem 2, we used an expression, Eq. 4, for the con-
clusion of the Minimax theorem that, in the single-expert setting, translates
to:

max
ϕ∈∆(∆(An))

min
µ∈∆(∆(An))

zs(µ, ϕ) = min
µ∈∆(∆(An))

max
ϕ∈∆(∆(An))

zs(µ, ϕ). (8)
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In the single-expert problem, Nature’s randomization is completely super-
fluous. As far as the payoffs are concerned, whether Nature uses a mixed
strategy µ or its equivalent pure strategy reduction Pµ makes no difference:

zs(µ, ϕ) = zs(Pµ, ϕ), ∀µ, ϕ ∈ ∆(∆(An)). (9)

This is because µ and Pµ induce identical distributions on the set of outcomes
An. As far as realized outcomes are concerned, µ and Pµ are observationally
indistinguishable. For example, an outside observer (in particular, the test)
can never distinguish between whether Nature is playing a 50/50 lottery on
two measures P1 or P2 or putting unit mass on the measure Pµ = P1+P2

2 .
By contrast, in general, an expert’s mixed strategy ν is not reducible in

the same manner: choosing between the two forecasts Q1 or Q2 with equal
probability is not payoff equivalent to reporting the forecast combination
Q = Q1+Q2

2 .
The crucial consequence of this asymmetry between Nature’s and the

expert’s randomization is that the values appearing in Eq. 6 and 8 coincide:

min
µ∈∆(∆(An))

max
ϕ∈∆(∆(An))

zs(µ, ϕ) = min
P∈∆(An)

max
ϕ∈∆(∆(An))

zs(P,ϕ).

This effectively impoverishes Nature’s strategy sets, making it possible for
a strategic expert to win.

Our results on comparative testing may be understood as a consequence
of the restoration of ∆(∆(An)) as Nature’s strategy space. To see this,
consider the setting of Theorem 2 where Nature uses a mixed strategy µ and
informs an expert of its random choice P ∈ ∆(An). Unless µ is degenerate,
Nature’s use of a mixed strategy µ is strategically distinct from Pµ, in the
sense that Eq. 9 no longer holds. What changed relative to the single-expert
model is the availability of data (the informed expert’s forecasts) that breaks
the observational equivalence between µ and Pµ.

We should emphasize that the issue is not that Nature does not have
the opportunity to randomize, but whether randomization is meaningful in
terms of payoffs (Eq. 9). When randomization is superfluous, as in Eq. 6,
the expert is “one step ahead,” giving him the advantage.

These observations provide a systematic way to understand why some
structural assumptions are critical for the impossibility results. For exam-
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ple, why are they inconsistent with repeated sampling, that is so common in
statistical inference? Consider the variant of the single-expert model where
the only departure is that we now provide the test with repeated samples
generated independently by the same unknown distribution µ. With many
such samples, one can find a test such that a strategic expert cannot igno-
rantly pass. The reason here is that Nature’s strategy space is no longer
reducible to ∆(An): a µ that picks either P1 or P2 with equal probability
generates observations according to either P1 or P2, and this is observation-
ally distinguishable from observations generated by Pµ.

5.3 Passing the Truth and the Value of Information

A striking aspect of the impossibility results is the weakness of its assump-
tions. Aside from structural assumptions, the only requirement is that an
expert who knows the true distribution should pass with probability 1 − ε.
This seemingly weak and compelling requirement is more subtle and pow-
erful than it might initially appear.

To appreciate its power, think of the game between Nature and a strate-
gic expert as one of hide-and-seek: Nature “hides” the true probability law
P somewhere in the convex set ∆(An); the expert’s task is to find the hid-
den P . With many (in fact, infinite) locations for hiding, the hider should
have the advantage in such game. Yet the impossibility results say that the
seeker (the strategic expert) has the upper hand. How can that be?

The discussion in the last subsection explains this puzzle: A randomized
hiding location µ by Nature is equivalent to it choosing the deterministic
expected hiding location Pµ. The expert, on the other hand, can randomize
his search, negating the hider’s advantage.

Where does that leave us with the assumption that a test must pass the
truth? There is clearly no ambiguity in the meaning of a deterministic truth.
Testing a deterministic theory is straightforward. The meaning of stochastic
truth, on the other hand, is much less obvious. A typical distribution P on
outcomes can have infinitely many representations of the form Pµ (or more
complicated forms). Different representations correspond to meaningful and
distinct information structures. But these different information structures
are relevant only to the extent that there is an observer who is at least
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partially informed of what the truth is.

6 Concluding Remarks: Isolated vs. Comparative
Testing

Impossibility results provide invaluable insights by uncovering the subtle
consequences of their assumptions. In this sense, Sandroni (2003)’s theorem
revealed how innocuous-looking properties of the testing environment make
it impossible to test probabilistic theories. That any test can be passed by
a strategic expert is a profoundly disturbing message to the countless areas
of human activity where testing an expert’s knowledge is vital.

In this paper we construct tests with good properties by departing from
the assumption that forecasts are tested in isolation. We also use the model
of comparative testing to shed light on what makes the impossibility result
possible and, thus, what it takes to avoid it.

How are experts and their theories tested in practice? We are unaware
of any comprehensive study, but it is not hard to identify regularities in spe-
cific contexts. The human activity where testing theories is handled with
the greatest care and rigor is, arguably, scientific knowledge.7 There are
numerous and well-known examples where theories are judged in terms of
their performance relative to other theories rather than in isolation. Some
of the greatest scientific theories were, or continue to be, maintained despite
a large body of contradicting evidence. A well-known example is Newtonian
gravitational theory which was upheld for decades despite various empirical
anomalies—not to mention its implicit reliance on “action at a distance”
in the transmission of gravitational force. This theory was eventually re-
placed, but only as a consequence of a comparison with a better theory,
general relativity. Perhaps less known to the reader is the steady accumula-
tion of empirical findings inconsistent with general relativity—as well as its

7The impossibility results seem to undermine the central methodological principle of
falsifiability as a criterion for judging whether a theory is scientific or not. The impossi-
bility results imply that given any rule of evaluating scientific theories, a strategic experts
can produce a falsifiable theory Q that is very unlikely to be rejected by that rule, regard-
less of what the truth is. Harman and Kulkarni (2007) provide a different perspective and
discuss the limitations of simplistic popperian falsifiability when theories are probabilistic.
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fundamental incompatibility with other theories in Physics. Yet this theory
continues to be maintained because no other theory does better.8 Eco-
nomics is full of similar examples. Expected utility theory continue to be
the dominant descriptive theory in economic models despite the overwhelm-
ing evidence against it. The reason, we suspect, is the lack of convincing
alternative.

The classical, frequentist, view attaches probabilities only to events that
are subject to repeated identical trials. In the context of testing experts,
such repetition is not possible, since probability laws may change arbitrarily
every period. The impossibility results can be seen as a confirmation of the
classical view. If there is no effective test for the truth, perhaps the concept
of “true” probabilities is not worthwhile.

To what extent does our comparative test recover the concept of truth?
Using an extension of our test to compare multiple experts, we can answer
questions like: “If anyone knows the truth, it is expert k.” If this is the best
we can do, perhaps the appropriate interpretation is that for all practical
purposes, the truth is always relative. We cannot say whether or not a
theory is correct in an absolute sense, only that it is better than the others.

In practice, comparative testing is common and, arguably, a more preva-
lent method of testing theories. Weather forecasters, stock analysts, and
macroeconomists can be, and often are, judged relative to each other, not
according to some absolute pass/fail test. Our results show that a very
simple reputation-type comparative test provides both normatively and de-
scriptively appealing method of testing experts.

8For details on these examples, see Darling (2006).

15



References

Darling, D. (2006): Gravity’s Arc. Wiley, New York.

Dekel, E., and Y. Feinberg (2006): “Non-Bayesian Testing of an Ex-
pert,” Review of Economic Studies, 73, 893–906.

Fan, K. (1953): “Minimax theorems,” Proc. Nat. Acad. Sci. U. S. A., 39,
42–47.

Foster, D., and R. Vohra (1998): “Asymptotic calibration,” Biometrika,
85(2), 379–390.

Fudenberg, D., and D. Levine (1999): “An Easier Way to Calibrate,”
Games and Economic Behavior, 29(1), 131–137.

Fudenberg, D., and D. K. Levine (1992): “Maintaining a reputation
when strategies are imperfectly observed,” Review of Economic Studies,
59(3), 561–579.

Harman, G., and S. Kulkarni (2007): Reliable Reasoning: Induction
and Statistical Learning Theory. MIT Press (Forthcoming).

Kalai, E., E. Lehrer, and R. Smorodinsky (1999): “Calibrated Fore-
casting and Merging,” Games and Economic Behavior, 29(1), 151–159.

Lehrer, E. (2001): “Any Inspection Is Manipulable,” Econometrica, 69(5),
1333–1347.

Olszewski, W., and A. Sandroni (2006a): “Counterfactual Predic-
tions,” Northwestern University.

(2006b): “Strategic Manipulation of Empirical Tests,” Northwest-
ern University.

Sandroni, A. (2003): “The reproducible properties of correct forecasts,”
Internat. J. Game Theory, 32(1), 151–159.

16


	Introduction
	Model
	A comparative test of experts
	A Game Against Nature
	Discussion
	Key intuition underlying impossibility results
	Nature's Strategies and the Minimax Theorem
	Passing the Truth and the Value of Information

	Concluding Remarks: Isolated vs. Comparative Testing

