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Abstract

We apply the exponential weight algorithm, introduced and Littlestone and
Warmuth [17] and by Vovk [24] to the problem of predicting a binary sequence
almost aswell asthe best biased coin. Wefirst show that for the caseof thelogarith-
mic loss, the derived algorithm is equivalent to the Bayes algorithm with Jeffrey’s
prior, that was studied by Xie and Barron under probabilistic assumptions [26].
We derive a uniform bound on the regret which holds for any sequence. We also
show that if the empirical distribution of the sequence is bounded away from O
and from 1, then, as the length of the sequenceincreasesto infinity, the difference
between this bound and a corresponding bound on the average case regret of the
same algorithm (which is asymptotically optimal in that case) is only 1/2. We
show that this gap of 1/2 is necessary by calculating the regret of the min-max
optimal algorithm for this problem and showing that the asymptotic upper bound
istight. We also study the application of this algorithm to the square loss and show
that the algorithm that is derived in this case is different from the Bayes algorithm
and is better than it for prediction in the worst-case.

1 Introduction

In this paper we show how some methods devel oped in computational on-linelearning
theory can be applied to a very basic statistical inference problem and give what we
think are surprisingly strong results. In order to present these results within context,
we find it necessary to review some of the standard statistical methods used for this
problem.

Consider thefollowing very simple prediction problem. You observe a sequence of
bitszy, 2, . . . onebit at atime. Before observing each bit you have to predict itsval ue.
The prediction of the ¢th bit «; is given in terms of a number p; € [0, 1]. Outputting
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pe close to 1 corresponds to a confident prediction that «; = 1 while p; close to 0
corresponds to a confident prediction that «; = 0. Outputting p;, = 1/2 corresponds
to making a vacuous prediction.! Formally, we define a loss function £(p, z) from
[0,1] x {0, 1} to the non-negative real numbers R*. The value of ¢(p;, z;) istheloss
we associate with making the prediction p; and then observing the bit z;. We shall
consider thefollowingthreeloss functions: thesquarelossé,(p, ) = (= — p)?, thelog
l0ss{iog(p, ) = —zlogp — (1 — ) log(1— p) and the absoluteloss 1(p, ) = |z — p|.

The goa of the prediction agorithm is to make predictions that incur minimal
loss. Of course, one has to make some assumption about the sequences in order to
have any hope of making predictions that are better than predicting 1/2 on al of the
turns. Perhaps the most popular simple assumption is that the sequence is generated
by independent random coin flips of a coin with some fixed bias p. The goa isto
find an agorithm that minimizes the total loss incurred along the sequence. However,
as the minimal achievable loss depends on p, it is more informative to consider the
difference between theincurred loss and the minimal |oss achievable by an “omniscient
statistician” who knows the true val ue of p and choosesthe optimal prediction 5 for this
distribution.

Letx” = x4,..., 27 denoteabinary sequence of length 7', andlet x” ~ p” denote
the distribution of such sequences where each hit is chosen independently at random
to be 1 with probability p. The average regret for the prediction algorithm A is the
average difference between the tota loss incurred by A and the total loss incurred by
an omniscient statistician. In symbols, thisis:?

Ra\/(A, Ta p) = EXTNpT (Z E(Pt, $t> - Zg(ﬁa xf)) (l)

= t=1

We use the term average regret to differentiate it from the worst-case regret which we
define bel ow.

In general, the optimal algorithm for minimizing the average regret is the Bayes
algorithm. There are two variants of the Bayesian methodol ogy, we call these variants
the subjective Bayesianism and the logical Bayesianism:

e Subjective Bayesianism
Inthisview, the notion of adistributionover the set of model sisdefined, axiomat-
ically, as arepresentation of the knowledge, or state of mind, of the statistician
regarding the identity of the correct model in the mode class. Choosing an
appropriate prior distribution 4 is, in this case, the act of compiling all such
knowledge, that exists before seeing the data, into the form of a prior distribu-
tion. After u has been chosen, the goal of a prediction algorithm isto minimize
the expected average regret, where p is chosen at random according to the prior

1gtrictly speaking, there exist non-symmetric loss function for which the vacuous prediction is not 1/2.
In this paper we concentrate on symmetric loss functions for which the vacuous prediction is always1/2.

2For the sake of simplicity, we restrict the discussion in the introduction to deterministic prediction
agorithms. In this case the prediction is a function of the previously observed bits.



distributionand then x” isgenerated according to p, i.e. tofind A that minimizes
E,wuRav(A, T, p). Itiseasy toshow that the Bayes algorithmwith p asaprior
achieves this optimality criterion with respect to thelog loss.

e Logical Bayesianism
In this view, which is attributed to Wald, no assumption is made on how the
mode p is chosen, and the optimality criterion is that the average regret for the
wor st-case choice of p should be minimized. Interestingly, if thenumber of trials
T is fixed ahead of time then the min-max optimal strategy for the adversary
who chooses the value of p isto choose it according to some fixed distribution,
Pworst(T)v over [0, 1] (see e.g. Blackwell [3] Ferguson [11] and Haussler [13]).
The min-max optimal prediction strategy for this case is the Bayes prediction
agorithmwith the prior set to Py orst(T)- HOWever, these prior distributionsare
very peculiar (see eg. [28]), caculating them is hard, and, most importantly,
they are optimal only if 7" isknownin advance. A moreattractive optionistofind
an agorithm which does not need to know 7" in advance. Bernardo [2] suggested
using the Bayes a gorithmwith Jeffrey’ sprior (which we denotehere by BJ), and
Clarke and Barron [5] proved that this choice is asymptotically optimal for the
modelsthat arein theinterior of the set. Finally, Xie and Barron [26] performed
a detailed analysis of the BJ agorithm for the model class of biased coins and
have shown that for any ¢ > Oandany 0 < o < 1:*
. 1 1 =«
TI|_>rrgo (qwg??i(—e/w Rav(BJ, T, p) — > InT) =3 InZ (2)
These two methodol ogies, and most prediction methodol ogiesin general, are based
on the following statistical assumption. One assumes that the sequence to be predicted
is generated by independent random draws from some unknown distribution that is
selected, once and for all, from a known class of distributions. The difference between
Bayesian and worst-case methodol ogies regards only the way in which the specific
distribution is chosen from the class. However, the assumption that a particular source
of sequences isreally a so-called “random” source is problematic because in most real
world cases it is ailmost impossible to verify that a particular data source is indeed a
random source.®> Moreover, because of the lack of data or computing power, one often
wants to use a simple stochastic model even in situations where it is known that the
sequence is generated by a much more complex random process or by a mechanism
which isnot random at all!

3Jeffrey’s prior for this caseis also known as the Krichevsky-Trofimov prior or the Dirichlet-(1/2,1/2)
prior, see Equation (28) for the exact definition.

4Xie and Barron give their results in a slightly stronger form, our results can be presented in that form
too.

51t seems that the most accepted approach to measuring the randomness of a particular sequence is to
measure its Kolmogorov complexity (see e.g.[15]), in other words, to compare the length of the sequence
with the length of the shortest program for generatingit. Random sequencesare those for which the program
isnot significantly shorter than that of the sequence. While this measureis mathematically very elegant, itis
usually not a practical measure to compute.



The question is; what weaker formal assumption can be made that would still
correspond to our intuitionthat a biased coinisagood approximate model for the data?
The assumption we study in this paper isthat there exists a fixed model whosetotal l0ss
on the sequence is non-trivial. This direction builds upon the idesas of “prediction in
theworst-case” [12], “on-linelearning” [7, 16, 17, 24], “universa coding” [9, 22, 20],
“universal portfolios’ [8, 6] and “universal prediction” [10].

We definetrivial per-trial loss as the maxima loss incurred by the best prediction.
Moreformally, itis

£ _pe”[%fll relot) e ®)
Itiseasy to verify that the prediction that minimizesthelossfor thelog loss, the square
lossand the absolutelossis 1/2 and that the corresponding values of thetrivial lossare
log2, 1/4 and 1/2 respectively. We say that a prediction agorithm makes non-trivia
predictionson a particular sequence z1, . . ., ¢ if thetota lossthe agorithmincurson
the whol e sequence is significantly smaller than 7'L.

In the case of the biased coins, the assumption isthat there exists some fixed value
of p € [0,1] for which the total loss Zthlﬁ(p, z4) is significantly smaller than T'L.
We do not define directly the concept of a“significant” difference. Instead, we define
our requirements from the prediction algorithm relative to the total loss incurred by
the optimal value of p. We can then say that ¢ is a significant difference in the total
prediction loss if there exists anredlctlon algorithm whose total loss is guaranteed to
besmalerthan TLIfTL — ", Up, x:) > e.

We measure the performance of a prediction agorithm on a specific sequence
x1, ..., zp using the difference

T

T
J4 — min o .
Z (e, x¢) pEOlZ p, 1)

t=1 =

The worst-case regret of a prediction algorithm A is the maximum of this difference
for sequences of length 7" is defined to be

T
Rwe(A, T) (ZE (P, 1) — pren:)nl ZE P, T1) ) (4)

We denote the argument that minimizesthe second term by p. Notethat for thelog loss
and for the square loss p isequd to thefraction of 1'si rle. We refer to the fraction of
1'sinx” astheempirical distributionand denoteit by 4. Clearly, @ isawaysarationa
number of theform /7" for someinteger i intherangeO, ..., 7". For the absoluteloss,
pislif 0 > 1/2 and is O otherwise. As we shall see, we can prove slightly better
bounds on the regret if we allow a dependence on 4, we therefor define the quantity

T
Rwc(A, T, é) (ZE (pt, x¢) _pren:)nl ZE D, ) ) . (5

T T
xe(x)e =



Consider the situation in which the sequence is generated by a random source and
the analysisis donein terms of the worst-case regret. We have that

ch(A,T)
T
= ! —{(p 6
rp(gxﬁrg[gﬁ];( (P, z1) — €(P, 1)) (6)
T
> max Fxr.,r max £(py, — L(p, 7
2 MaX Exrnp pe[o,l];< (pe, xe) — (P, 21)) (7
T
2 m;\x EXTNPT Z (E(pf’ xf) - f(p, xf)) (8)
t=1
= max Rav(A,T,p) 9
14

Thefirst inequality followsfrom replacing a maximum with an average and the second
inequality follows from replacing the optimal per-sequence choice of p with a global
choice of p. We thus see that the worst-case regret is an upper bound on the average-
case regret. Thisrelation isnot very surprising. However, the surprising result, which
we prove in this paper, is that for the class of biased coins and with respect to the log
loss the worst case regret is only very dightly larger than the average case regret, as
described in Equation (2). In this paper we prove the following bound on the worst
case regret of the BJa gorithm for this problem. Forany ¢ > Oandforany 0 < o« < 1:

1 1
lim max Rwe(BJ,T) — EInT) <ZInZ. (10)

T—00 (XT;é(XT)E[e/T",l—e/T"] 2 2
Observe that the difference between this bound and the bound given in Equation (2) is
just1/2.

We a so show that thistiny gap is necessary. We do thisby cal culating the min-max
optimal algorithm for the worst-case regret and showing that its asymptotic difference
from (1/2) InT isalso (1/2) In(x/2). The only asymptotic advantage of the min/max
algorithm is for sequences with empirical distribution very close to either O or 1, in
which case the regret is larger by an additional 1/2. Thus the agorithm suggested by
the logica Bayesian anadysisis aso (almost) optimal with respect to the worst-case
regret. Thisresult complements the results of Xie and Barron [26].

Thisresult also merges nicely with the method of stochastic complexity advocated
by Rissanen [19]. That is because any prediction algorithm can be trandated into a
coding algorithmand vice versa (for example, using arithmetic coding [20].) Thelength
of the code for a sequence x”' is equal (within one bit) to the cumulative log loss of the
corresponding prediction algorithm on the same sequence. Thus our result means that
the Bayes method using Jeffrey’s prior isthe optimal universal coding agorithmfor the
models class of biased coins, including the additive constant in the expression for the
min-max redundancy, for al sequences but those whose empirical distributionis very
extreme.



Thus, if our goa isto minimizethe cumulative log loss or thetotal codelength then
stochastic complexity, logical Bayesianism and worst-case prediction all suggest using
the same agorithm and all achieve essentially identical bounds. However, if we are
interested in alossfunction different than thelog | oss, then the worst-case methodol ogy
suggest an algorithm that differs significantly from the Bayes algorithm. Specifically,
we show that the agorithm suggested for ¢»(p, #) is very different from the algorithm
that is suggested by any Bayesian approach. Moreover, we give an example for which
the worst-case regret of the Bayesian algorithm is significantly larger than that of the
exponentia weights algorithm.®

The prediction agorithms presented in this paper are very efficient. The prediction
rule is a function only of ¢, the number of bits that have been observed, and n, the
number of bitsthat were equa 1. The suggested prediction rule for the cumulative log
lossis

_t41)2
Pt = net 1
and a possible prediction rule for the squarelossis

B T TS A 1 (e Rt ()
b= +3In— +2|nerf(\/t-l_zln)+erf(\/t_l_zl(t+l—n))

t(t+1) 4
(12)

(11)

bl

where

P 2
ef(p) = %/0 e da

isthe cumul ative distribution function of the normal distribution. Both prediction rules
are closeto p; = t/n for large n and ¢, but are dightly different for the initia part of
the sequences.

The paper isorganized as follows. In section 2 we review the exponentia weights
prediction agorithm and the well-known bound for the case where the number of
models is finite. In Section 3 we show how the algorithm and its analysis can be
extended to the case in which the class of modelsis uncountably infinite. In Section 4
we present our basic bound, that is based on the Laplace method of integration. In
Section 5 we apply our method to the case of the log-lossand in Section 6 we compare
our bound to other bounds regarding the cumulative log loss. In Section 7 we apply
our method to the square loss and in Section 8 we briefly review what is known about
the absolute loss. We conclude with some general comments and open problemsin
Section 9. Details of the proof are given in the appendix.

S1tisatrivial observationthat any prediction algorithm can be viewed as a Bayesian algorithm if the prior
distribution is defined over the set of sequences, rather than over the set of models. However, this observation
is of little value, becauseit does not suggest an interesting way for finding this distribution or for calculating
the predictionsthat would be generated by using it.



2 Thealgorithm

The agorithm we study is a direct generalization of the “aggregating strategy” of
Vovk [24, 23], and the“Weighted Mgjority” a gorithmof Littlestoneand Warmuth [17].
Werefer to it asthe “exponential weights’ agorithm and denote it by EW. We denote
aclass of modelsby P. Inthissection we assumethat P isafiniteset of valuesin [0, 1]
whose dement are p1, . . ., py. We denote the cumulative loss of the model p; at time
t by L(pla t) = Zi’:lg(pia xf')'

The agorithm is simple. It receives two positive readl numbers  and ¢, as pa
rameters. With each model in the class, at each time step ¢, it associates a weight
wi i = eXp (—nL(pi,t)), The initia weights sum to 1, and, when the set of modelsis
finite, the initial weights are usually set to wy; = 1/N for dl modelsi = 1,..., N.
The prediction of the algorithm at time ¢, which we denote by ¢., is afunction of the
wel ghts associated with the model s at that time. Before describing how the predictions
are chosen, we describe the bound on the total of the algorithm. This might seem
backwards, but the choice of prediction is trivial once the bound is given. The bound
on the total loss of the algorithm, for every time step ¢, is of theform

T

N
D Ui wi) < —eln> wrya (13)
i=1

t=1

If we want thisbound to hold at al timesfor all sequences, itis clear how to make the
predictions. The prediction should be chosen so that for both possible values of #4411
the bound will hold a ¢ + 1 given that it holds a ¢. Specifically, this means that the
prediction ¢, 1 ischosen so that

—c Ianvzlwm + f(d)t, l) < —c Ianvzl Wit15 (14)
and - can?;lwm + E(d)t, O) S —can?;le_M .

The way this bound is usually used is to observe that if the total loss of the best
model after observing all of x* is L% = min; L(p;, T') then the weight associated
with the best model, and thus also the total weight, are lower bounded by exp(—nL%.).
Plugging thisinto Equation (13), we find, after some simple algebra, that

T

D Ui x1) < cInN + el (15)
t=1

Thusif ¢ = 1 weimmediately get anice simple bound on the worst-case regret of the
algorithm:
Rwe(E,t) <cInN (16)

Itisthusalso clear that we would like ¢ = 1/7 to be as small as possible.
Hauss er, Kivinen and Warmuth [14] studied the problem of combining models for
predicting a binary sequence in detail. They giveaformulafor cal culating the minimal



value of ¢ for any loss function within a broad class such that the bound (13) holds
for n = 1/ec. Inthis paper we use their results for the log loss the square loss and the
absoluteloss.

3 Uncountably infinite sets of models

We now apply the exponentia weights algorithm to the case where the set of models
isthe set of al biased coins. The natura extension of the notion of the weights that
are associated with each model in a finite class is to assume that there is a measure
defined over the set of models P = [0, 1],” and as the initial weights sum to one, the
initial measure, denoted by g4 is a probability measure. We shall sometimes refer to
thisinitial probability measure as the prior. For ¢ > 1 we define a measure i (A) as
follows:

pet1(A4) i/ €(l/c)l(xt’p)dﬂt(17),
A

where dy;(p) denotes integration with respect to the measure u; over p € A C P.
Similarly to the prediction rule given in Equation (14) the prediction at time ¢ is any
#+ € [0, 1] which satisfies

Le=(1/0)(0p) g
10.6) < —cln (fo - ‘”(p)) (17)
Jo dpe(p)
andi(1,6) < —cln (fole_(l/c)l(l’p)d“f(p))
) = 1
Jo dpe(p)
The bound that one is guaranteed in thiscase is
T 1
> iz, 60) < —cln (/0 d/iT+1(P)) (18)
t=1

Interestingly, the set of pairs (¢, ) for which the bound of Equation (18) is guaranteed
isidentical to the set for which Equation (13) holds. The proofsare aso identical, one
has only to replace sums by integrals in the proofs given by Haussler et a. However,
it is not immediately clear how to relate this bound on the total loss to the worst-case
regret. Asthe number of modelsisinfinite abound of theform ¢log N is meaningless
and we need a different bound. In the rest of the paper we develop a bound which
is appropriate for the model class of the biased coins and is based on the method of
Laplace integration.

7A measure over a space Q is a function from the set of measurable sets (in our case, the Borel setsin
Q = [0, 1]) to the real numbersin therange [0, 1]. A probability measureis a measurethat assignsthe value
1 to the set that consists of the whole domain.



From Equation (18) we get the following bound on the worst-case regret
Rwe(EW, T') < (19)

iz (o0 i) = 26.1)

Notice now that in the case of the biased coin the cumulative loss of model p on the
sequence x” can bewrittenin the form

Lp, T) =T [0t(p, 1) + (1 0)¢(p, 0)|

Using this expression for both L(#,T) and pp,1(p) and rewriting the second term
(which isaways positive) in an exponential form we get

Rwo(EW,T) < max {_c In ( Joexp (-% [éz(l, p)+ (1— )I(0, p)]) dul(p))

6=:/T; i=0..T
—clne (L [di(1,5) + (1 - 0)i(0,7)] ) }
and we can combine the exponents of the two terms and get:
1 .
Rwe(EW,T) < = max  —cln (/ 6_Tg(€’p)dﬂ1(l?)) (20)
0=:/T; i=0...T 0

where

g(0,p) =

Q|

[0 (e, 1) = €5, 1) +2 -6 (4p,0) - 65, 0)]  (21)

Werefer to g(é , p) asthegapfunction. Thegap functionisproportional to theadditional
loss-per-trial that the model p suffers over and above the model p which isthe optimal
model for any sequence whose empirical distributionis . Thus the exponent of the
integral in Equation 20 is zero when p is an optima model and is negative el sewhere.

4 Laplace method of integration

Inthissection wedescribe ageneral method for cal culating theintegral in Equation (20).
The derivation given in this section was done independently, for a much more general
scenario, by Yamanishi in [27]. However, as we shall see, this method, by itself, is not
sufficient to prove abound on the worst-case regret. Later in thispaper we describe the
additiona steps required to do that.

We require that the loss function ¢(p, «) has the following three properties. It is
easy to verify that thelog loss and the square |oss over the model class of biased coins
have properties 2 and 3. The proof that property 1 holdsfor these loss functionscan be
found in Haussler et a [14].



1. {(p,z)is(c, 1/c) achievable for some 0 < & < oo. From here on we use the
symbol ¢ to denote the minimal value that satisfies thiscriterion.

2. For al valuesof z, {(p, x) has acontinuous second derivative as a function of p.

3. Thereexistsafunction p : [0, 1] — [0, 1] such that the unique optimal model for
any sequence x” whose empirical distributionis @ is 5(¢). We use 5 to denote
p(#) when ¢ isclear from the context.

The setting of the EW agorithm we suggest is to use the constantsc and = 1/¢
defined in condition 1 and to use astheinitia probability measure the following density
measure:

i) = [ s 22
62
where  w(z) = —% [a—ng(l‘,p)] -
p=p(=
1 62
and 7 :/0 [a—ng(l‘,p)] o dx (23)

The following theorem gives a bound on the performance of this algorithm:

Theorem 1 For any fixed 0 < 0 < 1, the loss suffered by the exponential weights
algorithm described above on any sequence x” whose empirical distribution is ¢
satisfies
Rwe(A, T,0) < SinL — Sinz + 0(1/1) (24)
WC bl bl — 2 27T 2 bl
where ¢ and 7 are as defined above.

This bound is almost a bound on the worst-case regret. However, it is an asymptotic
result which applies only to sets of finite sequences in which al the sequences have the
sameempirical distribution, é. Of course, any sequence hassomeempirical distribution,
and so it belongs to some set of sequences for which the theorem holds. However, the
term O(1/T') might have a hidden dependence on #.2 What we need is a uniform
bound, i.e. abound that does not have any dependence on properties of the sequence.
To get such a bound we need a more refined analysis which, at this point, we know
how to do only for the special cases described in later sections. However, Theorem 1is
important because it bounds the regret for important sets of sequences, and because it
suggests a choice for theinitial probability mesasure.

The proof of Theorem 1 is based on the Laplace method of integration which isa
method for approximating integrals of the form

b
/ fe Tt gy | (25)

8As we show later, such a dependencedoesindeed exist, but it vanishesas T — oo if p € [¢, 1 — €] for
any fixede > 0.




for large values of 7', when f and h are sufficiently smooth functions from [a, b] to
the reals.® The intuition behind this method is that for large 7" the contribution of a
small neighborhood of tmin = argmin g(¢) dominates the integral. Thus, by using a
Taylor expansion of g(¢) around ¢t = ¢min one can get agood estimate of the integral.
The dependence of the contribution of the maximum on 7" depends on whether the
maximum is also a point of derivative zero. Thisisalwaysthe caseif a < tmin < b
and might be the case if t = @ or ¢ = 6. We concentrate on the first case. Laplace
method, or, more formally, Watson's Lemma [25], gives us the following asymptotic
approximation for theintegral in this case'”

Theorem 2 (Watson) Let f and i be functions from the segment [, 4] to the reals.
Assume that for all ¢ € [a, b], h(t) > 0and £h(t), j—;h(t) exist and are continuous.
Assume also that there exists @ < tmin < & such that 2(¢t) = Ofor « < ¢ < b if and
onlyif¢ = tmin, and that [£h(1)],_, . = 0. Finally assume that /(1) hasa Taylor
expansion in a neighborhood of ¢tmin. Then

[ s 0 = siemin | Lo (@)

d2
T [ L) -

We can now prove the theorem: A

Proof of Theorem 1: Wefix an empirical distributiond and let x” be any sequence
whose empirical distribution is 4. we use the fact the p1 is defined by the density
functionw and rewrite the bound given in Equation (20), without taking the maximum
over the sequence:

D e e) =Y Upoa) < —cln (/0 exp (—Tg(é,p)) W(p)dp)

t=1

Thisintegral is of the form defined in Equation (25), where f(t) = w(t)/Z, h(t) =
g(6,t) andtmin = p. From Watson's Lemma we thus get that, for any fixed value of ¢:

~ —27c

1 R
/0 e~ T90P) dp (p) = w(6) p. [ = (é )] +0(T7%?. (27)
a1 P p=p(6)

In order to minimize the bound, we want the integral to be large. More precisaly, we
want to choose w so as to maximize the minima value achieved over al choices of
6 € [0,1.1! Asw isadistribution, it is easy to see that the minimum of the first term

9For a good description of the Laplace method, see chapter 2 of Murray’s book [18].

105ee the derivation of Equation (2.33) in [18].

U Actually, if wefix 7', we need to consider only values of 4 of theform/T'. Indeed, we can find slightly
better choices of w for fixed valuesof T'. However, our goal is to choose asingle distribution that will work
well for al largeT'. We thushaveto consider al rational ¢, which, asthe second derivativeof % is continuous,
isequivalent to considering all ¢ € [0, 1].

10



in the bound is maximized if the value of thistermisequal for al values of 4. Wethus
arive a the choice of w given in Equation (22) which exactly cancels the dependence
on @ of thefirst term. We thus get

max w(f) . 2 T-32) ,/ T-%2) ,/ (14 0(1/T))
9€[0,1] T [#g(@,p)]p:ﬁ(e)

and when we plug this estimate i nto the bound given in Equation 20 we get the statement
of the theorem.

We now move on to show that the suggested exponentia weights algorithm does
indeed achieve avery strong bound on the worst-case regret for the log loss and for the
square loss on the class of biased coins.

5 Log-loss

Thelossfunctioninthiscaseisfog((, %), p) = — log(1—|z—p|),theoptimal parameters
arec = 1/n =1, and the optimal value of p for a given sequenceisp = 6.
Itiseasy to check that in thiscase the prediction rule

¢ = /Olp exp (_T (é|né+(1— #)In(1— é))) dpa(p),

satisfies Equation (14) for thelog loss. Notealso that thisruleisequivalent to the Bayes
optimal prediction rule using the prior distribution y;.
The gap function % in thiscase is (minus) the KL-divergence.

g(é,p) = —é|Og (g) - (1 - é) |Og (%) =—Dy (é”p)

The second derivative of & isthe Fisher information:

[5—;9(% p)] e p(1-p)

So the optimal prior is

wlp) = : S S (28)

2[[sten] VD

Thisprior isthe Jeffrey’s prior for thismodel class, thusthe algorithm suggested in this
case isthe Bayes algorithm using Jeffrey’s prior (BJ).

To bound the worst-case regret we calculate theintegral of Equation (18) which, in
thiscase, isequal to

/l w(p)e—TDKL (éHP)dp

0

11



Details of this calculation will be given in appendix A. Here we state the resulting
bound:

Theorem 3 The regret of the Exponential weights algorithm over the class of biased
coins, which uses the prior distribution described in Equation (28) with respect to the
log lossis bounded, for any 7' > 1 by

Rwc(EW, T 0) < (29)
1 1, 7 1 1 1
I+ 4+ Ins 4+ 5 — = = +

5! J+3n3+3 24 (T'min(d,1— §))-1 * 360(T + 1)

which implies that
1
Rwe(BW, T) < SIn(T+ 1) +1 (30)

Thelast inequality showsthat the regret of the exponential weightsagorithm holds
uniformly for all @ € [0,1], i.e., for all sequences. It is worthwhile to consider the
more precise bound given in Inequality (29). If for some fixed ¢ > 0 we have that
0 € [e,1— €] then, for " — oo the last two terms converge to zero and the bound
convergesto 3 In7"+ 2 InZ. Thisbound also holdsif 6 € [, 1— ] forany o < 1.
However, if & = 0, we get adlightly larger bound of 2 In7 + InZ + 1.2 Finaly, if
§ = ©(1/T') then we get an intermediate bound.

6 Comparison to other resultsregarding log-loss

Itisinteresting to compare these boundsto theonesgiven by Xieand Barron[26]. They
analyze the same agorithm on a very similar problem, but they consider the expected
regret and not the worst-case regret. Aswas shown in the introduction, the worst-case
regret upper boundsthe average-case regret. However, our definition of regret is much
stronger then theirs, because we make no probabilisti cassumption about the mechanism
that is generating the sequence. Itistherefor surprising that the boundsthat we get are
so very closeto their bounds.

Fromthe arguments giveninthe previoussection we get that, Theorem 3 impliesthe
bound givenin Equation (10). Thedifference between thisbound and thebound derived
by Xie and Barron [26] described in Equation (2) is(1/2) In(7/2) — (1/2) In(x/2¢) =
0.5nits = 0.721 bits. In other words, knowing that the sequenceis actualy generated
by independent random draws of a random coin isworth less than one bit!

AsXieand Barron show, theBJal gorithm isnot an asymptotically optimal algorithm
with respect to the average prior. That isbecause on the endpointsp = Oand p = 1the
lossislarger than for theinterior points, and thisdifference does not vanishas’" — oo.
In order to achieve the asymptotic min/max they suggest multiplying Jeffrey’s prior
by 1 — 2n wheren > O(T~%) for some « > 1/2 and putting a probability mass of

~ 2The actual asymptotic value of the regret (both worst case and average case) of the BJ agorithm for
6 =0ord = 1isdightly smaller: ZInT + ZInx.
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7 on each of the two points¢/7T and 1 — ¢/T for some constant ¢. This reduces the
asymptotic average regret at the endpointsto the asymptotically optimal value without
changing the asymptotic average regret in the interior points. Similar observationsand
the same fix hold for the worst case regret.

Aswe show at the end of thelast section, the regret of algorithm BJ on theinterior
of [0,1]is(1/2) InT+(1/2) In(x/2), larger by 1/2 from the optima performance with
respect to the average regret. We now show that this small gap cannot be removed. We
do this by calculating the regret of the min-max optimal agorithm for the worst-case
regret with respect to the log |l oss.

We use arather well known lemma, stated for instance in Starkov [21, 22] and in
Cesa-Bianchi etd. [4]. Thelemmastatesthat themin/max optimal predictionalgorithm
defines the following distribution over the set of sequences of length 7°:

1
P(xT) = - max Py(x") where Z=>" max P,(xTy, (31)
xXT

and that the regret suffered by this optimal agorithm on any sequenceisequa toIn~.
Using this we can explicitly calculate the worst-case regret of the min/max optimal
algorithm (this result was previously shown by Starkov [22]).

Lemmal The worst-case regret of the min/max optimal prediction algorithm for se-
guences of length 7", whi ch we denote by MM, with respect to the class of biased coins

andthelogloss, is
LT
—T H(i/T)
In (E (Z)e ) (32)

=0

Rwc(MMrp, T')

In(T + 1) + % In(x/2) — O(1/V/T)

NI =

The proof isgiven in Appendix B.

7 Squareloss

In this section we consider the loss function {(z,p) = (z — p)?. As was shown by
Vovk [24] and Haussler et d. the optimal parametersin thiscase arec = 1/2,n = 2
and the optimal model isp = 6. The gap functionin thiscaseis

o(p) = (107~ (1= p?) + (1) (0~ 0)? — (0~ p)?)
And its second derivativeis a constant:
h"(p) =4
So the optimal prior isthe uniform distribution

w(p) =1

13



To bound the worst-case regret we cal culate theintegral of Equation (18) which, in
thiscase, isequal to

l N N ~ ~
/ ep (210 (1= 6) - (1= p)?) +20(1—§) ((0— 62— (0= p)?) ) dp
0
Detailsare givenin appendix C. Theresulting bound is:

Theorem 4 The regret of the Exponential weights algorithm over the class of biased
coins, which uses the uniform prior distribution with respect to the the squared loss,
for any 7' > 1, isbounded by

Rwe(EW, T,8) < = InT + = n 2 YnI o (a3)
WC sy 4y >~ 7 A ~ ~ - )
4 erf (aﬁ) +erf ((1_ a)ﬁ) 472
whichimplies
1 1 2 1 =
Rwe(EW,T) < ZInT + ZIn—F— — > In (34)

Similar to the detailed analysis of the log-loss case, Inequality (34) gives us a
uniform upper bound that does not depend on the sequence, while if we assume that
= [¢,1 — €] for some constant ¢ > 0 then Inequality (33) gives a dlightly better
asymptotic bound. In the second case each of the two erf () functions converges to 1
and so the second term vanishes and we are | eft with the negative term —(1/4) In(7 /2).
If & = 0 or # = 1 then only one of the two erf () terms converges to 1 while the other
remains 0, and we get an additional term of In(2)/2 in theregret. For the square loss
therestrictionon thedistance between ¢ and 0 (or 1) isabit stronger thenin thelog-loss
case. Herewe havethat if § € [¢/T* 1 — ¢/T?] for some o < 1/2 then the better
bound holds and if § = @(1/\/7) then we get a bound that is between the interior
bound and the bound for # = 0.

Two comments arein order. First, although we have not concerned ourselves with
the computational efficiency of our a gorithms, boththelog-lossversion and the square-
loss version require small constant time to calculate the predictions, whose formulas
are given in Equations 11 and 12. Second, it is not hard to give examples of finite
model classes in which using the EW agorithm is much better than using any Bayes
agorithmwhen thedatais generated by amodel outsidetheclass (See Appendix D). We
conjecture that such an example exists also for the continuous model class P = [0, 1].

8 Absolute L oss
In this section we consider the absolute loss, which has very different properties than

the log loss and the square loss. Haussler et d. [14] there is no finite value of ¢ such
that the bound (13) holds for = 1/¢. Moreover, as was shown by Cesa-Bianchi a
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al. [4], there is no prediction algorithm whose worst-case regret does not depend on
the loss of the best model. On the other hand, there are choices of ¢ and > 1/¢ for
which Equation (13) holds, and Cesa-Bianchi et. a. have shown that, based on this
fact, an exponential weights algorithm for finite model classes, can be devised. And
the worst-case regret of thisalgorithmis bounded by O(\/InN L%.).

Aswe cannot choose ¢ finiteand = 1/¢ for the multiplicative weights a gorithm,
we cannot use the technique of Theorem 1 for this case. However, we do not need to
use an infinite set of modelsin our analysisfor thiscase. Thisis because in this case
the optimal model intheclassP = [0, 1] isawayseither p = O or p = 1. Thuswe can
consider aEW algorithm that combines only these two models and get close to optimal
bounds on the regret.

9 Conclusions and open problems

We have demonstrated, in a simple case, that the Bayes a gorithm that has been shown
by Xie and Barron to be optimal with respect to the average-case regret is a so optimal
with respect to the worst-case regret. Moreover, the bound on the worst-case regret is
only very dightly worse than the average-case regret.

We have a so shown that avery different algorithmresultsif oneisinterested in the
sgquare loss, rather than in thelog loss.

Theseresultsgive evidencethat sometimes accurate stetistical inference can bedone
without assuming that the world israndom. We are currently working on extended this
work to more genera classes of models of sequences over larger a phabets.
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A Proof of Theorem 3

We want to calculate the followingintegral:

/l w(p)e—TDKL (éHP)dp

0

Which we can expand and write as follows:

/01 Wﬁ ep (Télog (g) T(1-0)log (iiz)) v

1 ! TH-1/2 T(1-6)—
- _ _ -1/2(q _ (1-6)-1/2,
79T€(1_9)T(1—9)/0 p (1-p) p

Luckily, the last integral is a well studied quantity, called the Beta function. More
specificaly, itis B(T9 + 1/2,T(1— 6) + 1/2), which can also be expressed in terms
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of the Gamma function, B(z,y) = I'(z)[(y)/I (z + y). ¥ Using these relations we
get:

1 1D (Bl B(T0+1/2,T(1—0)+1/2)
/0 w(p)eTP Cllp) g = T DD
N7+ 1/2)r(T(1 - 0) + 1/2)
©al(T +1) 678(1—§)T(1-9)

Plugging thisformulainto Equation 20 we get:

i F(T6+1/2)r(T(1—8)+1/2)
7l (T + 1)478 (1 — §)T(1-9)
= InM(T+1)+Inc+7T (ém(é) +(1-8)In1— é))
—InT(T0 + 1/2) — InT(T(1— ) + 1/2)

The asymptotic expansion of Inl"(z) for large values of = can be used to give upper and
lower bounds on thisfunction for positive values of z (See Equations6.1.41 and 6.1.42

in[1]).

(z—1/2)Inz — 2+ (1/2) In(27) + 1—; - Téz?'
<Inf(z) < (35)
(z=1/2)Inz — z 4+ (1/2) In(27) + 1—;

Using these bounds we get the statement of the theorem (detailsin appendix A).

INF(T + 1) = INF(T8 + 1/2) = InT(T(1 = 0) + 1/2) + In7 + T (810(d) + (1~ §) In(1 — §)
1
12(T + 1)
1 1
12(T6 +1/2) * 360(T4 + 1/2)3
1
12(T(1—0) +1/2)

< (T+12)In(T+1)—(T+1)+(1/2)In(27) +

—~TIn(TH +1/2) + (T + 1/2) — (1/2) In(27) —

—~T(1— ) In(T(1—8) +1/2) + (T(1 — ) + 1/2) — (1/2) In(27) —

1
" 360(T(1— 8) + 1/2)°
+Inw+7T (élné—l—(l— é)'”(l_é))

B3Essentially, the Gamma function is an extension of the Factorial to the reals and the Beta function isan
extension of thereciprocal of the Binomial function.
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1, 7 1 ~ 2T+ 20 s 2T(1—8) +2(1—6) 1
< ZIn=+=InNT+1)+T|[6In———+(1—-)In = +
< gingtan ) ( 276 +1 (1-9) 2T(1—0)+1 360(T + 1)3
1 1. =~ 1 1 1
< ZzIn(I'+ 1)+ -Inz+ - — = = + 36
s T+ 27 24 (Tmin(d.1-0))1 ' 360(7 + 1 (36)
< %In(T—i—l)—l—l (37)

B Proof of Lemma l.

Given that the bound on the regret of the min-max optimal algorithmisequal to InZr,
where Zp is the normaization factor of the min/max distribution for sequences of
length T, our godl isto calculate

: — i T
lim InZp _TILrgoInZT;mﬁxPp(x ).

T—oc0

The probability assigned to a sequence xT by the model p depends only on the
number of 1'sinx”,i.e, onT4. Itis

Py(x") = p"? (1 p)T 0 = (pé(l—p)l_é)T (38)

Thevalue of P,(x”) for agiven x” ismaximized when p =  thus we get that
Ap N ~N T
Zr=%" (99(1 - 9)1—9)
XT
Asthereare ;) sequencesof length 7" inwhichthefraction of 1sisd, and asé achieves
thevaluesi/T fori = 0,...,T, wecan rewritethelast equation in thefollowing form.

T

zr =3 () marm (@)

=0

where H(p) = —plInp — (1 — p) In(1 — p) isthebinary entropy of p.
Toapproximatetheval ueof Equation 39 wereplace (T) by theequival ent expression

MT+1)/(FZ+ 1 (T —i+ 1)) movethelog of thise;pron to the exponent, and
gEet:

T
Zr=> ep  (IN[(T+1)—Inl(i+1) (40)
=0

—InT(T —i+1)—TH(i/T))
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Replacing I'(+) by its series expansion around 7" = oo and H(p) by its definition, we
get, in the exponent, the expression

(T4 3)IN(T +1) — (T+1) + 5127 + 0(1/7)
- @+§m@+n+u+n—%mh+ouﬁu

— (T—i+%)In(T—i+1)+(T—i+1)—%In27r+0(1/T)

T—1

+ iIn%—l—(T—i)In

- 1—%mh+0uﬂv

T (T+YDINT +1) = (i4+1/2)In(i + 1) — (T —i+1/2)In(T — i + 1)
+ dni+ (T —H)In(T —i)—TIn(T)

- 1—%mh+0uﬂv

+ TIn1+ %)—iln(l—i— %)—(T—i)ln(l—l— Tl )

— 1

1 | T+1

L R T
Inthefirst line of the last expression, the first two terms are constant and the third term
iso(1). All thetermsin the second lineareintherange [0, 1]. Thefirst termisequd to
1—0(1/T),andif § € [¢,1— €] for somefixed ¢ > 0 then the second and third term

have the same asymptotic behavior. The dominant term, in any case, isthelast one.
Returning to Equation (39), we separate the sum into three parts as follows

T eT (1-e)T T
_ TN\ _p g _ TN _7#m) TN _7 TN _rwGm
Zr = Z i € B Z i € + Z i € + Z i €
=0 =0 i=eT i:(l—E)T

Using the approximations shown above we can upper bound the summands in the first
and third sums by

r o~T HGIT) < 2-4In2n+0(1/T) r+1
i - ((+)(T-i+1)

and estimate the summands in the second term by

T (T H(/T) _ .~} In2r+0(1/T) r+1
i ((+)(T-i+1)

A convenient way for writing the common factor is

T+1 — 1 1
¢ =vT+1 it1 T—it1

G+1)(T—-i+1) T+2\ #5554
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Using these equalities we can write the second, and major summation as follows:

(1=e)T (1—&)T

T) —r HG/T) _ o1T) 1 1 1
e ¢ e —VT+1
Z;T <Z V2r ZZ:T T+2 T+2 TT+-|2_l

Observe thelast sum, it iseasy to see that it a Riemann Sum which is afinite approxi-

mation to the integral
1—¢
/ \/ p( 1 p

And, a T — oo, and the function 1/+/p(1— p) is Riemann integrable this sum
approaches the value of the integral, so we get:

(156):T (i/T) (1/1) 1 e 1

TN _rH@T _ oT 1 / d
. e e VT

i=el <Z) V2r Je P(l—P) b

Similarly, we get that the sum that correspondsto thefirst and last terms approach

eT
TN\ _rHG/Ty - 240(1T) 1 /E 1
e ¢ <e VT 4+ 1—— ——dp
Z:%(Z) = V2r Jo \ p(1-p)
T T , 1 ! 1
3 (l)e—T HG/T) & 240(UT) /T 1 / dp
(e \ - Ver Ji-e | p(1=p)

The last two integrals are O(e), thus, after we take thelimit ' — oo we can take the
limite — oo and get that

and

P T (1-)T T T
lim e — lim lim —-T H(: /T)_|_ ( ) —TH(Z'/T)_|_ () —-T H(i/T)
T—oo /T 4+ 1 e—=0T—o0 Z ( ) zze; i (].Z:E)T 1

- l‘l%( Jz_/m @/“mw ﬁ/m )

- e

Finally taking the log we get that

NI =
N[ =

lim InZ 1InT 1) =
T— oo T_2 ( +)_

which compl etes the proof of the theorem.
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C Proof of Theorem 4

We need to calculate alower bound on the following integral:

/01 exp (2Té ((1 02— (1 p)z)
+27(1— 6) ((o — 82— (0- p)z)) dp .

Thisintegral simplifiesto

/Ole(p (—ZT(é — p)z) dp .

This is another well-known integrd, it is (up to a multiplicative constant) an integral
of the normal distribution on part of thereal line. Thisintegral does not have a closed
algebraic form, but can be expressed using the error function erf (-).

/0 Yep (~2r(0 - p?) (41)

E(l_/ooo 6—2T(é+p)2dp_/ooo 6—2T(1—é+p)2dp)
33 (ot (V) + ot (- 0T

P 2
ef(p) = %/0 e~ dx

is the cumulative distribution function of the norma distribution. As erf (z) is an
increasing function we find that erf (9@) + erf ((1 — é)ﬁ) is minimized when
T =1, and as erf (x) is concave for = > 0 we find that the minimum is achieved for
§ = 0or § = 1. Thuswe get that theintegral is uniformly (w.r.t. §) lower bound by

1 V2
/0 exp(—2T<é—p>2)s@ > (42)

We now plug thislower boundinto Equation (20) and get that theregret isuniformly
upper bounded by

ef (V2) 1 1 2 1 7
—%In(¥ ﬁ):ZInT+§Inm—ZInE (43)

where
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D An example for which the exponential weights algo-
rithm is better than any Bayes algorithm

Suppose the model class consists of just three biased coins. p; = 0,p, = 1/2,p3 =
1, and that a sequence is generated by flipping a random coin whose bias is 0.9.
Consider first the Bayes agorithm, whatever is the choice of the prior distribution,
once the agorithm observes both a zero and a one in the sequence, the posterior
distribution becomes concentrated on p, = 1/2and all predictionsfrom thereon would
necessarily be ¢, = 1/2. This would causes the agorithm an average loss per tria
of (0.5 - 0.1)> = 0.16. On the other hand, consider the EW a gorithm which uses
the uniform prior distribution over the three models. The tota loss of this agorithm
is guaranteed to be larger than that of the best modd in the class by at most in(2)/4.
For large ", with very high probability, the best model isp, = 1 whose average loss
per trial is (0.9 — 1)2 = 0.01. Thus the average loss per trial of the EW agorithmis
guaranteed to quickly approach 0.01, making it a clearly better choice than the Bayes
algorithm for this problem. We conjecture that a gap between the performance of there
algorithms exists when the class of modelsisthe set of al the biased coins. However,
we have yet not been able to calculate optimal prior for the optimal Bayes algorithm
for this case.
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