AXIOMATIC EQUILIBRIUM SELECTION FOR GENERIC TWO-PLAYER GAMES

SRIHARI GOVINDAN AND ROBERT WILSON

Abstract

We apply three axioms adapted from decision theory to refinements of the Nash equilibria of games with perfect recall that select connected closed subsets called solutions. Undominated Strategies: No player uses a weakly dominated strategy in an equilibrium in a solution. Backward Induction: Each solution contains a quasi-perfect equilibrium and thus a sequential equilibrium in strategies that provide conditionally admissible optimal continuations from information sets. Small Worlds: A refinement is immune to embedding a game in a larger game with additional players provided the original players' strategies and payoffs are preserved, i.e. solutions of a game are the same as those induced by the solutions of any larger game in which it is embedded. For games with two players and generic payoffs, we prove that these axioms characterize each solution as an essential component of equilibria in undominated strategies, and thus a stable set as defined by Mertens (1989).

Date: 28 May 2009.

Key words and phrases. game, equilibrium, refinement, axiom, admissibility, backward induction, small worlds, stability. JEL subject classification: C72.

This work was funded in part by a grant from the National Science Foundation of the United States.

Contents

List of Figures 2

1. Introduction 3
2. Notation 5
3. The Axioms 6
3.1. Undominated Strategies 6
3.2. Backward Induction 6
3.3. Small Worlds 7
3.4. Summary of the Axioms 9
4. Additional Notation and Properties 10
4.1. Payoffs 10
4.2. Notation for the Extensive Form 10
4.3. Enabling Strategies 11
4.4. Stable Sets of Equilibria 12
4.5. The Associated Pseudomanifold 13
5. Statement and Proof of the Theorem 13
5.1. Preliminaries 14
5.2. A Game with Redundant Strategies 15
5.3. Extensive Form of the Metagames 16
5.4. Outsiders' Payoffs in the Metagames 17
5.5. Outsiders' Strategies in a Quasi-Perfect Equilibrium 17
5.6. Limits of the Quasi-Perfect Equilibria of the Metagames 19
5.7. Insiders' Strategies in a Quasi-Perfect Equilibrium 20
5.8. The Induced Lexicographic Probability System 21
5.9. Limit of the Lexicographic Probability System 22
5.10. Final Step of the Proof 24
6. Concluding Remarks 25
Appendix A. Enabling Strategies 27
Appendix B. Proofs of Propositions 28
B.1. Proof of Proposition 3.3 28
B.2. Proof of Proposition 3.4 29
Appendix C. Proof of Theorem 4.1 30
Appendix D. The Genericity Assumption 45
References 46

List of Figures

1 A game tree and its pure reduced normal form in which each pure strategy is identified by the terminal nodes it does not exclude.
2 The game tree of a signaling game and its pure reduced normal form in which each pure strategy is identified by the terminal nodes it does not exclude.

1. Introduction

Nash's [22, 23] definition of equilibrium is insufficient when applied to a game in extensive form. Even for games with perfect information, some equilibria use weakly dominated strategies and yield outcomes different from the outcome predicted by backward induction; see $[11, \S 4.2]$ for an example. The literature on refinements aims to sharpen Nash's definition to exclude such equilibria; recent surveys include $[8,12,31]$.

Kohlberg and Mertens [14] suggest that a refinement should be characterized by axioms adapted from decision theory. They also specify properties that axioms should imply. Subsequently, Mertens [19, 20, 21] defines the set-valued refinement called stability and shows that it has these and other properties, including the following. ${ }^{1}$

1. Admissibility and Perfection. All equilibria in a stable set are perfect (hence admissible) so each player's strategy in each equilibrium is undominated.
2. Backward Induction and Forward Induction. A stable set includes a proper equilibrium that induces a quasi-perfect (hence sequential) equilibrium in every extensiveform game with perfect recall that has the same normal form. A subset of a stable set survives iterative elimination of weakly dominated strategies and strategies that are inferior replies at every equilibrium in the set.
3. Invariance, Small Worlds and Decomposition. The stable sets of a game are the projections of the stable sets of any larger game in which it is embedded. The stable sets of the product of two independent games are the products of their stable sets.

For games in extensive form with perfect recall, we propose three axioms that are versions of these properties. We assume that for each game a refinement selects a nonempty collection of nonempty connected closed subsets of equilibria, called solutions. ${ }^{2}$ The axioms are the following:
A. Undominated Strategies: No player uses a weakly dominated strategy in any equilibrium in a solution.

[^0]B. Backward Induction: A solution contains a quasi-perfect equilibrium.
S. Small Worlds: A solution is immune to embedding the game within larger games that preserve players' strategies and payoffs.

In Axiom A we invoke only the implication of admissibility that no player uses a weakly dominated strategy. Axiom A is equivalent to admissibility in two-player games. Axiom B insists on inclusion of a quasi-perfect equilibrium because it induces a sequential equilibrium in strategies that provide admissible optimal continuations from players' information sets. ${ }^{3}$ Axiom S ensures that a refinement is not vulnerable to framing effects depending on how the game is presented within wider contexts called metagames. A metagame can include additional players and additional pure strategies, provided these additional features do not alter optimal decisions in the original game. Our version of small worlds is stronger than Mertens' [21] version because our definition of embedding allows a more general class of metagames.

We prove that these three axioms characterize refinements that select some or all of the stable sets of a game in extensive form with perfect recall, two players, and generic payoffs. Our characterization is cast in terms of the 'enabling form' of a game in which two pure strategies of a player are considered equivalent if they exclude the same terminal nodes of the game tree, and thus enable the same sets of terminal nodes to occur as outcomes of the game. The enabling form is defined in Section 4.3 and explained further in Appendix A.

Our main theorem establishes that the axioms imply that each solution is an essential component of admissible equilibria. For the enabling form of a game this is the defining property of a stable set. ${ }^{4}$

When payoffs are generic, all equilibria in a component yield the same probability distribution over outcomes. Therefore, for economic modeling and econometric studies the axioms' chief implication is that a predicted outcome distribution should result from an essential component of the game's admissible equilibria. A secondary implication is that a solution must include all equilibria in the component. This is germane for predicting players' behaviors only after deviations from equilibrium play, but it addresses the issue of whether sequential rationality is a relevant decision-theoretic criterion after deviations (Reny [26]). We show that each equilibrium in a solution is induced by a quasi-perfect equilibrium in a

[^1]solution of some metagame; therefore, it is sequentially rational when viewed in the wider context of this metagame. See [7, Section 2.3] for an example.

Section 2 establishes notation for Section 3, which specifies Axioms A (undominated strategies), B (backward induction), and S (small worlds), including a precise definition of embedding a game in a larger game. Appendix B verifies that Nash equilibria satisfy this definition of embedding. Section 4 establishes further notation and states a key technical property proved in Appendix C. Section 5 states and proves the main theorem, Theorem 5.1. The proof is constructive in that each equilibrium in a stable set is shown to be induced by a quasi-perfect equilibrium in a solution of a particular metagame with perfect recall that embeds the given game. Section 6 interprets this result and provides concluding remarks.

2. Notation

This section provides sufficient notation for statements of the axioms in Section 3. Section 4 introduces additional notation for the theorems in Section 5 and Appendix C.

A typical game in extensive form is denoted Γ. Its specification includes a set N of players, a game tree with perfect recall for each player, and an assignment of players' payoffs at each terminal node of the tree. Let H_{n} be player n 's collection of information sets, and let $A_{n}(h)$ be his set of feasible actions at information set $h \in H_{n}$. The specification of the tree can include a completely mixed strategy of Nature.

A player's pure strategy chooses an action at each of his information sets. Denote n 's simplex of mixed strategies by Σ_{n} and interpret its vertices as his set S_{n} of pure strategies. The sets of profiles of players' pure and mixed strategies are $S=\prod_{n} S_{n}$ and $\Sigma=\prod_{n} \Sigma_{n}$. The normal form of Γ assigns to each profile of players' pure strategies the profile of their expected payoffs; equivalently, it is the multilinear function $G: \Sigma \rightarrow \mathbb{R}^{N}$ that assigns to each profile of their mixed strategies the profile of their expected payoffs.

A player's behavioral strategy specifies a mixture over his actions at each of his information sets. Let B_{n} be n 's set of behavioral strategies, and $B=\prod_{n} B_{n}$ the set of profiles of players' behavioral strategies. Each mixed strategy σ_{n} induces a behavioral strategy b_{n}. Because the game has perfect recall, for each behavioral profile there are profiles of mixed strategies that induce it and yield the same distribution of outcomes (Kuhn [17]).

As defined by Nash [22, 23], an equilibrium is a profile of players' strategies such that each player's strategy is an optimal reply to other players' strategies. That is, if $\mathrm{BR}_{n}(\sigma) \equiv$ $\arg \max _{\sigma_{n}^{\prime} \in \Sigma_{n}} G_{n}\left(\sigma_{n}^{\prime}, \sigma_{-n}\right)$ is player n 's best-reply correspondence, then $\sigma \in \Sigma$ is an equilibrium iff $\sigma_{n} \in \operatorname{BR}_{n}(\sigma)$ for every player n. The analogous definition of equilibrium in behavioral strategies is equivalent for games with perfect recall.

A refinement is a correspondence that assigns to each game a nonempty collection of nonempty connected closed subsets of its equilibria. Each selected subset is called a solution.

According to the above definitions, a mixed or behavioral strategy makes choices even at information sets that its previous choices exclude from being reached. In Section 4 we consider pure strategies to be equivalent if they make the same choices at information sets they do not exclude. And, we further simplify mixed and behavioral strategies by considering only their induced probability distributions on non-excluded terminal nodes. The definitions of an equilibrium and a refinement have equivalent statements in terms of these strategy spaces. Each equilibrium in a reduced strategy space corresponds to a set of equilibria as defined above, and analogously for solutions selected by a refinement. The axioms in Section 3 are stated in terms of mixed and behavioral strategies as defined above. One reason for this is that Axiom S implies invariance to redundant strategies, and thus justifies our later use of equivalence classes of strategies.

3. The Axioms

3.1. Undominated Strategies. The first axiom requires that no player uses a weakly dominated strategy. Say that a profile of players' strategies is undominated if each player's strategy is undominated.

Axiom A (Undominated Strategies): Each equilibrium in a solution is undominated.
3.2. Backward Induction. We interpret sequential equilibrium as the generalization to games with perfect recall of backward induction in games with perfect information, and to be consistent with Axiom A we insist on conditionally admissible optimal continuations from information sets. Here we obtain these properties from a quasi-perfect equilibrium, which requires a consistency property of beliefs that is stronger than required by Kreps and Wilson's [16] definition of sequential equilibrium. Van Damme [30, p. 8] defines a quasiperfect equilibrium in terms of players' behavioral strategies.

Definition 3.1 (Quasi-Perfect Equilibrium). A profile $b \in B$ of behavioral strategies is a quasi-perfect equilibrium if it is the limit of a sequence of profiles of completely mixed behavioral strategies for which, for each player n, from each of his information sets, continuation of his strategy b_{n} is an optimal reply to every profile in the sequence.

That is, if $B R_{n}(\cdot \mid h)$ is n 's best-reply correspondence in terms of behavioral strategies that continue from his information set $h \in H_{n}$, and $b_{n}(h)$ is the continuation of his behavioral
strategy b_{n} from this information set, then the profile $b \in B$ is quasi-perfect if

$$
(\forall k) \quad\left(\forall n \in N, h \in H_{n}\right) \quad b_{n}(h) \in B R_{n}\left(\hat{b}^{k} \mid h\right)
$$

for some sequence $\hat{b}^{k} \in B \backslash \partial B$ for which $\hat{b}^{k} \rightarrow b$.
If the mixed-strategy profile $\sigma \in \Sigma$ induces a behavioral profile $b \in B$ that is a quasi-perfect equilibrium then we say that σ too is quasi-perfect. Similarly, the justifying sequence \hat{b}^{k} can be represented by a sequence $\hat{\sigma}^{k}$ in $\Sigma \backslash \partial \Sigma$ for which $\hat{\sigma}^{k} \rightarrow \sigma$.

Van Damme shows that a quasi-perfect equilibrium induces a perfect equilibrium of the normal form, and a sequential equilibrium of the extensive form in which all players' beliefs are induced by the same justifying sequence. Moreover, by construction a quasi-perfect equilibrium provides for each player an admissible optimal continuation from each of his information sets. It can be shown that if payoffs are generic then every sequential equilibrium is quasi-perfect and extensive-form perfect.

The second axiom requires that some equilibrium in a solution is quasi-perfect.
Axiom B (Backward Induction): Each solution contains a quasi-perfect equilibrium.
If payoffs are generic then Axioms A and B imply that each solution lies in a component of undominated equilibria, each of which yields the same distribution over outcomes as a sequential equilibrium in the solution.
3.3. Small Worlds. The third axiom requires that a refinement is not affected by extraneous features of wider contexts in which a game is embedded, provided such contexts do not alter players' feasible strategies and payoffs. An embedding allows the presence of additional players whose actions might provide the original players with additional pure strategies equivalent to mixed strategies in the original game, and thus redundant. For simplicity, to define an embedding we use the normal form $G: \Sigma \rightarrow \mathbb{R}^{N}$ of the extensive-form game Γ.

An embedding is described by a 'larger' game $\tilde{G}: \tilde{\Sigma} \times \Sigma_{o} \rightarrow \mathbb{R}^{N \cup o}$ in which game G is 'embedded,' subject to certain restrictions specified below. The larger game \tilde{G} has outsiders in a set o, in addition to insiders who are the players in N, and there can be additional moves by Nature. An insider n can have additional pure strategies in $\tilde{\Sigma}_{n}$ that are not pure strategies in S_{n} but are equivalent to mixed strategies in Σ_{n}. The basic requirement is that an embedding should preserve the game among insiders, conditional on actions by outsiders.

These restrictions have a technical formulation. There should exist a multilinear map $f: \tilde{\Sigma} \times \Sigma_{o} \rightarrow \Sigma$ that is surjective and such that $\tilde{G}_{n}=G_{n} \circ f$ for each insider n. Moreover, to exclude an embedding from introducing correlation among insiders' strategies, f should factor into separate multilinear maps $\left(f_{n}\right)_{n \in N}$, where each component is a map $f_{n}: \tilde{\Sigma}_{n} \times \Sigma_{o} \rightarrow$
Σ_{n} such that $f_{n}\left(\cdot, \sigma_{o}\right)$ maps $\tilde{\Sigma}_{n}$ surjectively onto Σ_{n} for each profile $\sigma_{o} \in \Sigma_{o}$ of outsiders' strategies.

Admittedly, a statement of the axiom that uses this technical language could contain unsuspected implications. However, after stating the formal definition, we provide in Proposition 3.3 an equivalent formulation that is more detailed and more transparent, and that verifies the requisite properties. Also, Proposition 3.4 applies a precise test of whether the axiom is correctly stated, namely, a refinement that satisfies the axiom should be immune to the same embeddings that equilibria are.

Definition 3.2 (Embedding). A game $\tilde{G}: \tilde{\Sigma} \times \Sigma_{o} \rightarrow \mathbb{R}^{N \cup o}$ and a collection of multilinear maps $f_{n}: \tilde{\Sigma}_{n} \times \Sigma_{o} \rightarrow \Sigma_{n}$, one for each player $n \in N$, embed a game $G: \Sigma \rightarrow \mathbb{R}^{N}$ if
(a) for each $\sigma_{o} \in \Sigma_{o}, f_{n}\left(\cdot, \sigma_{o}\right)$ maps $\tilde{\Sigma}_{n}$ surjectively onto Σ_{n}, and
(b) $\tilde{G}_{n}=G_{n} \circ f$, where $f=\left(f_{n}\right)_{n \in N}$.

Condition (a) ensures that embedding has no net effect on an insider's set of mixed strategies, conditional on outsiders' strategies, and condition (b) ensures that there is no net effect on any insider's payoffs.

Hereafter, if \tilde{G} embeds G via maps $f=\left(f_{n}\right)$ then we say that (\tilde{G}, f) embeds G and that \tilde{G} is a metagame for G. We omit description of f for metagames in extensive form that embed a game in extensive or strategic form. An elaborate example of a metagame in extensive form that embeds a game in extensive form is constructed in proving Theorem 5.1. Note that the property that \tilde{G} is a metagame for G does not depend on specifying payoffs for the outsiders; in particular, it depends only on their extensive forms and the insiders' payoffs in the two games.

A multilinear map $f_{n}: \tilde{\Sigma}_{n} \times \Sigma_{o} \rightarrow \Sigma_{n}$ is completely specified by its values at profiles of pure strategies. Let \hat{f}_{n} be the restriction of f_{n} to the set $\tilde{S}_{n} \times S_{o}$ of profiles of pure strategies of player n and the outsiders in o. The following Proposition, proved in Appendix B, provides an alternative definition of embedding in terms of pure strategies.

Proposition 3.3. \tilde{G} embeds G via a collection of multilinear maps $f=\left(f_{n}\right)_{n \in N}$ if and only if for each player n there exists $\tilde{T}_{n} \subseteq \tilde{S}_{n}$ and a bijection $\pi_{n}: \tilde{T}_{n} \rightarrow S_{n}$ such that for each $\left(\tilde{s}, s_{o}\right) \in \tilde{S} \times S_{o}$ and $\tilde{t}_{n} \in \tilde{T}_{n}:$
(1) $\hat{f}_{n}\left(\tilde{t}_{n}, s_{o}\right)=\pi_{n}\left(\tilde{t}_{n}\right)$,
(2) $\tilde{G}_{n}\left(\tilde{s}, s_{o}\right)=G_{n}\left(\hat{f}\left(\tilde{s}, s_{o}\right)\right)$, where $\hat{f}=\left(\hat{f}_{n}\right)_{n \in N}$.

Property (2) assures that players' payoffs from pure strategies of G are preserved by the metagame \tilde{G}. Hence property (1) assures that each pure strategy $s_{n} \in S_{n}$ is equivalent to some pure strategy $\tilde{t}_{n}=\pi^{-1}\left(s_{n}\right) \in \tilde{T}_{n}$, independently of the outsiders' profile s_{o}.

Pure strategies in $\tilde{S}_{n} \backslash \tilde{T}_{n}$ are redundant because payoffs from profiles in $\prod_{n} \tilde{T}_{n}$ exactly replicate payoffs from corresponding profiles in $\prod_{n} S_{n}$ for the embedded game G. In particular, if $\hat{f}_{n}\left(\tilde{s}_{n}, s_{o}\right)=\sigma_{n} \notin S_{n}$ then conditional on s_{o} the pure strategy \tilde{s}_{n} is equivalent for insiders to the mixed strategy $\sigma_{n} \in \Sigma_{n}$.

The next Proposition, proved in Appendix B, verifies that equilibria are not affected by embedding in a metagame.

Proposition 3.4. If (\tilde{G}, f) embeds G then the equilibria of G are the f-images of the equilibria of \tilde{G}.

A corollary of Proposition 3.4 is that embedding does not introduce correlation among insiders' strategies.

Using Definition 3.2 of embedding, the small worlds axiom is the following.
Axiom \mathbf{S} (Small Worlds): If (\tilde{G}, f) embeds G then the f-images of the solutions that a refinement selects for \tilde{G} are the solutions selected for G.

In view of Proposition 3.4, this axiom is an instance of the general principle that a refinement should inherit invariance properties of equilibria.

Two special cases of Axiom S are the following.
Invariance: Suppose Σ_{o} and o are singletons and insiders' payoffs and strategies in $\tilde{\Sigma}$ differ from Σ only by treating some mixed strategies in Σ as additional pure strategies in \tilde{S}. Then Axiom S implies that solutions depend only on a game's reduced normal form obtained by deleting such redundant pure strategies.

Mertens' Small Worlds Axiom [21]: Suppose $\tilde{\Sigma}=\Sigma$. Then Axiom S implies that a solution does not depend on the presence of outsiders, i.e. solutions of the original game are the projections of the solutions of metagames obtained by adding dummy players.
3.4. Summary of the Axioms. We study refinements that are independent of embeddings in metagames that, for each profile of outsiders' strategies, preserve the strategies and payoffs of the game among insiders. And, we require that each of their solutions is a closed connected set of undominated equilibria, including one that is quasi-perfect. In particular, a solution of a metagame must contain a quasi-perfect equilibrium whose image is in the corresponding solution of the embedded game.

4. Additional Notation and Properties

In the sequel we consider only a game Γ in extensive form with perfect recall, two players, and generic payoffs. In this section we prepare for the statement and proof of the main theorem in Section 5.
4.1. Payoffs. Let Z be the set of terminal nodes of the game tree. Players' payoffs are given by a point u in $U=\mathbb{R}^{N \times Z}$, where $u_{n}(z)$ is the payoff to player $n \in N$ at terminal node $z \in Z$. We assume that payoffs are generic in that there exists a lower dimensional subset U_{0} of U such that our results are true for all games in $U \backslash U_{0}$. The set U_{0} includes the nongeneric set described in [4]. Therefore, each game outside U_{0} has finitely many equilibrium outcome distributions, and in particular all equilibria in a component yield the same distribution over outcomes. However, the proofs in Section 5 and Appendix C require some genericity properties that are not necessarily implied by the construction in [4]. To avoid disrupting the main exposition, we defer to Appendix D the description of the exact set of genericity properties required for the proofs, and an explanation of why the resulting set U_{\circ} of excluded payoffs has lower dimension.
4.2. Notation for the Extensive Form. The set of players is $N=\{1,2\}$, typically represented as a player n and the other player $m \neq n$. Let X be the set of nodes in the game tree. Let X_{n} be the set of nodes where player n moves, partitioned into his information sets $h \in H_{n}$. For a node $x \in X_{n}$ we write $h(x)$ for the unique information set $h \in H_{n}$ that contains x. For each n and $h \in H_{n}$, let $A_{n}(h)$ be the set of actions available to player n at h. Assume that actions at all information sets are labeled differently, and let A_{n} be the set of all actions for player n.

Node x precedes another node y, written $x \prec y$, if x is on the unique path from the root of the tree to y. For a node $x \in X_{n}$ and $a \in A_{n}(h(x))$ write $(x, a) \prec y$ if $x \prec y$ and the path from the root of the tree to y requires player n to choose a at $h(x)$. If $(x, a) \prec y$ and x and y belong to n 's information sets h and h^{\prime}, respectively, then every node in h^{\prime} follows some node in h by the choice of a, so we write $(h, a) \prec h^{\prime}$.

The set of pure strategies of player n is the set S_{n} of functions $s_{n}: H_{n} \rightarrow A_{n}$ such that $s_{n}(h) \in A_{n}(h)$ for all $h \in H_{n}$. For each $n, s_{n} \in S_{n}$ and $y \in X$, let $\beta_{n}\left(y, s_{n}\right)$ be the probability that s_{n} does not exclude y, i.e. $\beta_{n}\left(y, s_{n}\right)=1$ if for each $(x, a) \prec y$ with $x \in X_{n}, s_{n}(h(x))=a$, and otherwise $\beta_{n}\left(y, s_{n}\right)=0$. By perfect recall, if $y \in X_{n}$ then $\beta_{n}\left(y^{\prime}, s_{n}\right)=\beta_{n}\left(y, s_{n}\right)$ for all $y^{\prime} \in h(y)$ and we write $\beta_{n}\left(h(y), s_{n}\right)$ for this probability. Likewise, for any node y we write $\beta_{0}(y)$ for the probability that Nature does not exclude y. Then for a profile $s \in S$ the probability that node y is reached is $\beta(y, s) \equiv \beta_{0}(y) \beta_{1}\left(y, s_{1}\right) \beta_{2}\left(y, s_{2}\right)$.

Recall that Σ_{n} is the set of mixed strategies of player n. For each node y the function $\beta_{n}(y, \cdot)$ extends to a function over Σ_{n} via $\beta_{n}\left(y, \sigma_{n}\right)=\sum_{s_{n} \in S_{n}} \beta_{n}\left(y, s_{n}\right) \sigma_{n}\left(s_{n}\right)$ for $\sigma_{n} \in \Sigma_{n}$. Recall also that B_{n} is the set of behavioral strategies of player n. For each $b_{n} \in B_{n}, \beta_{n}\left(y, b_{n}\right)$ is the product of b_{n} 's probabilities of n 's actions on the path to y.

Similarly extend β to profiles of mixed or behavioral strategies. Given a mixed-strategy profile $\sigma \in \Sigma$, the probability that outcome z results is $\beta(z, \sigma)=\beta_{0}(z) \beta_{1}\left(z, \sigma_{1}\right) \beta_{2}\left(z, \sigma_{2}\right)$.
4.3. Enabling Strategies. For each player n define $\rho_{n}: \Sigma_{n} \rightarrow[0,1]^{Z}$ by the formula $\rho_{n}\left(\sigma_{n}\right)=\left(\beta_{n}\left(z, \sigma_{n}\right)\right)_{z \in Z}$, and let $\rho=\left(\rho_{n}\right)_{n \in N}$. Similarly, if $b_{n} \in B_{n}$ is the behavioral strategy induced by σ_{n} then $\rho_{n}\left(\sigma_{n}\right)=\left(\beta_{n}\left(z, b_{n}\right)\right)_{z \in Z}$. Let P_{n} be the image of ρ_{n}, and $P=\prod_{n} P_{n}$ the image of ρ. Then P_{n} is a compact convex polyhedron, called the space of n 's enabling strategies in [5]. Each vertex of P_{n} corresponds to an equivalence class of n 's pure strategies that exclude the same outcomes. ${ }^{5}$

If $\sigma \in \Sigma$ and $p=\rho(\sigma)$ then the probability of outcome z is $\gamma_{z}(p)=\beta_{0}(z) p_{1}(z) p_{2}(z)$. Thus the function $\gamma: P \rightarrow \Delta(Z)$ summarizes the extensive form. The analog of the game Γ 's normal form $G: \Sigma \rightarrow \mathbb{R}^{N}$ is the enabling form $\mathcal{G}: P \rightarrow \mathbb{R}^{N}$ that assigns to each profile of enabling strategies the profile of players' expected payoffs, where $\mathcal{G}_{n}(p)=\sum_{z} \gamma_{z}(p) u_{n}(z)$. Note that γ and \mathcal{G} are multilinear functions. From players' best-reply correspondences in terms of enabling strategies one obtains the definition of equilibrium in enabling strategies. To each equilibrium in enabling strategies there correspond families of outcome-equivalent equilibria in behavioral and mixed strategies. Axioms A and S have direct analogs in terms of enabling strategies, as shown in [11].

For games in extensive form with perfect recall, enabling strategies are minimal representations. For example, using perfect recall, by working backward in the induced tree of a player's information sets, from his enabling strategy one can construct the corresponding behavioral strategy at his information sets that his prior actions do not exclude. Because Axiom S implies Invariance, it is immaterial whether solutions are characterized in terms of mixed, behavioral, or enabling strategies. We use enabling strategies here because induced distributions over outcomes are multilinear functions of enabling strategies, like they are for mixed strategies but unlike the nonlinear dependence on behavioral strategies. Also, the dimensions of the spaces of enabling and behavioral strategies are the same, which is important for the technical property established in Theorem 4.1 below. Using these features, Section 5 derives the implications of the axioms in terms of enabling strategies.

[^2]4.4. Stable Sets of Equilibria. Now let $\bar{\Sigma}^{*}$ be a component of the equilibria of Γ in terms of mixed strategies, and let $\bar{\Sigma}_{n}^{*}$ be the projection of $\bar{\Sigma}^{*}$ in Σ_{n}.

By genericity, all equilibria in $\bar{\Sigma}^{*}$ induce the same distribution over outcomes. Therefore, for each node $x, \beta(x, \sigma)$ is the same for all $\sigma \in \bar{\Sigma}^{*}$; in particular, if x belongs to information set $h \in H_{n}$ and h is on an equilibrium path then $\beta_{n}\left(h, \sigma_{n}\right)$ is the same for every equilibrium strategy σ_{n} of player n in $\bar{\Sigma}^{*}$. We therefore denote these probabilities by $\beta_{n}^{*}(x)$ and $\beta_{n}^{*}(h)$. Let H_{n}^{*} be the collection of information sets $h \in H_{n}$ of player n such that $\beta_{n}^{*}(h)>0$ and let A_{n}^{*} be the set of actions at information sets in H_{n}^{*} that are chosen with positive probability by the equilibria in \bar{B}^{*}, where \bar{B}^{*} is the set of profiles of behavioral strategies induced by equilibria in $\bar{\Sigma}^{*}$.

Let $S_{n}^{0} \subset S_{n}$ be the set of pure strategies s_{n}^{0} with the property that, at each information set $h \in H_{n}^{*}$ that s_{n}^{0} does not exclude, s_{n}^{0} prescribes an action in A_{n}^{*}. Let $S_{n}^{1}=S_{n} \backslash S_{n}^{0}$, i.e. each pure strategy s_{n} in S_{n}^{1} chooses a non-equilibrium action at some information set $h \in H_{n}^{*}$ that it does not exclude.

For $i=0,1$, let Σ_{n}^{i} be the set of mixed strategies whose support is contained in S_{n}^{i}. Observe that the support of n 's strategy in every equilibrium in Σ^{*} is contained in S_{n}^{0} and that every strategy in S_{n}^{0} is a best reply against every equilibrium in $\bar{\Sigma}^{*}$. Thus $\bar{\Sigma}_{n}^{*}$ is contained in Σ_{n}^{0} and $\bar{\Sigma}^{*}=\bar{\Sigma}_{1}^{*} \times \bar{\Sigma}_{2}^{*}$.

If S_{n}^{1} is empty for each n, then each equilibrium in \bar{B}^{*} is completely mixed; by genericity, \bar{B}^{*} is a singleton and its equivalent mixed strategy is stable. The only interesting case, therefore, is one where S_{n}^{1} is nonempty for at least one of the players. In order to avoid dealing with different cases, we assume that S_{n}^{1} is nonempty for each n. (Along the way, we will indicate how the proof changes when S_{n}^{1} is empty for exactly one player.)

Let P_{n}^{0} be the image of Σ_{n}^{0} under ρ_{n}. Let $Z_{n}^{1} \subset Z$ be the set of terminal nodes z such that $(h, a) \prec z$ for some $h \in H_{n}^{*}$ and $a \notin A_{n}^{*}$. Let $Z_{n}^{0}=Z_{n} \backslash Z_{n}^{1}$. Then P_{n}^{0} is the set of $p_{n} \in P_{n}$ such that $p_{n}(z)=0$ for all $z \in Z_{n}^{1}$ and thus P_{n}^{0} is a face of P_{n}. However, the image P_{n}^{1} of Σ_{n}^{1} under ρ_{n} need not be a face of P_{n}. For $i=0,1$, let $P^{i}=P_{1}^{i} \times P_{2}^{i}$ and define $\mathbb{P}=P^{0} \times P^{1}$.

For each $p_{n} \in P_{n}$, let $\psi_{Z_{n}^{1}}\left(p_{n}\right)$ be the projection of p_{n} to $\mathbb{R}_{+}^{Z_{n}^{1}}$; then $\psi_{Z_{n}^{1}}\left(p_{n}\right)=0$ iff $p_{n} \in P_{n}^{0}$. Fix a point \bar{p}_{m} in the interior of P_{m} and define $\eta_{n}: P_{n} \rightarrow \mathbb{R}$ by $\eta\left(p_{n}\right)=$ $\sum_{z \in Z_{n}^{1}} p_{0}(z) \bar{p}_{m}(z) p_{n}(z)$, where p_{0} is Nature's enabling strategy. Then $\eta\left(p_{n}\right)=0$ iff $p_{n} \in P_{n}^{0}$. Choose $\varepsilon>0$ such that $\eta_{n}\left(p_{n}\right)>\varepsilon$ for all $p_{n} \in P_{n}^{1}$. Let \mathcal{H}_{n} be the hyperplane in $\mathbb{R}^{Z_{n}^{1}}$ with normal $\left(p_{0}(z) \bar{p}_{m}(z)\right)_{z \in Z_{n}^{1}}$ and constant ε. \mathcal{H}_{n} separates the origin from $\psi_{Z_{n}^{1}}\left(P_{n}^{1}\right)$. Let Π_{n}^{1} be the intersection of \mathcal{H}_{n} with $\psi_{Z_{n}^{1}}\left(P_{n}^{1}\right)$. Then there is a function $\bar{\pi}_{n}^{1}$ from $P_{n} \backslash P_{n}^{0}$ to Π_{n}^{1} that maps each $p_{n} \notin P_{n}^{0}$ to the point $\varepsilon\left(\eta_{n}\left(p_{n}\right)\right)^{-1} \psi_{Z_{n}^{1}}\left(p_{n}\right)$.

Now let Σ^{*} be a component of the undominated equilibria of the game Γ that is contained in $\bar{\Sigma}^{*}$. Since $\bar{\Sigma}^{*}=\bar{\Sigma}_{1}^{*} \times \bar{\Sigma}_{2}^{*}, \Sigma^{*}$ is expressible as a product $\Sigma_{1}^{*} \times \Sigma_{2}^{*}$, where Σ_{n}^{*} is a component of the intersection of $\bar{\Sigma}_{n}^{*}$ with the set of undominated strategies. For each n, let Q_{n}^{*} be the image of Σ_{n}^{*} under ρ_{n}, and Q^{*} the image of Σ^{*} under ρ, i.e. represented in enabling strategies.

Hereafter we say that Q^{*} is stable if Σ^{*} is a stable set of equilibria. ${ }^{6}$
4.5. The Associated Pseudomanifold. Given Q^{*}, let \mathcal{Q} be the set of $\left(q^{*},\left(p^{0}, p^{1}\right), \pi^{1}\right) \in$ $Q^{*} \times \mathbb{P} \times \Pi^{1}$ such that there exist $r^{0}, \tilde{p}_{n}^{0} \in P_{n}^{0}, r^{1} \in P_{n}^{1}$, and for each n scalars $\lambda_{n}^{0}, \lambda_{n}^{1}, \mu_{n}^{1}$ in the interval $(0,1]$ such that, if

$$
q_{n}^{0}=\lambda_{n}^{0} p_{n}^{0}+\left(1-\lambda_{n}^{0}\right) r_{n}^{0} \quad \text { and } \quad q_{n}^{1}=\left(1-\lambda_{n}^{1}\right) \tilde{p}_{n}^{0}+\lambda_{n}^{1}\left(\mu_{n}^{1} p_{n}^{1}+\left(1-\mu_{n}^{1}\right) r_{n}^{1}\right)
$$

then for each $n:^{7}$
(i) $\bar{\pi}_{n}^{1}\left(q_{n}^{1}\right)=\pi_{n}^{1}$.
(ii) q_{n}^{0}, and r_{n}^{0} if $\lambda_{n}^{0}<1$, are lexicographic best replies against $\left(q_{m}^{*}, q_{m}^{0}, q_{m}^{1}\right)$.
(iii) If $\mu_{n}^{1}<1$ then r_{n}^{1} is a best reply against q_{n}^{*} and lexicographically as good a reply against $\left(q_{m}^{*}, q_{m}^{0}, q_{m}^{1}\right)$ as other strategies in P_{n}^{1}.
Let $\psi: \mathcal{Q} \rightarrow \mathbb{P}$ be the natural projection, i.e. $\psi\left(q^{*},\left(p^{0}, p^{1}\right), \pi^{1}\right)=\left(p^{0}, p^{1}\right)$. Let $\partial \mathcal{Q}=$ $\psi^{-1}(\partial \mathbb{P})$. The following technical property is proved in Appendix C.

Theorem 4.1. $(\mathcal{Q}, \partial \mathcal{Q})$ is a pseudomanifold of the same dimension as $(\mathbb{P}, \partial \mathbb{P})$. Moreover, the projection map $\psi:(\mathcal{Q}, \partial \mathcal{Q}) \rightarrow(\mathbb{P}, \partial \mathbb{P})$ is essential iff Q^{*} is stable.

In case S_{n}^{1} is empty (and S_{m}^{1} is not), then the set Π_{n}^{1} is empty. We set $\mathbb{P}=P^{0} \times P_{m}^{1}$. Points in \mathcal{Q} are of the form $\left(q^{0}, p^{0}, \pi_{m}^{1}\right)$ and we drop the optimality requirement (iii) for n.

5. Statement and Proof of the Theorem

We now state and prove the main theorem. We assume that a solution is represented in terms of enabling strategies, i.e. $Q^{*} \subset P$ is a solution iff it is the image under ρ of a solution $\Sigma^{*} \subset \Sigma$.

Theorem 5.1. Axioms A, B, S imply that each solution is an essential component of the game's undominated equilibria.

[^3]Proof. Let $Q^{*} \subset P$ be a solution. Let $\operatorname{deg}(\psi)$ be the degree of the projection map ψ : $(\mathcal{Q}, \partial P) \rightarrow(\mathbb{P}, \partial \mathbb{P})$ defined in Section 4.5 above. Let $q^{0, *}$ be an arbitrary point in Q^{*}. For each m, choose a point $p_{m}^{0, *}$ in the interior of P_{m}^{0} against which $q^{0, *}$ is a best reply. Such a choice is possible by genericity of payoffs: the interior of the projection of $\bar{\Sigma}_{m}^{*}$ belongs to the interior of P_{m}^{0} and all strategies in P_{n}^{1} are inferior replies against every such point. Since $q_{n}^{0, *}$ belongs to Q_{n}^{*}, which consists only of undominated (hence admissible) strategies, there exists a point p_{m} in the interior of P_{m} against which $q_{n}^{0, *}$ is a best reply. p_{m} is equivalent to a completely mixed strategy σ_{m} in Σ_{m}. Express σ_{m} as a convex combination of σ_{m}^{0} and σ_{m}^{1}, where for $i=0,1, \sigma_{m}^{i}$ belongs to the interior of Σ_{m}^{i}. Let p_{m}^{0} and $p_{m}^{1, *}$ be the enabling strategies that are equivalent to σ_{m}^{0} and σ_{m}^{1}, respectively. Then p_{m}^{0} and $p_{m}^{1, *}$ are in the relative interiors of P_{m}^{0} and P_{m}^{1} respectively, and p_{m} is a convex combination of p_{m}^{0} and $p_{m}^{1, *}$. It follows that $x^{*} \equiv\left(q^{0, *},\left(p^{0, *}, p^{1, *}\right), \pi^{1, *}\right)$ belongs to $\mathcal{Q} \backslash \partial \mathcal{Q}$, where for each $n, \pi_{n}^{1, *}=\bar{\pi}_{n}^{1}\left(p_{n}^{1}\right)$, and in the definition of \mathcal{Q}, q_{n}^{0} is $p_{n}^{0, *}$ and q_{n}^{1} is p_{n}^{1}.

For any neighborhood $U\left(q^{0, *}\right)$ of $q^{0, *}$ we can choose a neighborhood $U\left(x^{*}\right)$ of x^{*} that is homeomorphic to a simplex, is contained in $\mathcal{Q} \backslash \partial \mathcal{Q}$ and such that the projection onto the first factor is contained in the neighborhood $U\left(q^{0, *}\right)$, i.e. if $\left(q^{0},\left(p^{0}, p^{1}\right), \pi^{1}\right) \in U\left(x^{*}\right)$ then $q^{0} \in U\left(q^{0, *}\right)$. For the proof we construct a metagame such that: (i) if $\operatorname{deg}(\psi)$ is zero then there is no quasi-perfect equilibrium of the metagame projecting to an equilibrium in Q^{*}; and (ii) if $\operatorname{deg}(\psi)$ is nonzero then all its quasi-perfect equilibria that project to points in Q^{*}, project to points in $U\left(q^{0, *}\right)$. Since $U\left(q^{0, *}\right)$ is an arbitrary neighborhood of the arbitrary point $q^{0, *}$ in Q^{*}, this proves the theorem.
5.1. Preliminaries. Fix some \bar{p} in the interior of \mathbb{P} and define $\iota: \partial \mathbb{P} \rightarrow \partial \mathbb{P}$ as follows: $\iota(p)$ is the unique point in the boundary of the form $\lambda p+(1-\lambda) \bar{p}$ for $\lambda<0$. Then ι has no fixed point. Let $g_{\partial \mathcal{Q}}: \partial \mathcal{Q} \rightarrow \mathbb{P}$ be the function $\iota \circ \psi_{\partial \mathcal{Q}}$, where $\psi_{\partial \mathcal{Q}}$ is the restriction of ψ to $\partial \mathcal{Q}$. Then $g_{\partial \mathcal{Q}}$ has no point of coincidence with ψ, i.e., for each $x \in \partial \mathcal{Q}, g_{\partial \mathcal{Q}}(x) \neq \psi(x)$. Let d be the dimension of \mathbb{P} and let α be the degree of ψ. If $\alpha=0$ then, since ι is a homeomorphism, $\delta^{*} i^{*} g_{\partial \mathcal{Q}}^{*}(1)=0$ in $H^{\delta}(\mathcal{Q}, \partial \mathcal{Q})$, where $i: \partial \mathcal{Q} \rightarrow \mathcal{Q}$ is the inclusion map, 1 is the generator of $H^{d-1}(\mathbb{P}) \approx \mathbb{Z}$, and δ^{*} is the coboundary operator. By the Hopf Extension Theorem [29, Corollary 8.1.18], $g_{\partial \mathcal{Q}}$ can be extended to a map $g: \mathcal{Q} \rightarrow \partial \mathbb{P}$. Obviously g has no point of coincidence with ψ. If $\alpha \neq 0$ then construct a map $g_{\partial U\left(x^{*}\right)}$ from $\partial U\left(x^{*}\right)$ to $\partial \mathbb{P}$ of degree α such that $\delta^{*} i^{*} g_{\partial \mathcal{Q} \cup \partial U\left(x^{*}\right)}^{*}(1)=0$ in $H^{\delta}\left(Q \backslash\left(U\left(x^{*}\right) \backslash \partial U\left(x^{*}\right)\right), \partial \mathcal{Q} \cup \partial U\left(x^{*}\right)\right)$, where now $i:\left(\partial \mathcal{Q} \cup \partial U\left(x^{*}\right)\right) \rightarrow Q \backslash\left(U\left(x^{*}\right) \backslash \partial U\left(x^{*}\right)\right)$ is the inclusion map and δ^{*} is the coboundary operator. Using again the Hopf Extension Theorem, there exists a map $g_{\partial U\left(x^{*}\right)}$ such that the two maps $g_{\partial \mathcal{Q}}$ and $g_{\partial U\left(x^{*}\right)}$ can be extended to a map from $\mathcal{Q} \backslash\left(U\left(x^{*}\right) \backslash \partial U\left(x^{*}\right)\right)$ to \mathbb{P};
furthermore, by mapping points in $U\left(x^{*}\right)$ to \mathbb{P} in a way that extends $g_{\partial U\left(X^{*}\right)}$, we obtain a map $g: \mathcal{Q} \rightarrow \mathbb{P}$ such that all its points of coincidence with ψ, of which there is at least one, are contained in $U\left(x^{*}\right) \backslash \partial U\left(x^{*}\right)$.

By construction there exists $\alpha>0$ such that for all $x \in \mathcal{Q},\|g(x)-\psi(x)\| \leqslant \alpha$ iff $\alpha \neq 0$ and $x \in U\left(x^{*}\right)$. Choose a triangulation \mathcal{K}_{n}^{i} of P_{n}^{i} for each n and $i=0,1$ such that the diameter of each simplex is no more than $\alpha / 2$. For each n there exists for each i a triangulation \mathcal{L}_{n}^{i} of P_{n}^{i} and a triangulation \mathcal{L}_{n}^{Π} of Π_{n}^{1} such that, letting \mathcal{L} be the resulting multisimplicial subdivision of $P^{0} \times \mathbb{P} \times \Pi^{1}$, g has a multisimplicial approximation $\tilde{g}[9$, Appendix B] with the triangulation of the range given by $\mathcal{K}=\prod_{n, i} \mathcal{K}_{n}^{i}$. Observe that if for some $x=\left(q^{0}, p^{0}, p^{1}, \pi^{1}\right)$ there exists a multisimplex K that contains $\psi(x)$ and $\tilde{g}(x)$ then, since \tilde{g} is a multisimplicial approximation of g, that multisimplex is a face of one that contains $g(x)$ and thus $\|g(x)-\psi(x)\| \leqslant \alpha$; in particular, if x also belongs to \mathcal{Q}, then $x \in U\left(x^{*}\right)$, and thus $q^{0} \in U\left(q^{0, *}\right)$. As in $[9$, Theorem B.2], now take a further polyhedral subdivision \mathcal{T} of \mathcal{L} and let γ be the convex function generated by \mathcal{T}, i.e. γ is piecewise linear and linear precisely on each full-dimensional polyhedron of the subdivision.

Hereafter, unless explicitly stated, we represent players' pure and mixed strategies in terms of the induced enabling strategies; thus, pure strategies in S_{n} are represented as vertices of P_{n} and mixed strategies are mixtures of these vertices.
5.2. A Game with Redundant Strategies. We first construct a game with redundant pure strategies that is the basis for the metagame specified later. For each fixed $\hat{p}=\left(p^{0}, p^{1}\right) \in$ \mathbb{P} and $\delta \in(0,1)$, consider the following game $\Gamma(\delta, \hat{p})$. Each player n chooses a strategy in the following manner (and unaware of his opponent's choices). Initially, player n provisionally chooses a pure strategy $s_{n}^{0} \in S_{n}^{0}$, or he rejects all strategies in S_{n}^{0}.

- If initially he chooses a strategy s_{n}^{0} then at a subsequent second stage he can retain s_{n}^{0} or revise his choice. At this second stage the revisions available are 'duplicate' pure strategies in a set $T_{n}^{0}\left(\delta, p_{n}^{0}\right)$, each of which is a mixed strategy of the form $t_{n}\left(\delta, p_{n}^{0}\right) \equiv(1-\delta) t_{n}+\delta p_{n}^{0}$ for some $t_{n} \in S_{n}^{0}$.
- If he rejects all strategies in S_{n}^{0} then at a second stage he can choose among the strategies in $T_{n}^{0}\left(\delta, p_{n}^{0}\right)$ or reject them all. ${ }^{8}$ If he rejects them all then at a third stage he chooses among the pure strategies in $S_{n}^{1} \cup T_{n}^{1}\left(\delta, p_{n}^{1}\right)$, where each strategy in $T_{n}^{1}\left(\delta, p_{n}^{1}\right)$ is a duplicate of the form $t_{n}\left(\delta, p_{n}^{1}\right) \equiv(1-\delta) t_{n}+\delta p_{n}^{1}$ for some $t_{n} \in S_{n}^{0}$.

[^4]In $\Gamma(\delta, \hat{p})$ the set of n 's pure strategies is $\tilde{S}_{n}\left(\delta, \hat{p}_{n}\right) \equiv S_{n} \cup T_{n}^{0}\left(\delta, p_{n}^{0}\right) \cup T_{n}^{1}\left(\delta, p_{n}^{1}\right)$. Thus, game $\Gamma(\delta, \hat{p})$ has the same reduced normal form as Γ.
5.3. Extensive Form of the Metagames. Now we specify a family of similar metagames $\tilde{\Gamma}^{\delta}$, one for each $\delta>0$.

Before the insiders play, thirteen outsiders, denoted players o_{0} and $o_{n, j}^{i}$ for $n=1,2, i=0,1$ and $j=1,2,3$, move simultaneously. Outsider o_{0} chooses a full-dimensional polyhedron T of the polyhedral complex \mathcal{T}. Outsider $o_{n, j}^{i}$, for $n=1,2, j=1,3$ and $i=0,1$, chooses a point in the vertex set V_{n}^{i} of \mathcal{K}_{n}^{i}. Outsider $o_{n, 2}^{0}$ chooses a point in a finite subset $S_{n}^{0, \delta}$ of P_{n}^{0} chosen such that every point in P_{n}^{0} is within δ of some point in $S_{n}^{0, \delta}$; outsider $o_{n, 2}^{1}$ chooses a point in a finite subset $S_{n}^{1, \delta}$ of Π_{n}^{1} such that every point in Π_{n}^{1} is within δ of some point in $S_{n}^{1, \delta}$.

For outsider $o_{n, 1}^{i}$, each pure strategy v_{n}^{i} corresponds to a point in P_{n}^{i} denoted $p_{n}^{i}\left(v_{n}^{i}\right)$. Therefore, each mixed strategy $\sigma_{n, 1}^{i}$ corresponds to a point in P_{n}^{i}, denoted $p_{n}^{i}\left(\sigma_{n, 1}^{i}\right)$, which is obtained by taking the appropriate average of the points induced by the pure strategies in the support of $\sigma_{n, 1}^{i}$. Likewise a mixed strategy $\sigma_{n, 2}^{0}$ of $o_{n, 2}^{0}$ corresponds to a point $q_{n}^{0}\left(\sigma_{n, 2}^{0}\right)$ in P_{n}^{0}, and a mixed strategy $\sigma_{n, 2}^{1}$ of $o_{n, 2}^{1}$ corresponds to a point $\pi_{n}^{1}\left(\sigma_{n, 2}^{1}\right)$ in Π_{n}^{1}.

A mixed-strategy profile $\tilde{\sigma}_{o}$ for the outsiders induces a point $\left(q^{0}\left(\tilde{\sigma}_{o}\right),\left(p^{0}\left(\tilde{\sigma}_{o}\right), p^{1}\left(\tilde{\sigma}_{o}\right)\right), \pi^{1}\left(\tilde{\sigma}_{o}\right)\right)$ in $P^{0} \times \mathbb{P} \times \Pi^{1}$, where for each n and $i, p_{n}^{i}\left(\tilde{\sigma}_{o}\right)$ depends on the choice by $o_{n, 1}^{i}$, and $q_{n}^{0}\left(\tilde{\sigma}_{o}\right)$ and $\bar{\pi}_{n}^{1}\left(\tilde{\sigma}_{o}\right)$ depend on the choices by $o_{n, 2}^{0}$ and $o_{n, 2}^{1}$ respectively.

After each pure-strategy profile \tilde{s}_{o} of the outsiders there follows a copy of the game $\Gamma\left(\delta, \hat{p}\left(\tilde{s}_{o}\right)\right)$. That is, if in the profile \tilde{s}_{o} outsiders $o_{n, 1}^{i}$ choose points v_{n}^{i}, then there follows a copy of $\Gamma(\delta, \hat{p})$ after these choices, where for each $n, \hat{p}_{n}=\left(p_{n}^{0}\left(v_{n}^{0}\right), p_{n}^{1}\left(v_{n}^{1}\right)\right)$. However, the information sets in $\tilde{\Gamma}^{\delta}$ are such that the insiders play without knowing which copy of $\Gamma(\delta, \hat{p})$ they are playing. The sets of duplicate strategies available are therefore now denoted by $T_{n}^{0}(\delta)$ and $T_{n}^{1}(\delta)$, omitting the reference to p_{n}^{0} and p_{n}^{1}, since the insiders are uninformed about which mixtures were implemented by outsiders. Put differently, for $i=0,1$ and $t_{n} \in S_{n}^{0}$, the exact duplicate strategy implemented by choosing $t_{n}^{i}(\delta) \in T_{n}^{i}(\delta)$ depends on the choice by the outsider $o_{n, 1}^{i}$ that insiders do not observe. Thus in the metagame $\tilde{\Gamma}^{\delta}$, player n 's set of pure strategies, up to duplication of pure strategies, is $\tilde{S}_{n}(\delta) \equiv S_{n} \cup T_{n}^{0}(\delta) \cup T_{n}^{1}(\delta)$.

That the metagame $\tilde{\Gamma}^{\delta}$ embeds Γ follows from Proposition 3.3. The strategies in S_{n} are available as pure strategies in $\tilde{S}_{n}(\delta)$ and the other pure strategies, which belong to $T_{n}^{i}(\delta)$, for $i=0,1$, implement mixtures in Σ_{n} that depend on the choices of outsiders $o_{n, 1}^{i}$.
5.4. Outsiders' Payoffs in the Metagames. Next we describe the outsiders' payoffs in each metagame $\tilde{\Gamma}^{\delta}$.

The payoffs to o_{0} depend on the choices of all outsiders except outsiders $o_{n, 3}^{i}$ for $i=0,1$ and $n=1,2$. Recall that the convex function γ is linear over each full-dimensional polyhedron T of \mathcal{T}. This linear function extends uniquely to a linear function γ_{T} over $P^{0} \times \mathbb{P} \times \Pi^{1}$. Every mixed strategy profile of the other outsiders induces a unique point $\left(\tilde{q}, \hat{p}, \pi^{1}\right) \in P^{0} \times \mathbb{P} \times \Pi^{1}$ and o_{0} 's payoff from choosing T is $\gamma_{T}\left(\tilde{q}, \hat{p}, \pi^{1}\right)$.

Outsider $o_{n, 1}^{i}$ wants to mimic $o_{n, 3}^{i}$. In particular, if he chooses v_{n}^{i} and $o_{n, 3}^{i}$ chooses w_{n}^{i} then his payoff is one if $v_{n}^{i}=w_{n}^{i}$ and zero otherwise.

Outsider $o_{n, 2}^{0}$ wants to mimic the actual choice implemented by player n when this choice belongs to P_{n}^{0}. Similarly, outsider $o_{n, 2}^{1}$ wants to mimic the π_{n}^{1} implied by n 's choice when he plays a strategy in P_{n}^{1}. Specifically, for $i=0,1$, let $\varphi_{n}^{i}: \mathbb{R}^{Z_{n}^{i}} \rightarrow \mathbb{R}$ be the function given by $\varphi_{n}^{i}(r)=\sum_{z \in Z_{n}^{i}} r_{z}^{2}$. For each $r \in \mathbb{R}^{Z_{n}^{i}}$, let $\xi_{n}^{i}(r, \cdot)$ be the affine approximation to φ_{n}^{i} at r, i.e. for each $r^{\prime} \in \mathbb{R}^{Z_{n}^{i}}, \xi_{n}^{i}\left(r, r^{\prime}\right)=\sum_{z}\left(r_{z}^{2}+2 r_{z}\left(r_{z}^{\prime}-r_{z}\right)\right)$. Suppose now that $o_{n, 2}^{i}$ chooses a pure strategy $s_{n, 2}^{i, \delta}$ and n chooses a pure strategy \tilde{s}_{n} in $\tilde{S}_{n}(\delta)$. If \tilde{s}_{n} is in $T_{n}^{0}(\delta)$ or $T_{n}^{1}(\delta)$ then let q_{n} be the actual strategy in P_{n} that is implemented based on $p_{n}^{0}\left(v_{n}^{0}\right)$ or $p_{n}^{1}\left(v_{n}^{1}\right)$ where for each i, v_{n}^{i} is the choice of outsider $o_{n, 1}^{i}$; and otherwise let $q_{n}=\tilde{s}_{n}$. For outsider $o_{n, 2}^{0}$, his payoff is zero if $q_{n} \notin P_{n}^{0}$; otherwise, it is $\xi_{n}^{0}\left(s_{n, 2}^{0, \delta}, q_{n}\right)$. For outsider $o_{n, 2}^{1}$, his payoff is zero if $q_{n} \in P_{n}^{0}$; otherwise it is $\xi_{n}^{1}\left(s_{n, 2}^{1, \delta}, \bar{\pi}_{n}^{1}\left(q_{n}\right)\right)$.

The payoff to outsider $o_{n, 3}^{i}$ depends on the choices of all other outsiders. If o_{0} chooses a polyhedron T then there exists a unique multisimplex L of \mathcal{L} that contains T. For each vertex w_{n}^{i} of V_{n}^{i}, and each vertex \tilde{v} of L, let $u_{n, 2}^{i}\left(T, \tilde{v}, w_{n}^{i}\right)=1$ if w_{n}^{i} is the image of \tilde{v} under \tilde{g}_{n}^{i} and zero otherwise, where \tilde{g}_{n}^{i} is the (n, i)-th coordinate map of \tilde{g}. The function $u_{n, 2}^{i}$ extends multilinearly to L and, since L is full-dimensional, to the whole of $P^{0} \times \mathbb{P} \times \Pi^{1}$, denoted still by $u_{n, 2}^{i}\left(T, \cdot, w_{n}^{i}\right)$. Given an arbitrary mixed strategy of the other players, if o_{0} chooses T and $o_{n, 2}^{i}$ chooses w_{n}^{i} then the payoff of $o_{n, 2}^{i}$ is $u_{n, 2}^{i}\left(T,(p, q), w_{n}^{i}\right)$, where (p, q) is the point in $P^{0} \times \mathbb{P} \times \Pi^{1}$ induced by the mixed strategies of the other players.
5.5. Outsiders' Strategies in a Quasi-Perfect Equilibrium. If Q^{*} is a solution of Γ then, by Axioms B and S , in the metagame $\tilde{\Gamma}^{\delta}$ there exists a quasi-perfect equilibrium \tilde{b}^{δ} whose equivalent mixed-strategy profile $\tilde{\sigma}^{\delta}$ belongs to a solution and whose image under the map from the metagame $\tilde{\Gamma}^{\delta}$ to Γ is a point in Q^{*}.

Each player n 's strategy in \tilde{b}^{δ} necessarily has the following feature. He avoids going to his information set where his choices are among the strategies in $S_{n}^{1}(\delta) \cup T_{n}^{1}(\delta)$, since each of
these strategies chooses a non-equilibrium action at some information set on the equilibrium path. Let $q_{n}^{0, \delta}$ be n 's actual strategy in P_{n}^{0} that is implemented by n 's strategy in the profile \tilde{b}^{δ} in the metagame $\tilde{\Gamma}^{\delta}$. By construction, $q_{n}^{0, \delta}$ belongs to Q_{n}^{*}.

Let $\tilde{x}^{\delta} \equiv\left(\tilde{q}^{0, \delta}, p^{0, \delta}, \tilde{\pi}^{1, \delta}\right)$ be the point in $P^{0} \times \mathbb{P} \times \Pi^{1}$ that is induced by the profile $\tilde{\sigma}_{o}^{\delta}$ of the outsiders' strategies in the equilibrium $\tilde{\sigma}^{\delta}$.

Under \tilde{b}^{δ}, after n has rejected all strategies in S_{n}^{0} and $T_{n}^{0}(\delta)$, consider the strategy implemented by n. Let $\left(1-\alpha_{n}^{1, \delta}\right)$ be the total probability of choosing a duplicate in $T_{n}^{1}(\delta)$ under \tilde{b}^{δ}. Then n 's choice at this information set is equivalent to an enabling strategy in P_{n} of the form

$$
\breve{q}_{n}^{\delta} \equiv\left(1-\alpha_{n}^{1, \delta}\right)\left((1-\delta) \check{p}_{n}^{0, \delta}+\delta p_{n}^{1, \delta}\right)+\alpha_{n}^{1, \delta} r_{n}^{1, \delta}
$$

where: (i) $\check{p}_{n}^{0}(\delta)$ is the mixture over strategies t_{n} such that the strategy $t_{n}^{1}(\delta)$ is played with positive probability at this information set; (ii) $p_{n}^{1, \delta}=p_{n}^{i}\left(\tilde{\sigma}_{n, 1}^{i}\right)$ is the enabling strategy induced by the equilibrium strategy $\tilde{\sigma}_{n, 1}^{i}$ of outsider $o_{n, 1}^{i}$; (iii) $r_{n}^{1, \delta}$ is the enabling strategy in P_{n}^{1} that is obtained from n 's actual mixture over strategies in S_{n}^{1} if $\alpha_{n}^{1, \delta}>0$, and is arbitrary otherwise. Let

$$
q^{1, \delta}=\left(\delta\left(1-\alpha_{n}^{1, \delta}\right)+\alpha_{n}^{1, \delta}\right)^{-1}\left(\delta\left(1-\alpha_{n}^{1, \delta}\right) p_{n}^{1, \delta}+\alpha_{n}^{1, \delta} r_{n}^{1, \delta}\right) .
$$

Then $\bar{\pi}_{n}^{1}\left(\check{q}_{n}^{\delta}\right)=\bar{\pi}_{n}^{1}\left(q_{n}^{1, \delta}\right) \equiv \pi_{n}^{1, \delta}$.
The following lemma characterizes the important aspects of the outsiders' equilibrium strategies.

Lemma 5.2. The equilibrium strategies of the outsiders satisfy the following properties.
(1) For each n, suppose the vertices in the support $V_{n}^{i, \delta}$ of $o_{n, 3}^{i}$'s equilibrium strategy span a simplex $K_{n}^{i, \delta}$ of \mathcal{K}_{n}^{i}. Then $p_{n}^{i, \delta}$ belongs to $K_{n}^{i, \delta}$.
(2) If every polyhedron in the support of o_{0} 's strategy contains \tilde{x}^{δ} then, for each n and i, the vertices in $V_{n}^{i, \delta}$ span a simplex $K_{n}^{i, \delta}$, and $\tilde{g}_{n, i}\left(\tilde{x}^{\delta}\right)$ belongs to the interior of a simplex $\bar{K}_{n}^{i, \delta}$ that has $K_{n}^{i, \delta}$ as a face.
(3) Every polyhedron in the support of o_{0} 's strategy contains \tilde{x}^{δ}.
(4) $\tilde{q}_{n}^{0, \delta}$ is within δ of $q_{n}^{0, \delta}$ and $\tilde{\pi}_{n}^{1, \delta}$ is within δ of $\pi_{n}^{1, \delta}$.

Proof of Lemma. Outsider $o_{n, 1}^{i}$ wants to mimic outsider $o_{n, 3}^{i}$. So, if the vertices of $V_{n}^{i, \delta}$ span a simplex $K_{n}^{i, \delta}$ then the payoff to $o_{n, 1}^{i}$ from choosing a vertex w_{n}^{i} is positive if it belongs to $V_{n}^{i, \delta}$ and zero otherwise. Point (1) follows.

Let $\bar{L}=L^{0} \times\left(\tilde{L}^{0} \times L^{1}\right) \times L^{\Pi}$ be the unique multisimplex of \mathcal{L} that contains \tilde{x}^{δ} in its interior. For each polyhedron T in the support of o_{0} 's strategy, there exists a full-dimensional multisimplex \hat{L} of \mathcal{L} that contains T. Obviously \hat{L} has \bar{L} as a face. $o_{n, 3}^{i}$'s payoff from choosing
a strategy w_{n}^{i} if o_{0} chooses such a T, and given the strategies of the other outsiders, is positive if it is the image of a vertex of \bar{L} under \tilde{g}_{n}^{i} and zero otherwise. Since the image of the vertices of \bar{L} under the coordinate function \tilde{g}_{n}^{i} span a simplex $\bar{K}_{n}^{i, \delta}, \tilde{g}_{n}^{i}\left(\tilde{x}^{\delta}\right) \in \bar{K}_{n}^{i, \delta}$ and the vertices of $V_{n, i}^{\delta}$ span a face of $\bar{K}_{n}^{i, \delta}$. Therefore, point (2) follows.

For each polyhedron T of \mathcal{T}, o_{0} 's payoff from T is $\gamma_{T}\left(\tilde{x}^{\delta}\right)$ and by construction, $\gamma_{T}\left(\tilde{x}^{\delta}\right) \leqslant$ $\gamma\left(\tilde{x}^{\delta}\right)$ with the inequality being strict iff \tilde{x}^{δ} does not belong to T, which proves (3).

It remains to prove (4). The actual strategy implemented by n is $q_{n}^{0, \delta}$, which belongs to $P_{n}^{0} . o_{n, 2}^{0}$'s payoff function is such that his best replies to $q_{n}^{0, \delta}$ are the points in $S_{n}^{0, \delta}$ that are closest to $q_{n}^{0, \delta}$. Thus $\tilde{q}_{n}^{0, \delta}$ is within δ of $q_{n}^{0, \delta}$. Since $q_{n}^{0, \delta}$ belongs to P_{n}^{0}, all of $o_{n, 2}^{1}$'s strategies yield a payoff of zero against $q_{n}^{0, \delta}$. However, since the behavioral strategy \tilde{b}^{δ} is a quasi-perfect equilibrium, there exists a sequence of completely mixed behavioral strategies $\tilde{b}^{\varepsilon, \delta}$ converging to \tilde{b}^{δ} against which $o_{n, 2}^{1}$'s equilibrium strategy $\tilde{\sigma}_{n, 2}^{\delta}$ is a best reply. Under the sequence $\tilde{b}^{\varepsilon, \delta}$, there is a positive probability that player n moves into the third stage of his choice and makes a choice among strategies in $S_{n}^{1} \cup T_{n}^{1}(\delta)$. The fact that $\tilde{\sigma}_{n, 2}^{\delta}$ is optimal against the sequence implies that it is optimal against the limiting choice \check{q}_{n}^{δ} there. Since $\bar{\pi}_{n}^{1}\left(\check{q}_{n}^{\delta}\right)=\pi_{n}^{1, \delta}$, $o_{n, 2}^{1}$'s best replies are within δ of $\pi_{n}^{1, \delta}$ and thus $\pi_{n}^{1, \delta}$ is within δ of $\pi_{n}^{1, \delta}$ as well.
5.6. Limits of the Quasi-Perfect Equilibria of the Metagames. Consider a sequence of δ 's converging to zero and a corresponding sequence \tilde{b}^{δ} of quasi-perfect equilibria in solutions of the metagames $\tilde{\Gamma}^{\delta}$. Let $\tilde{\sigma}^{\delta}$ be an equivalent sequence of mixed strategies and let $\left(\tilde{q}^{0, \delta},\left(p^{0, \delta}, p^{1, \delta}\right), \tilde{\pi}^{1, \delta}\right)$ be the sequence in $Q^{*} \times \mathbb{P} \times \Pi^{1}$ induced by the outsiders' strategies.

Let $\tilde{q}^{0,0},\left(p^{0,0}, p^{1,0}\right)$, and $\tilde{\pi}^{1,0}$ be the corresponding limits of $\tilde{q}^{0, \delta},\left(p^{0, \delta}, p^{1, \delta}\right)$, and $\tilde{\pi}^{1, \delta}$. Let $q^{0,0}$ and $\pi^{1,0}$ be the limits of $q^{0, \delta}$ and $\pi^{1, \delta}$. By properties (1)-(3) of the previous lemma, for each δ, n, i, there exists a simplex $\bar{K}_{n}^{i, \delta}$ of \mathcal{K}_{n}^{i} that contains both $\tilde{g}_{n, i}\left(\tilde{q}^{0, \delta},\left(p^{0, \delta}, p^{1, \delta}\right), \tilde{\pi}^{1, \delta}\right)$ and $p_{n}^{i, \delta}$, with the former belonging to its interior. By property (4) of the previous lemma, $\tilde{q}^{0,0}=q^{0,0}$ and $\tilde{\pi}^{1,0}=\pi^{1,0}$.

By passing to a subsequence, we can assume that there exist multisimplices \bar{L} of \mathcal{L} and \bar{K} of \mathcal{K} such that for all $\delta,\left(\tilde{q}^{0, \delta},\left(p^{0, \delta}, p^{1, \delta}\right), \tilde{\pi}^{1, \delta}\right)$ belongs to the interior of \bar{L} and its image under \tilde{g} belongs to the interior of \bar{K}-hence \bar{K} also contains ($p^{0, \delta}, p^{1, \delta}$). Going to the limit, $\left(q^{0,0},\left(p^{0,0}, p^{1,0}\right), \pi^{1,0}\right)$ belongs to \bar{L} and its image under \tilde{g} belongs to \bar{K}; also ($p^{0,0}, p^{1,0}$) belongs to \bar{K}. Since \bar{L} and \bar{K} are multisimplices and \tilde{g} is a multisimplicial map, we have that for all $\delta, x^{\delta} \equiv\left(q^{0,0},\left(p^{0, \delta}, p^{1,0}\right), \pi^{1,0}\right)$ belongs to \bar{L}, and $\tilde{g}\left(x^{\delta}\right),\left(p^{0, \delta}, p^{1,0}\right) \in \bar{K}$. If we show that for small δ, x^{δ} belongs to \mathcal{Q}, then by construction this implies that the degree of ψ is nonzero and $x^{\delta} \in U\left(x^{*}\right)$, and therefore $q^{0,0} \in U\left(q^{0, *}\right)$, which proves the theorem. The remainder of the proof establishes this fact.
5.7. Insiders' Strategies in a Quasi-Perfect Equilibrium. Let $\tilde{b}^{\varepsilon, \delta}$ be a sequence of completely mixed behavioral strategies converging to \tilde{b}^{δ} against which for each insider n and each information set of n in $\tilde{\Gamma}^{\delta}$, his continuation strategy is optimal. We now study the important features of both the sequence and its limit. If n chooses $s_{n} \in S_{n}^{0}$ in the first stage then in the second stage he has the option of revising this strategy to play something in $T_{n}^{0}(\delta)$. Therefore, quasi-perfection implies that player n will end up implementing s_{n} with positive probability in \tilde{b}_{n}^{δ} only if this strategy is at least as good a reply against the sequence $\tilde{b}^{\varepsilon, \delta}$ as the strategies in $T_{n}^{0}(\delta)$. Likewise, player n has the option of playing a strategy in $T_{n}^{0}(\delta)$ before he decides to play a strategy in S_{n}^{1} and even when he makes a choice among these strategies, he has the option of choosing a strategy in $T_{n}^{1}(\delta)$. Therefore, at the information set that follows his choice of avoiding strategies in $S_{n}^{0}, \tilde{b}_{n}^{\delta}$ assigns a positive probability to moving on to a third stage and then choosing a strategy in $T_{n}^{1}(\delta) \cup S_{n}^{1}$ only if one of these strategies is at least as good a reply against the sequence $\tilde{b}^{\varepsilon, \delta}$ as all the strategies in $T_{n}^{0}(\delta)$. Furthermore, at the information set obtained after n avoids strategies in $S_{n}^{0} \cup T_{n}^{0}(\delta), \tilde{b}_{n}^{\delta}$ assigns a positive probability to a strategy s_{n} in S_{n}^{1} only if s_{n} is at least as good a reply against the sequence $\tilde{b}^{\varepsilon, \delta}$ as all the strategies in $S_{n}^{1} \cup T_{n}^{1}(\delta)$.

Let $\tilde{\sigma}^{\varepsilon, \delta}$ be a sequence of mixed strategy profiles that is equivalent to the sequence $\tilde{b}^{\varepsilon, \delta}$ of behavioral strategy profiles. For each player n, his strategy $\tilde{\sigma}_{n}^{\varepsilon, \delta}$ in the sequence is a mixture over his pure strategy set $\tilde{S}_{n}=S_{n} \cup T_{n}^{0}(\delta) \cup T_{n}^{1}(\delta)$. However, the implications of n 's strategy (for m 's choices) depend on the choices of the outsiders through their implications for strategies in $T_{n}^{0}(\delta)$ and $T_{n}^{1}(\delta)$. Each strategy $t_{n}^{i}(\delta)$ plays t_{n} with probability $(1-\delta)$ and with probability δ plays a strategy in P_{n}^{i} that is determined by $o_{n, 1}^{i}$'s strategy. In order to fully capture the impact that $o_{n, 1}^{i}$ has on $t_{n}^{i}(\delta)$, let W_{n}^{i} be the vertex set of \mathcal{K}_{n}^{i}. Let $\bar{T}_{n}^{i}(\delta)$ be the union over all $w_{n}^{i} \in W_{n}^{i}$ of the sets $T_{n}^{i}\left(\delta, p_{n}^{i}\left(w_{n}^{i}\right)\right)$. Let $\bar{S}_{n}=S_{n} \cup \bar{T}_{n}^{0}(\delta) \cup \bar{T}_{n}^{1}(\delta)$ and let $\bar{\Sigma}_{n}$ be the set of mixtures over \bar{S}_{n}.

Since W_{n}^{i} is the pure strategy set of outsider $o_{n, 1}^{i}$, and $\tilde{\sigma}^{\varepsilon, \delta}$ is a sequence of completely mixed strategies, $\tilde{\sigma}_{o_{n, 1}^{\varepsilon, \delta}}$ has W_{n}^{i} as its support for all ε in the sequence. The sequence $\tilde{\sigma}^{\varepsilon, \delta}$ induces a mixed strategy $\bar{\sigma}_{n}^{\varepsilon, \delta}$ in \bar{S}_{n} for each n as follows. For each $s_{n} \in S_{n}$, the probability $\bar{\sigma}_{n}^{\varepsilon, \delta}\left(s_{n}\right)$ of s_{n} is $\tilde{\sigma}_{n}^{\varepsilon, \delta}\left(s_{n}\right)$. For each $i=0,1, w_{n}^{i} \in W_{n}^{i}$ and $t_{n} \in S_{n}^{0}$, the probability $\bar{\sigma}_{n}^{\varepsilon, \delta}\left(t_{n}^{i}\left(\delta, p_{n}^{i}\left(w_{n}^{i}\right)\right)\right)$ is $\tilde{\sigma}_{n}^{\varepsilon, \delta}\left(t_{n}^{i}(\delta)\right) \tilde{\sigma}_{o_{n, 1}^{i}}^{\varepsilon, \delta}\left(w_{n}^{i}\right)$. From player m 's perspective it is the sequence $\bar{\sigma}_{n}^{\varepsilon, \delta}$, or rather its equivalent sequence in P_{n}, that matters for his choice.
5.8. The Induced Lexicographic Probability System. By Blume, Brandenburger, and Dekel [1, Appendix Proposition 2], we can construct for each player n a lexicographic probability system (LPS) $\bar{\Lambda}_{n}^{\delta}=\left(\bar{\sigma}_{n}^{0, \delta}, \ldots, \bar{\sigma}_{n}^{l_{n}(\delta), \delta}\right)$ over his strategies in \bar{S}_{n} such that for each ε in a subsequence converging to zero,
$\bar{\sigma}_{n}^{\varepsilon, \delta}=\left(1-\nu_{0}(\varepsilon)\right)\left(\bar{\sigma}_{n}^{0, \delta}+\nu_{0}(e)\left(\left(1-\nu_{1}(\varepsilon)\right) \bar{\sigma}_{n}^{1, \delta}+\nu_{1}(\varepsilon)\left(\left(1-\nu_{2}(\varepsilon)\right) \bar{\sigma}_{n}^{1, \delta}+\cdots+\nu_{l_{n}(\delta)-1}(\varepsilon) \bar{\sigma}_{n}^{l_{n}(\delta), \delta}\right)\right)\right.$,
where $\left(\nu_{0}(\varepsilon), \ldots, \nu_{l_{n}(\delta)-1}(\varepsilon)\right)$ is a sequence in $\mathbb{R}_{+}^{l_{n}(\delta)}$ converging to the origin.
Quasi-perfection implies that $\bar{\sigma}_{n}^{0, \delta}$ is equivalent to the enabling strategy $q_{n}^{0, \delta}$ in Γ and it is a lexicographic best reply to $\bar{\Lambda}_{m}^{\delta}$. Let $l_{n}^{0, \delta}$ be the first level in $\bar{\Lambda}_{n}^{\delta}$ at which some strategy in $\bar{T}_{n}^{0}(\delta)$ appears with positive probability. Let $l_{n}^{1, \delta}$ be the first level of $\bar{\Lambda}_{n}^{\delta}$ at which some strategy in $S_{n}^{1} \cup \bar{T}_{n}^{1}(\delta)$ appears with positive probability.

From the LPS $\bar{\Lambda}_{n}^{\delta}$ construct an $\operatorname{LPS} \Lambda^{\delta}=\left(q_{n}^{0, \delta}, \ldots, q_{n}^{l_{n}, \delta}\right)$ for Γ where for each $l, q_{n}^{l, \delta}$ is an enabling strategy in Γ that is equivalent to $\bar{\sigma}_{n}^{l, \delta} \cdot q_{n}^{0, \delta}$ is a lexicographic best reply against Λ_{m}^{δ}. For each $w_{n}^{i} \in W_{n}^{i}$, the total probability under $\bar{\sigma}_{n}^{i l_{n}^{, \delta}}$ of the strategies in $T_{n}^{i}\left(\delta, p_{n}^{i}\left(w_{n}^{i}\right)\right)$ is the limit $\tilde{\sigma}_{o_{n, 1}^{i}}^{\delta}\left(w_{n}^{i}\right)$ of the sequence $\sigma_{o_{n, 1}}^{\varepsilon, \delta}\left(w_{n}^{i}\right)$. Since $p_{n}^{i}\left(\tilde{\sigma}_{o_{n, 1}^{i}}^{\delta}\right)$ is, by definition, $p_{n}^{i, \delta}$, we have that level $l_{n}^{i, \delta}$ is expressible as a convex combination $\lambda_{n}^{i, j} p_{n}^{i, \delta}+\left(1-\lambda_{n}^{i_{n}^{i}, \delta}\right) r_{n}^{l_{n}^{i}, \delta}$ with $\lambda_{n}^{l_{n}^{i}, \delta}>0$ and $r_{n}^{l_{n}^{i}, \delta} \in P_{n}$. Since $l_{n}^{1, \delta}$ is the first level of Λ^{δ} that does not have its support in $P_{n}^{0}, \bar{\pi}_{n}^{1}\left(q_{n}^{l_{n}^{1}, \delta}\right)$ equals $\pi_{n}^{1, \delta}$, which recall was computed from n 's strategy under \tilde{b}^{δ} in the third stage of his choice.

We claim that for each $l \leqslant l_{n}^{0, \delta}, q_{n}^{l, \delta}$ induces the equilibrium outcome against $q_{m}^{0, \delta}$. Indeed, since $q_{m}^{0, \delta}$ belongs to Q^{*}, and the strategies in $T_{n}^{0}(\delta)$ always implement some strategy in P_{n}^{0} regardless of the choice of outsider $o_{n, 1}^{0}$, all the strategies in $T_{n}^{0}(\delta)$ are optimal against $q_{m}^{0, \delta}$. By quasi-perfection, this implies that every strategy in \bar{S}_{n} that appears at a level $l \leqslant l_{n}^{0, \delta}$ of $\bar{\Lambda}_{n}^{\delta}$ must be a best reply to $q_{m}^{0, \delta}$. Thus for all $l \leqslant l_{n}^{0, \delta}, q_{n}^{l, \delta}$ is a best reply to $q_{m}^{0, \delta}$. Since $q_{m}^{0, \delta}$ is a lexicographic best reply to $\Lambda_{n}^{\delta},\left(\tilde{q}_{n}(\varepsilon), q_{m}^{0, \delta}\right)$ is an equilibrium of the game Γ for all small ε, where

$$
\tilde{q}_{n}(\varepsilon)=(1-\varepsilon) q_{n}^{0, \delta}+\varepsilon\left((1-\varepsilon) q_{n}^{1, \delta}+\varepsilon^{2}\left((1-\varepsilon) q_{n}^{2, \delta}+\varepsilon^{3}\left(\cdots+\varepsilon^{l_{n}^{0, \delta}} q_{n}^{0_{n}^{0, \delta}}\right) .\right.\right.
$$

By genericity of payoffs, Γ has finitely many equilibrium outcomes, so each of these equilibria induces the same equilibrium outcome - hence the claim follows. Three implications of this claim are: (i) $l_{n}^{1, \delta}>l_{n}^{0, \delta}$; (ii) the enabling strategy $r_{n}^{l_{n}^{1, \delta}}$ in the previous paragraph belongs to P_{n}^{0}; (iii) all levels up to $l_{n}^{0, \delta}$ prescribe the same mixture at each information set on the equilibrium path and differ only at information sets excluded by (all of) m's equilibrium strategies in \bar{Q}_{m}^{*}, which is the ρ_{m}-image of the component $\bar{\Sigma}_{m}^{*}$ of equilibria.
5.9. Limit of the Lexicographic Probability System. Take a subsequence of the δ 's such that the following properties hold for the associated LPSs Λ_{n}^{δ} for each n : (i) $l_{n}^{i, \delta}$ is independent of δ for each i, call it l_{n}^{i}; (ii) for each $l \leqslant l_{n}^{1}$, the face of P_{n} that contains $q_{n}^{l, \delta}$ in its interior, as well as the strategies for m that are best replies to $q_{n}^{l, \delta}$, are independent of δ.

Let $\sigma_{n}^{l_{n}^{1}, \delta}$ be a sequence of strategies in Σ_{n} that is equivalent to the sequence $q_{n}^{l_{n}^{1}, \delta}$. Again using Blume, Brandenburger, and Dekel [1, Appendix Proposition 2], there is now an LPS $\left(\sigma_{n}^{l_{n}^{1}, 0}, \ldots, \sigma_{n}^{l_{n}^{1}, k_{n}}\right)$ and a sequence $\left(\mu_{0}(\delta), \ldots, \mu_{k_{n}-1}(\delta)\right) \in \mathbb{R}^{k_{n}}$ converging to zero such that for a subsequence of δ 's, $\sigma_{n}^{l_{n}^{1}, \delta}$ is expressible as the nested combination
$\sigma_{n}^{l_{n}^{1}, \delta}=\left(1-\mu_{0}(\delta)\right)\left(\sigma_{n}^{l_{n}^{1}, 0}+\mu_{0}(\delta)\left(\left(1-\mu_{1}(\delta)\right) \sigma_{n}^{l_{n}^{1}, 1}+\mu_{1}(\delta)\left(\left(1-\mu_{2}(\delta)\right) \sigma_{n}^{l_{n}^{1}, 2}+\cdots+\mu_{k_{n}-1}(\delta) \sigma_{n}^{l_{n}^{1}, k_{n}}\right)\right)\right.$
This LPS induces an equivalent $\operatorname{LPS}\left(q_{n}^{l_{n}^{1}, 0}, \ldots, q_{n}^{l_{n}^{1}, k_{n}}\right)$ in enabling strategies.
Let k_{n}^{1} be the first level k of this LPS where $q_{n}^{l_{n}^{1}, k}$ does not belong to P_{n}^{0}. Recall from the previous section that $q_{n}^{l_{n}^{1}, \delta}$ is expressible as a convex combination $\lambda_{n}^{l_{n}^{1}, \delta} p_{n}^{1, \delta}+\left(1-\lambda_{n}^{l_{n}^{1}, \delta}\right) r_{n}^{l_{n}^{1}, \delta}$ and that $\bar{\pi}_{n}^{1}\left(q_{n}^{l_{n}^{1}, \delta}\right)=\pi_{n}^{1, \delta}$. Express $r_{n}^{l_{n}^{1}, \delta}$ as a convex combination $\alpha_{n}^{0, \delta} r_{n}^{0, \delta}+\alpha_{n}^{1, \delta} r_{n}^{1, \delta}$, where for $i=0,1, r_{n}^{i, \delta} \in P_{n}^{i}$. Then $\lambda_{n}^{l_{n}^{1}, \delta}+\left(1-\lambda_{n}^{l_{n}^{1}, d}\right) \alpha_{n}^{1, \delta}>0$ since $q_{n}^{l_{n}^{1}, k}$ does not belong to P_{n}^{0}. Going to a subsequence, let λ_{n}^{1} be the limit of $\left(\lambda_{n}^{l_{n}^{1}, \delta}+\left(1-\lambda_{n}^{l_{n}^{1}, \delta}\right) \alpha_{n}^{1, \delta}\right)^{-1} \lambda_{n}^{l_{n}^{1}, \delta}$ and let $r_{n}^{1,0}$ be the limit of $r_{n}^{1, \delta}$. Since the limit of $p_{n}^{1, \delta}$ is $p_{n}^{1,0}$, we have that $q_{n}^{l_{n}^{1}, k_{n}^{1}}$ is expressible as a convex combination $\zeta_{n}\left(\lambda_{n}^{1} p_{n}^{1,0}+\left(1-\lambda_{n}^{1}\right) r_{n}^{1,0}\right)+\left(1-\zeta_{n}\right) \check{p}_{n}^{0}$ for some $\zeta_{n}>0$ and $\check{p}_{n}^{0} \in P_{n}^{0}$. Moreover, since $\pi_{n}^{1,0}$ is the limit of $\pi_{n}^{1, \delta}, \bar{\pi}_{n}^{1}\left(q_{n}^{l}, k_{n}^{1}\right)=\pi_{n}^{1,0}$.

For each δ in the subsequence used above, define now an $\operatorname{LPS} \hat{\Lambda}_{n}^{\delta}=\left(\hat{q}_{n}^{0, \delta}, \ldots, \hat{q}_{n}^{1}+k_{n}^{1}+1, \delta\right)$ as follows: $\hat{q}_{n}^{0, \delta}=q_{n}^{0,0}, \hat{q}_{n}^{l, \delta}=q_{n}^{l-1, \delta}$ if $0<l \leqslant l_{n}^{1}$, and $\hat{q}_{n}^{l, \delta}=q_{n}^{l_{n}^{1}, l-l_{n}^{1}-1}$ otherwise. The strategy $\hat{q}_{n}^{l, \delta}$ is independent of δ for $l=0$ and $l \geqslant l_{n}^{1}$. Each level $l<l_{n}^{1}+k_{n}^{1}+1$ is a strategy in P_{n}^{0}. $\hat{q}_{n}^{l_{n}^{0}+1, \delta}$ is a convex combination $\lambda_{n}^{l_{n}^{0}, \delta} p_{n}^{0, \delta}+\left(1-\lambda_{n}^{l_{n}^{0}, \delta}\right) r_{n}^{l_{n}^{0}, \delta}$ while $\hat{q}_{n}^{l_{n}^{1}+k_{n}^{1}+1, \delta}$ is a convex combination $\zeta_{n}\left(\lambda_{n}^{1} p_{n}^{1,0}+\left(1-\lambda_{n}^{1}\right) r_{n}^{1,0}\right)+\left(1-\zeta_{n}\right) \check{p}_{n}^{0}$ where $\zeta_{n}>0$ and $\bar{\pi}_{n}^{1}\left(\hat{q}_{n}^{1}+k_{n}^{1, \delta}\right)=\pi_{n}^{1,0}$. The next lemma sets out the key properties of $\hat{\Lambda}_{n}^{\delta}$ that lead to a conclusion of our proof.

Lemma 5.3. For all small δ, the LPS $\hat{\Lambda}_{n}^{\delta}$ satisfies the following properties.
(1) A strategy is at least as good a reply against Λ_{n}^{δ} as another only if it is at least as good a reply against $\hat{\Lambda}_{n}^{\delta}$.
(2) If $\lambda_{n}^{1}<1$, then the strategy $r_{n}^{1,0}$ is a best reply to $q_{m}^{0,0}$ and is at least as good a reply lexicographically against Λ_{m}^{δ} as every strategy in S_{n}^{1}.
(3) $\lambda_{n}^{1}>0$ and every level $l<l_{n}^{1}+k_{n}^{1}+1$ induces the equilibrium outcome against $q_{m}^{0,0}$.
(4) The strategy $\hat{q}_{n}^{l, \delta}$ for $l<l_{n}^{0}$ and the strategy $r_{n}^{l_{n}^{0}, \delta}$ if $\lambda_{n}^{l_{n}^{0}, \delta}<1$ are lexicographic best replies against \hat{q}_{m}^{δ}.

Proof of Lemma. Suppose s_{m} is a better reply against $\hat{\Lambda}_{n}^{\delta}$ than another strategy t_{m}. We show that s_{m} is also a better reply against Λ_{n}^{δ}. Let l be the first level of $\hat{\Lambda}_{n}^{\delta}$ such that s_{m} is a better reply against $\hat{q}_{m}^{l, \delta}$ than t_{m}. If $l=0$ then for all small δ, s_{m} is a better reply against $q_{n}^{0, \delta}$ since $\bar{q}_{n}^{0, \delta}$ equals the limit $q_{n}^{0,0}$ of $q_{n}^{0, \delta}$; thus against $\Lambda_{n}^{\delta}, t_{m}$ is a worse reply against the very first level. If $0<l<l_{n}^{1}+1$ then obviously s_{m} is better reply against Λ_{n}^{δ} than t_{m} since level l of $\bar{\Lambda}_{n}^{\delta}$ corresponds to level $l-1$ of Λ_{n}^{δ}. Suppose then that $l_{n}^{1}+1 \leqslant l \leqslant l_{n}^{1}+k_{n}^{1}+1$. Then for all small δ, s_{m} is a better reply against $q_{n}^{l_{n}^{1}, \delta}$ since $q_{n}^{l_{n}^{1}, \delta}$ is a nested combination of $\left(q_{n}^{l_{n}^{1}, 0}, \ldots, q_{n}^{l_{n}^{1}, k_{n}}\right)$. Thus, s_{m} is a better reply against Λ_{n}^{δ}. This proves (1).

In the game $\tilde{\Gamma}^{\delta}$ player n, when finally making a choice among the strategies in $S_{n}^{1} \cup T_{n}^{1}(\delta)$, would choose a strategy s_{n} in S_{n}^{1} with positive probability only if it is at least as good a reply against Λ_{n}^{δ} as the other strategies in S_{n}^{1}. Therefore, such a strategy would show up with positive probability under level l_{n}^{1} of $\tilde{\Lambda}_{n}^{\delta}$ (and hence in $\bar{\Lambda}_{n}^{\delta}$) only if this is the case. This implies that if $\left(1-\mu_{n}^{l, \delta}\right) \alpha_{n}^{1}$ is positive, then the strategy $r_{n}^{1, \delta}$ is at least as good a reply against Λ_{n}^{δ} as the strategies in S_{n}^{1}. Recall that $r_{n}^{1,0}$ is the limit of $r_{n}^{1, \delta}$ and λ_{n}^{1} is the limit of $\left(\mu_{n}^{l_{n}^{1}, \delta}+\left(1-\mu^{l_{n}^{1}, \delta}\right) \alpha_{n}^{1, \delta}\right)^{-1} \mu_{n}^{l_{n}^{1}, \delta}$. Therefore, by point (1) of this lemma, $r_{n}^{1,0}$ is at least as good a reply against $\hat{\Lambda}_{n}^{\delta}$ as strategies in S_{n}^{1} if $\lambda_{n}^{1}<1$. To show that it is also a best reply against $q_{m}^{0,0}$, suppose to the contrary that it is not. Then every strategy in $T_{n}^{1}(\delta)$, regardless of outsider $o_{n, 1}^{1}$'s choice, is a better reply against $q_{m}^{0, \delta}$ for all small δ, since for $\delta=0$ these strategies are in P_{n}^{0}, which are best replies to $q_{m}^{0,0}$. Therefore, quasi-perfection implies that n would prefer to play the strategies in $T_{n}^{1}(\delta)$ rather than implementing $r_{n}^{1,0}$ (or $r_{n}^{1, \delta}$ when δ is small), which shows that $\left(1-\mu^{l_{n}^{1}, \delta}\right) \alpha_{n}^{l, \delta}=0$ for all small δ and hence that $\lambda_{n}^{1}=1$. This proves (2).

We turn now to (3). Every strategy $\hat{q}_{n}^{l, \delta}$ for $l<l_{n}^{1}+k_{n}^{1}+1$ belongs to P_{n}^{0} and is thus optimal against $q_{m}^{0,0}$, which belongs to Q_{m}^{*}. The strategy \check{p}_{n}^{0} (which recall is part of the expression defining $q_{n}^{l_{n}^{1}, k_{n}^{1}}$) which is chosen with positive probability is also in P_{n}^{0} and hence optimal against $q_{m}^{0,0}$. As we saw in the previous paragraph, if $\lambda_{n}^{1}<1$, the strategy r_{n}^{1} must also be optimal against $q_{m}^{0,0}$. Obviously $q_{m}^{0,0}$ is optimal against $\hat{\Lambda}_{n}^{\delta}$ since it is the limit of $q_{m}^{0, \delta}$, which by point (1) is optimal against $\hat{\Lambda}_{n}^{\delta}$. Therefore, for all small $\varepsilon,\left(q_{m}^{0,0}, q_{n}(\varepsilon)\right)$ is an equilibrium
of Γ, where

$$
\tilde{q}_{n}(\varepsilon)=\left(\sum_{l=0}^{l_{n}^{1}+k_{n}^{1}} \varepsilon^{l}+\left(1-1_{\lambda_{n}^{1}>0}\right) \varepsilon^{l_{n}^{1}+k_{n}^{1}+1}\right)^{-1}\left(\sum_{l=0}^{l_{n}^{1}+k_{n}^{1}} \varepsilon^{l} \hat{q}_{n}^{l, \delta}+\left(1-1_{\lambda_{n}^{1}>0}\right) \varepsilon^{l_{n}^{1}+k_{n}^{1}+1} \hat{q}_{n}^{l_{n}^{1}+k_{n}^{1}+1}\right)
$$

where $1_{\lambda_{n}^{1}>0}$ is the indicator function. This is impossible if $\lambda_{n}^{1}=0$, since $\hat{q}_{n}^{1}+k_{n}^{1}+1$ is a convex combination of a strategy in P_{n}^{0} and one in P_{n}^{1}. Thus $\lambda_{n}^{1}>0$. Moreover, since this is a continuum of equilibria, genericity implies that all of them induce the same outcome. Therefore, all strategies at levels preceding $l_{n}^{1}+k_{n}^{1}+1$ induce the equilibrium outcome against $q_{m}^{0,0}$.

Lastly we prove (4). By the previous paragraph, all strategies in P_{n}^{0} are optimal against $\hat{q}_{m}^{k, \delta}$ for $k \leqslant l_{m}^{1}+k_{m}^{1}$. Thus the optimality of a strategy in P_{n}^{0} depends on how it fares against $\hat{q}_{m}^{1}+k_{m}^{1}+1$. If a strategy $s_{n} \in S_{n}^{0}$ is not optimal against this strategy, then for all small δ, some strategy in $T_{n}^{0}(\delta)$ is a superior reply to $\hat{q}_{m}^{l} l_{m}^{1}, k_{m}^{1}$ regardless of what outsider $o_{n, 1}^{0}$'s choice is. Thus, such a duplicate strategy is a better reply against Λ_{m}^{δ} than s_{n}. Therefore, in the quasi-perfect equilibrium of Γ^{δ}, player n when given a choice of actually implementing s_{n} will prefer this duplicate strategy in $T_{n}^{0}(\delta)$, i.e. the probability of s_{n} is zero for all $l \leqslant l_{n}^{0}$ in Λ_{n}^{δ}. Point (4) now follows.
5.10. Final Step of the Proof. Fix a small δ that satisfies the properties enumerated in Lemma 5.3 of the previous subsection. Let

$$
\begin{aligned}
& \bar{q}_{n}^{0}(\varepsilon)=\left(\sum_{l \leqslant l_{n}^{0}+1} \varepsilon^{l}\right)^{-1}\left(\sum_{l \leqslant l_{n}^{0}+1} \varepsilon^{l} \hat{q}_{n}^{l, \delta}\right) \\
& \bar{q}_{n}^{1}(\varepsilon)=\left(\sum_{l=l_{n}^{0}+2}^{l=} \varepsilon^{l}\right)^{-1}\left(\sum_{l=l_{n}^{0}+2}^{l+k_{n}^{1}+1} \varepsilon^{l} \hat{q}_{n}^{l, \delta}\right)
\end{aligned}
$$

Observe that $\bar{q}_{n}^{0}(\varepsilon)$ belongs to P_{n}^{0} for all ε and it is a convex combination of $p_{n}^{0, \delta}$ and a subset R_{n}^{0} of strategies that are at least as good replies against $\hat{\Lambda}_{m}^{\delta}$ as other strategies in S_{n}^{0}. Likewise $\bar{q}_{n}^{1}(\varepsilon)$ is a convex combination of p_{n}^{1}, r_{n}^{1} and a point in P_{n}^{0} such that the strategy r_{n}^{1} if it has a positive weight is at least as good a reply against $\hat{\Lambda}_{m}^{\delta}$ as other strategies in P_{n}^{1}. There exists a small ε such that a strategy s_{m} is at least as good as a strategy t_{m} against $\hat{\Lambda}_{n}^{\delta}$ iff it is lexicographically at least as good a reply against the $\operatorname{LPS}\left(q^{0}, \bar{q}_{n}^{0}(\varepsilon), \bar{q}_{n}^{1}(\varepsilon)\right)$. Since $\bar{\pi}_{n}^{1}\left(\bar{q}_{n}^{1}(\varepsilon)\right)=\bar{\pi}_{n}^{1}\left(q_{n}^{1,0}\right)=\pi^{1,0}$ for all ε, it follows that $\left(q^{0},\left(p^{0, \delta}, p^{1,0}\right), \pi^{1,0}\right)$ belongs to \mathcal{Q}. As we noted earlier, proving that this point belongs to \mathcal{Q} shows that in fact it belongs to $U\left(x^{*}\right)$ and hence that q^{0} in $U\left(q^{0, *}\right)$, which completes the proof.

Remark 5.4. In the case where S_{n}^{1} is empty for exactly one player n, as we said initially in the description of \mathbb{P} and \mathcal{Q}, we do not have the factor P_{n}^{1} or Π_{n}^{1}. In the family of games $\Gamma(\delta, \hat{p})$, player n decides provisionally in the first stage on the strategy in S_{n} to play and in the second stage gets to execute it or switch to playing a strategy in $T_{n}(\delta, \hat{p})$. In the metagame, we do not have outsiders $o_{n, j}^{1}$ for $j=1,2,3$. The rest of the analysis is essentially the same modulo these provisions.

6. Concluding Remarks

Like our previous paper [10] on forward induction, the characterization in this paper is a step toward a theory of equilibrium refinement using axioms adapted from decision theory. Theorem 5.1 is confined to games in extensive form with perfect recall, two players, and generic payoffs, but it suggests that an extension to more general games might be possible. We hope also that Axiom B can be weakened to require only that a solution contains a sequential equilibrium for which each player's strategy is conditionally admissible from each of his information sets - thus keeping the axioms entirely within standard decision theory.

Previously, some proposed refinements selected equilibria with one or more desirable properties, like admissibility, subgame perfection, or sequential rationality. Other proposed refinements derived some properties from limits of equilibria of perturbed games, such as perfect, quasi-perfect, and proper equilibria. In the latter approach, a key step forward was Kohlberg and Mertens' [14] argument that an axiomatic development requires set-valued refinements. Their program achieved remarkable success with Mertens' [19] definition of a stable set, which has the desirable properties 1, 2, 3 listed in Section 1 and others too, such as ordinality and immunity to splitting players into agents.

However, an axiomatic theory of refinement should be based on basic principles of rational behavior in the game at hand, as in decision theory. This precludes reliance on perturbed games obtained by perturbing players' sets of feasible strategies. The challenge, therefore, has been to establish why consideration of perturbed games yields the requisite decisiontheoretic properties.

Our answer here begins with Axiom S, which generalizes the invariance criterion of Kohlberg and Mertens' [14] and the small worlds criterion of Mertens' [21], as explained in Section 3.3. Absent a strong invariance property like Axiom S, a refinement is vulnerable to 'framing effects' depending on wider contexts in which the given game might be embedded. In decision theory, such effects were examined by Savage [28], and in cognitive psychology they play a prominent role in interpreting decisions by subjects in experiments, as for instance in Kahneman and Tversky [13]. For a theory of thoroughly rational behavior, however, an
axiom should exclude framing effects. Axiom S does this by requiring a solution of a game to be consistent with the solution of any metagame in which it is embedded. As shown in Proposition 3.4, it is already true of any equilibrium that it is consistent with an equilibrium of any metagame in which the game is embedded. Axiom S merely extends to refinements this fundamental invariance property of equilibria.

Our answer continues with the proof of Theorem 4.1 in Appendix B. There it is shown that a set Q^{*} of equilibria in enabling strategies is stable iff the corresponding projection map from the pseudomanifold \mathcal{Q} to the space \mathbb{P} of enabling strategies is essential. Using this key property, the proof of Theorem 5.1 shows that for each equilibrium in a component of undominated equilibria there exists a corresponding metagame for which the equilibrium is the image of a quasi-perfect equilibrium in the metagame if and only if the projection map is essential. Hence Axioms A, B, S imply that a solution is a stable set, and conversely due to Mertens' previous proofs.

The answer to the 'why' question above is thus that, given Axioms A and B, stability with respect to perturbed games is equivalent to an analogous 'stability' with respect to embeddings in metagames, as required by Axiom S. Because in practice every game is embedded in some wider context, we view Axiom S's requirement that a refinement is immune to presentation effects as the relevant criterion from the perspective of decision theory. This view is reinforced by the facts that Nash equilibria satisfy Axiom S, and that together with Axioms A and B, the implied refinement agrees with stability based on perturbed games.

For a refinement satisfying the axioms, Theorem 5.1 establishes that a solution of a game must be a component of its undominated equilibria, and that the component must be essential. Because payoffs are assumed to be generic, all equilibria in the component have the same paths of equilibrium play and thus the same distribution of outcomes. Therefore the main implication for equilibrium refinements is that a predicted outcome distribution should result from equilibria in an essential component of undominated equilibria, and in particular, from the sequential equilibria it necessarily contains.

A secondary implication is that after deviations from equilibrium play, the continuations of all equilibria in the component remain admissible and sequentially rational, where those that are not sequential equilibria of the original game are justified by beliefs induced by quasiperfect equilibria of corresponding metagames that embed the given game. This provides one resolution of the conundrum posed by Reny [25, 26, 27].

Figure 1. A game tree and its pure reduced normal form in which each pure strategy is identified by the terminal nodes it does not exclude.

Appendix A. Enabling Strategies

In the normal-form representation of a game in extensive form, a player's pure strategy specifies the action chosen at each of his information sets in the game tree. However, outcomes are not affected by a strategy's actions at information sets excluded by his previous actions. One therefore considers equivalence classes of pure strategies. Say that two pure strategies are outcome equivalent if the sets of terminal nodes they do not exclude are the same. For instance, the game in Figure 1 is shown on the left side in extensive form and on the right side in the 'pure reduced normal form' (PRNF) introduced by Mailath, Samuelson, and Swinkels [18]. In the PRNF, each outcome-equivalent class of player 1's pure strategies is identified by the terminal nodes it does not exclude, as indicated by labels of rows along the left side; and each equivalence class of player 2's pure strategies is identified by the terminal nodes it does not exclude, as indicated by labels of columns along the top. Because this game has no moves by Nature, each row and column determine a unique outcome that is the intersection of the row and column labels, shown as the corresponding entry in the matrix.

A similar example is shown in Figure 2 for the game tree of a signaling game. In this case, each profile of pure strategies determines a pair of outcomes such that the first or second outcome occurs depending on whether Nature's initial move is up or down. For instance, the outcome of 1's strategy $a b c d$ and 2's strategy $a c e g$ is a with probability p and c with probability $1-p$.

Say that a terminal node that is not excluded is an enabled outcome. A pure strategy of a player enables outcome z if it chooses all his actions on the path to z. A player's mixed strategy randomizes over his pure strategies, whereas a behavioral strategy randomizes over

Figure 2. The game tree of a signaling game and its pure reduced normal form in which each pure strategy is identified by the terminal nodes it does not exclude.
actions at each of his information sets. A strategy of either kind induces a probability distribution over outcome-equivalent classes of his pure strategies, and thus a distribution over enabled outcomes. Such a distribution is called an enabling strategy. A point $p_{n} \in[0,1]^{Z}$ is an enabling strategy for player n if it is the distribution over enabled outcomes induced by some mixed or behavioral strategy, i.e. $p_{n}(z)$ is the mixed strategy's probability of those pure strategies that enable outcome z. The vertices of the polyhedron P_{n} of n 's enabling strategies correspond to outcome-equivalent classes of n 's pure strategies in the PRNF, as in Figures 1 and 2. Enabling strategies are minimal representations of strategic behavior in games with perfect recall. ${ }^{9}$

Let $p_{*}(z)$ be the probability that Nature's strategy enables outcome z, which is 1 if Nature has no moves. Then for each profile $p \in P=\prod_{n} P_{n}$ of players' enabling strategies, the probability that outcome z results is $\gamma_{z}(p)=p_{*}(z) \prod_{n} p_{n}(z)$, because Nature and the players randomize independently. The extensive form is therefore summarized by the multilinear function $\gamma: P \rightarrow \Delta(Z) \subset \mathbb{R}^{Z}$ that assigns to each profile of players' enabling strategies a distribution over terminal nodes, including the effect of Nature's enabling strategy. Player n 's expected payoff is $\mathcal{G}_{n}(p)=\sum_{z} \gamma_{z}(p) u_{n}(z)$. The game Γ is therefore summarized by the multilinear function $\mathcal{G}: P \rightarrow \mathbb{R}^{N}$ that assigns to each profile of players' enabling strategies their expected payoffs. This summary specification is called the enabling form of the game.

Appendix B. Proofs of Propositions

B.1. Proof of Proposition 3.3. A multilinear map $f_{n}: \tilde{\Sigma}_{n} \times \Sigma_{o} \rightarrow \Sigma_{n}$ is completely specified by its values at profiles of pure strategies. We use \hat{f}_{n} to denote the restriction of f_{n} to the set $\tilde{S}_{n} \times S_{o}$ of profiles of pure strategies.

[^5]Proposition B.1. \tilde{G} embeds G via a collection of multilinear maps $f=\left(f_{n}\right)_{n \in N}$ if and only if for each player n there exists $\tilde{T}_{n} \subseteq \tilde{S}_{n}$ and a bijection $\pi_{n}: \tilde{T}_{n} \rightarrow S_{n}$ such that for each $\left(\tilde{s}, s_{o}\right) \in \tilde{S} \times S_{o}$ and $\tilde{t}_{n} \in \tilde{T}_{n}$:
(1) $\hat{f}_{n}\left(\tilde{t}_{n}, s_{o}\right)=\pi_{n}\left(\tilde{t}_{n}\right)$,
(2) $\tilde{G}_{n}\left(\tilde{s}, s_{o}\right)=G_{n}\left(\hat{f}\left(\tilde{s}, s_{o}\right)\right)$, where $\hat{f}=\left(\hat{f}_{n}\right)_{n \in N}$.

Proof. Suppose we have a game $\tilde{G}: \tilde{\Sigma} \times \Sigma_{o} \rightarrow \mathbb{R}^{N \cup o}$ and a collection of multilinear maps $f_{n}: \tilde{\Sigma}_{n} \times \Sigma_{o} \rightarrow \Sigma_{n}$, one for each $n \in N$, such that conditions (1) and (2) of the proposition are satisfied. Then, by condition (1) and multilinearity of f_{n} for each n, for each fixed $\sigma_{o}, f_{n}\left(\cdot, \sigma_{o}\right)$ is surjective because it maps the face spanned by \tilde{T}_{n} homeomorphically onto Σ_{n}. Also, condition (2) and multilinearity of each f_{n} imply that $\tilde{G}=G \circ f$. According to Definition 3.2, therefore, (\tilde{G}, f) embeds G.

Now suppose that (\tilde{G}, f) embeds G. Let σ_{o} be a profile of completely mixed strategies for outsiders. Because f_{n} is multilinear it induces a linear mapping $f_{n}\left(\cdot, \sigma_{o}\right)$ from $\tilde{\Sigma}_{n}$ to Σ_{n} that, by the definition of an embedding, is surjective. Hence, for each $s_{n} \in S_{n}$ there exists a pure strategy $\tilde{t}_{n}\left(s_{n}\right)$ in \tilde{S}_{n} that is mapped to s_{n} by this linear map. We claim that $f_{n}\left(\tilde{t}_{n}\left(s_{n}\right), s_{o}\right)=$ s_{n} for all $s_{o} \in S_{o}$. Indeed, observe that $f_{n}\left(\tilde{t}_{n}\left(s_{n}\right), \sigma_{o}\right)=\sum_{s_{o}} f_{n}\left(\tilde{t}_{n}\left(s_{n}\right), s_{o}\right) \sigma_{o}\left(s_{o}\right)$, where for each $s_{o}, \sigma_{o}\left(s_{o}\right)$ is the probability of s_{o} under σ_{o}. Therefore, since σ_{o} is completely mixed, if $f_{n}\left(\tilde{t}_{n}\left(s_{n}\right), s_{o}\right) \neq s_{n}$ for some s_{o} then $f_{n}\left(\tilde{t}_{n}\left(s_{n}\right), \sigma_{o}\right)$, which is an average of values at vertices of S_{o}, cannot be s_{n}. Thus, $f_{n}\left(\tilde{t}_{n}\left(s_{n}\right), s_{o}\right)=s_{n}$ for all s_{o}. Let $\tilde{T}_{n} \subset \tilde{S}_{n}$ be a collection comprising a different pure strategy $\tilde{t}_{n}\left(s_{n}\right)$ for each $s_{n} \in S_{n}$ and let π_{n} be the associated bijection. Define $\hat{f}_{n}: \tilde{S}_{n} \times S_{o} \rightarrow \Sigma_{n}$ by $\hat{f}_{n}\left(\tilde{s}_{n}, s_{o}\right)=f_{n}\left(\tilde{s}_{n}, s_{o}\right)$. Then conditions (1) and (2) of the proposition are satisfied.

B.2. Proof of Proposition 3.4.

Proposition B.2. If (\tilde{G}, f) embeds G then the equilibria of G are the f-images of the equilibria of \tilde{G}.

Proof. Suppose ($\tilde{\sigma}, \sigma_{o}$) is an equilibrium of \tilde{G} and let $\sigma=f\left(\tilde{\sigma}, \sigma_{o}\right)$. For any insider n and his strategy $\tau_{n} \in \Sigma_{n}$ there exists $\tilde{\tau}_{n} \in \tilde{\Sigma}_{n}$ such that $f_{n}\left(\tilde{\tau}_{n}, \sigma_{o}\right)=\tau_{n}$ because $f_{n}\left(\cdot, \sigma_{o}\right)$ is surjective by condition (a) of Definition 3.2 an embedding. Using condition (b),

$$
G_{n}\left(\tau_{n}, \sigma_{-n}\right)=G_{n}\left(f\left(\tilde{\tau}_{n}, \tilde{\sigma}_{-n}, \sigma_{o}\right)\right)=\tilde{G}_{n}\left(\tilde{\tau}_{n}, \tilde{\sigma}_{-n}, \sigma_{o}\right) \leqslant \tilde{G}_{n}\left(\tilde{\sigma}, \sigma_{o}\right)=G_{n}\left(f\left(\tilde{\sigma}, \sigma_{o}\right)\right)=G_{n}(\sigma)
$$

where the inequality obtains because ($\tilde{\sigma}, \sigma_{o}$) is an equilibrium of \tilde{G}. Hence σ is an equilibrium of G.

Conversely, suppose σ is an equilibrium of G. For each n, let π_{n} be the bijection given by Proposition 3.3. Let $\tilde{\sigma}_{n}$ be the strategy for insider n in \tilde{G} defined by $\tilde{\sigma}_{n}\left(\tilde{t}_{n}\right)=\sigma_{n}\left(\pi_{n}\left(\tilde{t}_{n}\right)\right)$ for $\tilde{t}_{n} \in \tilde{T}_{n}$ and $\tilde{\sigma}_{n}\left(\tilde{s}_{n}\right)=0$ for $\tilde{s}_{n} \notin \tilde{T}_{n}$. Since f_{n} is multilinear, by condition (1) of Proposition 3.3, $f_{n}\left(\tilde{\sigma}_{n}, \cdot\right)=\sigma_{n}$ and thus $f(\tilde{\sigma}, \cdot)=\sigma$. Hence, it suffices to show that there exists a strategy profile σ_{o} for outsiders such that $\left(\tilde{\sigma}, \sigma_{o}\right)$ is an equilibrium of \tilde{G}. By fixing the profile of insiders' strategies to be $\tilde{\sigma}$ one induces a game among outsiders. Let σ_{o} be an equilibrium of this induced game among outsiders. To see that $\left(\tilde{\sigma}, \sigma_{o}\right)$ is an equilibrium of \tilde{G}, observe that for each pure strategy \tilde{s}_{n} of an insider n :

$$
\tilde{G}_{n}\left(\tilde{s}_{n}, \tilde{\sigma}_{-n}, \sigma_{o}\right)=G_{n}\left(f_{n}\left(\tilde{s}_{n}, \sigma_{o}\right), \sigma_{-n}\right) \leqslant G_{n}(\sigma)=G_{n}\left(f\left(\tilde{\sigma}, \sigma_{o}\right)\right)=\tilde{G}_{n}\left(\tilde{\sigma}, \sigma_{o}\right)
$$

where the first and second equalities use the property $f(\tilde{\sigma}, \cdot)=\sigma$ established above, and the inequality obtains because σ is an equilibrium of G.

Appendix C. Proof of Theorem 4.1

Theorem C.1. $(\mathcal{Q}, \partial \mathcal{Q})$ is a pseudomanifold of the same dimension as $(\mathbb{P}, \partial \mathbb{P})$. Moreover, $\psi:(\mathcal{Q}, \partial \mathcal{Q}) \rightarrow(\mathbb{P}, \partial \mathbb{P})$ is an essential map iff Q^{*} is stable.

Proof. The proof invokes genericity of payoffs by assuming that certain points and polyhedra, identified as they arise during the proof, are in general position. See Appendix D for elaboration of the character of these genericity requirements.

For any set X, we write $d(X)$ for its dimension. For any subset T_{n} of S_{n}, let $P_{n}\left(T_{n}\right)$ be the convex hull (in P_{n}) of the strategies in T_{n}. For simplicity, we write $d\left(T_{n}\right)$ for $d\left(P_{n}\left(T_{n}\right)\right.$). See Sections 4.4 and 4.5 for additional notation used below.

For any vertex π_{n}^{1} of Π_{n}^{1}, let $S_{n}^{1}\left(\pi_{n}^{1}\right)$ be the set of pure strategies that map to π_{n}^{1}. For any face Ψ_{n}^{1} of Π_{n}^{1}, let $S_{n}^{1}\left(\Psi_{n}^{1}\right)$ be the set of strategies s_{n}^{1} such that $\bar{\pi}_{n}^{1}\left(s_{n}^{1}\right) \in \Psi_{n}^{1}$.

Let H_{n}^{0} be the set of information sets $h_{n} \in H_{n} \backslash H_{n}^{*}$ of player n such that at the last information set $h_{n}^{\prime} \in H_{n}^{*}$ that precedes h_{n}, the action there leading to h_{n} belongs to A_{n}^{*}, which is the set of his equilibrium actions. If a subset T_{n}^{0} of S_{n}^{0} is such that $P_{n}\left(T_{n}^{0}\right)$ contains an equilibrium in \bar{Q}_{n}^{*}, then for each first information set $h_{n} \in H_{n}^{0}$ there exists a strategy in T_{n}^{0} that enables h_{n}. Let $H_{n}^{1}=H_{n} \backslash\left(H_{n}^{*} \cup H_{n}^{0}\right)$.

Lemma C.2. Suppose T_{n}^{0} is a subset of strategies in S_{n}^{0} such that $P_{n}\left(T_{n}^{0}\right)$ contains an equilibrium q_{n}^{*} in \bar{Q}_{n}^{*}. If the strategies in T_{n}^{0} are at least as good replies against $p_{m}^{0} \in P_{m}^{0}$ as other strategies in S_{n}^{0}, then all the strategies in S_{n}^{0} are equally good replies against p_{m}^{0}.

Proof. Let Π_{n}^{*} be the projection of P_{n}^{0} to $\mathbb{R}^{Z^{*}}$, where Z^{*} is the set of terminal nodes reached with positive probability under the equilibria in \bar{Q}^{*}. Then $Z^{*}=Z_{n}^{0} \cap Z_{m}^{0}$. Consequently, the
payoff to a strategy s_{n}^{0} against p_{m}^{0} depends on s_{n}^{0} only through its projection to Π_{n}^{*}. Since the projection of q_{n}^{*}-which is at least as good a reply as the other strategies in S_{n}^{0} against p_{m}^{0} —belongs to the relative interior of Π_{n}^{*}, every strategy in S_{n}^{0} is a best reply against p_{m}^{0}.

Lemma C.3. Suppose that T_{n}^{0} is a subset of S_{n}^{0} such that $P_{n}\left(T_{n}^{0}\right)$ is a face of P_{n}^{0} containing an equilibrium strategy in \bar{Q}_{n}^{*}. For each $t_{n} \notin T_{n}^{0}$ there exists an information set $h_{n} \in H_{n}^{0}$ that t_{n} enables and where the action chosen by it is avoided by all $t_{n}^{0} \in T_{n}^{0}$ that enable h_{n}.

Proof. Since $P_{n}\left(T_{n}^{0}\right)$ is a face of P_{n}^{0}, which is itself a face of P_{n}, there exists a linear function $f: \mathbb{R}^{Z} \rightarrow \mathbb{R}$ that is zero on $P_{n}\left(T_{n}^{0}\right)$ and negative everywhere else on P_{n}. Fix p_{m} in the interior of P_{m} and define a payoff function \tilde{u}_{n} for n by the equation: $p_{0}(z) p_{m}(z) \tilde{u}_{n}(z)=f\left(e_{z}\right)$ where e_{z} is the z-th unit vector in \mathbb{R}^{Z}. Then when n 's payoff function is \tilde{u}_{n}, the strategies in $P_{n}\left(T_{n}^{0}\right)$ are the best replies against p_{m}. Take $t_{n} \notin T_{n}^{0}$. Since it is suboptimal against p_{m}, there exists an information set h_{n} where the action a chosen by t_{n} is suboptimal. Then h_{n} does not belong to H_{n}^{*} : indeed, since t_{n} belongs to S_{n}^{0}, a is an equilibrium action if $h_{n} \in H_{n}^{*}$; and since $P_{n}\left(T_{n}^{0}\right)$ contains an equilibrium strategy, there exists a strategy in T_{n}^{0} that enables such an h_{n} and chooses a. Let h_{n}^{\prime} be the last information set preceding h_{n} that belongs to H_{n}^{*}. Then obviously the action chosen by t_{n} at h_{n}^{\prime} is an equilibrium action and thus h_{n} belongs to H_{n}^{0}. Any strategy in T_{n}^{0} that enables h_{n} avoids a, which proves the lemma.

For the next lemma, it is worth recapitulating the exact definition of the set Π_{n}^{1}. Recall from Section 4.5 that we fix a completely mixed enabling strategy \bar{p}_{m} for player m and compute for each p_{n} the total probability $\eta\left(p_{n}\right)$ of reaching a terminal node in Z_{n}^{1} under $\left(\bar{p}_{m}, p_{n}\right) . \mathcal{H}_{n}$ is a hyperplane in $\mathbb{R}^{Z_{n}^{1}}$ that separates the projection $\psi_{Z_{n}^{1}}\left(P_{n}^{1}\right)$ of P_{n}^{1} to $\mathbb{R}^{Z_{n}^{1}}$ from the origin of $\mathbb{R}^{Z_{n}^{1}}$ and that has $\left(p_{0}(z) \bar{p}_{m}(z)\right)_{z \in Z_{n}^{1}}$ as its normal and some $\varepsilon>0$ as its constant. The function $\bar{\pi}_{n}^{1}$ maps each point $p_{n} \in P_{n} \backslash P_{n}^{0}$ to $\varepsilon\left(\eta\left(p_{n}\right)\right)^{-1} \psi_{Z_{n}^{1}}\left(p_{n}\right) \in \mathcal{H}_{n}$.

Lemma C.4. For a strategy s_{n} of $S_{n}^{1}, \bar{\pi}_{n}^{1}\left(s_{n}\right)$ is a vertex of Π_{n}^{1} iff there exists a unique information set $h_{n} \in H_{n}^{*}$ with the property that s_{n} enables h_{n} and chooses a non-equilibrium action there.

Proof. Let $s_{n} \in S_{n}^{1}$ be a pure strategy satisfying the condition of the lemma. We prove by contradiction that $\bar{\pi}_{n}^{1}\left(s_{n}\right)$ is a vertex of Π_{n}^{1}. Therefore suppose to the contrary that $\bar{\pi}_{n}^{1}\left(s_{n}\right)$, which equals $\varepsilon\left(\eta\left(p_{n}\right)\right)^{-1} \psi_{Z_{n}^{1}}\left(p_{n}\right)$, is not a vertex of Π_{n}^{1}. We can express $\bar{\pi}_{n}^{1}\left(s_{n}\right)$ as a unique convex combination $\sum_{j=1}^{J} \lambda^{j} \pi_{n}^{1, j}$ where $J>1$ and for each $1 \leqslant j \leqslant J, \pi_{n}^{1, j}$ is a vertex of Π_{n}^{1}. For each j, since $\pi_{n}^{1, j}$ is a vertex of Π_{n}^{1}, we can express $\pi_{n}^{1, j}$ as $\varepsilon\left(\eta\left(s_{n}^{1, j}\right)\right)^{-1} \psi_{Z_{n}^{1}}\left(s_{n}^{1, j}\right)$ for some $s_{n}^{1, j}$ in S_{n}^{1}. Since $\lambda^{j}>0, s_{n}^{1, j}$ cannot choose a non-equilibrium action at any $h_{n}^{\prime} \neq h_{n}$
in H_{n}^{*} that it enables; since it belongs to $S_{n}^{1, j}$ it must therefore enable h_{n}; and it cannot choose a different non-equilibrium action from s_{n} at h_{n}. Observe now that the probability $\eta\left(p_{n}\right)$ and $\eta\left(s_{n}^{1, j}\right)$ for all j are equal and exactly the probability that Nature and the strategy \bar{p}_{m} do not exclude h_{n}. Therefore, $\psi_{Z_{n}^{1}}\left(p_{n}\right)=\sum_{j} \lambda^{j} \psi_{Z_{n}^{1}}\left(s_{n}^{1, j}\right)$. Modify $s_{n}^{1, j}$ to a strategy $t_{n}^{1, j}$ so that at every information set other than the successors to $h_{n}, t_{n}^{1, j}$ agrees with s_{n}, and at the successors to h_{n} it agrees with $s_{n}^{1, j}$. It is now clear that when viewed as enabling strategies, $s_{n}=\sum_{j} \lambda^{j} t_{n}^{1, j}$ and thus s_{n} is a convex combination of the strategies $t_{n}^{1, j}$. But that is a contradiction since s_{n} is a vertex of P_{n} and all the strategies $t_{n}^{1, j}$ are different from one another and from s_{n} as they induce the points $\pi_{n}^{1, j}$ that are different from one another and from $\bar{\pi}_{n}^{1}\left(s_{n}\right)$ in \mathcal{H}_{n}.

To prove the other way around, suppose s_{n} is a strategy that, at a collection h_{n}^{k} for $k=$ $1, \ldots, K$ of at least two information sets in H_{n}^{*}, chooses a non-equilibrium action. For each k, choose a strategy $s_{n}^{1, k}$ in S_{n}^{1} that enables h_{n}^{k}, agrees with s_{n} there and at all its successors, but at other $h_{n} \in H_{n}^{*}$, chooses an equilibrium action. Then $\psi_{Z_{n}^{1}}\left(s_{n}\right)=\sum_{k} \psi_{Z_{n}^{1}}\left(s_{n}^{1, k}\right)$. Therefore, $\bar{\pi}_{n}^{1}\left(s_{n}\right)$ cannot be a vertex of Π_{n}^{1}.

For each $T_{n}^{0} \subseteq S_{n}^{0}$ such that $P_{n}\left(T_{n}^{0}\right)$ is a face of P_{n}^{0} and contains an equilibrium strategy for n, let $S_{n}^{1}\left(T_{n}^{0}\right)$ be the subset of S_{n}^{1} consisting of strategies s_{n}^{1} such that for each first information set h_{n}^{0} in H_{n}^{0} that s_{n}^{1} does not exclude, s_{n}^{1} agrees with some $t_{n}^{0} \in T_{n}^{0}$ at h_{n}^{0} and all its successors, where t_{n}^{0} has the property that it does not exclude h_{n}^{0}. For a face Ψ_{n}^{1} of Π_{n}^{1}, let $S_{n}^{1}\left(T_{n}^{0} ; \Psi_{n}^{1}\right)=S_{n}^{1}\left(\Psi_{n}^{1}\right) \cap S_{n}^{1}\left(T_{n}^{0}\right)$ and $T_{n} \equiv T_{n}^{0} \cup S_{n}^{1}\left(T_{n}^{0} ; \Psi_{n}^{1}\right)$. For notational simplicity, we refer to $S_{n}^{1}\left(T_{n}^{0} ; \Psi_{n}^{1}\right)$ as T_{n}^{1}. The following lemma provides an important feature of the set T_{n}.

Lemma C.5. The strategies in T_{n} are the vertices of a face of P_{n} whose dimension is $d\left(T_{n}\right) \equiv d\left(T_{n}^{0}\right)+d\left(\Psi_{n}^{1}\right)+1$.

Proof. Let \hat{T}_{n}^{1} be the set of strategies t_{n}^{1} in T_{n}^{1} such $\bar{\pi}_{n}^{1}\left(t_{n}^{1}\right)$ is a vertex of Ψ_{n}^{1}. We will first show that every $t_{n} \in T_{n} \backslash\left(T_{n}^{0} \cup \hat{T}_{n}^{1}\right)$ is affinely dependent on the strategies in $T_{n}^{0} \cup \hat{T}_{n}^{1}$. Let $t_{n}^{1} \in T_{n} \backslash\left(T_{n}^{0} \cup \hat{T}_{n}^{1}\right)$. By Lemma C.4, there exist information sets $h_{n}^{1}, \ldots h_{n}^{K}, K>1$, in H_{n}^{*} such that for each k, t_{n}^{1} chooses a non-equilibrium action a^{k} at h_{n}^{k}, and at each other $h_{n} \in H_{n}^{*}$ it chooses an equilibrium action. Fix $t_{n}^{0} \in T_{n}^{0}$ that agrees with t_{n}^{1} everywhere except at the information sets h_{n}^{k} for each k. For each k let $t_{n}^{1, k}$ be the strategy that agrees with t_{n}^{1} at h_{n}^{k} and its successors, but everywhere else agrees with t_{n}^{0}. Each $t_{n}^{1, k}$ belongs to \hat{T}_{n}^{1} and also, $t_{n}^{1}=\sum_{k} t_{n}^{1, k}-(K-1) t_{n}^{0}$. Thus, t_{n}^{1} is an affine combination of the strategies in $T_{n}^{0} \cup \hat{T}_{n}^{1}$.

For each $j=0, \ldots, d\left(\Psi_{n}^{1}\right)$, pick a strategy $t_{n}^{1, j} \in S_{n}^{1}\left(T_{n}^{0}\right)$ such that $\bar{\pi}_{n}^{1}\left(t_{n}^{1, j}\right)$ is a vertex of Ψ_{n}^{1}. Let \tilde{T}_{n}^{1} be the collection of these strategies. We show that strategies in $\hat{T}_{n}^{1} \backslash \tilde{T}_{n}^{1}$ are now affinely dependent on the strategies in $T_{n}^{0} \cup \tilde{T}_{n}^{1}$. Fix $t_{n}^{1} \in \hat{T}_{n}^{1} \backslash \tilde{T}_{n}^{1}$. By Lemma C. 4 there exists a unique information set $h_{n} \in H_{n}^{*}$ enabled by t_{n}^{1} and where it chooses a non-equilibrium action. By construction of \tilde{T}_{n}^{1}, there exists a subset $\left(t_{n}^{1, j}\right)_{j=1}^{J}$ of \tilde{T}_{n}^{1} such that $\bar{\pi}_{n}^{1}\left(t_{n}^{1}\right)$ is expressible as an affine combination $\sum_{j} \lambda^{j} \bar{\pi}\left(t_{n}^{1, j}\right)$ with $\lambda^{j} \neq 0$ for all j. For each $j, s_{n}^{1, j}$ enables h_{n} and chooses a at h_{n}; at all other information sets in H_{n}^{*} it chooses an equilibrium action. Let t_{n}^{0} be a strategy that agrees with t_{n}^{1} everywhere except at h_{n} and its successors. For each j, let $t_{n}^{0, j}$ be a strategy that agrees with $t_{n}^{1, j}$ everywhere except at h_{n} and its successors, where it agrees with t_{n}^{0}. Then $t_{n}^{1}=t_{n}^{0}+\sum_{j} \lambda^{j}\left(t_{n}^{1, j}-t_{n}^{0, j}\right)$ and is affinely dependent on the strategies in $T_{n}^{0} \cup \tilde{T}_{n}^{1}$.

It follows now from the above arguments that the affine space A spanned by $T_{n}^{0} \cup \tilde{T}_{n}^{1}$ contains $P_{n}\left(T_{n}\right)$ and that the dimension of $P_{n}\left(T_{n}\right)$ is as stated. To finish the proof of the lemma, we show that $P_{n}\left(T_{n}\right)$ is a face of P_{n}. Let Q_{n} be the smallest face of P_{n} that contains $P_{n}\left(T_{n}\right)$. Suppose $Q_{n} \neq P_{n}\left(T_{n}\right)$. Then there exists a point p_{n} in the relative of interior of $P_{n}\left(T_{n}\right)$ and Q_{n}. Therefore p_{n} can be expressed as a convex combination of the vertices of Q_{n} in two different ways: (a) $\sum_{i} \lambda^{i} t_{n}^{0, i}+\sum_{j} \lambda^{j} t_{n}^{1, j}$, where the $t_{n}^{0, i}$,s are in T_{n}^{0} and the $t_{n}^{1, j}$'s are in T_{n}^{1}; (b) $\sum_{i} \mu^{i} t_{n}^{0, i}+\sum_{j} \mu^{j} t_{n}^{1, j}+\sum_{k} \mu^{k} t_{n}^{2, k}$, where now the $t_{n}^{2, k}$,s are the vertices of Q_{n} that are not in T_{n}. Consider one of the $t_{n}^{2, k}$'s. If it belongs to $S_{n}^{0} \backslash T_{n}^{0}$ then by Lemma C. 3 there is an information set h_{n} in H_{n}^{0} that is enabled by $t_{n}^{2, k}$ where the action chosen by h_{n} is avoided all strategies in T_{n}^{0} that enable it: that implies under the expression in (b) that the nodes following this action are assigned a positive probability, but not under (a), which is impossible. If $t_{n}^{2, k}$ belongs to $S_{n}^{1} \backslash T_{n}^{1}$ then it must belong to $S_{n}^{1}\left(\Psi_{n}^{1}\right)$ since otherwise under (b) $\bar{\pi}_{n}^{1}\left(p_{n}\right) \notin \Psi_{n}^{1}$. Since $s_{n} \notin T_{n}^{1}$ there exists an information set $h_{n} \in H_{n}^{0}$ enabled by $t_{n}^{2, k}$ where the continuation strategy of $t_{n}^{2, k}$ coincides with that of some $t_{n} \in S_{n}^{0} \backslash T_{n}^{0}$ but not for any $s_{n} \in T_{n}^{0}$. As in the previous case, this too is impossible.

One corollary of the above result obtains when we take T_{n}^{1} to be S_{n}^{1} and Ψ_{n}^{1} to be Π_{n}^{1}. The dimension of P_{n} is $d\left(P_{n}^{0}\right)+d\left(\Pi_{n}^{1}\right)+1$. Observe that P_{n}^{1} is a face of P_{n} iff $\psi_{Z_{n}^{1}}\left(P_{n}^{1}\right)$ is a face of $\psi_{Z_{n}^{1}}\left(P_{n}\right)$, which is equivalent to saying that Π_{n}^{1} is homeomorphic to $\psi_{Z_{n}^{1}}\left(P_{n}^{1}\right)$. Thus, the dimension of P_{n}^{1} equals $d\left(\Pi_{n}^{1}\right)$ if P_{n}^{1} is a face of P_{n} and otherwise it equals the dimension of P_{n}.

Fix $T \equiv\left(\left(T_{1}^{0}, \Psi_{1}^{1}\right),\left(T_{2}^{0}, \Psi_{2}^{1}\right)\right)$, where for each $n, P_{n}\left(T_{n}\right) \cap Q_{n}^{*}$ nonempty and Ψ_{n}^{1} is a (possibly empty) face of Π_{n}^{1}. Let $A_{n}(T)$ be the set of points in $P_{n}\left(T_{n}^{0}\right)$ such that the strategies in T_{m}
are all best replies. Let \tilde{T}_{n}^{0} be the unique subset of T_{n}^{0} such that the interior of $A_{n}(T)$ is contained in the interior of $P_{n}\left(\tilde{T}_{n}^{0}\right)$. Let $\tilde{d}_{n}^{*}(T)$ be the dimension of $A_{n}(T)$.

Lemma C.6. If T_{m}^{1} is nonempty then $A_{n}(T)$ is a proper face of $\bar{Q}_{n}^{*} \cap P_{n}\left(\tilde{T}_{n}^{0}\right)$.
Proof. Since $Q_{n}^{*} \cap P_{n}\left(T_{n}\right)$ is nonempty, the strategies in T_{n}^{0} are undominated. Hence, $P_{n}\left(\tilde{T}_{n}^{0}\right) \cap$ $\bar{Q}_{n}^{*}=P_{n}\left(\tilde{T}_{n}^{0}\right) \cap Q_{n}^{*} \equiv A_{n}^{*}(T) . A_{n}(T)$ is thus a face of $A_{n}^{*}(T)$. There remains to show that it is a proper face. This follows from the genericity of payoffs. Fix $t_{m}^{1} \in T_{m}^{1}$. There exists an information set $h_{m} \in H_{m}^{*}$ where it chooses a non-equilibrium action a. If the path from each (x, a), for $x \in h_{m}$ that is reached under the equilibrium outcome, does not pass through an information set $h_{n} \in H_{n}^{0}$, then a would be suboptimal against every equilibrium \bar{Q}_{n}^{*}. Thus, there exists a first information set $h_{n} \in H_{n}^{0}$ and nodes $x \in H_{m}^{*}$ and $y \in h_{n}$ such that $(x, a) \prec y$ and x is reached under the equilibrium outcome. Because $A_{n}^{*}(T)$ is nonempty, there is a strategy $t_{n}^{0} \in \tilde{T}_{n}^{0}$ that enables h_{n}. Clearly, there must be multiple such strategies, again by genericity. Perturbing the probabilities of the terminal nodes following y does not affect the payoffs to strategies in T_{m}^{0} but they affect the payoff to t_{m}^{1}. Hence $A_{n}(T)$ is a proper face of $A_{n}^{*}(T)$.

Let \hat{T}_{m}^{1} be the set of strategies s_{m} in $S_{m}^{1}\left(T_{m}^{0}\right) \backslash T_{m}^{1}$ such that: (i) s_{m} is an equally good reply against every point in P_{n}^{0} to which the strategies in T_{m} are equally good replies. Let \bar{T}_{m}^{1} be the set of strategies s_{m} in $S_{m}^{1}\left(T_{m}^{0}\right) \backslash\left(\hat{T}_{m}^{1} \cup T_{m}^{1}\right)$ that are best replies against every point in $A_{n}(T)$.

Let $B_{n}^{*}(T)$ be the closure of the points in the interior of P_{n}^{0} against which the strategies in T_{m} are equally good replies and at least as good replies as strategies in \bar{T}_{m}^{1}. Let $d_{n}^{*}(T)$ be the dimension of $B_{n}^{*}(T)$. If T_{m}^{1} is empty, let $B_{n}(T)=P_{n}^{0}$. Otherwise, let $B_{n}(T)$ be the set of points in P_{n}^{0} that are of the form $\lambda q_{n}^{0}+(1-\lambda) r_{n}^{0}$ such that $\lambda \geqslant 1, q_{n}^{0} \in B_{n}^{*}(T)$, and $r_{n}^{0} \in P_{n}\left(T_{n}^{0}\right)$.

Lemma C.7. Suppose T_{m}^{1} is nonempty. $B_{n}(T)$ is a polyhedron of dimension $d_{n}^{*}(T)+d_{n}\left(T_{n}^{0}\right)-$ $\tilde{d}_{n}^{*}(T)$. Each maximal face $B_{n}^{\prime}(T)$ of $B_{n}(T)$ satisfies exactly one of the following:
(1) The relative interior of $B_{n}^{\prime}(T)$ is contained in the relative interior of a maximal proper face of P_{n}^{0}.
(2) There exists a strategy $r_{m} \in \bar{T}_{m}^{1}$ such that for each $p_{n}^{0} \in B_{n}^{\prime}(T), r_{m}$ is an equally good reply against every point of the form $\lambda p_{n}^{0}+(1-\lambda) r_{n}^{0}$ in $B_{m}^{*}(T)$; moreover, in this case, letting \check{R}_{m}^{1} be the set of such r_{m}, for any $r_{m} \in \bar{R}_{m}^{1}$, if r_{m} is a best reply against a point in $B_{n}^{*}(T)$ then every point in \check{R}_{m}^{1} is also a best reply against this point.
(3) There exists a maximal proper face of $P_{n}\left(T_{n}^{0}\right)$, say $P_{n}\left(R_{n}^{0}\right)$, such that for each $q_{n} \in$ $B_{n}^{*}(T), r_{n} \in P_{n}\left(T_{n}^{0}\right)$ and $\lambda>1$, if $\lambda q_{n}+(1-\lambda) r_{n}$ belongs to $B_{n}^{\prime}(T)$, then r_{n} belongs to $P_{n}\left(R_{n}^{0}\right)$; moreover, $A_{n}(T)$ is contained in $P_{n}\left(R_{n}^{0}\right)$.

Proof. Let $\tilde{P}_{n}^{0}, \tilde{P}_{n}\left(T_{n}^{0}\right)$, and $\tilde{B}_{n}^{*}(T)$ be the convex cones spanned by $P_{n}^{0}, P_{n}\left(T_{n}^{0}\right)$, and $B_{n}^{*}(T)$ respectively. Let $\xi: P_{n}^{0} \times \tilde{P}_{n}\left(T_{n}^{0}\right) \rightarrow \tilde{P}_{n}^{0}$ be the function $\xi\left(p_{n}^{0}, \tilde{r}_{n}^{0}\right)=p_{n}^{0}+\tilde{r}_{n}^{0}$. Then for each $\tilde{p}_{n}^{0}, \xi^{-1}\left(\tilde{p}_{n}^{0}\right)$ is a set of dimension $d\left(T_{n}^{0}\right)$. Hence the dimension of $\hat{B}(T) \equiv \xi^{-1}\left(\tilde{B}_{n}^{*}(T)\right)$ is $d\left(T_{n}^{0}\right)+d_{n}^{*}(T)+1$. Obviously $\hat{B}(T)$ is a polyhedron. For each face $\hat{B}_{n}^{\prime}(T)$ of $\hat{B}_{n}(T)$ and for all points $\left(p_{n}^{0}, \tilde{r}_{n}^{0}\right) \in \hat{B}_{n}^{\prime}(T)$ at least one of the following holds: (i) p_{n}^{0} belongs to the boundary of P_{n}^{0}; (ii) there exists a strategy $t_{m} \in \bar{T}_{m}^{1}$ such that $\xi\left(p_{n}^{0}, \tilde{r}_{n}^{0}\right)$ belongs to the convex cone spanned by the face of $B_{n}^{*}(T)$ where this strategy t_{m} is an equally good reply; (iii) \tilde{r}_{n}^{0} belongs to the boundary of $\tilde{P}_{n}\left(T_{n}^{0}\right)$.

Observe now that $B_{n}(T)$ is the projection of $\hat{B}_{n}(T)$ onto the first factor. Obviously it is a polyhedron. For each $p_{n}^{0} \in B_{n}(T)$ and each \tilde{r}_{n}^{0} such that $\left(p_{n}^{0}, \tilde{r}_{n}^{0}\right) \in \hat{B}_{n}(T),\left(p_{n}^{0}, \tilde{r}_{n}^{0}+\lambda r_{n}^{0}\right) \in$ $\hat{B}_{n}(T)$ for all $r_{n}^{0} \in B_{n}^{*}(T) \cap P_{n}\left(T_{n}^{0}\right)$ and $\lambda \geqslant 0$. If the set $B_{n}^{*}(T)$ is in generic position (i.e. if the payoffs are in generic position), then all points in $\hat{B}_{n}(T)$ that project to p_{n}^{0} are of this form. Since the set $B_{n}^{*}(T) \cap P_{n}\left(T_{n}^{0}\right)$ is the intersection of $P_{n}\left(T_{n}^{0}\right)$ with the affine space spanned by $A_{n}(T)$, the dimension of $B_{n}(T)$ is as asserted. The enumerated properties of $B_{n}(T)$ now follow directly from the corresponding points above; only the last part of property (iii) needs a proof. Suppose r_{n}^{0} belongs to a proper face $P_{n}\left(R_{n}^{0}\right)$ of $P_{n}\left(T_{n}^{0}\right)$ and $A_{n}(T)$ is not contained in $P_{n}\left(R_{n}^{0}\right)$. If $\left(p_{n}^{0}, \lambda r_{n}^{0}\right)$ belongs to $\hat{B}_{n}(T)$, then so does $\left(p_{n}^{0}, \lambda r_{n}^{0}+\bar{r}_{n}^{0}\right)$ for $\bar{r}_{n}^{0} \in A_{n}(T) \backslash P_{n}\left(R_{n}^{0}\right)$ and $\lambda r_{n}^{0}+\bar{r}_{n}^{0}$ does not belong to the convex cone generated by $P_{n}\left(R_{n}^{0}\right)$.

Let $C_{n}^{*}(T)$ be the closure of the set of q_{n} in the interior of P_{n} such that the strategies in T_{m} are all equally good replies and at least as good as strategies in \hat{T}_{m}^{1} and $S_{n}^{0} \backslash T_{n}^{0}$. By Lemma C.5, the dimension of the face spanned by T_{m} is $d\left(T_{m}^{0}\right)+d\left(\Psi_{m}^{1}\right)+1$. By genericity of payoffs, the dimension of $C_{n}^{*}(T)$ is therefore $d\left(P_{n}\right)-d\left(T_{m}^{0}\right)-d\left(\Psi_{m}^{1}\right)-1$.

Let $C_{n}(T)$ be the set of $\left(p_{n}^{1}, \pi_{n}^{1}\right) \in P_{n}^{1} \times \Pi_{n}^{1}$ such that there exist $p_{n}^{0} \in P_{n}^{0}, p_{n}^{2} \in P_{n}\left(T_{n}^{1}\right)$, $q_{n} \in C_{n}^{*}(T)$, and $\mu \in \mathbb{R}_{+}^{3}$, such that $\sum_{i} \mu^{i} p_{n}^{i} \in C_{n}^{*}(T), \sum_{i} \mu^{i}=1, \mu^{1}>0$, and $\bar{\pi}_{n}^{1}\left(\sum_{i} \mu^{i} p_{n}^{i}\right)=$ π_{n}^{1}.

Lemma C.8. The set $C_{n}(T)$ is a polyhedron of dimension $d\left(P_{n}^{0}\right)+d\left(P_{n}^{1}\right)+d_{n}\left(\Psi_{n}^{1}\right)-d\left(T_{m}^{0}\right)-$ $d\left(\Psi_{m}^{1}\right)-d_{n}^{*}(T)$. On each maximal proper face C^{\prime} of $C_{n}(T)$, exactly one of the following holds for all $\left(p_{n}^{1}, \pi_{n}^{1}\right)$ in C^{\prime}. If $q_{n} \in C^{*}(T)$ is of the form $\sum_{i} \mu^{i} p_{n}^{i}$ for some $p_{n}^{0} \in P_{n}^{0}$ and $p_{n}^{2} \in P_{n}\left(T_{n}^{1}\right)$, and $\bar{\pi}_{n}^{1}\left(\sum_{i} \mu^{i} p_{n}^{i}\right)=\pi_{n}^{1}$, then:
(1) p_{n}^{1} belongs to a maximal proper face of P_{n}^{1};
(2) for $i=0$ or $i=1$, but not both, there exists $s_{m} \in S_{m}^{i} \backslash T_{m}^{i}$, which actually belongs to \hat{T}_{m}^{i} if $i=1$, that is as good a reply as points in T_{m} against q_{n}; moreover, in this case, if $i=0, T_{m}^{0}$ and s_{m} span a face of P_{m}^{0} of which $P_{m}\left(T_{m}^{0}\right)$ is a maximal proper face; and if $i=1, \Psi_{m}^{1}$ and $\bar{\pi}_{n}^{1}\left(s_{m}\right)$ span a face of Π_{m}^{1} of which Ψ_{m}^{1} is a maximal proper face.
(3) there exists a maximal proper face Ψ^{\prime} of Ψ_{n} such that $\bar{\pi}_{n}^{1}\left(p_{n}^{2}\right)$ belongs to Ψ^{\prime}.

Proof. We show that $C_{n}(T)$ is a polyhedron of the stated dimension. Since the construction is similar to that in the previous lemma, the enumerated properties can be proved just as before. Let P_{n}^{2} be the convex hull of P_{n}^{0} and $P_{n}\left(T_{n}^{1}\right)$. Using Lemma C.5, the dimension of P_{n}^{2} is $d\left(P_{n}^{0}\right)+d\left(\Psi_{n}^{1}\right)+1$. Let \tilde{P}_{n}^{2} and \tilde{P}_{n} be the convex cones spanned by P_{n}^{2} and P_{n}, respectively. Define $\xi: P_{n}^{1} \times \tilde{P}_{n}^{2} \rightarrow \tilde{P}_{n}$ by $\xi\left(p_{n}^{1}, \tilde{p}_{n}^{2}\right)=p_{n}^{1}+\tilde{p}_{n}^{2}$. Then for each \tilde{p}_{n} in the interior of $\tilde{P}_{n}, \xi^{-1}\left(\tilde{p}_{n}\right)$ is a set of dimension $d\left(P_{n}^{1}\right)+d\left(P_{n}^{0}\right)+d\left(\Psi_{n}^{1}\right)+1$. Letting $\tilde{C}_{n}^{*}(T)$ be the convex cone spanned by $C_{n}^{*}(T)$, the dimension of $\hat{C}_{n}(T) \equiv \xi^{-1}\left(\tilde{C}_{n}^{*}(T)\right)$ is $d\left(P_{n}^{0}\right)+d\left(P_{n}^{1}\right)+d\left(\Psi_{n}^{1}\right)+1-d\left(T_{m}^{0}\right)-d\left(\Psi_{m}^{1}\right)$. The function $\bar{\pi}_{n}^{1}$ extends to $\tilde{P} \backslash\{0\} . C_{n}(T)$ is the image of $\hat{C}_{n}(T)$ under the function $\chi: P_{n}^{1} \times \tilde{P}_{n}^{2}$ given by $\chi\left(p_{n}^{1}, \tilde{p}_{n}^{2}\right)=\left(p_{n}^{1}, \bar{\pi}_{n}^{1}\left(p_{n}^{1}+\tilde{p}_{n}^{2}\right)\right)$ and is thus a polyhedron. As will be shown in the course of the proof of the next lemma, $C_{n}^{*}(T) \cap P_{n}\left(T_{n}^{1}\right) \subset P_{n}^{0}$. Therefore, $C_{n}^{*}(T) \cap P_{n}^{2}$ is the intersection of P_{n}^{0} with the affine space spanned by $B_{n}^{*}(T)$. For each $\left(p_{n}^{1}, \tilde{p}_{n}^{2}\right) \in \hat{C}_{n}(T)$, the point $\left(p_{n}^{1}, \tilde{p}_{n}^{2}+\mu q_{n}^{0}\right)$ belongs to $\hat{C}_{n}(T)$ for all $\mu>0$ and $q_{n}^{0} \in C_{n}^{*}(T) \cap P_{n}^{2}$, and has the same image under χ as $\left(p_{n}^{1}, \tilde{p}_{n}^{2}\right)$. Moreover, if $C_{n}^{*}(T)$ is in general position then for each $\left(p_{n}^{1}, \pi_{n}^{1}\right)$ in $C_{n}(T)$ every point in its inverse image under χ is expressible in this form. Therefore, the dimension of $C_{n}(T)$ is as given.

Let \mathcal{T} be the collection of T 's such that $A_{n}(T), B_{n}(T)$ and $C_{n}(T)$ are nonempty for each n. For each $T \in \mathcal{T}$, let $\mathcal{Q}_{n}(T)=A_{n}(T) \times B_{n}(T) \times C_{n}(T)$ for each n and let $\mathcal{Q}(T)=$ $\mathcal{Q}_{1}(T) \times \mathcal{Q}_{2}(T)$.

Lemma C.9. $\left(q^{*}, p^{0}, p^{1}, \pi^{1}\right)$ belongs to \mathcal{Q} iff it belongs to $\mathcal{Q}(T)$ for some $T \in \mathcal{T}$.
Proof. Suppose for each n that $q_{n}^{*} \in A_{n}(T), p_{n}^{0} \in B_{n}(T),\left(p_{n}^{1}, \pi_{n}^{1}\right) \in C_{n}(T)$ for some T. Choose $r_{n}^{0} \in P_{n}\left(T_{n}^{0}\right)$ and λ_{n}^{0} such that $q_{n}^{0} \equiv\left(1-\lambda_{n}^{0}\right) p_{n}^{0}+\lambda_{n}^{0} r_{n}^{0} \in B_{n}^{*}(T)$. Also, fix $\tilde{p}_{n}^{0}, r_{n}^{2} \in P_{n}\left(T_{n}^{1}\right)$, $\mu_{n}^{0}, \mu_{n}^{1}, \mu_{n}^{2}$ such that $q_{n}^{1} \equiv \mu_{n}^{0} \tilde{p}_{n}^{0}+\mu_{n}^{1} p_{n}^{1}+\mu_{n}^{2} r_{n}^{2}$ belongs to $C_{n}^{*}(T)$. Fix points \bar{q}_{n}^{0} and \bar{q}_{n}^{1} in the interior of $A_{n}(T)$ and $B_{n}(T)$ for each n and consider for each $0<\varepsilon<1$, the LPS $\left(q^{*}, \tilde{q}^{0}(\varepsilon), \tilde{q}^{1}(\varepsilon)\right)$ where for each $n, \tilde{q}_{n}^{0}(\varepsilon)=(1-\varepsilon) \bar{q}_{n}^{0}+\varepsilon q_{n}^{0}$; and $\tilde{q}_{n}^{1}(\varepsilon)=(1-\varepsilon) \bar{q}_{n}^{0}+\varepsilon \bar{q}_{n}^{1}(\varepsilon)+\varepsilon^{2} q_{n}^{1}$. The strategies in T_{n} are equally good replies to $q_{m}^{*}, \tilde{q}_{m}^{0}(\varepsilon), \tilde{q}_{m}^{1}(\varepsilon)$ for all ε. We show that these strategies are lexicographic best replies to $\left(q^{*}, \tilde{q}^{0}(\varepsilon), \tilde{q}^{1}(\varepsilon)\right)$ for all small ε, which proves that $\left(q^{*}, p^{0}, p^{1}, \pi^{1}\right)$ belongs to \mathcal{Q}.

Observe first that for all ε, a strategy in $S_{n}^{0} \backslash T_{n}^{0}$ is an equally good reply against q_{m}^{*} and $\tilde{q}_{m}^{0}(\varepsilon)$ as strategies in T_{n}^{0}, by Lemma C.2, and no better a reply against $\tilde{q}_{m}^{1}(\varepsilon)$ by construction of $C_{n}^{*}(T)$. Now for a strategy s_{n}^{1} in S_{n}^{1}, consider the strategy t_{n}^{1} that agrees with s_{n}^{1} everywhere except that starting at each first information set $h_{n} \in H_{n}^{0}$ that s_{n}^{1} enables, t_{n}^{1} agrees with some t_{n}^{0} in T_{n}^{0}. Since strategies in T_{n}^{0} are at least as good as the other strategies in S_{n}^{0}, clearly t_{n}^{1} is at least good a reply against $\left(q_{m}^{*}, \tilde{q}_{m}^{0}(\varepsilon), \tilde{q}_{n}^{1}(\varepsilon)\right)$. Observe now that t_{n}^{1} belongs to $S_{n}^{1}\left(T_{n}^{0}\right)$. If it belongs to \hat{T}_{n}^{1}, then it is an equally good reply as strategies in T_{n} against q_{m}^{*} and $\tilde{q}_{m}^{0}(\varepsilon)$ and no better reply a reply against $\tilde{q}_{m}^{1}(\varepsilon)$ by definition. If it belongs to \bar{T}_{n}^{1} then it is an equally good reply to q_{m}^{*}, no better reply against $\tilde{q}_{m}^{0}(\varepsilon)$ for all ε, and a strictly worse reply against $\tilde{q}_{m}^{1}(\varepsilon)$ for all small ε, again by construction, since it is an inferior reply against \bar{q}_{n}^{1} which belongs to the interior of $B_{n}^{*}(T)$. Finally, if it belongs to $S_{n}^{1}\left(T_{n}^{1}\right) \backslash\left(\hat{T}_{n}^{1} \cup \bar{T}_{n}^{1}\right)$ then it is no better a reply against q_{m}^{*} and an inferior reply to $\tilde{q}_{m}^{0}(\varepsilon)$ for all small ε, since it is an inferior reply to \bar{q}_{n}^{0} by construction of $A_{n}(T)$. Thus the strategies in T are lexicographic best replies to $\left(q^{*}, \tilde{q}^{0}(\varepsilon), \tilde{q}^{1}(\varepsilon)\right)$ for all small ε.

Before proceeding to prove the converse, we use the above argument to show that the intersection of $C_{n}^{*}(T)$ with the convex hull P_{n}^{2} of P_{n}^{0} is in fact the intersection F of P_{n}^{0} with the affine space spanned by $B_{n}^{*}(T)$. Take a point q_{n}^{1} in $C_{n}^{*}(T) \cap P^{2}$. If it belongs to P_{n}^{0}, then in fact it belongs to F by the definitions of $B_{n}^{*}(T)$ and \hat{T}_{m}^{1}. If it does not belong to P_{n}^{0}, then it assigns a positive weight to some strategy $s_{n}^{1} \in T_{n}^{1}$. The above argument applied when using this q_{n}^{1} shows that q_{m}^{*} is a best reply to $\left(q_{n}^{*}, \tilde{q}_{n}^{0}(\varepsilon), \tilde{q}_{n}^{1}(\varepsilon)\right)$ and the strategies in T_{n} and S_{n}^{0} are best replies to q_{m}^{*}. Observe now that $\tilde{q}_{n}^{1}(\varepsilon)$ is a convex combination of strategies in S_{n}^{0} and T_{n}^{1}. Therefore, for all small $\delta,\left(\left(1-\delta-\delta^{2}\right) q_{n}^{*}+\delta \tilde{q}_{n}^{0}(\varepsilon)+\delta^{2} \tilde{q}_{n}^{1}(\varepsilon), q_{m}^{*}\right)$ is an equilibrium if ε is small as well. But these points induce different outcomes because $\tilde{q}_{n}^{1}(\varepsilon)$ has a non-equilibrium strategy, namely one in T_{n}^{1}, in its support, which is impossible. Thus, $C_{n}^{*}(T) \cap P_{n}^{2}=F$ as claimed.

Returning to the proof of this lemma, suppose $\left(q^{*},\left(p^{0}, p^{1}\right), \pi^{1}\right)$ belongs to \mathcal{Q}. Let $q_{n}^{0}=$ $\left(1-\lambda_{n}^{0}\right) p_{n}^{0}+\lambda_{n}^{0} r_{n}^{0}$ and let $q_{n}^{1}=\mu_{n}^{0} \tilde{p}_{n}^{0}+\mu_{n}^{1} p_{n}^{1}+\mu_{n}^{2} r_{n}^{2}$ where $\left(1-\lambda_{n}^{0}\right) q_{n}^{*}+\lambda_{n}^{0} r_{n}^{0}$ is a best reply against $\left(q^{*}, q^{0}, q^{1}\right)$; and r_{n}^{2}, if $\mu_{n}^{2}>0$, is a best reply against q_{n}^{*} and a weakly better reply against $\left(q^{*}, q^{0}, q^{1}\right)$ than all the strategies in P_{n}^{1}. Let Q_{n}^{0} be the face of P_{n}^{0} that contains $\left(1-\lambda_{n}^{0}\right) q_{n}^{*}+\lambda_{n}^{0} r_{n}^{0}$. Let Q_{n}^{1} be the face of P_{n}^{1} that contains r_{n}^{2} in its interior if $\mu_{n}^{2}>0$. Let T_{n}^{0} be the set of strategies t_{n} in S_{n}^{0} such that if t_{n} enables a first information set $h_{n} \in H_{n}^{0}$ then the choices from there on prescribed by t_{n}^{0} coincide with the choices dictated by some vertex of Q_{n}^{0} or Q_{n}^{1} that enables h_{n}. Observe that each $t_{n}^{0} \in T_{n}^{0}$ is optimal against $\left(q^{*}, q^{0}, q^{1}\right)$. If $\mu_{n}^{2}>0$, let Ψ_{n}^{1} be the face of Π_{n}^{1} that contains $\bar{\pi}_{n}^{1}\left(r_{n}^{2}\right)$ in its interior; otherwise let Ψ_{n}^{1} be the empty set.

We can now assume without loss of generality that the strategies in Q_{n}^{0} and Q_{n}^{1} are equally good replies against $\left(q_{m}^{*}, q_{m}^{0}, q_{m}^{1}\right)$ and hence best replies. Indeed, if for i either 0 or 1 , if the strategies in Q_{n}^{1} do not yield the same payoff against q_{m}^{i} as those in Q_{n}^{0}, modify q_{m}^{i} as follows: pick a point \check{r}_{m}^{0} in the face \tilde{Q}_{n}^{0} of Q_{n}^{0} containing q_{m}^{*} in its interior such that the strategies in Q_{n}^{0} are equally good replies, the strategies in Q_{n}^{1} do strictly better than the strategies in Q_{n}^{0} and at least as well as the other strategies in S_{n}^{1}. There exists a unique $\nu_{m}^{i} \in[0,1]$ such that the strategies in Q_{n}^{0} and Q_{n}^{1} are now equally good replies against $\left(1-\nu_{m}^{i}\right) q_{m}^{i}+\nu_{m}^{i} \check{r}_{m}^{i}$. Thus, our assumption is without loss of generality.

Since the strategies in Q_{n}^{0} and Q_{n}^{1} are best replies. There remains to show that every strategy in $S_{n}\left(T_{n}^{0} ; \Psi_{n}^{1}\right)$ is a best reply against $\left(q_{m}^{*}, q_{m}^{0}, q_{m}^{1}\right)$. Fix $s_{n} \in S_{n}\left(T_{n}^{0} ; \Psi_{n}^{1}\right)$. To show that it is a best reply it is sufficient to show that an information set h_{n} that is enabled by s_{n} is enabled by some vertex of either Q_{n}^{0} or Q_{n}^{1} and that this vertex agrees with s_{n} 's choice a_{n} there. Suppose that this h_{n} is in H_{n}^{*} and $a_{n} \in A_{n}^{*}$, or h_{n} belongs to H_{n}^{0}; then obviously some strategy in Q_{n}^{0} or Q_{n}^{1} enables h_{n} and chooses a_{n}, by the definition of T_{n}^{0}. If $h_{n} \in H_{n}^{*}$ and $a_{n} \notin A_{n}^{*}$ or h_{n} follows some information set in H_{n}^{*} by the choice of a non-equilibrium action, then some strategy in Q_{n}^{1} enables it and chooses this action, since otherwise s_{n} enables a terminal node that is excluded by all strategies in Q_{n}^{1}, contradicting the assumption that $\bar{\pi}_{n}^{1}\left(s_{n}\right) \in \Psi_{n}^{1}$. Thus s_{n} is a best reply and $\left(q^{*}, q^{0}, q^{1}\right)$ belongs to $\mathcal{Q}(T)$.

Lemma C.10. \mathcal{Q} is a pseudomanifold of dimension $\hat{d} \equiv d(\mathbb{P})$.
Proof. Each $\mathcal{Q}(T)$ is a polyhedron of dimension \hat{d}. By the previous lemma $\mathcal{Q}=\cup_{T \in \mathcal{T}} \mathcal{Q}(T)$. Therefore, \mathcal{Q} has dimension \hat{d}. To show that \mathcal{Q} is a pseudomanifold, we establish three facts for each $\left(q^{*},\left(p^{0}, p^{1}\right), \pi^{1}\right)$ that belongs to some $\mathcal{Q}(T)$: (1) if $\left(q^{*},\left(p^{0}, p^{1}\right), \pi^{1}\right)$ belongs to the interior of $\mathcal{Q}(T)$, then it does not belong to the interior of $\mathcal{Q}(R)$ for $R \neq T$; (2) if $\left(q^{*},\left(p^{0}, p^{1}\right), \pi^{1}\right)$ is a generic point in a maximal proper face \mathcal{Q}^{\prime} of $\mathcal{Q}(T)$, then it does not belong to $\mathcal{Q}(R)$ for any $R \neq T$ if $\left(p^{0}, p^{1}\right) \in \partial \mathbb{P}$, and it belongs to the boundary of $\mathcal{Q}(R)$ for exactly one other $R \neq T$ if $\left(p^{0}, p^{1}\right) \notin \partial \mathbb{P} ;$ moreover in the latter case it belongs to the interior of a maximal proper face of this $\mathcal{Q}(R)$ as well; (3) given $T, R \in \mathcal{T}$, there exists a finite chain $T=T(0), \ldots, T(k)=R$ such that for each $0 \leq j \leq k-1, \mathcal{Q}(T(j)) \cap \mathcal{Q}(T(j+1))$ is a subset of a maximal proper face of each and has a nonempty interior in this face.

Fix $T=\left(T^{0}, \Psi^{1}\right)$ and $x=\left(q^{*},\left(p^{0}, p^{1}\right), \pi^{1}\right) \in \mathcal{Q}(T)$. For each n, choose $q_{n}^{0} \equiv\left(1-\lambda_{n}^{0}\right) p_{n}^{0}+$ $\lambda_{n}^{0} r_{n}^{0}$ in $B_{n}^{*}(T)$ and $q_{n}^{1} \equiv \mu_{n}^{0} \tilde{p}_{n}^{0}+\mu_{n}^{1} p_{n}^{1}+\mu_{n}^{2} r_{n}^{1} \in C_{n}^{*}(T)$.

We start with (1). Suppose now that x belongs to the interior of $\mathcal{Q}(R)$ for some R. We show that $R=T$. Since x belongs to the interior of $\mathcal{Q}(T)$, we can assume that every strategy in $S_{m}^{0} \backslash T_{m}^{0}$ is inferior to q_{n}^{1}. Let s_{m} be a strategy in $S_{m}^{0} \backslash T_{m}^{0}$. Since s_{m} is an inferior reply
against q_{m}^{1} compared to the strategies in T_{n}^{0}, by Lemma C. 3 there exists an information set $h_{n} \in H_{n}^{0}$ that is enabled by s_{n} where the action chosen by s_{n} is suboptimal and different from the action chosen by every $t_{n} \in T_{n}^{0}$ that enables h_{n}. But the posterior belief over the terminal nodes following h_{n} computed from q_{m}^{1} can be computed from π_{m}^{1}. This implies that for any q_{m}^{\prime} such that $\bar{\pi}_{m}^{1}\left(q_{m}^{\prime}\right)=\pi_{m}^{1}, s_{n}$ is an inferior strategy. Therefore, $\left(p_{m}^{1}, \pi_{m}^{1}\right)$ cannot belong to $C_{m}(R)$ unless $R_{m}^{0} \subseteq T_{m}^{0}$. Moreover, if $R_{m}^{0} \subsetneq T_{m}^{0}$, then it cannot belong to the interior of $C_{m}(R)$, since strategies in $T_{m}^{0} \backslash R_{m}^{0}$ are also optimal. Thus, if x belongs to the interior of $\mathcal{Q}(R), R_{m}^{0}=T_{m}^{0}$ for each m. If Ψ_{m}^{1} is empty, this implies that $R_{m}=T_{m}$. Suppose now that Ψ_{m}^{1} is nonempty. Since x is in the interior we can assume that $\bar{\pi}_{m}^{1}\left(p_{m}^{1}\right) \neq \pi_{m}^{1}$ and that $\bar{\pi}_{n}\left(r_{m}^{1}\right)$ is in the interior of Ψ_{m}^{1}. Observe that $\bar{\pi}_{n}^{1}\left(r_{m}^{1}\right)$ can be computed uniquely from p_{m}^{1} and π_{m}^{1} by taking the line segment from $\bar{\pi}_{m}^{1}\left(p_{m}^{1}\right)$ through π_{m}^{1} and computing the boundary point of this line. This implies that if x belongs to the interior of $\mathcal{Q}(R)$, then $R_{m}=\left(T_{m}^{0}, \Psi_{m}^{1}\right)$. Thus $R=T$.

We turn to point (2). Suppose now x belongs to the relative interior of a maximal proper face of $\mathcal{Q}(T)$ and that $\left(p^{0}, p^{1}\right)$ belongs to ∂P. Then if it belongs to another $\mathcal{Q}(R)$ it cannot be in the interior and must belong to the boundary. The arguments of the previous paragraph apply to show that x does not belong to the interior of a maximal face of $\mathcal{Q}(R)$. Indeed, it relied on strategies in $S_{m}^{0} \backslash T_{m}^{0}$ being inferior to q_{n}^{1}, and q_{n}^{0} (resp. q_{n}^{1}) not belonging to the boundary of $B_{n}(T)$ (resp. $C_{n}(T)$). Thus x must belong to a face of dimension at most $\hat{d}-2$. The set of such points in this maximal proper face of $\mathcal{Q}(T)$ then has dimension at most $\hat{d}-2$, i.e. it is nongeneric.

Suppose that x belongs to the relative interior of a maximal proper face of $\mathcal{Q}(T)$ but that $\left(p^{0}, p^{1}\right)$ is in the interior in \mathbb{P}. Then for exactly one n, just one of the following hold: (2a) q_{n}^{*} belongs to the boundary of $A_{n}^{*}(T) ;(2 \mathrm{~b}) p_{n}^{0}$ belongs to the boundary of $B_{n}(T)$; (2c) $\left(p_{n}^{1}, \pi_{n}^{1}\right)$ belongs to the boundary of $C_{n}(T)$. We start with (2c). By the properties we proved for $C_{n}(T)$ in Lemma C.8, and since $\left(p^{0}, p^{1}\right) \notin \partial \mathbb{P}$, either property (ii) or property (iii) of that lemma holds. Under property (ii) x belongs to the boundary of $\mathcal{Q}(R)$ where $R=\left(\left(R_{m}^{0}, \Phi_{m}^{1}\right),\left(T_{n}, \Psi_{n}^{1}\right)\right)$ is defined as follows. If the strategy r_{m}^{i} identified there belongs to S_{m}^{0}, then R_{m}^{0} is the vertex set of the face spanned by r_{m}^{i} and T_{m}^{0}, while $\Phi_{m}^{1}=\Psi_{n}^{1}$; if the strategy r_{m}^{i} belongs to $S_{n}^{1}\left(T_{n}^{0} ; \Psi_{n}^{1}\right)$, then $R_{m}^{0}=T_{m}^{0}$ and Φ_{m}^{1} is a face of Π_{m}^{1} that has Ψ_{m}^{1} as a maximal face with $\pi_{m}^{1}\left(r_{m}^{1}\right) \in \Phi_{m}^{1} \backslash \Psi_{m}^{1}$. Under property (iii) x belongs to the boundary of $\mathcal{Q}(R)$ where $R=\left(\left(T_{n}^{0}, \Phi_{n}^{1}\right),\left(T_{m}^{0}, \Psi_{m}^{1}\right)\right)$ where Φ_{n}^{1} is the maximal proper face of Ψ_{n}^{1} identified there.

Suppose x satisfies (2b). Then by the properties we proved for $B_{n}(T)$ in Lemma C.7, either property (ii) or property (iii) of that lemma holds. Under property (ii) let \tilde{R}_{m}^{1} be the
set of strategies in \tilde{T}_{m}^{1} that are now best replies against q_{n}^{0}. Let $\tilde{\Phi}_{m}^{1}$ be the smallest face of Π_{m}^{1} that contains Ψ_{m}^{1} and the vectors $\pi_{m}^{1}\left(\tilde{r}_{m}^{1}\right)$ for $\tilde{r}_{m}^{1} \in \tilde{R}_{m}^{1}$. Then the strategies in T_{m}^{0} and $S_{m}^{1}\left(\Phi_{m}^{1}\right)$ are equally good replies against q_{n}^{0}. Moreover by the genericity of x, if one of these strategies is a best reply against a point in $B_{n}^{*}(T)$ then all these points are best replies as well. For each face Φ_{m}^{1} of $\tilde{\Phi}_{m}^{1}$ that has Ψ_{m}^{1} a maximal proper face, choose a strategy $r_{m}\left(\Phi_{m}^{1}\right)$ that maps to a vertex of Φ_{m}^{1} that is not contained in Ψ_{m}^{1}. The set of points in $B_{n}^{*}(T)$ against which the strategies in \tilde{R}_{m} are as good replies as T_{m} has dimension $d_{n}^{*}(T)-1$. However, the set of points in $C_{n}^{*}(T)$ where two or more of these strategies $r_{m}\left(\Phi_{m}^{1}\right)$ are also best replies has dimension $d\left(P_{n}\right)-d\left(T_{m}^{0}\right)-d\left(\Psi_{m}^{1}\right)-3$ or less. Therefore, for R and R^{\prime} of the form $\left(\left(T_{n}^{0}, \Psi_{n}^{1}\right),\left(T_{m}^{0}, \Phi_{m}^{1}\right)\right)$ the set of $\left(p_{n}^{1}, \pi_{n}^{1}\right)$ that lies in the intersection $C_{n}(T) \cap C_{n}(R) \cap C_{n}\left(R^{\prime}\right)$ is at most $d_{n}^{0}+d_{n}^{1}+d_{n}\left(\Psi_{n}^{1}\right)-d_{n}^{*}(T)-1$ or less. This implies that generic $\left(p_{n}^{1}, \pi_{n}^{1}\right)$ in $C_{n}(T)$ belongs to at most one of these sets. Moreover, if x belongs to $\mathcal{Q}(R)$, then it belongs to the boundary of $\mathcal{Q}(R)$: indeed the point ϕ_{m}^{1} in Φ_{m}^{1} such that π_{m}^{1} is a convex combination of $\bar{\pi}_{m}^{1}\left(p_{m}^{1}\right)$ and ϕ_{m}^{1} is uniquely determined, as we argued above; since this point belongs to Ψ_{m}^{1}, which is a face of Φ_{m}^{1}, x indeed belongs to the boundary of $\mathcal{Q}(R)$ if it belongs to $\mathcal{Q}(R)$. To finish the proof of this case, we now show that x belongs to at least one $\mathcal{Q}(R)$. Take an \tilde{r}_{m}^{1} that yields the highest payoff against q_{n}^{1} among the strategies in \tilde{R}_{m}^{1}. If this payoff is higher than the payoff to the strategies in T_{m}^{0}, pick a point \bar{q}_{n}^{0} in the interior of $B_{n}^{*}(T)$ and replace q_{n}^{1} with $\tilde{q}_{n}^{1}(\varepsilon) \equiv(1-\varepsilon) q_{n}^{1}+\varepsilon \bar{q}_{n}^{0}$ where ε is the unique number where the strategies T_{m}^{0} and \tilde{r}_{m}^{1} are equally good replies; then x belongs to some $\mathcal{Q}(R)$ that has $\pi_{m}^{1}\left(\tilde{r}_{m}^{1}\right)$ as an extra vertex. If the payoff to \tilde{r}_{m}^{1} is lower, take a point \bar{q}_{n}^{0} in P_{n}^{0} against which the strategies in T_{m}^{0} are equally good and worse than the strategies in \tilde{R}_{m}^{1} and repeat the argument to show that x belongs to $\mathcal{Q}(R)$.

Finally, suppose that x satisfies (2a). Let A_{n}^{\prime} be a maximal proper face of $A_{n}(T)$ that contains q_{n}^{*} in its interior. Let \check{R}_{m}^{1} be the set of strategies \check{r}_{m} in $\left.S_{m}^{1}\left(T_{m}^{0}\right) \backslash\left(T_{m}^{1} \cup \hat{T}_{m}^{1} \cup \bar{T}_{m}^{1}\right)\right)$ that are best replies against all the points in A_{n}^{\prime}. Observe that \check{R}_{m}^{1} is nonempty if q_{n}^{*} belongs to the interior of $P_{n}\left(\tilde{T}_{n}^{0}\right)$. Indeed, in this case, the interior of A_{n}^{\prime} which is a face of $A_{n}(T)$ is contained in the interior of $P_{n}\left(\tilde{T}_{n}^{0}\right)$, which implies that some strategy in S_{m}^{1} is now optimal against every point in this face. Let \mathcal{R}_{n}^{0} be the set of subsets R_{n}^{0} of T_{n}^{0} such $P_{n}\left(R_{n}^{0}\right)$ is a maximal proper face of $P_{n}\left(T_{n}^{0}\right)$ and $P_{n}\left(R_{n}^{0}\right) \cap Q_{n}^{*}=A_{n}^{\prime}$. Observe that \mathcal{R}_{n}^{0} is nonempty if q_{n}^{*} belongs to the boundary of $P_{n}\left(\tilde{T}_{n}^{0}\right)$.

Let $\check{\Phi}_{m}^{1}$ be the smallest face of Π_{m}^{1} that contains Ψ_{m}^{1} and the vectors $\pi_{m}^{1}\left(\check{r}_{m}^{1}\right)$ for $\check{r}_{m}^{1} \in$ \check{R}_{m}^{1}. For each face Φ_{m}^{1} of $\check{\Phi}_{m}^{1}$ that has Ψ_{m}^{1} as a maximal proper face, choose a strategy $\check{r}_{m}^{1}\left(\Phi_{m}^{1}\right)$ that maps to a vertex of Φ_{m}^{1} that is not contained in Ψ_{m}^{1}. Take R and R^{\prime} of
the form $\left(\left(T_{n}^{0}, \Psi_{n}^{1}\right),\left(T_{m}^{0}, \Phi_{m}^{1}\right)\right)$. Since A_{n}^{\prime} is a face of $A_{n}(T), \tilde{d}_{n}^{*}(R)=\tilde{d}_{n}^{*}\left(R^{\prime}\right)=\tilde{d}_{n}^{*}(T)-1$. Since the strategies in \check{R}_{m}^{1} are inferior replies to points in the interior of $A_{n}(T), B_{n}^{*}(R)$ if nonempty has dimension $d_{n}^{*}(T)-1$. Therefore, if $B_{n}(R) \neq B_{n}\left(R^{\prime}\right)$, their intersection with $B_{n}(T)$ has codimension 1 in $B_{n}(T)$ and x cannot belong to two of these sets at once. On the other hand, if $B_{n}(R)=B_{n}\left(R^{\prime}\right)$ then an argument similar to that in the previous paragraph shows that generic $\left(p_{n}^{1}, \pi_{n}^{1}\right) \in C_{n}(T)$ can belong to at most one of these sets, $C_{n}(R)$ and $C_{n}\left(R^{\prime}\right)$. Hence a generic x belongs to at most one of these sets. Likewise, for R of the form $\left(\left(R_{n}^{0}, \Psi_{n}^{1}\right),\left(T_{m}^{0}, \Psi_{m}^{1}\right)\right)$ with $R_{n}^{0} \in \mathcal{R}_{n}^{0}$ and R^{\prime} of the form $\left(\left(R_{n}^{\prime 0}, \Psi_{n}^{1}\right),\left(T_{m}^{0}, \Psi_{m}^{1}\right)\right)$ or $\left(\left(T_{n}^{0}, \Psi_{n}^{1}\right),\left(T_{m}^{0}, \Phi_{m}^{1}\right)\right)$, the intersection of $B_{n}(T)$ with $B_{n}(R)$ and $B_{n}\left(R^{\prime}\right)$ has codimension at least one. Thus x belongs to at most one set $\mathcal{Q}(R)$. To finish the proof of this part, we show that it belongs to at least one such set.

Let $\check{r}_{m}^{1}\left(\Phi_{m}^{1}\right)$ be a strategy that is a lexicographic best reply to $\left(q_{n}^{0}, q_{n}^{1}\right)$ among the strategies in this class. If $\check{r}_{m}^{1}\left(\Phi_{m}^{1}\right)$ is a lexicographic (weakly) better reply against $\left(q_{n}^{0}, q_{n}^{1}\right)$ (or it is a worse reply and q_{n}^{*} belongs to the interior of $\left.P_{n}\left(\tilde{T}_{n}^{0}\right)\right)$ we choose a point \bar{q}_{n}^{0} in the interior of $P_{n}\left(\tilde{T}_{n}^{0}\right)$ against which the strategy $\check{r}_{m}^{1}\left(\Phi_{m}^{1}\right)$ is at least as good as the other points in this class and inferior (resp. superior) to strategies in T_{m}^{0}. The strategies in T_{m}^{0} and $S_{m}\left(T_{m}^{0} ; \Phi_{m}^{1}\right)$ are now equally good replies against some average of q_{n}^{0} and \bar{q}_{n}^{0}, as well as some average of q_{n}^{1} and \bar{q}_{n}^{0}. The point x then belongs to $\left(\left(T_{m}^{0}, \Phi_{m}^{1}\right),\left(T_{n}^{0}, \Psi_{n}^{1}\right)\right)$. If q_{n}^{*} belongs to the boundary of $P_{n}\left(\tilde{T}_{n}^{0}\right)$, and $\check{r}_{m}^{1}\left(\Phi_{m}^{1}\right)$ is an inferior reply, then \check{R}_{n}^{0} is nonempty. There exists R_{n}^{0} such that q_{n}^{0} is a convex combination of a point in $P_{n}\left(\check{T}_{n}^{0}\right)$ and p_{n}^{0}. Then x belongs to $\left(\left(\check{T}_{n}^{0}, \Psi_{n}^{1}\right),\left(T_{m}^{0}, \Psi_{m}^{1}\right)\right)$. This concludes the proof of (2).

We turn now to (3). Given $\mathcal{Q}(T)$ and $\mathcal{Q}(R)$ for $T=\left(T^{0}, \Psi^{0}\right) \neq R=\left(R^{0}, \Phi^{1}\right)$, we will first construct a sequence $T=T(1), \ldots, T(k)=\tilde{T}$ where $\tilde{T}=\left(\left(\tilde{T}_{n}^{0}, \emptyset\right),\left(\tilde{T}_{m}^{0}, \emptyset\right)\right)$. And, likewise one from R to \tilde{R}. Then we will show how to construct a sequence from \tilde{T} to \tilde{R}.

In case $\tilde{T}_{n}^{0} \neq T_{n}^{0}$ for some n, let $T=T(0), \ldots, T(k)$ be a sequence where for each $j>0$, $T(j)=\left(\left(T_{n}^{0}(j), \Psi_{n}^{1}\right),\left(T_{m}^{0}(j), \Psi_{n}^{1}\right)\right)$ with $P_{n}\left(T_{n}^{0}(j)\right) \times P_{m}\left(T_{m}^{0}(j)\right)$ being a maximal proper face of $P_{n}\left(T_{n}^{0}(j-1)\right) \times P_{m}\left(T_{m}^{0}(j-1)\right)$, and $T_{n}(k)=\tilde{T}_{n}^{0}$ for each n. This sequence generates a sequence of polyhedra $\mathcal{Q}(T)=\mathcal{Q}(T(0)), \ldots, \mathcal{Q}(T(k))$ where for each $j>0$, the intersection of $\mathcal{Q}(T(j))$ with $\mathcal{Q}(T(j-1))$ is contained in a maximal proper face of each and has a nonempty interior. After this operation we have $\mathcal{Q}(\tilde{T}(k))$, where $\tilde{T}(k)=\left(\left(\tilde{T}_{n}^{0}, \Psi_{n}^{1}\right),\left(\tilde{T}_{m}^{0}, \Psi_{m}^{1}\right)\right)$. In case Ψ_{n}^{1} is nonempty for some n, let $\Psi^{1}=\left(\Psi_{n}^{1}(0), \Psi_{m}^{1}(0)\right), \ldots,\left(\Psi_{n}^{1}(l), \Psi_{m}^{1}(l)\right)=(\emptyset, \emptyset)$ be a sequence such that for each $1 \leqslant j \leq l, \Psi_{m}^{1}(j) \times \Psi_{m}^{1}(j)$ is a maximal proper face of $\Psi_{n}^{1}(j-1) \times \Psi_{m}^{1}(j-1)$, and $\Psi^{1}(l)=\emptyset$. This way we can connect $\mathcal{Q}(\tilde{T}(k))$ with $\mathcal{Q}(\tilde{T})$ where $\tilde{T}=\left(\left(\tilde{T}_{n}^{0}, \emptyset\right),\left(\tilde{T}_{m}^{0}, \emptyset\right)\right)$. Now we show how to connect \tilde{T} with \tilde{R} for two sets T, R in \mathcal{T}. Because Q_{n}^{*} is connected for
each n, there exists a sequence $\tilde{T}^{0}=\left(S_{n}^{0}(0), S_{m}^{0}(0)\right), \ldots,\left(S_{n}^{0}(l), S_{m}^{0}(l)\right)=\tilde{R}_{n}^{0}$ where for each $1 \leqslant j \leqslant l$, either $P_{n}\left(S_{n}^{0}(j)\right) \times P_{n}\left(S_{m}^{0}(j)\right)$ is either a maximal proper face of $P_{n}\left(S_{n}^{0}(j+1)\right)$ or vice versa and for each n, Q_{n}^{*} intersects the interior of the set $P_{n}\left(S_{n}^{0}(j)\right)$. This generates a sequence $\mathcal{Q}^{0}, \ldots \mathcal{Q}^{j}$, where $\mathcal{Q}^{j}=\left(\left(S_{n}^{0}(j), \emptyset\right),\left(S_{m}^{0}(j), \emptyset\right)\right)$. Thus we have constructed a sequence of sets in \mathcal{T} that connect T and R.

This concludes the proof of the first statement in the theorem. Now we prove the second part.

Lemma C.11. $\psi:(\mathcal{Q}, \partial \mathcal{Q}) \rightarrow(\mathbb{P}, \partial \mathbb{P})$ is essential iff Q^{*} is stable.

Proof. Let $Y=[0,1] \times P$. For each $0<\varepsilon \leqslant 1$, let $Y_{\varepsilon}=[0, \varepsilon] \times P$ and let ∂Y_{ε} be the boundary of Y_{ε}. Each $(\varepsilon, p) \in Y$ defines a strategic game $G(\varepsilon, p)$ where the strategy set is P but where the payoff from an enabling strategy profile q is the payoff in G from the profile $(1-\varepsilon) q+\varepsilon p$. If q is an equilibrium of $G(\varepsilon, p)$, we say that $(1-\varepsilon) q+\varepsilon p$ is a perturbed equilibrium of $G(\varepsilon, p)$. Let \mathcal{E} be the closure of the set of (ε, p, q) such that $(\varepsilon, p) \in Y_{1} \backslash \partial Y_{1}$ and q is a perturbed equilibrium of $G(\varepsilon, p)$. Let θ be the projection map from \mathcal{E}. For each subset E of \mathcal{E} and each $0<\varepsilon$, let $\left(E_{\varepsilon}, \partial E_{\varepsilon}\right)$ be $E \cap \theta^{-1}\left(P_{\varepsilon}, \partial P_{\varepsilon}\right)$.

In [9] we show that there exists $0<\bar{\varepsilon} \leqslant 1$ and a finite number of subsets E^{1}, \ldots, E^{K} of \mathcal{E} such that for each $0<\varepsilon \leqslant \bar{\varepsilon}$: (i) $\left(E_{\varepsilon}^{k}, \partial E_{\varepsilon}^{k}\right)$ is a pseudomanifold (in fact a homology manifold) of dimension $d(P)+1$ for each k; (ii) $E_{\varepsilon}^{k} \cap E_{\varepsilon}^{j} \subset \partial \phi^{-1}\left(\partial P_{1}\right)$ for $k \neq j$; (iii) $\cup_{k} E_{\varepsilon}^{k}=\mathcal{E}_{\varepsilon}$.

In [6] we show that there exists a neighborhood of Σ^{*} and an $\varepsilon>0$ such that the set of ε-perfect equilibria in this neighborhood is connected. The image of this set of ε-perfect equilibria under ρ is therefore connected. Thus there exists some k such that $E_{0}^{k}=\{0\} \times Q^{*}$. Q^{*} is stable iff the projection θ from E^{k} to $Y_{\bar{\varepsilon}}$ is essential (Mertens [19]). For simplicity in notation we refer to this E^{k} as simply E.

It is now sufficient to prove that ψ is essential iff the projection θ from E is essential. For each $n, \tilde{P}_{n} \equiv[0,1] \times \mathbb{P}_{n}$ and define $\chi_{n}: \tilde{P}_{n} \rightarrow P_{n}$ by $\chi_{n}\left(\lambda_{n}, p_{n}^{0}, p_{n}^{1}\right)=\left(1-\lambda_{n}\right) p_{n}^{0}+\lambda_{n} p_{n}^{1}$. Then we have that $\left(\left(\tilde{P}_{n}, \partial \tilde{P}_{n}\right),\left(P_{n}, \partial P_{n}\right), \chi_{n}\right)$ is a ball-bundle. Let χ be the product map $\chi_{1} \times \chi_{2}$; then $((\tilde{P}, \partial \tilde{P}),(P, \partial P), \chi)$ is a ball-bundle too. Let $\hat{Y}_{\varepsilon}=[0, \varepsilon] \times \tilde{P}$. Then χ induces a map $h_{Y}: \hat{Y}_{1} \rightarrow Y_{1}$ by $h\left(\varepsilon, \lambda, p^{0}, p^{1}\right)=\left(\varepsilon, \chi\left(\lambda, p^{0}, p^{1}\right)\right)$. Now $\left(\left(\hat{Y}_{\varepsilon}, \partial \hat{Y}_{\varepsilon}\right),\left(Y_{\varepsilon}, \partial Y_{\varepsilon}\right), h_{Y}\right)$ is a ball-bundle. Let \tilde{E} be the set of all $\left(\left(\varepsilon, \lambda, p^{0}, p^{1}\right), q\right) \in \hat{Y}_{1} \times P$ such that $h_{E}\left(\varepsilon, \lambda, p^{0}, p^{1}, q\right) \equiv$ $\left(\varepsilon, f\left(\lambda, p^{0}, p^{1}\right), q\right) \in E$. Then also $\left(\left(\tilde{E}_{\varepsilon}, \partial \tilde{E}_{\varepsilon}\right),\left(E_{\varepsilon}, \partial E_{\varepsilon}\right), h_{E}\right)$ is a ball-bundle. Moreover, letting $\tilde{\theta}$ be the projection from \tilde{E} to \mathbb{P}, we have that $h_{Y} \circ \tilde{\theta}=\theta \circ h_{E}$. Therefore, by the Thom Isomorphism Theorem, θ is essential iff $\tilde{\theta}$ is; cf. [20, Appendix IV.3].

Let \hat{E} be the closure of the set of $\left(\varepsilon, \lambda, p^{0}, p^{1}, q, \pi^{1}(q)\right)$ such that $\left(\varepsilon, \lambda, p^{0}, p^{1}, q\right) \in \tilde{E}$ and $\lambda \neq 0$. By the strong excision property, the natural projection $\hat{\phi}$ from \hat{E} to \tilde{E} induces an isomorphism of their cohomology groups. Let $\hat{\theta}$ be the projection from \hat{E} to \hat{Y}_{ε}. Then $\hat{\theta}=\tilde{\theta} \circ \hat{\phi}$. Therefore, $\tilde{\theta}$ is essential iff $\hat{\theta}$ is.

Let $\eta: \hat{E} \rightarrow \mathbb{R}_{+}^{3}$ be the projection map $\eta\left(\varepsilon, \lambda,\left(p^{0}, p^{1}\right), q, \pi^{1}\right)=(\varepsilon, \lambda)$. Let $D=\eta(\hat{E})$. By the generic local triviality theorem, there exists a partition of D into a finite number of connected subsets $D_{1}^{0}, \ldots, D_{l}^{0}$, and for each D_{i} a semi-algebraic fibre pair $\left(F_{i}, \partial F_{i}\right)$, a homeomorphism $h_{i}: D_{i}^{0} \times\left(F_{i}, \partial F_{i}\right) \rightarrow\left(\eta^{-1}\left(D_{i}^{0}\right), \eta^{-1}\left(D_{i}^{0}\right) \cap \partial \hat{E}\right)$ such that $\eta \circ h_{i}$ is the projection from $D_{i}^{0} \times F_{i}$ to D_{i}^{0}. There now exists an i, say 1 , such that the closure D_{1} of a subset of D_{i}^{0} is homeomorphic to a 3 -simplex and contains $[0, \tilde{\varepsilon}] \times\{0\}$ for some $\tilde{\varepsilon}<\bar{\varepsilon}$.

Let $\left(\hat{Y}\left(D_{1}\right), \partial \hat{Y}\left(D_{1}\right)\right) \equiv\left(D_{1}, \partial D_{1}\right) \times(\mathbb{P}, \partial \mathbb{P})$ and let $\hat{E}\left(D_{1}\right)$ be the closure of the inverse image of $D_{1} \times F_{1}$ under h_{1}. Let $\hat{\theta}\left(D_{1}\right):\left(\hat{E}\left(D_{1}\right), \partial \hat{E}\left(D_{1}\right)\right) \rightarrow\left(\hat{Y}\left(D_{1}\right), \partial \hat{Y}\left(D_{1}\right)\right)$ be the projection. We claim that $\left(\hat{E}\left(D_{1}\right), \partial \hat{E}\left(D_{1}\right)\right)$ is a pseudomanifold. Since \hat{E} is a pseudomanifold, this claim is proved if we show that $\hat{E}\left(D_{1}\right) \backslash \partial \hat{E}\left(D_{1}\right)$ is path-connected. There exist $0<\hat{\varepsilon}<\tilde{\varepsilon}$ and integers $r_{n}>1$ for each n such that $(\varepsilon, \lambda) \in D_{1}$ if $0<\varepsilon<\hat{\varepsilon}$ and $0 \leq \lambda_{n} \leq \varepsilon^{r_{n}-1}$. Now given two points $x(0)$ and $x(1)$ in $\hat{E}_{\hat{\varepsilon}}\left(D_{1}\right) \backslash \partial \hat{E}_{\hat{\varepsilon}}\left(D_{1}\right)$, connect them by a curve $x(t)=\left(\varepsilon(t), \lambda(t), p^{0}(t), p^{1}(t), q(t), \pi^{1}(q(t))\right)$ in $\hat{E}_{\bar{\varepsilon}} \backslash \partial \hat{E}_{\bar{\varepsilon}}$ as t goes from 0 to 1 . For each t, express $q(t)$ as $\varepsilon(t))\left(\lambda(t) p^{0}(t)+(1-\lambda(t)) p^{1}(t)\right)+(1-\varepsilon(t)) r(t)$ where $r(t)$ is a best reply to $q(t)$. For each t we can now find a point $q^{*}(t) \in Q^{*}$ such that $r(t)$ is a best reply against $q^{*}(t)$. Choose a positive ε such that $\varepsilon+\varepsilon^{r_{n}}<\hat{\varepsilon}$. For each n, modify $x_{n}(t)$ to the vector

$$
\tilde{x}_{n}(t)=\left(\varepsilon+\varepsilon^{r_{n}} \varepsilon(t), \tilde{\lambda}(t), \tilde{p}^{0}(t), p^{1}(t), \tilde{q}(t), \pi^{1}(t)\right)
$$

where

$$
\begin{gathered}
\tilde{\lambda}_{n}(t)=\frac{\varepsilon^{r_{n}} \varepsilon(t)}{\varepsilon+\varepsilon^{r_{n}}} \lambda_{n}(t) \\
\tilde{p}_{n}^{0}(t)=\frac{\varepsilon q^{*}(t)+\varepsilon^{r_{n}} \varepsilon(t)(1-\lambda(t)) p^{0}(t)}{\varepsilon+\varepsilon^{r_{n}} \varepsilon(t)(1-\lambda(t))} \\
\tilde{q}_{n}(t)=\left(1-\varepsilon^{r_{n}}\right) q^{*}(t)+\varepsilon^{r_{n}}(1-\varepsilon(t)) r(t)+\varepsilon^{r_{n}} \varepsilon(t)\left((1-\lambda(t)) p^{0}(t)+\lambda(t) p^{1}(t)\right) .
\end{gathered}
$$

Then $\tilde{x}(t)$ belongs to $\hat{E}\left(D_{1}\right) \backslash \partial \hat{E}\left(D_{1}\right)$ for all t. Moreover, for $t=0,1, x(t)$ and $\tilde{x}(t)$ can now be connected by a path $\hat{x}(t ; s)$ defined as follows. For $s \in[0,1]$, let $k_{n}(s)=\min (1,2 s) r_{n}$ and then:

$$
\hat{x}_{n}(t ; s)=\left((2 s-1)^{+} \varepsilon+\varepsilon^{k_{n}(s)} \varepsilon(t), \hat{\lambda}(t ; s), p^{0}(t ; s), p^{1}(t), \hat{q}(t ; s), \pi^{1}(t)\right)
$$

where

$$
\begin{gathered}
\hat{\lambda}_{n}(t)=\frac{\varepsilon^{k_{n}(s)} \varepsilon(t) \lambda_{n}(t)}{(2 s-1)^{+} \varepsilon+\varepsilon^{k_{n}(s)} \varepsilon(t)} \\
\tilde{p}_{n}^{0}(t ; s)=\frac{(2 s-1)^{+} \varepsilon q_{n}^{*}(t)+\varepsilon^{r_{n}} \varepsilon(t)\left(1-\lambda_{n}(t)\right) p_{n}^{0}(t)}{(2 s-1)^{+} \varepsilon+\varepsilon^{k_{n}(s)} \varepsilon(t)\left(1-\lambda_{n}(t)\right)} \\
\tilde{q}_{n}(t ; s)=\left(1-\varepsilon^{k_{n}(s)}\right) q_{n}^{*}(t)+\varepsilon^{k_{n}(s)}(1-\varepsilon(t)) r(t)+\varepsilon^{k_{n}(s)} \varepsilon(t)\left(\left(1-\lambda_{n}(t)\right) p_{n}^{0}(t)+\lambda_{n}(t) p^{1}(t)\right)
\end{gathered}
$$

Thus $\hat{E}\left(D_{1}\right) \backslash \partial \hat{E}\left(D_{1}\right)$ is connected and hence a pseudomanifold of dimension $d(\mathbb{P})+3$. $\hat{Y}\left(D_{1}\right)$ is a full-dimensional subset of $Y_{\bar{\varepsilon}}$. Therefore $\hat{\theta}$ is essential iff $\hat{\theta}\left(D_{1}\right)$ is essential.

Since $\left(\hat{E}\left(D_{1}\right), \partial \hat{E}\left(D_{1}\right)\right)$ is a pseudomanifold, $\left(F_{1}, \partial F_{1}\right)$ is a pseudomanifold of dimension $d(\mathbb{P})$. Moreover, for each $(\varepsilon, \lambda) \in D_{1}^{0}$, letting $\left(\hat{E}_{\varepsilon, \lambda}, \partial \hat{E}_{\varepsilon, \lambda}\right) \equiv h_{1}^{-1}\left(\{\varepsilon, \lambda\} \times\left(F_{1}, \partial F_{1}\right)\right)$ we have that $\hat{\theta}$ is essential iff $\hat{\theta}_{\varepsilon, \lambda}$, the projection map $\left(\hat{E}_{\varepsilon, \lambda}, \partial \hat{E}_{\varepsilon, \lambda}\right) \rightarrow(\mathbb{P}, \partial P)$, is essential.

Let L be the set of $(\varepsilon, \lambda) \in D_{1}$ such that $\lambda_{n}=\varepsilon^{r}$ for some $r \geqslant r_{n}$ for each n. Let $\hat{E}(L)$ be the closure of the inverse image of $L \backslash\{(0,0)\}$ under h^{1}. Let $\partial \hat{E}(L)$ be the inverse image of $\partial \mathbb{P}$ under the projection map $\theta(L)$ from $\hat{E}(L)$. For each $(\varepsilon, \lambda) \in L,\left(E_{\varepsilon, \lambda}, \partial E_{\varepsilon, \lambda}\right)$ is $(\theta(L))^{-1}(\{(\varepsilon, \lambda)\} \times(\mathbb{P}, \partial \mathbb{P}))$. Our next objective is to show that $(\mathcal{Q}, \partial \mathcal{Q})$ equals the set of $\left(q^{*},\left(p^{0}, p^{1}\right), \pi^{1}\right)$ such that $\left(0,0,\left(p^{0}, p^{1}\right), q^{*}, \pi^{1}\right)$ belongs to $E_{0,0}(L)$. Given $\left(0,0,\left(p^{0}, p^{1}\right), q^{*}, \pi^{1}\right)$ in $\hat{E}(L)$ there exists a sequence $\left(\varepsilon(k), \lambda(k),\left(p^{0}, p^{1}\right)(k), q(k), \pi^{1}(k)\right)$ in $\hat{E}(L) \backslash E_{0,0}$ converging to it. For each n and k, we can express $q_{n}(k)$ as $(1-\varepsilon(k))\left(\left(1-\mu_{n}^{1}\right) q_{n}^{0}(k)+\mu_{n}^{1} r_{n}^{1}(k)\right)+$ $\varepsilon(k)\left(\lambda(k) p_{n}^{0}(k)+(1-\lambda(k)) p_{n}^{1}(k)\right)$, where μ_{n}^{1} and $\lambda(k)$ converge to zero, $q_{n}^{0}(k)$ belongs to P_{n}^{0} and converges to q_{n}^{*}, and $r_{n}^{1}(k)$ belongs to P_{n}^{1}. Also $q_{n}^{0}(k)$ and $r_{n}^{1}(k)$ if $\mu_{n}^{1}>0$ are best replies to $q(k)$ for all k. By going to a subsequence, the faces to which $q_{n}^{0}(k)$ and $r_{n}^{0}(k)$ belong are constant for all k. The sequence generates for each n an $\operatorname{LPS} \Lambda_{n}=\left(\bar{q}_{n}^{0}, \ldots, \bar{q}_{n}^{l}\right)$ where $\bar{q}_{n}^{0}=q_{n}^{*}$. As in the proof of Theorem 5.1, there exists a level l_{n}^{i} for each $i=0,1$ that is expressible as a convex combination of p_{n}^{0} and another strategy. Since $\lambda(k)$ converges to zero, $l_{n}^{0}<l_{n}^{1}$. As in the proof of Theorem 5.1, we can prove that \bar{q}_{n}^{l} belongs to \bar{Q}_{n}^{*} for each $l<l_{n}^{0}$ and if we express $\bar{q}_{n}^{l_{n}^{0}}=\nu_{n}^{0} p_{n}^{0}+\left(1-\nu_{n}^{0}\right) r_{n}^{0}$, then the strategies \bar{q}_{n}^{l} for $l<l_{n}^{0}$ and r_{n}^{0} if $\nu^{0}<1$ are lexicographic best replies against Λ_{m}. Likewise, if we express $\bar{q}_{n}^{1} n$ as $\bar{\nu}_{n}^{0} \tilde{p}_{n}^{0}+\bar{\nu}_{n}^{1} p_{n}^{1}+\bar{\nu}_{n}^{2} r_{n}^{2}$, then the strategy r_{n}^{2} if $\bar{\nu}_{n}^{2}>0$ is a lexicographic best reply against Λ_{m}. As in the proof of Theorem 5.1, Section 5.6, we can now write down an $\operatorname{LPS}\left(q^{*}, \bar{q}^{0}(\varepsilon), \bar{q}^{1}(\varepsilon)\right)$ to show that $\left(q^{*},\left(p^{0}, p^{1}\right), \pi^{1}\right)$ belongs to \mathcal{Q}.

Given $\left(q^{*},\left(p^{0}, p^{1}\right), \pi^{1}\right)$ in \mathcal{Q}, it belongs to $\mathcal{Q}(T)$ for some T. There exist $q_{n}^{0}=\left(1-\lambda_{n}^{0}\right) p_{n}^{0}+$ $\lambda_{n}^{0} r_{n}^{0}$ and $q_{n}^{1}=\mu_{n}^{0} \tilde{p}_{n}^{0}+\mu_{n}^{1} p_{n}^{1}+\mu_{n}^{2} r_{n}^{2}$ such that the strategies in T_{m} are best replies against the $\operatorname{LPS}\left(q^{*}, q_{n}^{0}, q_{n}^{1}\right)$. For all small ε, choose $\alpha(\varepsilon)$ such that $\varepsilon^{r} \mu_{1}=\left(\varepsilon^{r} \mu_{1}+\varepsilon^{r} \mu_{0}+\alpha(\varepsilon)\left(1-\lambda_{n}^{0}\right) p_{n}^{0}\right)^{r}$,
where r satisfies the property in the first line of the previous paragraph. Then for all small $\varepsilon,\left(\varepsilon, \lambda(\varepsilon),\left(p^{0}, p^{1}\right)(\varepsilon), q(\varepsilon)\right)$ belongs to $\hat{E}(L)$, where:

$$
\lambda(\varepsilon)=\frac{\varepsilon^{r} \mu_{1}}{\varepsilon^{r} \mu_{1}+\varepsilon^{r} \mu_{0}+\alpha(\varepsilon)\left(1-\lambda_{n}^{0}\right)},
$$

and $\left(p^{0}, p^{1}\right)(\varepsilon)=\left(p^{0}(\varepsilon), p^{1}\right)$ with for each n,

$$
p_{n}^{0}(\varepsilon)=\frac{\varepsilon^{r} \mu_{0} \tilde{p}_{n}^{0}+\alpha(\varepsilon)\left(1-\lambda_{n}^{0}\right) p_{n}^{0}}{\varepsilon^{r} \mu^{0}+\alpha(\varepsilon)}
$$

and $\hat{q}(\varepsilon)=\left(1-\alpha(\varepsilon)-\varepsilon^{r}\right) q^{*}+\alpha(\varepsilon) q^{0}+\varepsilon^{r} q^{1}$.
For each $(\varepsilon, \lambda),\left(E_{\varepsilon, \lambda}, \partial E_{\varepsilon, \lambda}\right)$ is a pseudomanifold. Indeed for $(\varepsilon, \lambda) \neq(0,0)$ this follows from the fact that this pair is homeomorphic to $\left(F_{1}, \partial F_{1}\right)$, which is a pseudomanifold; for $(0,0)$, this follows from the fact that $\left(E_{0,0}, \partial E_{0,0}\right)$ is homeomorphic to $(\mathcal{Q}, \partial \mathcal{Q})$. The inclusion $\operatorname{map}\left(E_{\varepsilon, \lambda}, \partial E_{\varepsilon, \lambda}\right)$ induces an isomorphism of the $d(\mathbb{P})$-th cohomology groups. Thus $\hat{\theta}_{0,0}$ is essential iff $\hat{\theta}_{\varepsilon, \lambda}$ is essential for some (and then all) $(\varepsilon, \lambda) \in L$. The projection map $\hat{\theta}_{0,0}$ is just the map ψ. Hence Q^{*} is stable iff ψ is essential.

In case S_{n}^{1} is empty, the construction is modified as follows. We can omit the sets $C_{n}(T)$ and $B_{m}(T)$ from the description of $\mathcal{Q}(T)$. In the last lemma above, the vector λ is now just a number, one for player m. The simplex D constructed there is 2-dimensional and contains a curve L of the form $\lambda=\varepsilon^{r}$. The rest of the proof is essentially the same.

This concludes the proof of the Theorem.

Appendix D. The Genericity Assumption

The conclusions of this paper necessarily hold only when, fixing the game tree, the payoffs lie in a generic set. Here we outline the nature of the genericity that is invoked. First, we require that the game have finitely equilibrium outcomes: in [4] we show that outside a lower-dimensional set every game has finitely many outcomes. Second, the constructions in Appendix C rely on certain polyhedra being in general position. Each of these polyhedrathere are finitely many of them - is a set of enabling strategies for a player n against which, in a certain class of strategies for player m, a subclass is optimal. Since these are defined by linear equations and inequalities in the payoffs of player m, the set of games where the arguments fail is a lower-dimensional set. Third, Lemma C. 11 requires a characterization of stable sets that in [9] we show holds for all games outside a lower-dimensional set.

References

[1] Blume, L., A. Brandenburger, and E. Dekel (1991): Lexicographic Probabilities and Equilibrium Refinements, Econometrica, 59, 81-98.
[2] Govindan, S., and T. Klumpp (2002): Perfect Equilibrium and Lexicographic Beliefs, International Journal of Game Theory, 31, 229-243.
[3] Govindan, S., and J.-F. Mertens (2003): An Equivalent Definition of Stable Equilibria, International Journal of Game Theory, 3, 339-357.
[4] Govindan, S., and R. Wilson (2001): Direct Proofs of Generic Finiteness of Nash Equilibrium Outcomes, Econometrica, 69, 765-769.
[5] Govindan, S., and R. Wilson (2002): Structure Theorems for Game Trees, Proceedings of the National Academy of Sciences USA, 99, 9077-9080. URL: www.pnas.org/cgi/reprint/99/13/9077.pdf
[6] Govindan, S., and R. Wilson (2002): Maximal Stable Sets of Two-Player Games, International Journal of Game Theory, 30, 557-566.
[7] Govindan, S., and R. Wilson (2006): Sufficient Conditions for Stable Equilibria, Theoretical Economics, 1, 167-206.
[8] Govindan, S., and R. Wilson (2008): "Nash Equilibrium, refinements of," in S. Durlauf and L. Blume (eds.), The New Palgrave Dictionary of Economics, 2nd Edition. New York: Palgrave Macmillan.
[9] Govindan, S., and R. Wilson (2008): Metastable Equilibria, Mathematics of Operations Research, 33, 787-820.
[10] Govindan, S., and R. Wilson (2009): On Forward Induction, Econometrica, 77, 1-28.
[11] Govindan, S., and R. Wilson (2009): Axiomatic Theory of Equilibrium Selection in Games with Games with Two Players, Perfect Information, and Generic Payoffs, Research Paper 2008, Stanford Business School, Stanford CA.
[12] Hillas, J., and E. Kohlberg (2002): Conceptual Foundations of Strategic Equilibrium, in R. Aumann and S. Hart (eds.), Handbook of Game Theory, III, 1597-1663. New York: Elsevier.
[13] Kahneman, D., and A. Tversky, editors (2000): Choices, Values, and Frames. Cambridge, UK: Cambridge University Press.
[14] Kohlberg, E., and J.-F. Mertens (1986): On the Strategic Stability of Equilibria, Econometrica, 54, 1003-1037.
[15] Koller, D., and N. Megiddo (1992): The Complexity of Two-Person Zero-Sum Games in Extensive Form, Games and Economic Behavior, 4, 528-552.
[16] Kreps, D., and R. Wilson (1982): Sequential Equilibria, Econometrica, 50, 863-894.
[17] Kuhn, H. (1953): Extensive Games and the Problem of Information, in H. Kuhn and A. Tucker (eds.), Contributions to the Theory of Games, II, 193-216. Princeton: Princeton University Press. Reprinted in H. Kuhn (ed.), Classics in Game Theory, Princeton University Press, Princeton, New Jersey, 1997.
[18] Mailath, G., L. Samuelson, and J. Swinkels (1993): Extensive Form Reasoning in Normal Form Games, Econometrica, 61, 273-302.
[19] Mertens, J.-F. (1989): Stable Equilibria-A Reformulation, Part I: Definition and Basic Properties, Mathematics of Operations Research, 14, 575-625.
[20] Mertens, J.-F. (1991): Stable Equilibria-A Reformulation, Part II: Discussion of the Definition and Further Results, Mathematics of Operations Research, 16, 694-753.
[21] Mertens, J.-F. (1992): The Small Worlds Axiom for Stable Equilibria, Games and Economic Behavior, 4, 553-564.
[22] Nash, J. (1950): Equilibrium Points in N-Person Games, Proceedings of the National Academy of Sciences USA, 36, 48-49.
[23] Nash, J. (1951): Non-Cooperative Games, Annals of Mathematics, 54, 286-295.
[24] Norde, H., J. Potters, H. Reijnierse, D. Vermeulen (1996): Equilibrium Selection and Consistency, Games and Economic Behavior, 12, 219-225.
[25] Reny, P. (1992): Backward Induction, Normal Form Perfection and Explicable Equilibria, Econometrica, 60, 627-649.
[26] Reny, P. (1992): Rationality in Extensive-Form Games, Journal of Economic Perspectives, 6, 103-118.
[27] Reny, P. (1993): Common Belief and the Theory of Games with Perfect Information, Journal of Economic Theory, 59, 257-274.
[28] Savage, L.J. (1954): Foundations of Statistics, New York: John Wiley \& Sons.
[29] Spanier, E.H. (1966): Algebraic Topology, New York: McGraw-Hill.
[30] van Damme, E. (1984): A Relation between Perfect Equilibria in Extensive Form Games and Proper Equilibria in Normal Form Games, International Journal of Game Theory, 13, 1-13.
[31] van Damme, E. (2002): Strategic Equilibrium, in R. Aumann and S. Hart (eds.), Handbook of Game Theory, III, 1523-1596. New York: Elsevier.

Department of Economics, University of Iowa, Iowa City IA 52242, USA.
E-mail address: srihari-govindan@uiowa.edu
Stanford Business School, Stanford, CA 94305-5015, USA.
E-mail address: rwilson@stanford.edu

[^0]: ${ }^{1}$ Mertens considers the graph of equilibria over the space of perturbed games obtained by perturbing players' strategies toward mixed strategies, and then defines a connected closed set of equilibria as stable if the projection from a neighborhood in this graph is an essential map, i.e. has nonzero degree. See Mertens [19] for further topological aspects of the definition, and Govindan and Mertens [3] for an equivalent definition in terms of players' best-reply correspondences.
 ${ }^{2}$ Solutions are assumed to be sets because Kohlberg and Mertens [14, pp. 1015, 1019, 1029] show that there need not exist a single equilibrium satisfying weaker properties than the axioms invoked here. The technical requirement that a solution is connected excludes the trivial refinement that selects all equilibria. If only a single (possibly unconnected) subset is selected then only the trivial refinement satisfies the conditions invoked by Norde, Potters, Reijnierse, and Vermeulen [24]. Kreps and Wilson [16, Theorem 2] show that if payoffs are generic then all equilibria in a connected set yield the same probability distribution over terminal nodes, and thus the same paths of equilibrium play in the extensive form.

[^1]: ${ }^{3}$ We intend that a revised version will weaken Axiom B to only require inclusion of a sequential equilibrium for which each player's strategy is conditionally admissible from each of his information sets.
 ${ }^{4}$ A component is a maximal closed connected set, and it is essential if it has the property described in footnote 1. For the usual normal form of the game, a solution can be a subset of a component that maps to a component of the enabling form of the game.

[^2]: ${ }^{5}$ In [5], enabling strategies are defined in terms of terminal actions rather than terminal nodes. The present definition is equivalent because a player's probability of enabling a terminal action is the probability of enabling each terminal node that follows it. The vertices of P_{n} are n 's pure strategies in the 'pure reduced normal form' defined by Mailath, Samuelson, and Swinkels [18]. See Appendix A for illustrations.

[^3]: ${ }^{6}$ Alternatively, as noted by Mertens [21], one can apply the definition of stability directly to Q^{*} as a component of equilibria, represented in terms of enabling strategies, over the space of perturbations of players' enabling strategies.
 ${ }^{7}$ Lexicographically optimal replies are defined by Blume, Brandenburger, and Dekel [1] and Govindan and Klumpp [2].

[^4]: ${ }^{8}$ It would have sufficed, at this stage, to give player n the option of playing just the strategy p_{n}^{0} instead of all the strategies in $T_{n}^{0}\left(\delta, p_{n}^{0}\right)$, which we do only for economy in notation.

[^5]: ${ }^{9}$ Mertens [21, p. 554] introduces the mapping of mixed strategies to induced distributions on terminal nodes. Koller and Megiddo [15] call them realization plans.

