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Abstract

We illustrate one way in which a population of boundedly rational
individuals can learn to play an approximate Nash equilibrium. Players
are assumed to make strategy choices using a combination of imitation
and innovation. We begin by looking at an imitation dynamic and
provide conditions under which play evolves to an imitation equilib-
rium; convergence is conditional on the network of social interaction.
We then illustrate, through example, how imitation and innovation
can complement each other; in particular, we demonstrate how imita-
tion can �help� a population to learn to play a Nash equilibrium where
more rational methods do not. This leads to our main result in which
we provide a general class of large game for which the imitation with
innovation dynamic almost surely converges to an approximate Nash,
imitation equilibrium.
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1 Introduction

Dynamic models of learning in games can provide insights on when and how
a population of boundedly rational players can learn to play a Nash equilib-
rium. The limits to individual rationality and the importance of the Nash
equilibrium concept in economics and game theory make an understanding
of such issues fundamental. In this paper we study learning in games with
many players. The complexity of these games, as suggested by the large
number of players, makes anything approaching rational behavior seem un-
likely. We provide, however, sufficient conditions on behavior to ensure that
play will converge to an approximate Nash equilibrium for a general class of
large game.

We model a learning dynamic in which players are assumed to imitate
and innovate. More precisely, each player uses interchangeably two decision
making heuristics - an imitation heuristic and an innovation heuristic. Be-
fore detailing these heuristics and our results, we brießy outline our principle
motivations for assuming such behavior. These are twofold; Þrst, a belief
that these two heuristics capture key aspects of individual behavior in large
games, and second, a belief that learning through the combination of imita-
tion with innovation is likely to lead to the emergence of Nash equilibrium
play. We expand on these motivations in turn.

It is widely accepted that individual behavior is partly motivated by
�social inßuences�, such as desires for popularity or acceptance, and that
such behaviour can lead to imitation (see, for example, Jones 1984 and
Bernheim 1994). An individual may also be motivated to learn through
imitation when he has imperfect information about his payoff function or
his strategy set. When faced with such incomplete information, imitation is
a means through which a player can draw on and learn from the collective
experience of others (Young 2001b). Note that a player�s lack of information
may or may not reßect bounds on his rationality. Experimental evidence
of social inßuence and imitation in the economic literature is provided by,
amongst others, Selten and Apesteguia (2002) and Offerman, Potters and
Sonnemans (forthcoming). The importance of conformity and imitation has
long been recognized in psychology and sociology (see, for example Asch
1952, Deutsch and Gerard 1955 and for a more modern discussion Gross
1996).

An obvious limitation of imitation is that it leaves little room for nov-
elty or originality. This suggests that imitation is not and cannot be the
sole constituent of learning. Novelty could be seen to arise from experimen-
tation or mistakes but individual behavior appears more rational than this,
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even in complex games. For example, while Þnding evidence of imitation,
Selten and Apesteguia (2002) and Offerman et. al. (forthcoming), in run-
ning experiments with �Cournot interaction type games�, also observe players
attempting to initiate cooperative or collusive outcomes. These players ap-
peared to have learnt about the game and were attempting, using their own
initiative, to increase their own payoff. The innovation heuristic is motivated
to capture such unilateral behavior whereby a player attempts to increase
his payoff.

Not only do we believe an imitation with innovation dynamic can cap-
ture key aspects of individual behavior, we also feel it is likely to lead to the
emergence of Nash equilibrium play. Intuitively, different heuristics can be
associated with different advantages and disadvantages. Imitation, for exam-
ple, appears to be a dynamic in which the actions of individuals will become
coordinated in the sense that one strategy proÞle emerges as a convention
or focal point. The lack of innovation, however, implies that such a strategy
proÞle need not be individually rational. Vega-Redondo (1997) and Selten
and Ostmann (2000), for example, model variants on an imitation dynamic
and demonstrate that play may converge to a strategy proÞle that is not a
Nash equilibrium. By contrast, any stable state of an innovation dynamic
should be individually rational. Given, however, that each individual acts
in isolation there is less opportunity for the actions of individuals to become
congruent. In particular, a player may neither directly or indirectly predict
the behavior that can be expected of others. Illustrations of how adaptive
play (similar to an innovation dynamic) need not converge to a Nash equilib-
rium are provided by, amongst others, Young (1993, 2001a). Suppose that a
player uses more than one heuristic. The advantages of one heuristic could
potentially compensate for the disadvantages of another. Imitation and in-
novation appear to be two types of behavior that are particularly suited to
complement each other. Gale and Rosenthal (2001) provide some evidence
for this. The results of this paper provide further evidence in a relatively
general context.

As stated above, the dynamic we model assumes that players use in-
terchangeably and imitation and an innovation heuristic. The imitation
heuristic is based in part on a model of imitation used by Selten and Ost-
mann (2000). A player imitates by referring to a subset of the population -
his reference group - and by copying the action of the most successful player.
The sophistication in this behavior comes from referring to a speciÞc sub-
set of the population (which may have been carefully selected) and in only
imitating the most successful players to whom he refers. These two prop-
erties of the imitation heuristic distinguish our approach from much of the
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previous literature on imitation. For example, many authors (e.g. Kandori,
Mailath and Rob 1993, Ellison and Fudenberg 1993, Vega-Redondo 1997
and Alos-Ferrer, Ania and Schenk-Hoppe 2000) model a dynamic in which
each player can be seen to refer to the total player set. An alternative (e.g.
Kirman 1993 and Ellison and Fudenberg 1995) is to assume players refer
to a random sample of the population; under such an assumption a player
will only refer to a subset of the population in any one period but, over
time, may refer to everyone within the population. We also note that many
authors (e.g. Kirman 1993, Levine and Pesendorfer 2000, 2001 and Gale
and Rosenthal 2001) model a dynamic in which players do not necessarily
�imitate the successful� but instead, �conform� to the actions of others in the
sense that a player chooses the strategy he observes being played most often.
The literature on imitation is considered in more detail in section 2.2.

In using the innovation heuristic a player chooses an action that will,
ceteris paribus, increase his payoff. In games with many players attempts to
�second guess� the behavior of opponents may be difficult if not impossible. A
player, therefore, assumes the actions of the other players will not change and
chooses an action accordingly. We highlight that innovation is similar to but
not the same as a best response or myopia dynamic, as commonly deÞned
and much studied (see Fudenberg and Levine 1998). A player behaving
myopically chooses a strategy that, ceteris paribus, maximizes their payoff.
Thus, in behaving myopically a player chooses the �best� strategy; this may
differ from someone innovating who merely has to choose a �better� strategy.
Innovation requires less rationality on the part of players than myopia.

Our analysis of the imitation with innovation learning dynamic begins be
assuming that players only imitate. This leads to the deÞnition of an imita-
tion equilibrium - a state stable under the imitation dynamic. An imitation
equilibrium has the property that players who refer to each other typically
play the same strategy. It need not be a Nash equilibrium. Note, however,
that if players have a desire for equality, or what they may perceive as fair-
ness, an imitation equilibrium may be an intuitively appealing concept of
equilibrium. Individuals do appear to be inßuenced by �fairness� considera-
tions. For example, wages may be judged in relation to the wages of others
(Clark and Oswald 1996). Also, fairness appears to inßuence bargaining in
experimental studies (see Chapter 4 of Kagel and Roth 1995).

Our Þrst main result provides sufficient conditions under which an im-
itation dynamic almost surely converges to an imitation equilibrium. We
recall that players may imitate those in their reference group. A reference
network details the reference group of every player. Theorem 1 states that
if the reference network has a clustering coefficient of one then play will
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evolve, almost surely, to an imitation equilibrium. A reference network has
a clustering coefficient of one if whenever a player i refers to players j and k,
both players j and k refer to each other. Many social and economic networks
have clustering coefficients near one (Granovetter 1973 and D. Watts 1999).
Note that Theorem 1 requires no assumption on the game being played.

Having looked at an imitation dynamic in some detail we turn our at-
tention to the imitation with innovation dynamic. A stable state of such
a dynamic is an approximate Nash, imitation equilibrium. We begin with
three examples that demonstrate how learning through imitation and learn-
ing through innovation may, or may not, complement each other. Example
5, for instance, provides a game and reference network where (1) an imitation
dynamic need not converge to an imitation equilibrium, (2) an innovation
dynamic need not converge to a Nash equilibrium, yet (3) an imitation with
innovation dynamic will converge, almost surely, to a Nash, imitation equi-
librium.

For our main result we use the concept of a pregame satisfying the large
game property as introduced by Wooders, Cartwright and Selten (2001). A
principle component of a pregame is a set of player attributes. In games
induced from a pregame satisfying a large game property payoffs are essen-
tially a function of the proportions of players with each attribute playing
each strategy. Our Theorem 2 states that, subject to relatively mild as-
sumptions, in any sufficiently large game induced from a pregame satisfying
the large game property the imitation with innovation dynamic converges,
almost surely, on an approximate Nash, imitation equilibrium. We note how
players learn not only to play an approximate Nash equilibrium but also an
imitation equilibrium. Indeed, players use pure strategies throughout and
so play converges to an approximate Nash, imitation equilibrium in pure
strategies.

Our main result demonstrates how approximate Nash equilibrium play
can emerge in large games if players learn through imitation and innovation.
Similar results were obtained by Gale and Rosenthal (1999) in the context
of interaction in a Cournot like model. An appealing aspect of our results
are the generality of game modelled. The previous literature on learning
has typically focussed on games where the existence of a Nash equilibrium
is trivial (e.g. Vega-Redondo 1997, Levine and Pesendorfer 2000, 2001 and
Gale and Rosenthal 1999). This is not the case in the game we model.
This is highlighted by the fact that through a corollary of Theorem 2 we
are able to contribute to the literature on the existence of pure strategy
Nash equilibrium in large games (e.g. Schmeidler 1973, Mas-Colell 1984
and Wooders et. al. 2001). In particular, the fact that play converges to an
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approximate Nash, imitation equilibrium demonstrates that one must exist;
this complements existence results due to Wooders et. al. 2001.

A second aspect of our main result is the suggestion that imitation can
be consistent with individually rational play in games with many players.
This complements results due to Wooders et. al. (2001) who demonstrate
that, in large games, there exists an approximate Nash equilibrium in which
�similar players play similar strategies�. Note, that the question of whether
players learn to play this equilibrium is not addressed by Wooders et al.;
for a slightly less general class of game, Theorem 2 demonstrates that this
equilibrium will indeed emerge. Related results on the individual rationality
of imitation are due to Schlag (1998, 1999) and Ellison and Fudenberg (1993,
1995). In varying contexts these authors show how imitative learning can
lead to the adoption of �optimal actions�.

There are many further relationships between this paper and the lit-
erature on learning in games. We highlight two. First, there is a large
literature, not mentioned above, on the convergence of learning dynamics to
Nash equilibrium play. Much of this literature considers learning dynamics
very different from ours such as Þctitious play or the replicator dynamic
(see Fudenberg and Levine 1998). Often the differing choice of dynamic
reßects the type of game to be studied (see, for example Kalai and Lehrer
1993). The literature that has used learning dynamics more comparable to
ours has principally addressed the issue of equilibrium selection (e.g. Young
1993, Robson and Vega-Redondo 1996 and Levine and Pesendorfer 2000,
2001). More precisely, learning has been modelled in games where the con-
vergence of play to a Nash equilibrium is trivial, the question of interest has
been which type of equilibrium is more likely to emerge. We have relatively
little to say on the issue of equilibrium selection other than suggesting that
an imitation equilibrium may be more likely to emerge.

We proceed as follows; in Section 2 we outline the model and introduce
the imitation and innovation heuristics. In Section 3 we analyze a dynamic
in which players only use imitation. In Section 4 we add innovation before
looking at learning in large games in Section 5. Section 6 concludes. Two
appendices present generalizations of our main results.

2 The model

Let N = {1, ..., n} denote a Þnite player set and let S = ©s1, ...., sKª denote
a Þnite strategy set. A strategy vector is given by σ = (σ1, ..., σn) ∈ Sn where
σi is interpreted as the strategy of player i. Let Σ denote the set of strategy
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vectors. A stage game is given by a tuple (N,S, {ui}ni=1) consisting of a
Þnite player set N , Þnite strategy set S and a payoff function ui : Σ → R
for each player i ∈ N .

Given a stage game Γ, play is assumed to evolve over discrete time
periods, indexed, t = 0, 1, 2, .... In each period t the stage game Γ is played.
Every player i ∈ N is assumed to choose a strategy for period t conditional
on the strategy vector of the previous period t− 1. The evolution of play is
therefore modelled as a discrete time homogenous Markov chain {σ(t)}t≥0 on
state space Σ. The transition matrix of the Markov chain will be denoted by
P . The value Pσσ0 is interpreted as the probability of state σ0 immediately
following state σ.

We model the behavior of players using an imitation with innovation
dynamic. This dynamic postulates that players use a combination of imi-
tation and innovation in choosing a strategy to play. If a player decides to
imitate then he uses an imitation heuristic while if he decides to innovate
he uses an innovation heuristic. A player�s probability of innovation details
the likelihood that he will innovate. We introduce in turn the imitation
and innovation heuristics before formally deÞning the imitation with inno-
vation dynamic. First, however, we deÞne a reference network; the imitation
heuristic makes use of such a network.

2.1 Reference network

Given a player set N a reference matrix R is an N × N Boolean matrix
R = [rij ]. If element rij = 1 we say that player i refers to player j while if
rij = 0 we say that player i does not refer to player j. We set rii = 1 for
all i ∈ N . That is, a player is assumed to refer to themselves. We do not
assume that R is symmetric. We will also refer to a reference matrix R as a
reference network. Given a reference network R, for each player i ∈ N , let
Ri be the subset of N such that j ∈ Ri if and only if rij = 1. We refer to Ri
as the reference group of player i. Thus, player j belongs to the reference
group of player i if and only if player i refers to player j.1

We will assume that the reference network remains constant throughout
the evolution of play. It will become clear, as we proceed, that the reference
network can be crucial in determining how play evolves. This suggests that
a player may wish to change his reference group as he learns more about
the game and his fellow players. In an Appendix we model this possibility
by assuming that players use a good advice heuristic to choose a reference

1Given the reference matrix R the reference group Ri of player i could be thought of
as the ith row of R.
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group (as well as a strategy) in each period. We are able to show that the
main conclusions of the paper are unaffected by this freedom in reference
group choice.

2.2 Imitation heuristic

The imitation heuristic represents a procedure that a player i can use to
choose a strategy for current period t conditioning on the strategy vector
of the previous period t − 1. This heuristic closely resembles an imitation
dynamic introduced by Selten and Ostmann (2000). The heuristic can be
summarized under an imitation probability function pi : Σ → ∆(S) where
the value pi(sk|σ) is interpreted as the probability that a player i, using
the imitation heuristic, would select the strategy sk if strategy vector σ was
played in the previous period. When using the imitation heuristic a player
can be seen to progress through three stages. These are outlined below for
a player i choosing a strategy conditional on strategy vector σ. A reference
network R is assumed.

1. Identify costrategists: the set of costrategists of player i, denoted Ci(σ),
are those players l ∈ Ri such that σl = σi.

2. identify success examples: a success example of player i is a player
j ∈ Ri such that

uj(σ) = max
l∈Ri

ul(σ)

3. choose strategy: player i chooses strategy sk ∈ S with probability
pi(s

k|σ) where (a) if there is a success example j of player i such that
σj = s

k then pi(sk|σ) > 0, and (b) if every success example of player
i is a costrategist of player i then pi(σi|σ) = 1.

In identifying a set of costrategists player i identiÞes those players to
whom she refers and who play the same strategy as herself. Note that player
i must belong to the set of costrategists of player i. A success example of
player i is any player j who earns the highest payoff of any player referred to
by i. Note that player i may be a success example for player i. In choosing a
strategy player i may choose the same strategy as a success example. That
is, she may imitate a success example. If every success example of player
i is also a costrategist then player i will play the same strategy as in the
previous period.
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We highlight that the imitation heuristic is fairly vague about a player�s
behavior. In particular, if player i has the option of changing strategy (be-
cause she has a success example who is not a costrategist) then the possibility
is left open for her to potentially choose any strategy. This means she may,
for example, experiment, make mistakes or choose the same strategy as in a
previous period. Many authors (e.g. Young 1993 and Vega-Redondo 1997)
assume that players either choose strategies sequentially, i.e. one person
per period, or have some positive probability of not changing strategy. Our
results apply to these types of dynamic. We note, however, that a player
using the imitation heuristic may always imitate success examples and thus
not make mistakes or experiment etc.

The imitation heuristic allows the possibility that a player i may imitate
a non-costrategist who is earning the same payoff as one of her costrategists.
This implies, in particular, that she may imitate a non-costrategist who is
earning the same payoff as herself. Consider an imitation heuristic with
inertia. This heuristic is identical to that of the imitation heuristic with one
modiÞcation: a player j can be a success example of player i when σj 6= σi
if and only if

uj(σ) = max
l∈Ri

ul(σ) > max
k∈Ci(σ)

uk(σ).

In this case player i may only change strategy through imitation if there
is a success example earning a strictly higher payoff than any of her own
costrategists. This creates inertia in that a player is less likely to change
strategy. In the main body of the paper we assume throughout that the
imitation heuristic is used by players (as opposed to the imitation heuristic
with inertia). This has the advantage of simplifying the analysis. In an
appendix we consider in more detail possible differences if players use the
imitation heuristic with inertia. We demonstrate, through example, that the
type of heuristic used can signiÞcantly alter the evolution of play. Despite
this, however, we show how analogs to our two main theorems can still be
derived.

The imitation heuristic can be compared to similar behavioral rules in
the literature. Imitation heuristics can differ primarily in two aspects - Þrst,
who a player refers to, and second, how a player interprets the information
he receives. We discuss each of these aspects in turn. Before doing so we
highlight that the heuristic used by Selten and Ostmann (2000) is equivalent
to the imitation heuristic with inertia, while the heuristics used by Kandori,
Mailath and Rob (1993), Vega-Redondo (1997) and Alos-Ferrer, Ania and
Schenk-Hoppe (2000) can be seen as a special case of the imitation heuristic
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for which Ri = N for all i ∈ N .2. We note that these authors assume that
players use varying forms of experimentation in supplement to imitation.
This contrasts with the approach of this paper where players use innovation.

Most of the literature assumes that players refer to the entire player
set, that is Ri = N for all i ∈ N (for example Kandori et. al. 1993,
Vega-Redondo 1997, Gale and Rosenthal 1999, Levine and Pesendorfer 2000,
2001 and Alos-Ferrer et. al. 2000). Ellison and Fudenberg (1993) consider a
model in which players refer to those �close to them� in terms of some spatial
distribution; we will use a similar notion in Section 5. Another alternative,
as used by Kirman (1993), Ellison and Fudenberg (1995) and Schlag (1997,
1999) is that a player refers to a random sample of the population. In this
way a player only refers to a subset of the population in any one period
but can potentially refer to the entire player set. This random sampling is
not permitted according to the imitation heuristic. In Section 7, however,
we allow players to change their reference group thus permitting random
sampling.

There are various ways that players can interpret the information they
receive. As with the imitation heuristic we assume, Vega-Redondo (1997)
and Alos-Ferrer et. al. (2000), amongst others, model a heuristic in which
a player can be said to imitate the most successful player that he observes.
Ellison and Fudenberg (1995) consider a heuristic in which a player could be
said to imitate the most successful strategy that he observes in the sense that
a player chooses the strategy that he observed as giving the highest average
payoff.3 By contrast, the imitation heuristics modelled by Kirman (1993),
Gale and Rosenthal (1999) and Levine and Pesendorfer (2000, 2001) as-
sume that players conform to the �average strategy of the population�; thus,
players does not imitate strategies according to their success but according
to their popularity. Ellison and Fudenberg (1993) consider a heuristic in
which players imitate strategies only if they are both successful and popu-
lar. Other possibilities, and a discussion of this issue, are provided by Schlag
(1997, 1999).

We make one Þnal comment. Ellison and Fudenberg (1995), Robson and
Vega-Redondo (1996) and Schlag (1997, 1999) model games of imperfect
information. Players are assumed to imitate on the basis of observed or

2All these dynamics assume a player has the option to choose the strategy as in the
previous period.

3Suppose player i refers to three players - himself and players k and j. Further, suppose
players i and k play strategy A and get payoffs of 0 and 100 respectively while player j
plays strategy B and gets payoff 90. If player i imitates the most successful player he will
imitate player k. If he imitates the most successful strategy he will play strategy B.
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realised payoffs. Our framework permits games of imperfect information.
We assume, however, that players imitate on the basis of expected payoffs
and not realised payoffs (see Robson and Vega-Redondo 1996 for a discussion
of this issue).

2.3 Innovation heuristic

In a similar way to the imitation heuristic, the innovation heuristic can be
summarized by an innovation probability function mi : Σ → ∆(S). The
value mi(s

k|σ) is interpreted as the probability that a player i, using the
innovation heuristic, would select the strategy sk if strategy vector σ was
played in the previous period. Let ε ≥ 0 be a real number referred to as
an inertia parameter. A player using the innovation heuristic when strat-
egy vector σ was observed in the previous period will proceed through the
following two stages,

1. Identify innovation opportunities: an innovation opportunity for player
i is a strategy sk ∈ S such that

ui(s
k, σ−i) > ui(σ) + ε.

2. choose strategies: player i chooses strategy sk ∈ S with probability
mi(s

k|σ) where (a) if there are no innovation opportunities for player
i then mi(σi|σ) = 1, and, (b) if there is an innovation opportunity for
player i then mi(s

k|σ) > 0 for some strategy sk that is an innovation
opportunity.

If a player could have improved upon her payoff by more than ε in
the previous period then she has an innovation opportunity. If she has no
innovation opportunities then she uses the same strategy as in the previous
period. If, however, a player does have an innovation opportunity then there
must be a positive probability that she plays at least one of her innovation
opportunities. It is important to note that mi(s

k|σ) can be zero even if sk
is an innovation opportunity. For example, a player need not, necessarily,
choose the innovation opportunity that would have maximized her payoff
in the previous period. This contrasts with the imitation heuristic where
it is assumed that every success example is imitated with some positive
probability. We note that the possibility for mistakes, experimentation and
inertia exist in the innovation heuristic to the same extent as they did in
the imitation heuristic.
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The innovation heuristic is similar to best response or myopic behavior
as modelled by many authors (see Fudenberg and Levine 1998). There are,
however, important differences. First, ε is commonly assumed to be zero.
Second, when using myopia a player always chooses a strategy that would
have maximized her payoff in the previous period. As we have noted, when
using an innovation heuristic the probability that she play such a strategy
may be zero. This would suggest that the innovation heuristic requires less
computation to perform. This suggests, in turn, that a �less rational� player
is capable of innovating.

2.4 The imitation with innovation dynamic

It remains to combine the imitation and innovation heuristics to form the
imitation with innovation dynamic. The Þnal element we introduce is the
vector of innovation probabilities λ ∈ RN where λi ∈ [0, 1] is referred to as
the innovation probability of player i. The value λi is the probability with
which player i uses the innovation heuristic with imitation heuristic used
otherwise. Thus, if λi = 1 player i always uses the innovation heuristic to
select a strategy while if λi = 0 player i always uses the imitation heuristic.
We say that λ = 0 if λi = 0 for all i ∈ N and similarly λ = 1 if λi = 1 for
all i ∈ N . We say that λ 6= 0, 1 if λi ∈ (0, 1) for all i ∈ N .4

Given a set of imitation probability functions {pi}ni=1, a set of innovation
probability functions {mi}ni=1 and vector of innovation probabilities λ we can
derive the transition matrix P . The resulting stochastic process is referred
to as the imitation with innovation dynamic which we indicate as I(p;m;λ).
It proves more convenient to characterize the imitation with innovation dy-
namic according to the inertia parameter ε, innovation probabilities λ and
reference matrix R. We thus denote by I(ε;λ;R) any imitation with inno-
vation dynamic that is consistent with the three characteristics indicated.5

We highlight that the imitation with innovation dynamic does not have
persistent randomness. That is, there are stable states of the dynamic (as
will be demonstrated in Sections 3 and 4). The approach we use contrasts
with much of the existing literature. Typically, there is assumed to be
some positive probability that a player experiments by randomly selecting
an arbitrary strategy. This persistent randomness implies the system can

4The value of λi could be made conditional on the strategy vector and our results still
apply. That is, the probability a player innovates could depend on the strategy vector.

5The value of ε and a reference network R are insufficient to identify the set of functions
p and m. Note, however, that the set of funtions p and m may be consistent with a unique
value for ε and a unique reference matrix R.
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never be absorbed into a stable state. Dynamics for which there is not
persistent randomness are studied by Ellison and Fudenberg 1993, 1995 and
Blume 1993, 1995. Blume (1995) discusses this issue in more detail.

3 The dynamics of imitation

We begin our analysis of the imitation with innovation dynamic by assuming
that λ = 0. That is, by assuming that players only ever use the imitation
heuristic to select a strategy. We deÞne a static equilibrium concept.6

Imitation Equilbirum: The strategy vector σ is an imitation equilibrium
of stage game Γ relative to reference network R if

max
l∈Ri/Ci(σ)

ul(σ) < max
l∈Ci(σ)

ul(σ)

for all i ∈ N , where we recall that Ci(σ) denotes the set of costrategists
of player i for strategy vector σ.

We note that an imitation equilibrium need not be such that every player
plays the same strategy. Indeed a player need not even play the same strat-
egy as those he refers to. If the state of the system is an imitation equilibrium
then no player i ∈ N has a success example who is not a costrategist and,
as such, no player will wish to change strategy. This immediately suggests
the following result which we state without proof.

Lemma 1: A state σ is an absorbing state of the imitation with inno-
vation dynamic I(ε;λ = 0;R) if and only if it is an imitation equilibrium of
stage game Γ relative to R.

This result demonstrates that the Markov process described by the im-
itation with innovation dynamic when λ = 0 is not irreducible. That is,
there are many absorbing states. This follows from the observation that
any strategy vector σ in which every player i ∈ N plays the same strategy
is an imitation equilibrium. If all communication classes of the dynamic
are singletons then Lemma 1 implies that the imitation with innovation
dynamic will converge, almost surely, to an imitation equilibrium. In gen-
eral, however, there may exist non-singleton communication classes. That

6An imitation equilibrium as deÞned in this paper is essentially equivalent to a des-
tination as deÞned by Selten and Ostmann (2000). Selten and Ostmann (2000) require
that an imitation equilibrium also be robust to possible deviations by success leaders.
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is, there may exist a communication class Ψ where |Ψ| > 1 and such thatP
q∈Ψ pσq = 1 for all σ ∈ Ψ. An example illustrates.

Example 1: There are 3 players and 2 strategies, labelled A and B. The
reference network is such that R1 = {1, 2}, R2 = {1, 2, 3} and R3 = {2, 3}.
Thus, player 2, for example, refers to players 1, 2 and 3. Two strategy vectors
are of interest.

strategy vector payoff vector
A,B,B 4, 0, 2
A,A,B 2, 0, 4

There exists a communication class in which we see constant repetition of
the strategy vectors (A,B,B) and (A,A,B). Basically, players 1 and 3 will
never change strategy; player 2 by contrast switches between strategies B
and A, motivated by observing players earning a payoff of 4.¨

The cycle of play that we observe in Example 1 appears to reßect the
reference network. One important characteristic of a network is its clustering
coefficient. This is a measure of the cliquishness of the network.7

Clustering coefficient: We say that a reference network R has a cluster-
ing coefficient of one when

1. for any three players i, j, k ∈ N if j, k ∈ Ri then k ∈ Rj and
j ∈ Rk.

2. |Ri| ≥ 3 for every player i ∈ N and,8

Thus, if a player i ∈ N refers to both players j and k and the network R
has a clustering coefficient of one then player j must refer to player k and
player k refer to player j. We note that the reference network in Example 1
does not have a clustering coefficient of one; player 2 refers to players 1 and
3 but player 3 does not refer to player 1, nor player 1 refer to player 3. We
state our Þrst main result.

Theorem 1: For any stage game Γ and any reference network R that
has a clustering coefficient of one the imitation with innovation dynamic
I(ε;λ = 0;R) almost surely converges on an imitation equilibrium.

7See D. Watts (1999) and references there in for a deÞnition and discussion.
8The requirement that |Ri| ≥ 3 is a minor assumption to rule out problems in deÞning

the clustering coefficient if |Ri| < 3. We recall that i ∈ Ri.
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Proof: Given an arbitrary state σ we demonstrate that there exists
states, indexed, σ(2), .., σ(T ) where Pσσ(2) > 0, Pσ(t)σ(t+1) > 0 for all T−1 ≥
t ≥ 2 and where σ(T ) is an imitation equilibrium. Assume that every player
i ∈ N in every period always chooses the same strategy as a success example.
Furthermore, assume that there is an ordering to strategies (the same for
all players) whereby if a player i has more than one success example he
selects the strategy of the success example playing the smallest strategy.
This behavior is consistent with a deterministic process that occurs with
positive probability under the imitation with innovation dynamic.

Consider an arbitrary player i ∈ N for whom there exists a player j ∈ Ri,
j 6= i such that i ∈ Rj . For any player k ∈ N such that k ∈ Ri, given that
the reference network R has a clustering coefficient of one, it must be the
case that k ∈ Rj and j ∈ Rk. This, in turn, implies that i ∈ Rk. Similarly,
if there exists a player l ∈ Rj then l ∈ Ri and i, j ∈ Rl. Thus, Rj = Ri for
all j ∈ Ri. We refer to the set Ri as a clique; every player within a clique
refers to, and only to, all other players in the clique. Given the behavior
assumed of players, in state σ(2) there must exist some sk ∈ S such that
σj = sk for all j ∈ Ri. That is, all players in the clique play the same
strategy. This implies that no player j ∈ Ri can have a success example in
states σ(2), σ(3), ... who is not a costrategist. Thus, no player i belonging
to a clique can change strategy between states σ(2), σ(3), ....

Consider an arbitrary player i ∈ N for whom there does not exist a player
j ∈ Ri, j 6= i such that i ∈ Rj . Suppose that there exists a player k ∈ N
such that i ∈ Rk. Given that the network R has a clustering coefficient of
one there must exist a player j 6= i such that j ∈ Rk. Further, if i, j ∈ Rk
this implies that i ∈ Rj and j ∈ Ri. This is a contradiction. Thus, i /∈ Rk
for all k ∈ N\{i}. We say that player i does not belong to a clique. Player
i does, however, refer to a subset of a clique. This is immediate from the
analysis of the previous paragraph and the fact that i refers to at least two
distinct players j, k who must refer to each other. Given that player i refers
to a subset of a clique in states σ(2), σ(3), ... every player referred to by
player i (with the possible exception of themselves) must be playing the
same strategy. Thus, if there is a success example of player i who is not a
costrategist in some state σ(ti) there cannot be a success example of player
i in any subsequent state unless they are costrategists of i. Given that the
player set is Þnite there must exist some ti such that for every state σ(t),
t ≥ ti, player i does not have a success example who is not a costrategist.
This completes the proof.¥
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Given that a reference network which has a clustering coefficient of one
is sufficient to guarantee convergence on an imitation equilibrium we may
ask whether or not it is necessary. Example 1 demonstrates that for any
reference network R in which there are three players i, j, k where j ∈ Ri
and k ∈ Ri but k /∈ Rj or j /∈ Rk, a game Γ can be constructed for which
the imitation with innovation dynamic has a non-singleton communication
class. We cannot go any further this, however, as the following example
demonstrates.

Example 2: There are 3 players and the reference network is such that
R1 = {1, 2, 3}, R2 = {2, 3} and R3 = {3}. The network R does not have a
clustering coefficient of one. For any game Γ, however, the imitation with
innovation dynamic I(ε;λ = 0;R) almost surely converges to an imitation
equilibrium. To demonstrate, we proceed by contradiction. We note that
player 3 cannot change strategy, so suppose player 3 is playing some strategy
A. Player 2 can either be playing strategy A or not. If at any point player
2 imitates then he will play strategy A for all subsequent periods. Finally,
we consider player 1. If play is not to converge on an imitation equilibrium
then player 1 must repeatedly change strategy through imitation. Note,
however, that if player 1 imitates player 3 then so can player 2. Thus, both
players 2 and 3 will almost surely end up playing strategy A. This leads to
a contradiction.

This example could be objected to on the grounds that player 3 only
refers to himself. The example can, however, easily be amended, with the
same conclusions, to one in which every player refers to at least three other
players.¨

We conclude this section with a discussion of the likelihood that economic
and social networks have a clustering coefficient of one. An illustration of
a familiar economic network may be useful - consider Þrms competing in a
market. Many markets, such as food retail, are composed small number of
large, �dominate� Þrms and a large number of small, �fringe� Þrms. Firms
can be expected to refer to the actions of competitors in order to gauge vari-
ables such as prices and marketing strategy. The following type of reference
network seems plausible - (a) the large Þrms refer to each other, ignoring
the small Þrms, while (b) the small Þrms refer solely to a subset of the large
Þrms. This network would have a clustering coefficient of one. Speaking
generally, it is unlikely that a network should have a clustering coefficient of
one. It is, however, not unlikely that economic and social networks should
have clustering coefficients that are �near to one� (D. Watts 1999 and refer-
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ences therein) or have �a tendency to converge to one� (Granovetter 1973).
While deÞnitive results seem unlikely, Theorem 1 is suggestive that play
will converge to an imitation equilibrium when the reference network has a
clustering coefficient that is close to one.

4 Adding innovation

In the previous section we looked in some detail at the long run convergence
properties of the imitation with innovation dynamic on the assumption that
players solely use imitation. We have provided conditions for which the dy-
namic converges on an imitation equilibrium. It should be apparent that an
imitation equilibrium need not be a Nash equilibrium. Indeed a player may
be able to signiÞcantly improve her payoff by selecting a different strategy
than that consistent with an imitation equilibrium. This provides ample
motivation for a player to use an innovation heuristic. We now turn to con-
sider what happens when players use such a heuristic. Let us begin with
two deÞnitions,

Nash ε-Equilibrium: The strategy vector σ is a Nash ε-equilibrium of
stage game Γ if

ui(s
k, σ−i) ≤ ui(σ) + ε

for all i ∈ N and for all sk ∈ S.
Nash, Imitation ε-Equilibrium: The strategy vector σ a Nash, Imita-

tion ε-Equilibrium of stage game Γ relative to reference network R if
σ is both a Nash ε-equilibrium and an imitation equilibrium relative
to R.

We refer to a Nash, imitation 0-equilibrium as a Nash, imitation equi-
librium and a Nash 0-equilibrium as a Nash equilibrium. These deÞnitions
should need no explanation and lead to the following result which we state
without proof,

Lemma 2: A state σ is an absorbing state of the imitation with in-
novation dynamic I(ε;λ = 1;R) if and only if it is a Nash ε-equilibrium.
A state σ is an absorbing state of the imitation with innovation dynamic
I(ε;λ 6= 0, 1;R) if and only if it is a Nash, imitation ε-equilibrium.

There is an extensive literature on the convergence, and non-convergence,
of best response dynamics (See Fudenberg and Levine 1998 and references
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therein). Thus, given the similarities between best response and innovation,
we do not look speciÞcally at the at the case where λ = 1. It is, however,
interesting to look at the interaction between innovation and imitation. We
illustrate with three examples. In each example we evaluate whether or
not the imitation with innovation dynamic converges on an absorbing state
for the three possibilities of λ = 1 (innovation), λ = 0 (imitation) and
λ 6= 0, 1 (imitation with innovation). The results of these examples can be
summarized by the following table,9

Example innovation Imitation innovation and imitation
3 converges converges need not converge
4 need not converge converges converges
5 need not converge need not converge converges

Before discussing any conclusions let us set out the examples where we
assume throughout that ε = 0.

Example 3: There are two players and three strategies A,B and C.
Both players refer to each other. The payoff matrix is as follows where
player 1 chooses a row and player 2 a column,10,

A B C
A 3, 1 3, 2 0, 0
B 0, 0 0, 0 0, 0
B 0, 0 0, 0 10, 10

Strategy vector (C,C) is the unique Nash, imitation equilibrium. Suppose,
however, that the current state is (A,A). This is not a Nash equilibrium
as player 2 may deviate to strategy B. Strategy vector (A,B) is not an
imitation equilibrium as player 2 may imitate and choose strategy A. Thus,
if λ 6= 0, 1 the imitation with innovation dynamic need not converge on an
absorbing state. It is easily checked, however, that if λ = 0 or if λ = 1 the
imitation with innovation dynamic does converge on an absorbing state.¨

9Examples can easily be derived to illustrate the other Þve possible combinations of
convergence in the three dynamics.
10The Þrst entry in the payoff matrix is that of the row player and the second that of

the column player.
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Example 4: There are two players and four strategies A,B,C and
D. Both players refer to each other. The game can be represented by the
following payoff matrix.

A B C D
A 1, 0 0, 0 0, 1 0, 0
B 0, 1 0, 0 1, 0 0, 0
C 0, 0 10, 10 0, 0 0, 0
D 0, 0 20, 0 0, 0 100, 100

There exists a unique Nash, imitation equilibrium (D,D). If λ = 1 the
imitation with innovation dynamic need not converge on a Nash equilibria.
Suppose for example the current state is (A,A). Play may evolve through
the cycle of states (A,C) → (B,C) → (B,A) → (A,A). By contrast, the
imitation with innovation dynamic will clearly converge on an imitation
equilibrium if λ = 0. Similarly, the imitation with innovation dynamic
converges almost surely to a Nash, imitation equilibria if λ 6= 0, 1 . This is
apparent after considering what may happen if the current state is (A,C);
player 1 may imitate player 2, implying play evolves to state (C,C); at this
point, player 1 may imitate and player 2 may use innovation in which case
play evolves to state (C,B) and ultimately (D,D).¨

Example 5: This example is similar to that of Example 4. There are
four players and four strategies A,B,C and D. The reference network is
such that R1 = {1, 2}, R2 = {1, 2, 3, 4}, R3 = {1, 2, 3, 4} and R4 = {3, 4}.
Play revolves around the following matrix game,

A B C D
A 4, 0 0, 0 3, 4 0, 0
B 0, 1 0, 0 4, 0 0, 0
C 0, 0 0, 0 0, 0 0, 0
D 0, 0 20, 0 0, 0 100, 100

Player 1 chooses a row and then plays the above matrix game against both
players 3 and 4. Player 2 does the same. Thus, if the strategy vector is
(A,A,A,C) the payoff vector is (7, 7, 0, 8) while if the strategy vector is
(A,C,C,C) the payoff vector is (6, 0, 4, 4).

If λ = 1 the imitation with innovation dynamic need not converge on a
Nash equilibria; as in Example 4, if neither player 1 or 2 is playing strategy
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C or D and neither player 3 or 4 is playing strategy B or D then play
cannot evolve to the unique Nash equilibrium (D,D,D,D). Similarly, if
λ = 0 the imitation with innovation dynamic need also not converge on an
absorbing state; there exists a cycle of states (A,A,A,C)→ (A,C,C,C)→
(A,A,A,C).

If λ 6= 0, 1 then the imitation with innovation dynamic does converge
to a Nash, imitation equilibrium. To appreciate this assume an initial state
(B,B,C,C). All players may use the imitation heuristic in the subsequent
two periods leading to state (B,B,B,C) and then (B,B,B,B). If players
1 and 2 use the innovation heuristic and players 3 and 4 use the imitation
heuristic then play may evolve to (D,D,B,B) and ultimately the unique
Nash, imitation equilibrium (D,D,D,D).¨

In discussion perhaps the most interesting point to note is how the com-
bination of imitation with innovation can imply convergence on a Nash equi-
librium when the use of imitation or innovation in isolation do not imply
such convergence. In particular, in both examples 4 and 5 there are Nash
equilibria that seem to be appropriate long run outcomes but to which the
imitation with innovation dynamic need not converge if players solely use
the innovation heuristic.11 These examples illustrate how imitation may
�help� players to learn to play a Nash equilibria. We discuss this possibility
in more detail in the next section and in the conclusion. Another interesting
point illustrated, in particular by example 3, is how, even if play converges,
when players use innovation, it may not converge to a state that is stable
under an imitation dynamic. This is signiÞcant if players do have desires
for �fair� outcomes in which they are treated �equally� with those players to
whom they refer.

5 Large games and convergence

In this section we look to provide sufficient conditions for the imitation
with innovation dynamic to converge on an approximate Nash, imitation
equilibrium. In doing so we impose conditions on both the stage game being
played and on the reference network. The notion of a pregame satisfying
a large game property, as introduced and deÞned by Wooders, Cartwright
and Selten (2001), will be used.

11We note that examples 4 and 5 are fairly robust to changes in the innovation and
imitation heuristics. For example, the conclusions are unaltered if there is a positive
probability that a player will play the same strategy as in the previous period.
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5.1 Pregames

A pregame is given by a triple (Ω, S, h) consisting of a compact metric space
of player attributes Ω, a Þnite strategy set S and a function h : Ω×S×W →
R where W is a set of weight functions. A function w from Ω× S into R is
said to be a weight function if it satisÞes

P
sk∈S w(ω, sk) ∈ Z for all ω ∈ Ω.

Let N be a Þnite set and let α be a mapping from N to Ω, called an
attribute function. The pair (N,α) is a population. We say that a weight
function wα corresponds to population (N,α) when it satisÞesX

sk∈S
wα(ω, sk) =

¯̄
α−1(ω)

¯̄
for all ω ∈ Ω. We letWα denote the set of weight functions corresponding to
the population (N,α). Given a population (N,α) and a strategy vector σ we
say that weight function wα,σ is relative to strategy vector σ and attribute
function α if,

wα,σ(ω, sk) =
X

i∈N : α(i)=ω
σik

for all sk ∈ S and all ω ∈ Ω.
Given population (N,α) and player i ∈ N , deÞne α−i as the restriction

of α to N\{i}. Let wα−i,σ be a weight function deÞned by its components
as follows

wα−i,σ(ω, sk) =

½
wα,σ(ω, sk)− σik if α(i) = ω
wα,σ(ω, sk) otherwise.

for all ω ∈ Ω and for all σk ∈ S. We will use Wα−ω to denote the set of
weight functions corresponding to (N\{i}, α−i) where ω = α(i).

Given a population (N,α), a game

Γ(N,α) = ((N,α), S, {hω : ∆(S)×Wα−ω −→ R|ω ∈ α(N)})
is induced from the pregame (Ω, S, h) by deÞning, for each ω ∈ α(N),

hω(t, w) = h(ω, t, w)

for all t ∈ S and all w ∈ Wα−ω. In interpretation, hα(i)(t, w) is the payoff
received by a player i ∈ N of attribute α(i) from playing the strategy t when
the strategies of other players are summarized by w. Note that players of the
same attribute have the same payoff function, inherited from the pregame. A
players payoff function is thus indexed by their attribute type - a departure
from the notation used in the Þrst half of the paper.
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We should perhaps highlight how in this section we have changed from
considering one game in isolation to considering a set or family of games.
This family of games is determined by the pregame. We focus on pregames
that satisfy a large game property.

5.2 Large games

A pregame satisÞes the large game property if it satisÞes both continuity of
payoff functions in attributes and global interaction.

Continuity of payoff functions: The pregame G = (Ω, S, h) satisÞes
continuity of payoff functions in attributes if for any ε > 0 there exists
real numbers ηc(ε) and δc(ε) > 0 such that for any two games Γ(N,α)
and Γ(N,α) where |N | > ηc(ε), if, for all i ∈ N ,

dist(α(i), α(i)) < δc(ε)

then, for any j ∈ N and for any strategy vector σ,¯̄̄
hα(j)(s

k, wα−j ,σ)− hα(j)(sk, wα−j ,σ)
¯̄̄
< ε

for all sk ∈ S, where wα,σ and wα,σ are the weight functions relative
to strategy vector σ and, respectively, attribute functions α and α.

Global interaction: The pregame G = (Ω, S, h) satisÞes global interaction
if for any ε > 0 there exists real numbers ηg(ε) and δg(ε) > 0 such
that for any game Γ(N,α) where |N | > ηg(ε) and for any two weight
functions wα and gα, both relative to attribute function α, if,

1

|N |
X
sk∈S

X
ω∈α(N)

|wα(ω, sk)− gα(ω, sk)| < δg(ε)

then, ¯̄̄
hα(i)(s

k, wα−i)− hα(i)(sk, gα−i)
¯̄̄
< ε (1)

for all i ∈ N and all sk ∈ S.

We denote by G(ηc, δc, ηg, δg) a pregame that satisÞes continuity of payoff
functions as demonstrated by functions ηc and δc and satisÞes global in-
teraction as demonstrated by functions ηg and δg where ηc, δc, ηg and δg
map R+ into R+. Clearly a pregame G(ηc, δc, ηg, δg) satisÞes the large game
property.
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The notion of a pregame satisfying the large game property is discussed
in some detail by Wooders, Cartwright and Selten (2001). Here we provide
a brief summary. The deÞnition of continuity in payoff functions compares
two populations in which the attributes of players are slightly perturbed. As
such, two different games Γ(N,α) and Γ(N,α) are compared. Continuity of
payoff functions in attributes requires that a player�s payoff function should
be approximately the same in both games. A global interaction assumption
suggests that a player�s payoff is a function primarily of the number of people
of each attribute playing each strategy, relative to the total population. As
such, a player�s payoff is largely dependent on the proportions of players
of each attribute type playing each strategy (and, of course, on their own
strategy choice).

Our interest in large game property is motivated by two considerations.
First, an existing result from Wooders et al. (2001) states that if the large
game property holds, plus certain other mild assumptions, then for suffi-
ciently large populations there exists an approximate Nash equilibrium σ
that partitions the population into a relatively small number of societies;
players belonging to the same society play the same strategy and have sim-
ilar attributes. To see the importance of this result it must Þrst be appreci-
ated that in general a game will not have an approximate Nash, imitation
equilibrium. Indeed the existence of an approximate Nash equilibrium
is, generally speaking, unlikely.12 The result due to Wooders et al (2001)
suggests that a Nash, imitation equilibrium may exist for large games. A
second motivation for introducing the large game property is how it appears
to capture the type of games for which the modelled behavior appears most
appropriate. In particular, it is in large games where both imitation and
innovation appear sensible decision making heuristics.

The imitation with innovation dynamic need not converge to an approx-
imate Nash, imitation equilibrium in large games. We illustrate with the
following example.

Example 6: The attribute space is given by Ω = {R,C}. There are
two strategies A and B. Payoffs are calculated according to the following
matrix game M ,

A B
A 1, 0 0, 1
B 0, 1 1, 0

12Remeber that players choose pure strategies and so we are questioning the existence
of an ε-Nash equilibrium in pure strategies.
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In interpretation, a player with attribute R chooses a row in game M and
a player with attribute C chooses a column. For any population (N,α) the
game Γ(N,α) is such that every player of attribute R is matched to play
game M against every player of attribute C; a player must play the same
strategy (of game M) against all opponents. The payoff of a player equals
there total accumulated payoff from playing game M divided by |N |, the
size of the population. Depending on the level of ε there exists a set of Nash,
imitation equilibria in which approximately half of the players of attribute
C choose A and in which half of the players with attribute R choose A. This
pregame satisÞes the large game property.

If players only refer to players of the same attribute then the imitation
with innovation dynamic need not converge on an absorbing state for games
induced from this pregame (for small ε). Two remarks help illustrate this.
First, if λ = 1 (i.e. just innovation) the imitation with innovation dynamic
will not converge on a Nash ε equilibrium unless play commences at one.13

This is a familiar result. Second, stated informally, in this game the imitation
heuristic and innovation heuristic are essentially equivalent. In particular,
if the imitation with innovation dynamic does not converge on an absorbing
state when λ = 1 then it will not if λ 6= 0, 1.¨

5.3 Coordination games and large game reference networks

We provide sufficient conditions on both the game and reference network to
guarantee the convergence of the imitation with innovation dynamic on an
absorbing state. We begin by deÞning the concept of a coordination game
and below deÞne large game reference networks.

For any two strategy proÞles σ, σ let X(σ, σ) ⊂ N be those players j ∈ N
such that σj 6= σj .

Coordination game: Given a pregame G, the game Γ(N,α) is a coordi-
nation game with bound L when for any two strategy proÞles σ, σ if,
|X(σ, σ)| ≥ L and,

hα(i)(σi, wα−i,σ) > hα(i)(σi, wα−i,σ)

for all i ∈ X(σ, σ) then,X
i∈N

hα(i)(σi, wα−i,σ) >
X
i∈N

hα(i)(σi, wα−i,σ).

13Except for a few trivial induced games.
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Let CG(L) denote the set of coordination games with bound L. A coordina-
tion game with bound L has the property that when more than L players
change strategy and each player who changes strategy gets a payoff increase,
the �total payoff of the population� increases. We note that any game Γ(N,α)
belongs to set CG(|N |).

It appears relatively mild to assume that a game induced from a pregame
satisfying the large game property should be a coordination game. In par-
ticular the nature of a large game is that a player�s actions will typically
inßuence their own payoff much more than the payoffs of others. Thus, if
a player changes strategy to his own beneÞt it appears relatively mild to
assume that the total payoff of the population increases. We note, however,
that in a game with many players small individual losses can accumulate to
big population wide losses. Reßecting this, a game may well not be a coor-
dination game with bound L for small L; examples include n-Þrm Cournot
quantity setting competition and n-player Prisoners Dilemma. The larger
is L, however, the more likely it is that a game is a coordination game with
bound L. We note that games induced from the pregame of Example 6 are
not coordination games with bound L for any L < N ; in these games the
total payoff of the population is Þxed independently of the strategies of the
players; thus, one players gain is another players loss.

We turn our attention to reference networks. In games induced from a
pregame it seems intuitive that a player�s reference group should be deter-
mined by his attribute and by the attribute function. Given a pregame G
a reference network function RN is a function mapping attribute functions
to reference networks. In interpretation, RN(α) is the reference network of
population (N,α). We deÞne a particular form of reference network after
introducing some notation. Given the population (N,α) and player i ∈ N
we denote by Bi(δ)α the subset of player set N such that player j ∈ Bi(δ)α
if and only if dist(α(i), α(j)) ≤ δ. That is, if we draw a ball in attribute
space around α(i) of diameter δ then Bi(δ)α is those players within the ball.

Large game reference networks: Given a pregame G and reference net-
work function RN the reference network RN(α) ≡ R is a large game
reference network with bounds L,U and δ if

1. R is symmetric14 and has a clustering coefficient of one,

2. Ri ⊂ Bi(δ)α for all i ∈ N , and,
3. L ≤ |Ri| ≤ U for all i ∈ N .

14That is, if i ∈ Rj then j ∈ Ri for all i, j ∈ N .
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We denote by LR(L,U, δ) the set of large game reference networks with
bounds L,U and δ. Note that any reference network RN(α) belongs to the
set LR(0, |N | , diameter(Ω)).

Behind the concept of a large game reference network are three reÞne-
ments on reference networks studied in Section 3. First, there is an upper
and lower bound on the size of a player�s reference group as given by U
and L. Second, players only refer to those players with �similar� attributes
to themselves where δ measures the similarity. Third, the reference net-
work is symmetric. These three reÞnements seem relatively mild but the
implications are worth exploring a little further.

Symmetry is a common simplifying assumption in modelling social net-
works (e.g. Jackson andWolinsky 1996 and D. Watts 1999). It can, however,
be a strong assumption; in markets, for example, small Þrms may refer to
big Þrms but big Þrms not refer to small Þrms. The assumption of symme-
try can be weakened and the conclusions of Theorem 2 still hold but this
comes at the cost of signiÞcantly complicating the analysis; a requirement
that reference networks be �predominantly� symmetric is also still required.

The assumption that a player refers to those with similar attributes to
herself is intuitively appealing. If, however, a player has an attribute that
is relatively scarce then this implies she must refer to relatively few people.
For this to be reasonable would seem to require that a player has a speciÞc
preference for referring to players with similar attributes to herself; that is,
to be willing to trade referring to relatively few players in order to refer only
to those players who are similar to herself. We note how the above remarks
demonstrate that the possible values of δ and L are not independent.

5.4 Main result

We have now introduced all the necessary concepts to state our second result.

Theorem 2: Let G(ηc, δc, ηg, δg) be any pregame satisfying the large
game property and RN any reference network function. Given any ε > 0
and any U there exists real numbers η2(ε, U) and δ2(ε, U) ≥ δc

¡
ε
3

¢
such

that for any population (N,α) where |N | > η2(ε, U) if Γ(N,α) ∈ CG(L) and
RN(α) ∈ LR (L,U, δ2(ε, U)), for some L, then the imitation with innovation
dynamic I(ε;λ 6= 0, 1;R) almost surely converges to a Nash, imitation ε-
equilibrium.15

15 It is apparent from the proof that the statement δ2(ε, U) ≥ δc
¡
ε
3

¢
can be relaxed to

δ2(ε, U) ≥ δc (∗) where ∗ > ε
2
is arbitrarily close to ε

2
.
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Proof: Suppose that the statement of the Theorem is false. Then
there exists some ε > 0 and some U such that, for each integer ν there
is a population (Nν , αν) where |Nν | > ν, where Γ(Nν , αν) ∈ CG(Lν) and
RN(αν) ∈ LR ¡Lν , U, δc ¡ ε3¢¢ for some Lν , and for which there exists a non-
singleton communication class of the imitation with innovation dynamic
(λ 6= 0, 1). Let δ = δc

¡
ε
3

¢
and let Rν = RN(αν) for all ν.

From the proof of Theorem 1 it is immediate that the population (Nν , αν),
for any ν, can be partitioned into a set of cliques. That is, the player set Nν

can be partitioned into subsets cν1, ..., c
ν
Qν with the property, for all i ∈ Nν ,

that if i ∈ cνq then Rνi = cνq .
For any game Γ(Nν , αν) and any initial state σ suppose that play evolves

according to the following process,

1. all players i ∈ Nν use the imitation heuristic, and imitate any success
example, until the process evolves to an imitation equilibrium.

2. in the following period a unique player i ∈ Nν uses the innovation
heuristic and chooses an innovation opportunity. All other players use
the imitation heuristic.

3. the process returns to stage 1 and repeats.

By Theorem 1 play will, almost surely, converge to an imitation equilib-
rium σ during the Þrst stage of the process. For each clique cνq there must
exist some strategy sνq ∈ S such that σi = sνq for all i ∈ cνq . That is, any
two players in the same clique play the same strategy.

If a contradiction is to be avoided there must exist some player iν ∈ Nν

who has an innovation opportunity given strategy vector σ. Suppose, that
in stage 2 of the process player iν chooses strategy sk. This implies that
strategy vector σ is observed in the next period (say period t) where σj = σj
for all j ∈ Nν\{iν} and hαν(iν)(σiν , wα−iν ,σ) > hαν(iν)(σiν , wα−iν ,σ) + ε.

In period t + 1, all players use the imitation heuristic. We note that if
iν ∈ cνq then no player l ∈ cνq where cνq 6= cνq can have a success example
who is not a costrategist. Thus, if strategy vector σ is observed σl = σl for
all l ∈ Nν\cνq . Given the value of δ and continuity of payoff functions, for
sufficiently large ν and for any j ∈ cνq ,¯̄

hαν(j)(σj , wα−j ,σ)− hαν(iν)(σiν , wα−iν ,σ)
¯̄
<
ε

3
.

By the assumption of global interaction, for sufficiently large ν and for any
player j 6= iν , ¯̄

hαν(j)(σj , wα−j ,σ)− hαν(j)(σj , wα−j ,σ)
¯̄
<
ε

3
.
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Thus,

hαν(iν)(σiν , wα−iν ,σ) > hαν(j)(σj , wα−j ,σ) + ε

− ¯̄hαν(j)(σj , wα−j ,σ)− hαν(j)(σj , wα−j ,σ)¯̄
− ¯̄hαν(j)(σj , wα−j ,σ)− hαν(iν)(σiν , wα−iν ,σ)¯̄

> hαν(j)(σj , wα−j ,σ) +
ε

3
> hαν(j)(σj , wα−j ,σ).

for all j ∈ cνq\{iν}. This implies that player iν is the unique success example
for those players j ∈ cνq\{iν}. Note that player iν will be their own and only
success example. Thus, σj = σiν for all j ∈ cνq .

Given the assumption of global interaction and the fact that U is inde-
pendent of ν, for sufficiently large ν¯̄̄

hαν(iν)(σiν , wα−iν ,σ)− hαν(iν)(σiν , wα−iν ,σ)
¯̄̄
<
ε

3
. (2)

This implies that

hαν(iν)(σiν , wα−iν ,σ) > hαν(iν)(σiν , wα−iν ,σ) +
2

3
ε.

The choice of δ and continuity of payoff functions implies that for sufficiently
large ν ¯̄̄

hαν(j)(σj , wα−j ,σ)− hαν(iν)(σiν , wα−iν ,σ)
¯̄̄
<
ε

3

for all j ∈ cνq . Thus,

hαν(j)(σj , wα−j ,σ) > hαν(j)(σj , wα−j ,σ) +
2

3
ε (3)

−
¯̄̄
hαν(j)(σj , wα−j ,σ)− hαν(iν)(σiν , wα−iν ,σ)

¯̄̄
− ¯̄hαν(j)(σj , wα−j ,σ)− hαν(iν)(σiν , wα−iν ,σ)¯̄

> hαν(j)(σj , wα−j ,σ)

for all j ∈ cνq .
Compare strategy vectors σν and σν . We note that X(σν , σν) = cνq .

It is immediate from (3), given that Γ(Nν , αν) ∈ CG(Lν) and RN(αν) ∈
LR ¡Lν , U, δc ¡ ε3¢¢, that, for sufficiently large νX

j∈Nν

hαν(j)(σj , wα−j ,σ) >
X
j∈Nν

hαν(j)(σj , wα−j ,σ).
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Thus, as play evolves repeatedly as above the total payoff of the population
increases and never decreases. Given that the state space is Þnite this gives
the desired contradiction.¥

Theorem 2 demonstrates that for a broad class of games with many
players the imitation with innovation dynamic almost surely converges on an
approximate Nash, imitation equilibrium. A key aspect of this result is the
requirement that each player refers only to players with �similar� attributes
to themselves.

We note that if a game Γ(N,α) ∈ CG(1) then an innovation dynamic
with inertia converges to an approximate Nash equilibrium. This is a fairly
trivial result. We make two remarks; Þrst, an innovation dynamic need not
converge to an imitation equilibrium; second, if Γ(N,α) /∈ CG(1) then there
is no guarantee an innovation dynamic with inertia need converge to an
approximate Nash equilibrium. We take up related issues in Section 5.6.

A corollary of Theorem 2 (and of Theorem 3 to follow) is that there
must exist an approximate Nash, imitation equilibrium in sufficiently large
coordination or miss-coordination games induced from a pregame satisfy-
ing the large game property. This complements a result due to Wooders,
Cartwright and Selten (2001). They demonstrate that all sufficiently large
games induced from a pregame satisfying the large game property have an
approximate Nash, imitation equilibrium provided there is a bound, inde-
pendent of population size, on the number of players of each attribute. We
require no such restriction on the dispersal of players in attribute space.16

5.5 Bounding the number of societies

DeÞne a society as a group of players who (1) refer to, and only to, all
other members of the society and (2) play the same strategy. The bound on
reference group size in Theorem 2, as given by U , implies that the number
of societies in any approximate Nash, imitation equilibrium, will grow arbi-
trarily large as the size of the population increases. A principle motivation
of Wooders et. al. (2001) was to demonstrate the existence of a Nash equi-
librium that partitioned the player set into a bounded number of societies
where the bound is independent of population size. Thus, as the population
size increases societies become arbitrarily large.
16Note that a Nash equilibrium need not exist in coordination games even for large

populations. Consider, for example a population of players matched to play a �two strategy,
off diagonal coordination game�. The unique Nash equilibrium is �half the population play
one strategy and the other half play the other strategy�. There can only exist a Nash
equilibrium when there are an even number of players.
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We offer a complementary result to that of Theorem 2 in which the
number of societies can be bounded independent of population size. Before
doing so we reÞne the notion of a coordination game.

Coordination game: Given a pregame G, the game Γ(N,α) is a coordi-
nation game with bounds L and δ if Γ(N,α) is a coordination game
with bound L and if for any player i ∈ N , any strategy sk ∈ S and
any two weight functions wα and gα, ifX

ω∈Bi(δ)α
wα(ω, s

k) >
X

ω∈Bi(δ)α
gα(ω, s

k)

and wα(ω, sk) = gα(ω, sk) for all ω /∈ Bi(δ)α then

hα(i)(s
k, wα−i) ≥ hα(i)(sk, gα−i).

We denote by CG(L, δ) the set of coordination games with bound L and δ.
A coordination game with bounds L and δ has the additional property

(over a coordination game with bound L) that a player gets a higher payoff
when there are more players with �similar� attributes to himself who are
playing the same strategy as himself. This seems an intuitively plausible
characteristic of a coordination game. We note that any game Γ(N,α)
belongs to CG(|N | , diameter(Ω)).

We state our third main result.

Theorem 3: Let G(ηc, δc, ηg, δg) be any pregame satisfying the large
game property and RN any large game reference network function. Given
any ε > 0 there exists real numbers η3(ε) and δ3(ε) ≥ δc

¡
ε
2

¢
such that

for any population (N,α) where |N | > η3(ε) if Γ(N,α) ∈ CG (L, δ3(ε)) and
RN(α) ∈ LR (L, |N | , δ3(ε)), for some L, then the imitation with innovation
dynamic I(ε;λ 6= 0, 1;R) almost surely converges to a Nash, imitation ε-
equilibrium.

Proof: A proof proceeds in an almost identical fashion to that of Theo-
rem 2. It is only with respect to (2) that we observe any signiÞcant difference.
This changes to

hαν(iν)(σiν , wα−iν ,σ) ≥ hαν(iν)(σiν , wα−iν ,σ)

as implied by the fact Γ(N,α) ∈ CG ¡L, δc ¡ ε2¢¢.¥
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The convergence result of Theorem 3 is not dependent upon each player
referring to a bounded number of players. Indeed, Theorem 3 can apply to
reference networks in which every player refers to every other player. Thus,
the number of societies need not grow large as the size of the population
grows large.

5.6 Why imitate?

We use this section to provide an example of how Theorem 3 can be applied.
We will also address the issue of whether imitation can aid learning. We
begin by setting out the example.

The strategy space is given by S = {1, 2, ....,K} and the attribute space
by Ω = [0, 1]K . Given attribute ω = (ω1, ..., ωK) the value of ωk could be
thought of as a player�s preference for strategy k. Let the metric on Ω be
such that dist(ω, ω) = maxk |ωk − ωk|. Given any population (N,α) and
any weight function w ∈Wα let pw : S → Z be deÞned by

pw(k) =
1

|N |
X

ω∈support(α)
w(ω, k)

for all k ∈ S. The value p(k) is thus the proportion of players playing
strategy k. For any population (N,α) and any player i ∈ N the payoff
function of player i is given by

hα(i)(k,w) = pw(k − 1)(kωk + k − 1) + kpw(k)
for all k ∈ S and w ∈ Wα−ω where α(i) = ω = (ω1, ..., ωK).17 It is easily
checked that this pregame satisÞes the large game property.

This pregame could be thought of as a very simple model of technological
or scientiÞc evolution. A player gets a higher payoff the higher the proportion
playing the same strategy as himself; this could reßect economies of scale.
When all players are playing the same strategy the payoff is larger when
people are playing larger strategies; thus, larger strategies could be seen as
more technologically advanced. If ωk > 0 then a player gains from playing
strategy k where the size of the additional payoff is related to the proportion
of the population playing strategy k − 1; the value ωkpw(k − 1)k reßects a
players incentive to move to a more advanced technology. The fact that a
player only has an incentive to use technology k when a signiÞcant proportion
of the population are using technology k−1 may reßect that a player has an
incentive to �be ahead of competitors� but �not too far ahead of competitors�.
17 If k = 1 the payoff function is amended by setting pw(k − 1) = 0.
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Let RN be a reference network function where RN(α)i = N for all
populations (N,α). That is, every player refers to the total player set.
With respect to Theorem 3 it is clear that we can set δ3(ε) = 2 and η3(ε) =
1 for any ε > 0. That is, for any game the innovation with imitation
dynamic I(ε;λ 6= 0, 1;R) almost surely converges to a Nash, imitation ε-
equilibrium. To see this consider the following chain of events: in period 1
every player imitates the same success example and so every player plays
the same strategy k; if this is not an absorbing state then some player i
has an innovation opportunity by playing strategy k+1; in period 3, player
i is a success example to all players and so everyone may choose strategy
k + 1, and so on. Given any ε > 0 and any population (N,α) where for
each k there exists at least one player with attribute ω where ωk > ε, the
unique Nash, imitation ε-equilibrium is strategy vector (K,K, ...,K). Thus,
for these populations and any ε > 0 the imitation with innovation dynamic
I(ε;λ 6= 0, 1;R) almost surely converges to state (K,K, ...,K).

We provide some discussion of how imitation may �help� learning. Con-
sider a family of games in which player 1 has attribute ω1 = (1, 1, ..., 1) and
players 2, 3, ..., |N | have attribute ω0 = (0, 0, ..., 0). As shown above the imi-
tation with innovation dynamic I(ε < 1;λ 6= 0, 1;R) almost surely converges
to state (K,K, ...,K). Consider, however, what happens if players only use
innovation. For sufficiently large populations and any ε < 1 there exists
a Nash ε-equilibrium (2, 1, 1, ..., 1). Thus, an innovation dynamic need not
converge to the Pareto optimal state. Imitation can thus be seen to �help�
learning of a more efficient strategy vector.18

In examples 4 and 5 and the example above we provide some evidence
that imitation can aid players in learning more efficient strategies. Indeed,
in all three of these examples what we could see as more rational methods,
such as innovation or Þctitious play, need not lead to outcomes as �efficient�
as we observe given an imitation with innovation dynamic. The potential
for imitation to aid learning appears to be the way in which it can make
players coordinate their actions. In all three examples there are �obvious�
optimal strategy vectors but when players act unilaterally they need not
lead play to such strategy vectors. With imitation the fact that players can
act �together� leads to the �efficient� outcome. In the above example, for
instance, suppose the current state is (2, 1, 1, ..., 1). All players would get a
higher payoff if the strategy vector was (2, 2, ..., 2). No player, however, has

18Although somewhat more involved it is possible to provide examples where an innova-
tion dynamic need not converge to an approximate Nash equilibrium yet Theorem 3 still
applies to demonstrate the convergence of an imitation with innovation dynamic.
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an incentive to act unilaterally and play strategy 2. If players imitate then
play may evolve to strategy vector (2, 2, ..., 2).

From a more general prospective we note the two key elements of The-
orems 2 and 3 that suggest imitation can be desirable. First, a player only
refers to those with similar attributes to himself. Second, a player is at worst
indifferent if more players with similar attributes to himself play the same
strategy as himself. These properties suggest that a player will typically
increase their payoff if they imitate. This would imply, in large coordination
games, that imitation should not �hinder� learning even if it does not typi-
cally �help� learning. If, however, a player refers to those who are not similar
to himself or gets a lower payoff when more people play the same strategy as
himself then the potential for imitation to �hinder� learning seems greater.
We take up this issue in the Conclusion.

6 Conclusion

This paper has provided sufficient conditions under which a population of
boundedly rational individuals will learn to play an approximate Nash equi-
libria. Indeed, we go further by showing that aggregate play converges
towards an approximate Nash, imitation equilibrium in pure strategies. We
focussed on learning in coordination games with many players and learning
through imitation with innovation. We demonstrated that the convergence
of an imitation with innovation dynamic is dependent on the reference net-
work through which players refer to each other; if the reference network
has a clustering coefficient of one and if each player refers to players similar
to himself then convergence is more likely. Our main results suggest that
imitation can be consistent with individually rational behavior. Through
example we demonstrate that imitation may even aid learning in the sense
that players learn to play a �more efficient� strategy vector, when using both
imitation and innovation, than they do when just using innovation.

The notion that imitation can aid learning is an interesting one. After
all, if individuals do imitate and conform then there should be some reason
for this. Intuitively, one advantage of imitation would appear to be the speed
that it can give to learning. If we see innovation as being difficult and thus
relatively rare while imitation is much easier to perform then learning should
be quicker if players imitate. This is surely the case with technologically and
scientiÞc evolution. The implications of imitation for the speed of learning
are explored by Levine and Pesendorfer (2000, 2001). In focussing on long
run convergence this paper has not addressed such short run issues. We do
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provide some evidence that imitation can aid learning in the long run. We
feel, however, that its ability to do so is somewhat limited. What we can
say with more conÞdence is that imitation need not hinder learning; in par-
ticular, we demonstrate that imitation can be consistent with individually
rational behavior. Putting this together we see that imitation may be an
aid to learning in the short run while not hindering learning in the long run.
Future research hopes to look at both the short and long run implications
of imitation in more detail.

The evolution of an imitation dynamic is fundamentally dependent on
the reference network that players use. Some analysis is presented in an
Appendix on the implications of players choose their reference group as play
evolves. A related literature concerns network formation (see for example
Jackson and Wolinsky 1996, Bala and Goyal 2000 and A. Watts 2001). This
literature treats the network as the game in the sense that a players payoff is
directly dependent upon the links that he has in the network. In the model of
this paper the network is merely a medium through which the game is played
and so the effect of the network on a player�s payoffs is indirect. It may
be interesting to apply the ideas from the network formation literature in
modelling the evolution of an endogenised interaction network. The question
of how sensitive the convergence of the imitation with innovation dynamic
is to changes in the reference network is also an open question.

As a Þnal remark we note that any interpretation of our results must
take into account the realism of our model of learning. We believe that our
model of learning through imitation with innovation captures key aspects
of individual learning in games with many players. One way to test this
is through experimental work. There has been some experimental work
on imitation and the importance of social learning (e.g. Offerman, Potters
and Sonnemans 2002 and Selten and Apesteguia 2002). There has also
been experimental work on learning in large games (e.g. Van Huyck 1997).
Experiments to test the importance of social learning in large games would
be of interest.

7 Appendix 1: an evolving reference network

In this section we generalize the analysis contained in the main body of the
paper by allowing players to change their reference group as play evolves.
In particular, as well as choosing a strategy in each period, players are also
required to choose a reference group. We provide sufficient conditions on
how players choose their reference group such that Theorems 1 and 2 can
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be extended.
We assume that players are constrained in the reference groups that

they can choose. For a player set N , let U,L ∈ RN denote respectively
upper and lower limits on the size of reference groups where Ui > Li for all
i. Let D = {D1, ...,Dn} denote a topological structure on reference groups
where Di ⊂ N , {i} ∈ Di and |Di| ≥ Ui, for all i ∈ N . A set of reference
group constraints is given by a triple (U,L,D) consisting of upper and lower
limits on the size of reference groups and a topological structure on reference
groups. In interpretation, the values Ui and Li are interpreted respectively
as the upper and lower limits on the size of reference group for player i ∈
N . The set Di is interpreted as the set of players to whom player i may
potentially refer. Given the set of reference group constraints (U,L,D), we
denote by Ψi,(U,L,D) the set of feasible reference groups of player i where
Ri ∈ Ψi,(U,L,D) if and only if Ri ⊂ Di and Ui ≥ |Ri| ≥ Li. That is, a
reference group is feasible for player i when they are referring to a subset of
Di and when the number of players referred to is between the two bounds Ui
and Li. We denote by Ψ(U,L,D) the set of feasible reference networks where
R ∈ Ψ(U,L,D) if and only if Ri ∈ Ψi,(U,L,D) for all i ∈ N .

Given a stage game Γ = (N,S, {ui}ni=1) and a set of reference group
constraints Z = (U,L,D) we refer to an action as a choice of both strategy
for the stage game Γ and as a choice of reference group relative to the set
of constraints Z.19 For each player i ∈ N , the action set of player i is thus
given by the set S ×Ψi(U,L,D), which we subsequently denote by Σi,Γ,C . An
action proÞle is given by a vector σ = (σ1, ..., σn) where σi ∈ Σi,Γ,Z denotes
the action of player i. Let ΣΓ,Z = ×i∈NΣi,Γ,Z be the set of action proÞles
relative to stage game Γ and a set of reference group constraints Z.

As play evolves over periods t = 0, 1, 2, ... all players simultaneously
choose an action in each period. We assume that players make action choice
conditional on events of the last two periods; this is a departure from the
main text where only the last period is used. We model the evolution of
play as a discrete time homogenous Markov chain {h(t)}t≥0 on state space
ΣΓ,Z ×ΣΓ,Z .

We assume that each player i uses a good advice heuristic in choosing
a strategy conditional on state a = (σ,R, σ,R). The heuristic can be sum-
marized under a good advice probability function gi : ΣΓ,Z ×ΣΓ,Z → ∆(N).
The value gi(j|a) is interpreted as the probability that player i would select
player j conditional on action proÞle a. If player j is selected, j /∈ Ri and
|Ri| < Ui then player i will choose a reference group Ri ∪ {j}. If player j
19We assume that payoffs are not directly dependent upon reference group choice.
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is selected, j ∈ Ri and |Ri| > Li then player i will choose reference group
Ri\{j}. Otherwise, player i chooses reference group Ri. Thus, reference
groups evolve by the selective addition and subtraction of members from
the group. We assume that

P
j∈N gi(j|a) < 1 for all a. Thus, player i

may always take the option to leave the reference group unchanged. Other
assumptions on gi are as follows:

1. achieves aspiration: if σ = σ then gi(j|a) = 0 for all j ∈ N .
2. good advice: if ui(σ) > ui(σ) then gi(j|a) > 0 for all j ∈ Ri\{i}.
3. bad advice: if ui(σ) < ui(σ) then gi(j|a) > 0 for all j ∈ Di\Ri.
4. indifferent advice: if ui(σ) = ui(σ) and σ 6= σ then gi(j|a) > 0 for all
j ∈ Di\{i}.

If a player receives good advice, i.e. her payoff has increased over the last
period, then she may remove player out of her reference group. If a player
receives bad advice, i.e. her payoff has declined over the last period, then
she may add an extra player to her reference group. If a player achieves her
aspiration, the strategy vector remains unchanged, then she does nothing.
If a player receives indifferent advice, gets the same payoff even though the
strategy vector has changed, then she may add or remove a player from her
reference group. As it stands the good advice heuristic does not give much
leeway in reference group choice. It can easily be generalized, however, with
no effect on subsequent results, to allow more large scale revisions of the
reference group.

Theorem 3: Let Z = (U,L,D) be a set of reference group constraints
and R ∈ Ψ(U,L,D) be any feasible reference network. If reference group
choice evolves according to the good advice heuristic then from any state
a ∈ ΣΓ,Z ×ΣΓ,Z play either converges on an absorbing state of the dynamic
or almost surely converges on a state a with reference group R.

Proof: Suppose not. Then there exists a reference group R ∈ Ψ(U,L,D)
and initial state a such that play does not either converge to an absorbing
state or on a state with reference group R. Given two sets A and B we
denote by A−B the set A\(A∩B). Suppose that each player i chooses his
reference group in the following way, where he is selecting a player, according
to the good advice heuristic, and has current reference group Ri
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1. if good advice and Ri − Ri 6= φ then select a player j ∈ Ri − Ri. If
Ri −Ri = φ then select no one.

2. if bad advice and Ri − Ri 6= φ then select a player j ∈ Ri − Ri. If
Ri −Ri = φ then select no one.

3. if indifferent advice, Ri − Ri 6= φ and |Ri| < Ui then select a player
j ∈ Ri−Ri. Else, if Ri−Ri 6= φ select a player j ∈ Ri−Ri. Otherwise,
select no one.

If play evolves as above with transition matrix P and does not converge
to an absorbing state then there must exist a non-singleton set of states
Ψ, indexed a(t) = (σ(t − 1), R(t − 1), σ(t), R(t)), t = 1, 2, 3, ..., T , where
Pa(t−1)a(t) > 0 for all T > t > 1 and Pa(T )a(1) > 0.

There must exist a state a
¡
t
¢ ∈ Ψ such that σ

¡
t
¢ 6= σ

¡
t− 1¢. That

is, at some point some player must change strategy. Any player i ∈ N
either receives indifferent advice, bad advice or good advice in state a

¡
t
¢
.

If a player i receives bad advice (good advice) in state a
¡
t
¢
then there

must exist a state a
³
t
´
∈ Ψ in which player i receives good advice (bad

advice). Further, according to the assumed behavior the only players that
can be added to a reference group Ri are those players j ∈ Ri while the only
players that can be taken out of reference group Ri are those players j /∈ Ri.
This must imply that Ri(t) = bRi for some bRi ∈ Ψi,(U,L,D), all i ∈ N and for
all a(t) ∈ Ψ.

If Ri− bRi = φ and bRi−Ri = φ then bRi = Ri. Thus, either Ri− bRi 6= φ orbRi−Ri 6= φ for some i ∈ N . Suppose that Ri− bRi 6= φ. Given the assumed
behavior (assumptions 2 and 3) this would imply that

¯̄̄ bRi ¯̄̄ = Ui which, in
turn, implies (assumptions 1 and 3) that bRi −Ri = φ (where we recall that
Ui > Li). If Ri − bRi 6= φ and bRi −Ri = φ this implies that ¯̄Ri¯̄ > Ui which
contradicts that R ∈ Ψ(U,L,D). Thus, Ri − bRi = φ and bRi −Ri 6= φ. Using
similar arguments to those immediately above this implies that

¯̄̄ bRi ¯̄̄ = Li

and
¯̄
Ri
¯̄
< Li which again contradicts that R ∈ Ψ(U,L,D). Thus, bRi = Ri

for all i ∈ N and this completes the proof.¥

Theorem 3 allows us to extend Theorems 1 and 2 in allowing players to
choose their reference group. For example, in applying Theorem 1, we have
that: for any stage game Γ and any set of reference group constraints Z, for
which there is a feasible reference network R that has a clustering coefficient
of one, the imitation with innovation dynamic I(ε;λ = 0;R) almost surely
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converges on an absorbing state. At this absorbing state the strategy vector
chosen is an imitation equilibrium. This is immediate from Theorem 3 above
by setting R to be a reference network with a clustering coefficient of one.

8 Appendix 2: the imitation heuristic with inertia

We provide some analysis of the imitation with innovation dynamic in which
players use the imitation heuristic with inertia as opposed to the imitation
heuristic. We recall that the distinction between these two heuristics (as
discussed in Section 2.2) lies in whether a player i will imitate a success
example who is not a costrategist and is earning the same payoff as a cos-
trategist. The following example may help to illustrate the importance of
this distinction. This example demonstrates that Theorem 1 does not hold
if players use the imitation heuristic with inertia. Throughout the rest of
this section we assume players use the imitation heuristic with inertia when
selecting a strategy through imitation.

Example A1: There are 5 players and two strategies labelled A and
B. The reference network is given by R1 = {1, 2, 4, 5}, R2 = {1, 2, 4, 5},
R3 = {2, 3, 4}, R4 = {1, 2, 4, 5} and R5 = {1, 2, 4, 5}. This network has a
clustering coefficient of one. We highlight the following payoffs,

strategy vector payoff vector
A,A,B,B,B 100, 10, 0, 0, 100
A,A,A,B,B 100, 0, 0, 10, 100

Assume λ = 0. There exists a cycle of strategy vectors (A,A,B,B,B) →

(A,A,A,B,B) → (A,A,B,B,B). Note that because players 1, 2, 4 and 5
are using the imitation heuristic with inertia they have no desire to change
strategy.¨

Given a network R we say that there is a directed path between player
i and player j if there exists a chain of players i1, .., iM such that i1 ∈ Ri,
im+1 ∈ im and j ∈ iM . We say that a network R has a characteristic path
length of one when for any two players i, j ∈ N if there exists a directed
path between i and j then j ∈ Ri.20 We note that the reference network

20See D. Watts (1999) for a deÞnition of and discussion on the characteristic path length
of a network.
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in Example A1 does not have a characteristic path length of one; player 3
refers to player 2 who in turn refers to player 1; player 3, however, does
not refer to player 1. The following result complements Theorem 1. Before
stating Theorem A1 we modify the deÞnition of an imitation equilibrium
in the obvious way. The strategy vector σ is an imitation equilibrium with
inertia of stage game Γ relative to reference network R if

max
l∈Ri

ul(σ) ≤ max
l∈Ci(σ)

ul(σ)

Theorem A1: For any stage game Γ and any reference network R that
has a clustering coefficient of one and characteristic path length of one the
imitation with innovation dynamic I(ε;λ = 0;R) almost surely converges
on an imitation equilibrium with inertia.

Proof: The proof closely follows that of Theorem 1 and so only the
differences will be explained in detail. Thus, given an arbitrary state σ
we demonstrate that there exists states σ(2), .., σ(T ) where Pσσ(2) > 0,
Pσ(t)σ(t+1) > 0 for all T − 1 ≥ t ≥ 2 and σ(T ) is an imitation equilib-
rium with inertia. We assume that every player i ∈ N always chooses the
same strategy as a success example and we assume that there is an ordering
to strategies (the same for all players) whereby if a player i has more than
one success example he imitates the success example playing the smallest
strategy. This behavior occurs with positive probability under the imitation
with innovation dynamic.

Consider an arbitrary player i ∈ N for whom there exists a player j ∈ Ri
such that i ∈ Rj . As demonstrated in Theorem 1 player i, and j, belong
to a clique Ri. That is, Rj = Ri for all j ∈ Ri. As play evolves, given
the assumed behavior of agents, the number of distinct strategies played by
members of Ri can only diminish. Given that there are only a Þnite number
of players there must exist some ti such that for every state σ(t), t ≥ ti, no
player j ∈ Ri can have a success example who is not a costrategist.

Consider an arbitrary player i ∈ N for whom there does not exist a player
j ∈ Ri such that i ∈ Rj . As shown in Theorem 1 player i must refer to a
subset of a clique Rk. Indeed, given that the network has a characteristic
path length of one, it must be the case that Ri = Rk∪{i}. Restrict attention
to those states σ(t) such that t ≥ tk. That is, those states for which no player
in clique Rk can have a success example who is not a costrategist. If there is
a success example of player i who is not a costrategist in some state σ(t) then
any success example of player i in a subsequent state must be a costrategist

39



of i. Given the player set is Þnite, there must exist, therefore, some ti such
that for every state σ(t), t ≥ ti, player i does not have a success example
who is not a costrategist. This completes the proof.¥

The analogs of Theorem 2 and Theorem 3 hold without further qualiÞ-
cation.21 The analysis, however, is somewhat more involved. In particular,
a complicating factor is the possibility that players in the same clique may
play different strategies. As, argued in the proof of Theorem 1A, however, a
dynamic can be assumed in which the number of strategies used by players
in a clique can only ever diminish.
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