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Abstract

We solve the principal-agent problem of a monopolist insurer selling to an agent
whose riskiness (chance of a loss) is private information, a problem introduced in
Stiglitz (1977)’s seminal paper.

We derive several properties of optimal menus for an arbitrary type distrib-
ution: the highest type gets full coverage (efficiency at the top), all other types
get less than full coverage (downward distortions elsewhere), the premium and
indemnity are nonnegative and the principal makes positive expected profit. More
importantly, we prove a novel comparative static result for wealth effects, showing
that the principal always prefers an agent facing a larger loss, and a poorer one if
the agent’s risk aversion decreases with wealth.

We then specialize to the case with a continuum of types distributed according
to an smooth density. We give sufficient conditions for complete sorting, exclu-
sion, and quantity discounts. Our most surprising result is that, under two mild
assumptions–the monotone likelihood ratio property for the density and decreasing
absolute risk aversion for the agent–the optimal premium is backwards-S shaped
in the amount of coverage, first concave, then convex.

We contrast our results with the standard monopoly model with private values
and quasilinear preferences and with competitive insurance models. We calculate
a closed form solution for the CARA case and use it to illustrate these differences.

Although we focus on the monopoly insurance problem, our proofs can be
adapted to other screening problems with wealth effects and common values.

Keywords: Principal-Agent Model, Monopoly Insurance, Adverse Selection, Com-
mon Values, Wealth Effects, Quantity Discounts and Premia.

∗We thank Lones Smith, Stephan Lauermann and audience members at the University of Montreal,
CEA-Universidad de Chile, University of Miami, University of Southern California, Georgia, UC Santa
Barbara, Ohio State, the 2007 Midwest Economic Theory Meetings at Michigan, the 2008 Winter
Meetings of the Econometric Society in New Orleans, the 2008 NSF/NBER Decentralization Conference
at Tulane and the 2008 SWET conference at UCSB for comments.

†Email: hector.chade@asu.edu
‡Email: edward.schlee@asu.edu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7278172?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

Moral hazard and adverse selection are fundamental problems in insurance. A large

literature has explored how each affects insurance contracts in competitive or monopoly

markets. The usual approach for moral hazard has been the principal-agent model

(which includes the case of monopoly).1 The usual approach for adverse selection has

been competitive models, either the Rothschild and Stiglitz (1976) model or one of its

variants. An exception is Stiglitz (1977), who introduces a model of a monopolist insurer

selling to an insuree who is privately informed about the chance of a loss. He solves the

case of two types of insurees using an intuitive graphical argument, and derives a few

properties of optimal insurance with a continuum of types. Still, we know surprisingly

little about monopoly insurance policies, even for the case of a finite number of types or

continuum-type case with a continuous density.

We solve the problem of a monopolist insurer selling to a risk averse agent (the

insuree) who is privately informed about the chance of suffering a loss. The monopoly

insurance problem does not fit the standard principal-agent model of a monopolist selling

to a privately informed consumer (e.g., Maskin and Riley (1984)) for three reasons:

the agent’s risk aversion implies that there are wealth effects (except for the constant

absolute risk aversion case, henceforth CARA); the agent’s type enters the principal’s

objective function directly (common values); and the agent’s reservation utility is type

dependent. To the best of our knowledge, we are the first to provide a complete solution

to a principal-agent problem with all these properties.

We divide the paper into two parts. In the first we allow an arbitrary type distri-

bution, imposing neither a finite support nor a continuous density function. Despite

the generality we extend all of the known results for the two-type case, and add others:

the type with the highest chance of a loss gets full coverage (efficiency at the top); all

other types get less than full coverage (downward distortions elsewhere); the premium

and coverage are nonnegative for all types and co-monotone; and the principal makes

positive expected profit (there are always gains to trade).

As just mentioned, one crucial difference with the standard monopoly model is that

the agent’s wealth matters. An important question is how the agent’s initial wealth and

1Prescott and Townsend (1984) and Chiappori and Bernardo (2003) are exceptions.
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the loss size affect the principal’s profit. Using monotone methods, we prove a novel

comparative static result showing that the principal always prefers an agent facing a

larger loss, and prefers a poorer one if the agent’s risk aversion decreases with wealth.

In the second part of the paper we specialize to the case of a continuum of types

distributed according to a smooth density. We derive conditions for complete sorting of

types, exclusion (or inclusion) of types, and quantity discounts. Wealth effects prevent

us from bypassing optimal control arguments, as is usually done in the quasilinear case.

Our most surprising result is on the curvature of the optimal premium as a function

of the coverage amount: under two mild assumptions–the density satisfies the monotone

likelihood ratio property and the agent’s risk aversion decreases with wealth–the pre-

mium is backwards S-shaped, first concave, then convex. The curvature property sharply

distinguishes a monopoly insurance policy from one offered by a ‘standard’ (i.e., Maskin-

Riley) monopolist and from competitive insurance policies. In particular, monopoly in-

surers do not offer global quantity premia, an implication of many competitive insurance

models (e.g., Rothschild and Stiglitz (1976)).

We calculate a closed-form solution in the CARA case, and use it to illustrate some

properties peculiar to the insurance problem. We show that there is partial insurance

at the top if the highest type suffers a loss for sure; that monotonicity of the hazard

rate does not suffice for complete sorting; and that common values precludes a globally

concave premium schedule (unless the type space is severely restricted).

Our emphasis is almost exclusively on the monopoly insurance problem. We point

out, however, that several of the proofs can be adapted to other principal-agent problems

with adverse selection, wealth effects, and common values. We hope that our arguments

will be helpful in more general principal-agent problems with these features.

Related Literature. The paper is closely related to three literatures. First, it is re-

lated to the insurance with adverse selection literature started by Rothschild and Stiglitz

(1976) for competition, and Stiglitz (1977) for monopoly; each focuses on the two-type

case.2 We completely solve a more general problem than does Stiglitz (1977), and we

2The renegotiation stage in Fudenberg and Tirole (1990) can be interpreted as a monopoly insurance
problem, in which the (random) effort chosen in the first stage is the agent’s type. With a continuum of
efforts, they derive an optimality condition similar to ours in Section 4. But they mainly use it to find
the support of the equilibrium effort distribution, and do not explore sorting, exclusion, or curvature.

2



compare the predictions of monopoly and competition. A large literature tests impli-

cations of the joint hypothesis of adverse selection and (some version of) competition

(e.g., Chiappori, Jullien, Salanié, and Salanié (2006) and Cawley and Philipson (1999));

our results help separate implications of adverse selection from competition.3 Second,

it is related to the literature on principal-agent models with adverse selection, illus-

trated by Spence (1977), Mussa and Rosen (1978), Maskin and Riley (1984), Matthews

and Moore (1987), Jullien (2000), Hellwig (2006), and Nöldeke and Samuelson (2007).

The complications of the insurance problem–wealth effects, common values, and type-

dependent reservation utilities–are absent in Mussa and Rosen (1978), Maskin and Riley

(1984), and Matthews and Moore (1987).4 Jullien (2000) emphasizes type-dependent

reservation utility, and Nöldeke and Samuelson (2007) allow for common values, but each

imposes quasilinear preferences (and focuses on particular aspects of the solution). Hell-

wig (2006) derives the standard no-pooling and efficiency-at-the-top results in a general

principal-agent problem with wealth effects, using a nontrivial extension of the Maxi-

mum Principle. We handle the insurance problem with a general type distribution using

elementary arguments. Finally, the paper is related to Thiele and Wambach (1999), who

determine how an agent’s wealth affects the principal’s profit in the moral hazard case.

In our adverse selection problem we are able to do so with weaker assumptions.

2 The Model

We model the monopolist’s choice of insurance policies as a principal-agent problem with

adverse selection. The agent (insuree) has initial wealth of w > 0, faces a potential loss

of ` ∈ (0, w) with chance θ ∈ (0, 1), and has risk preferences represented by a strictly

increasing and strictly concave von Neumann-Morgenstern utility function u(·) on R+.

3Cohen and Einav (2007) estimate the demand for insurance for a new entrant into the Israeli
automobile insurance market. They argue that this firm has market power, and that a monopoly
insurance model describes their data better than a competitive one does.

4 Biais, Martimort, and Rochet (2000), Section 4, consider a risk neutral monopoly ‘market maker’
who trades a risky asset with a risk averse investor who has CARA utility and private information about
the asset’s mean return and his endowment. The risk neutral market maker can be viewed as an insurer
and the investor as an insuree, with the private information about the mean return as information
about the mean loss in an insurance setting (rather than the probability of a loss). But the difference
in the definition of a type leads to completely different conditions for separation and curvature.
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The loss chance θ, from now on the agent’s type, is private information to the agent.

The principal (monopolist insurer) is risk neutral, with beliefs about the agent’s type

given by a cumulative distribution function F (·) with support Θ ⊂ (0, 1).5 Let θ and

θ be the smallest and largest elements of Θ; by assumption 0 < θ < θ < 1. This

formulation includes the discrete case with a finite number of types, the continuum of

types case with an atomless density function, and mixtures of both.

The principal chooses, for each θ ∈ Θ, a contract (x, t) ∈ R consisting of a premium t

and an indemnity payment x in the event of a loss. The expected profit from a contract

(x, t) chosen by a type-θ agent is π(x, t, θ) = t − θx, and the ex-ante expected profit

from a (measurable) menu of contracts (x(θ), t(θ))θ∈Θ is
∫
Θ

π(x(θ), t(θ), θ)dF (θ).

The expected utility of type-θ agent for a contract (x, t) is θ is U(x, t, θ) = θu(w −
` + x − t) + (1 − θ)u(w − t). The function U satisfies the following single crossing

property : for any two distinct contracts (x′, t′) and (x, t) with (x′, t′) ≥ (x, t) and θ′ > θ,

if U(x′, t′, θ) ≥ U(x, t, θ) then U(x′, t′, θ′) > U(x, t, θ′). If u(·) is differentiable, this is

equivalent to −Ux(x, t, θ)/Ut(x, t, θ) strictly increasing in θ; i.e., indifference curves cross

once, with higher types being willing to pay more for a marginal increase in insurance.

By the Revelation Principle, we restrict attention to (measurable) menus (x(θ), t(θ))θ∈Θ

for which the agent chooses to participate and to announce its true type θ. Formally,

the principal solves the following problem:

max
x(·),t(·)

∫

Θ

π (x(θ), t(θ), θ) dF (θ)

subject to

U(x(θ), t(θ), θ) ≥ U(0, 0, θ) ∀θ ∈ Θ (P)

U(x(θ), t(θ), θ) ≥ U(x(θ′), t(θ′), θ) ∀θ, θ′ ∈ Θ. (IC)

It is instructive to compare this problem with the standard monopoly problem (e.g.,

Maskin and Riley (1984)). In the standard problem, the agent has quasilinear utility, her

type does not directly affect the principal’s profit, and it does not enter her reservation

5The suppport of a probability measure on the real line (endowed with the Borel σ-field) is the
smallest closed set with probability one. Formally, Θ = {θ ∈ (0, 1) | F (θ + ε)−F (θ− ε) > 0, ∀ ε > 0}.
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utility. Here, the agent is risk averse, implying nontrivial wealth effects (except for the

case of CARA preferences); the agent’s reservation utility depends on the type; and the

agent’s type affects the principal’s profit directly, i.e., it is a common values model.

The common values aspect leads to an important distinction. In the standard

monopoly model, profit is increasing in type both under complete (first-best) and in-

complete information. In our model, however, first-best profit is not increasing in type

(higher types demand more insurance but the cost of selling to them is higher). Indeed,

first-best profit from a type equals that type’s risk premium, which is concave in the

agent’s type, first increasing, then decreasing. Moreover, under incomplete information

profit from the highest type can easily be negative, implying that the principal does not

offer quantity discounts for high coverage, as we explain in Section 5.

3 The General Case: Arbitrary Type Distribution

We begin with some general properties of optimal menus, and determine how the agent’s

wealth affects the principal’s profit. We emphasize that these results hold for an arbitrary

type set Θ ⊂ (0, 1) and a general cumulative distribution function on it.

3.1 A Useful Lemma

Consider a contract that does not give full coverage. Now change the indemnity in the

direction of (but not beyond) full coverage and adjust the premium so that expected

utility of a type falls. Then the principal’s profit from that type increases. We repeatedly

use this result to find improvements to a given menu.

Lemma 1 (Profitable Changes) Let θ ∈ Θ, and let |x′′ − `| < |x′ − `| with

(x′′ − `)(x′ − `) ≥ 0. If U(x′′, t′′, θ) ≤ U(x′, t′, θ), then π(x′′, t′′, θ) > π(x′, t′, θ).

Proof. Fix θ ∈ Θ. Since the agent is strictly risk averse and U(x′, t′, θ) ≥ U(x′′, t′′, θ), it

follows that t′′ − t′ > θ(x′′ − x′); for otherwise the consumption plan generated by the

(x′′, t′′) would second-order stochastically dominate the plan generated by (x′, t′) and

the agent would strictly prefer (x′′, t′′) to (x′, t′). Thus, t′′ − θx′′ > t′ − θx′. ¥
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Intuitively, if a change from a given contract offers more insurance and yet makes the

agent worse off, then the additional insurance must be ‘actuarially unfair.’ But then the

change increases expected profit.

3.2 Properties of Optimal Menus

We now list several properties of optimal menus for an arbitrary type distribution.

Theorem 1 (Properties of an Optimal Menu) Any solution (x(θ), t(θ))θ∈Θ to the

principal’s problem satisfies the following properties:

(i) (Monotonicity) x(θ), t(θ), and x(θ)− t(θ) are increasing in θ;

(ii) (No Overinsurance) x(θ) ≤ ` for almost all θ;

(iii) (Nonnegativity) x(θ), t(θ), and x(θ)− t(θ) are nonnegative for almost all θ;

(iv) (Participation) (P) is binding for the lowest type θ ;

(v) (Efficiency at the Top) Without loss of generality, x(θ) = `;

(vi) (No Pooling at the Top) If u is differentiable, then x(θ) < ` for almost all θ < θ;

(vii) (Profitability) The principal’s expected profit is positive.

Proof. Appendix. ¥

The proof has many steps, but except for a few measure-theoretic details, each is elemen-

tary. Result (i) follows immediately from incentive compatibility and the single-crossing

property. We prove results (ii) and (iii) by contraposition: we use Lemma 1 to show

that if a menu does not satisfy either property, then there is another feasible menu that

increases profit for a positive mass of agents. We prove (v) and (vi) similarly. For (iv),

we show that if this property fails, the principal can feasibly reduce the utility of each

type in each state by the same amount and hence increase expected profit. Finally, we

prove (vii) by showing that there is a pooling contract that is accepted by a positive

mass of high enough types and yields positive expected profit.

Stiglitz derives properties (i) and (iv)-(vi) for the two-type case. In independent

work, Hellwig (2006) proves properties (v) and (vi) for an optimal tax problem with

adverse selection with a general type distribution. His proofs use first-order conditions

from an optimal control problem (where much of the contribution is to extend the first
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order conditions to allow for discontinuous densities). Theorem 1 also shows that an

optimal menu is nonnegative (property (iii)), and that there are always gains to trade

(property (vii)). We prove these properties for a general type distribution using fairly

elementary arguments, repeatedly invoking Lemma 1 to find profitable deviations from

a menu that fails one of these properties. We argue in Section 5 that the arguments

can be adapted to the standard monopoly pricing model with quasilinear utility (with

or without common values), and doubtless similar arguments can be used in a more

general principal-agent problem.

3.3 The Principal Prefers a Poorer Agent

The agent’s risk aversion introduces wealth effects absent in the standard screening

model with quasilinear utility: changing the wealth endowment changes the set of fea-

sible menus. An important question is how the agent’s wealth endowment affects the

principal’s profit: Does the principal prefer a richer or poorer agent; one facing a larger

or smaller potential loss? In the first-best case (observable types), the answer is imme-

diate: the demand for insurance is higher if the loss amount is higher, or the agent is

poorer and risk aversion decreases with wealth (DARA); in either case profit increases.

The first-best argument fails with adverse selection, since the incentive compatibility

and participation constraints change with wealth. And unfortunately the constraint

sets cannot be ordered by inclusion as wealth changes. Despite this complication, the

principal still prefers a poorer agent (under DARA) and a larger loss size.6

Theorem 2 (Wealth Effects) The principal’s maximum profit is

(i) increasing in the loss size `;

(ii) increasing in the agent’s risk aversion;

(iii) decreasing in wealth w if the agent’s preferences satisfy DARA.

The proof of each part is similar. Fix an optimal menu. After each change–an increase

in `, risk aversion, or w (under DARA)–the menu continues to satisfy the downward

incentive and participation constraints (though some upward incentive constraints may

6Part (iii) says that the principal prefers a poorer agent for a given loss amount. Clearly, the
principal might prefer a richer agent if the potential loss rises with wealth.
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fail). Now if we simply let each type choose its best contract from the original menu,

then the principal’s profit does not fall. Since the resulting menu satisfies (IC) and (P),

the principal’s maximum expected profit cannot fall.

Proof : Since (iii) follows from (ii), we just prove (i) and (ii). Fix a menu (x(θ), t(θ))θ∈Θ

satisfying (IC) and (P), with 0 ≤ x(θ) ≤ ` for all θ ∈ Θ. (Any optimal menu satisfies

these conditions almost everywhere.) Recall that by Lemma 1, t(θ) − θ′x(θ) ≥ t(θ′) −
θ′x(θ′) if θ > θ′: i.e. profit increases if a type takes the contract offered to a higher type.

(i) The Principal Prefers a Larger Loss Size. Let ` < ˜̀ < w, let Ũ(x, t, θ) be

the expected utility of a type-θ agent for contract (x, t) when the loss is ˜̀ (and U(x, t, θ)

the expected utility of a type-θ agent for (x, t) when the loss is `). Fix θ′ ∈ Θ and let

(χ, τ) be any nonnegative contract bounded above by (x(θ′), t(θ′)) and no better than

(x(θ′), t(θ′)) for type θ′ when the loss is `:

(a) (0, 0) ≤ (χ, τ) ≤ (x(θ′), t(θ′)); and

(b) U(χ, τ, θ′) ≤ U(x(θ′), t(θ′), θ′).

These inequalities of course hold if we set (χ, τ) equal to any lower type’s contract in

the menu (x(θ), t(θ))θ∈Θ, or to the null contract (0, 0).

We now show that Ũ(x(θ′), t(θ′), θ′) ≥ Ũ(χ, τ, θ′). If (χ, τ) = (x(θ′), t(θ′)), there is

nothing to prove, so suppose that (χ, τ) 6= (x(θ′), t(θ′)), which, by (a) and (b), implies

that χ − τ < x(θ′) − t(θ′). To simplify notation, set u`(θ
′) = u(w − ` + x(θ′) − t(θ′)),

un(θ′) = u(w−t(θ′)), un = u(w−τ), u` = u(w−`+χ−τ), ũ`(θ
′) = u(w− ˜̀+x(θ′)−t(θ′)),

and ũ` = (w − ˜̀+ χ− τ). Rewrite the inequality U(x(θ′), t(θ′), θ′) ≥ U(χ, τ, θ′) as

u`(θ
′)− u` ≥ 1− θ′

θ′
(un − un(θ′)) . (1)

The strict concavity of u(·) and the inequality χ−τ < x(θ′)−t(θ′) imply that ũ`(θ
′)−ũ` >

u`(θ
′)−u` and so by (1) that (1−θ′) (ũn(θ′)− ũn)+θ′ (ũ`(θ

′)− ũ`) > 0, or, equivalently,

Ũ(x(θ′), t(θ′), θ′) > Ũ(χ, τ, θ′). (2)
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Since, for each θ′ ∈ Θ, (2) holds for any (χ, τ) 6= (x(θ′), t(θ′)) satisfying (a) and (b), it

follows that (x(θ), t(θ))θ∈Θ continues to satisfy all the downward incentive and partici-

pation constraints when the loss equals ˜̀.7

Let C be the closure of the set {(x(θ), t(θ)) | θ ∈ Θ}∪{(0, 0)}. Consider the problem

of choosing a contract in C to maximize Ũ(·, θ). (A solution exists since C is compact.)

Since (x(θ), t(θ))θ∈Θ satisfies (IC) when the loss is `, any maximizer (x, t) of Ũ(·, ·, θ) on

C satisfies U(x, t, θ) ≤ U(x(θ), t(θ), θ) (the new choice cannot increase the pre-change

expected utility for θ). Moreover, C is ordered by the usual vector inequality ≥ on R2.

By (2), (x, t) ≥ (x(θ), t(θ)).8 Hence, by Lemma 1, profit from the new contract does

not fall. (By Theorem 1 coverage levels in C are wlog bounded above by `.) Consider

a menu defined by choosing for each θ ∈ Θ any maximizer of Ũ(·, ·, θ). It satisfies (IC)

and (P) when the loss is ˜̀ and is at least as profitable as the original menu.

(ii) The Principal Prefers a More Risk Averse Agent. Let v(·) be more risk

averse than u(·): i.e., v(·) = T (u(·)), for some strictly increasing and strictly concave

function T (·). Denote by V (x, t, θ) the expected utility of a type-θ agent with von

Neumann-Morgenstern utility function v(·).
As before, fix θ′ ∈ Θ and let (χ, τ) be any point satisfying (a) and (b) from the proof

of (i). We will show that V (x(θ′), t(θ′), θ′) ≥ V (χ, τ, θ′).9 As in (i), we can suppose

that χ − τ < x(θ′) − t(θ′). Let u`(θ
′), un(θ′), un and u` be defined as before and set

∆Ti = T (ui(θ
′))− T (ui) and ∆ui = ui(θ

′)− ui, for i = `, n. Then

V (x(θ′), t(θ′), θ′)− V (χ, τ, θ′) = θ∆T` + (1− θ)∆Tn

= θ
∆T`

∆u`

∆u` + (1− θ)
∆Tn

∆un

∆un

>
∆Tn

∆un

(θ∆u` + (1− θ)∆un)

≥ 0,

7If there were only a finite number of types, the proof would be complete at this point, since we can
replace (IC) by the downward incentive compatibility constraints and monotonicity in that case.

8As the loss increases, the maximizers on C strongly increase in the sense of Shannon (1995), pp.
215-16. Equation (2) shows that U satisfies the strict single crossing property in (x, t) and `, so the
conclusion in this sentence also follows from her Theorem 4.

9This inequality follows from Theorem 1 in Jewitt (1987). We nonetheless include its simple proof.
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where the first inequality follows from the strict concavity of T (·), and the second from

the monotonicity of T (·) and U(x(θ′), t(θ′), θ) ≥ U(χ, τ, θ). Hence (x(θ), t(θ))θ∈Θ satisfies

the downward incentive compatibility and participation constraints after the increase in

risk aversion. As in the proof of (i), now let each type choose a best contract in C (the

closure of the original menu in R2 and (0, 0)). Any such menu satisfies (IC) and (P) after

the agent becomes more risk averse, and has at least as much profit as (x(θ), t(θ))θ∈Θ.

Hence, an increase in risk aversion cannot lower the principal’s expected profit. ¥

Contrast Theorem 2 with how the agent’s wealth affects the principal under moral

hazard (Thiele and Wambach (1999)). Under moral hazard, a fall in agent’s wealth

makes the agent less lazy (loosens the incentive constraints), but stronger conditions are

needed to conclude that the principal prefers a poorer agent. Under adverse selection,

a decrease in agent’s wealth loosens both the downward incentive and the participation

constraints under just DARA, and we show that the potential tightening of the upward

incentive constraints does not lower expected profit.

If profit and wealth or loss size were observable, then Theorem 2 would be testable:

profit is higher on menus offered to agents who are poorer or exposed to higher losses.

3.4 A Reformulation

We have restricted contracts to be deterministic: each type is offered a single premium-

indemnity pair. The simplest way to justify this restriction is to reformulate the problem

by a change of variables: instead of choosing a menu of contracts, the principal chooses

a menu of state-contingent utilities. We use this formulation for the rest of the paper.

Given a menu (x(θ), t(θ))θ∈Θ, define, for each θ ∈ Θ, u(θ) and ∆(θ) by

u(θ) = u(w − t(θ)) (3)

∆(θ) = u(w − t(θ))− u(w − ` + x(θ)− t(θ)). (4)

A menu (x(θ), t(θ))θ∈Θ uniquely defines a menu (u(θ), ∆(θ))θ∈Θ. Conversely, given
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(u(θ), ∆(θ))θ∈Θ, we can recover (x(θ), t(θ))θ∈Θ by

t(θ) = w − h(u(θ)) (5)

x(θ) = l − (h(u(θ))− h(u(θ)−∆(θ))), (6)

where h = u−1. Theorem 1 (i), (ii), and (iii) imply that, for any optimal menu, u(·) and

∆(·) are decreasing in θ, and that, for almost all θ ∈ Θ, 0 ≤ ∆(θ) ≤ ∆0 = u(w)−u(w−`).

Thus an equivalent formulation of the principal’s optimal contracting problem is

max
u(·),∆(·)

∫

Θ

[w − θ`− (1− θ)h(u(θ))− θh(u(θ)−∆(θ))]dF (θ)

subject to

u(θ)− θ∆(θ) ≥ u(θ′)− θ∆(θ′) ∀θ, θ′ ∈ Θ

u(θ)− θ∆(θ) ≥ U(0, 0, θ) ∀θ ∈ Θ

∆(θ) ≤ ∆0

∆(θ) ≥ 0 .

In other words, we can think of a menu of contracts as specifying, for each type θ, a

utility u(θ) in the no loss state, and a decrease in utility ∆(θ) in case of a loss. In

this formulation, the constraints are linear in the screening variables, and the objective

function is strictly concave in them. This formulation makes it clear that stochastic

menus cannot improve upon deterministic ones.10

Proposition 1 (Deterministic Menus) Any solution to the principal’s problem in-

volves a deterministic contract for almost all types.

Proof. Suppose the principal offers each type θ in a set of positive probability a contract

consisting of random variables (x̃(θ), t̃(θ)). In the reformulated problem this implies

that the principal offers each type in that same set a contract consisting of random

variables (ũ(θ), ∆̃(θ)). Since the constraints are linear in these variables, any type-θ

10Arnott and Stiglitz (1988), Proposition 10, proved a similar result for the two-type case. Our
reformulation allows us to extend this result to any number of types arbitrarily distributed.
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agent’s constraints are satisfied if ũ(θ) and ∆̃(θ) are replaced by their expected values.

But profit increases from this change since the objective function is strictly concave. ¥

4 Continuum of Types: The Density Case

To obtain further properties, from now on we specialize to the case in which u(·) is

C2, with positive first and negative second derivatives, Θ = [θ, θ], and F (·) is C2 on Θ

with density F ′(·) = f(·) that is positive on (θ, θ). Except for the possibility of a zero

density at the endpoints, this distribution assumption is the most common one used in

contracting problems with adverse selection. Yet, except for Stiglitz (1977), this case

has been neglected by the literature on insurance with adverse selection. Under this

assumption we can provide strong results for complete sorting of types, exclusion, and

for the existence of ‘quantity discounts.’

Abusing notation, now let U(θ) be the expected utility of type θ ∈ Θ for a menu

satisfying (IC) and (P). We prove in the Appendix that if f(·) is continuous and positive

in the interior of Θ, then U(·) is continuously differentiable. (This fact follows from

showing that any type’s best choice from an optimal menu is unique.) By the Envelope

Theorem (Milgrom and Segal (2002), Theorem 3), we have U ′(θ) = −∆(θ). We can use

these facts to formulate the principal’s problem as an optimal control problem.

4.1 The Optimal Control Problem

Let U̇(θ) denote the derivative of U . By standard arguments, U(·) is convex, and (IC)

holds if and only if U̇(θ) = −∆(θ) almost everywhere and ∆(·) is nonincreasing, so there

is no loss of generality in replacing (IC) by these two conditions. Moreover, by Theorem

1 (iv), U(θ) = U(0, 0, θ). Since U(·) is C1, we can write the principal’s problem as an

optimal control problem with a continuous control variable ∆(·), a C1 state variable

U(·), and a free endpoint at U(θ):

max
U(·),∆(·)

∫ θ

θ

[w − θ`− (1− θ)h(U(θ) + θ∆(θ))− θh(U(θ)− (1− θ)∆(θ))]f(θ)dθ

12



subject to

∆(·) nonincreasing (7)

∆(θ) ≥ 0 ∀θ (8)

∆(θ) ≤ ∆0 ∀θ (9)

U̇(θ) = −∆(θ) ∀θ (10)

U(θ) = U(0, 0, θ) (11)

U(θ) free. (12)

In the standard model with quasilinear preferences, the objective function is linear in

the indirect utility. The usual next step in that case is to use Fubini’s Theorem to

eliminate the transfer and optimize pointwise with respect to the remaining variable, a

great simplification. Since our objective is not linear in the indirect utility U , we are

forced to proceed with optimal control arguments.

Consider the ‘relaxed problem’ that ignores (7)-(9), and let λ(·) be the costate vari-

able of the problem.If a solution to the relaxed problem satisfies the omitted constraints,

then of course it solves the original problem.

The Hamiltonian is

H(U, ∆, λ, θ) = [w−θ`−(1−θ)h(U(θ)+θ∆(θ))−θh(U(θ)−(1−θ)∆(θ))]f(θ)−λ(θ)∆(θ),

and any solution to the relaxed problem satisfies

−λ(θ) = f(θ)θ(1− θ)[h′(U(θ) + θ∆(θ))− h′(U(θ)− (1− θ)∆(θ))] (13)

λ̇(θ) = f(θ)[(1− θ)h′(U(θ) + θ∆(θ)) + θh′(U(θ)− (1− θ)∆(θ))] (14)

λ(θ) = 0, (15)

as well as (10) and (11).11

Note that λ(θ) ≤ 0, and λ(θ) < 0 if ∆(θ) > 0; also λ̇(θ) > 0 for all θ. Integrate (14)

11The Hamiltonian is strictly concave in (U,∆), so these conditions are also sufficient for optimality.
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with respect to θ, use (15), and replace the resulting expression in (13) to find

f(θ)θ(1− θ)[h′(U(θ) + θ∆(θ))− h′(U(θ)− (1− θ)∆(θ))] =

∫ θ

θ

a(s)f(s)ds, (16)

where a(s) = (1 − s)h′(U(s) + s∆(s)) + sh′(U(s) − (1 − s)∆(s)) > 0. It follows from

(16) that the omitted constraint (8) is satisfied for all types. Note that, in line with

Theorem 1 (ii) and (iv), we have ∆(θ) = 0 and ∆(θ) > 0 for all θ < θ: type θ gets full

coverage and, to ensure incentive compatibility, all other types get partial coverage.12

Equation (16) illustrates the standard efficiency vs. information rent trade-off of

screening problems: the left side is the marginal benefit (increase in profit) of providing

type θ with additional insurance (lower ∆(θ)), i.e., more efficiency, while the right side

is the marginal cost (decrease in profit) of doing so, as it leads to an increase in the

information rent left to all higher types to ensure that incentive compatibility is satisfied.

To see this last point, note that the cost of giving type θ one more unit of utility is

a(θ)f(θ); but giving θ an additional unit of utility increases also the utility of all higher

types by one unit, and thus the cost to the principal is given by
∫ θ

θ
a(s)f(s)ds.

4.2 Complete Sorting

By the Implicit Function Theorem and (16), ∆(·) is C1 on Θ (except possibly at the

endpoints when f is zero there). Hence we can replace (7) with ∆̇(θ) ≤ 0 for all θ ∈ Θ.

We next determine when the solution to the relaxed problem satisfies this constraint.

Differentiate (13) with respect to θ and use (10) to obtain, after some algebra,

∆̇(θ) =
λ(θ)[f ′(θ)θ(1− θ) + f(θ)(1− 2θ)]− f(θ)θ(1− θ)λ̇(θ)

f(θ)2θ2(1− θ)2[θh′′(U(θ) + θ∆(θ)) + (1− θ)h′′(U(θ)− (1− θ)∆(θ))]
. (17)

Since h′′(·) > 0, the denominator of (17) is positive, and the sign of ∆̇(θ) depends on

the sign of the numerator. We now derive conditions for complete sorting of types at

12This result is clear if f(θ) > 0. And if f(θ) = 0, then ∆(θn) tends to zero for any sequence θn

in Θ tending to θ. To see this second point, divide both sides of (13) by f(θn) and use the Mean
Value Theorem to write the right side as ψ(θ)(1 − F (θn))/f(θn). The conclusion now follows since
limθ→θ f(θ)/(1 − F (θ)) = ∞ (Barlow, Marshall, and Proschan (1963), pp. 377-378). In Section 6 we
show by example that this conclusion fails if θ = 1.
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the optimal contract; i.e., for ∆̇(·) < 0 everywhere. As already proved in Theorem 1,

equation (17) implies that there is no pooling of types at the top; i.e., ∆̇(θ) < 0.13

Lemma 2 (Complete Sorting) The optimal menu sorts all types who obtain some

insurance completely if and only if f(·) satisfies, for every θ,

f ′(θ)
f(θ)

≥ 3θ − 2− b(θ)

θ(1− θ)
, (18)

where b(θ) = h′(U(θ)− (1− θ)∆(θ))/[h′(U(θ) + θ∆(θ))− h′(U(θ)− (1− θ)∆(θ))].

Proof. Appendix. ¥

An obvious problem with condition (18) is that b(·) is endogenous. But it immediately

gives f ′(θ)/f(θ) > (3θ− 2)/θ(1− θ) as a sufficient condition for complete sorting, a fact

pointed out by Stiglitz (1977). To improve upon this condition, note that b(θ) ≥ bl for

every θ, where bl = h′(u(w− `)− (θ− θ)∆0)/[h
′(u(w) + (θ− θ)∆0)− h′(u(w− `)− (θ−

θ)∆0)] > 0. By Lemma 2, complete sorting follows if f ′(θ)/f(θ) > (3θ−2− b`)/θ(1−θ).

Although it depends only on primitives, this condition is hard to verify and does not

even imply what we know from Theorem 1, that there is no pooling at the top.

The next result addresses these problems. Let ρ(θ) = f(θ)
1−F (θ)

denote the hazard rate of

the distribution. We say that f(·) satisfies the monotone hazard rate condition (MHRC)

if ρ(·) is increasing in θ; it satisfies the monotone likelihood ratio property (MLRP) if

f ′(·)/f(·) is decreasing in θ. As is well-known and easy to check, MLRP implies MHRC.

Theorem 3 (Complete Sorting: Sufficient Conditions) The optimal menu com-

pletely sorts all types who get some insurance if

(i) ρ′(θ)
ρ(θ)

> 3θ−1
θ(1−θ)

for all θ ∈ [θ, θ]; or

(ii) f(·) satisfies MLRP and either θ ≤ 1/2 or f ′(·) ≥ 0; or

(iii) f(·) is C1, f ′(·)/f(·) is bounded on Θ, and ` is sufficiently small (how small

depends on the primitives).

Proof. The proofs of parts (i) and (ii) are in the Appendix. To prove part (iii), note

that lim`→0 u(w − `) = u(w) and thus lim`→0 ∆0 = 0. Consequently, lim`→0 bl = ∞.

13If f(θ) > 0, then (14) and (15) imply that ∆̇(θ) < 0. If f(θ) = 0, then f ′(θ)/f(θ) → −∞ as θ → θ,
so in either case lim supθ→θ ∆̇(θ) < 0, implying ∆̇(θ) < 0 for types near θ.
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Since the ratio f ′(·)/f(·) is bounded, there exists a threshold for the loss, ˆ̀ > 0, such

that (18) is satisfied for all types if ` ∈ (0, ˆ̀). ¥

In the standard contracting model with quasilinear utility and private values, the

MHRC implies complete sorting. Part (i) modifies that familiar condition: it is weaker

than the MHRC for θ < 1/3, stronger otherwise. In particular, if θ̄ ≤ 1/3, then the

MHRC also implies complete sorting in our model. Common values and wealth effects

make it hard to confirm whether the MHRC implies complete sorting when θ̄ > 1/3.14

In Section 6 we show that it does not: we calculate a closed-form solution for the CARA

case, and find densities satisfying the MHRC for which some bunching is optimal.

Part (ii) shows that sorting is complete if the MLRP holds and either the highest

type below 1/2 or the density is nondecreasing. It is easy to check that (ii) is satisfied

for the class of densities on [θ, θ] given by f(θ) = (1 + α)θα/(θ
α+1− θα+1), α ≥ 0, which

includes the uniform distribution. Part (iii) shows that if f(·) is C1 and the likelihood

ratio is bounded, then there is a region of losses for which sorting is complete.

In short, if either (i), (ii), or (iii) hold, then the omitted constraint (7) is satisfied.

4.3 Exclusion

It follows from (7) and (9) that the set of types that receive some insurance at the

optimum is [θ0, θ], with θ0 ≥ θ. We now prove two results on the value of θ0, one for no

type to be excluded (θ0 = θ), and one for a subset of low types to be excluded (θ0 > θ).

Proposition 2 (No Exclusion) Suppose that either Theorem 3 (i) or (ii) holds. If

f(θ) is sufficiently large, then no type is excluded in an optimal menu.

Proof. Appendix. ¥

Intuitively, Proposition 2 shows that no type is excluded (and thus constraint (9)

does not bind) if the presence of low types in the population is significant enough.

Proposition 3 (Exclusion) Suppose that either Theorem 3 (i) or (ii) holds. There

exists a k > 0 (depending on primitives) such that, if f(θ̃)/(1−F (θ̃)) < k/θ̃(1− θ̃), then

all types θ ≤ θ ≤ θ̃ are excluded in an optimal menu.

14One can show that if −u′′′(·)/u′′(·) ≤ −3u′′(·)/u′(·) (a class which includes several commonly used
functional forms), then we can replace 1/3 by 1/2.
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Proof. Appendix. ¥

The sufficient condition for exclusion in Proposition 3 depends only on the primitives

of the problem, i.e., u(·), w, `, and f(·). In particular, it suggests that a type is excluded

if it is close to zero and if its presence in the population (density) is insignificant.

4.4 Curvature

We now turn to curvature of the premium as a function of coverage, including quantity

discounts. The question is important for several reasons. First, firms commonly offer

quantity discounts in practice, so it is natural to ask whether a monopolist insurer would

use them. Second, in competitive insurance models, quantity premia rather of discounts

are the rule since equilibrium prices equal marginal cost (in many competitive models);

we would like to know if this implication holds for a monopolist.

Let (x(θ), t(θ))θ∈Θ be an optimal menu. Since the coverage x(·) cannot increase

unless the premium t(·) increases, there is an increasing function T (·) on [x(θ), `] such

that t(θ) = T (x(θ)) for all θ ∈ [θ, θ].15 We want to know when T (x)/x is nonincreasing.

A simpler question is to determine when T (·) is concave and we focus on this property.

To begin, it is easy to show that T (·) cannot be concave if a positive measure of

agents pool at any (x, t) with x > 0.16 So we assume for the rest of this section that the

optimal menu sorts types completely.

Since sorting is complete, x(·) is strictly increasing, so it has an inverse, call it z(·)
(i.e., θ = z(x)). We can now describe an optimal menu as a nonlinear premium schedule

T (x) = t(z(x)). By the first-order condition, the slope of T (·) at x(θ) equals type-θ’s

marginal rate of substitution of x for t (see equation (42) in Section A.7):

Ṫ (x(θ)) = −Ux(x(θ), t(θ), θ)/Ut(x(θ), t(θ), θ). (19)

We now determine the sign of the second derivative of T (·), which we denote by T̈ (·).
15If x(θ) > 0, we can extend T (·) to all of [0, `] by setting T (x) = τ(x), where τ(x) is defined by

U(x, τ(x), θ) = U(0, 0, θ). Note that if x(θ) > 0, then T (·) is concave on [0, x(θ)] and differentiable at
x(θ).

16Suppose that x(θ0) = x(θ1) = x̃ > 0 with θ1 > θ0. Setting u` = u(w − ` + x(θ) − t(θ)) and
un = u(w − t(θ)), we have Ṫ (x̃−) ≤ θ0u

′
`/(θ0u

′
` + (1 − θ0)u′n) < θ1u

′
`/(θ1u

′
` + (1 − θ1)u′n) ≤ Ṫ (x̃+), so

T (·) cannot be concave.
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Lemma 3 (Curvature) Let T (·) be an optimal nonlinear premium schedule that com-

pletely sorts types. We have T̈ (x(θ)) < 0 if and only if

f ′(θ)
f(θ)

>
3θ − 2 + c(θ)

θ(1− θ)
, (20)

where c(θ) = θu′′nu′2` /[θu′′nu
′2
` + (1− θ)u′′`u

′2
n ].

Proof. Appendix. ¥

Note that c(θ) < 1 for all θ. Thus, (20) implies that the premium schedule is concave

if f ′(θ)/f(θ) > (3θ−1)/θ(1−θ), which holds for example if f(·) is uniform with θ < 1/3.

As with our sorting lemma, an objection to (20) is that c(·) is endogenous; but in

some cases, it gives us a complete description of the curvature of T (·).

Example 1 (Uniform distribution, log utility) Let f(·) be uniform on [0, θ] with

θ > 1
2

and u(·) = log(·). By Theorem 3, sorting is complete. Moreover c(θ) = θ in

this case. Since f ′(θ) = 0 for all θ, we have by (20) that T (·) is ‘backwards-S shaped,’

concave on [0, x(1
2
)] and convex on [x(1

2
), `]. Thus it exhibits quantity discounts, at least

for small coverage levels. If f(·) is uniform on just [0, 1
2
], then T (·) is globally concave,

and exhibits quantity discounts globally.

The curvature property in this example holds far more generally. Under the MLRP, the

left side is decreasing. If the right side were increasing, then the backwards-S shaped

property would hold. The endogenous c(θ) makes monotonicity of the right side hard

to check, but if preferences satisfy DARA, then we can show that the right side of (20)

crosses the left side at most once and from below.

Theorem 4 (Backwards S-shaped Premium) Let T (·) be an optimal schedule that

completely sorts types, and suppose that both the MLRP and DARA hold. Then

(i) there is an x̂ ∈ [x(θ), `] such that T (·) is concave below and convex above x̂;

(ii) if f ′(·) takes positive and negative values, T (·) is strictly concave on an interval of

positive length if θ < 1/3 and strictly convex on an interval of positive length if θ > 2/3.

Proof. (i) Denote the right side of (20) by g(θ). We first show that c′(θ) ≥ 0 implies
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that g′(θ) > 0. We have

g′(θ) =
c′(θ)

θ(1− θ)
+

3θ2 − 4θ + 2− c(θ)(1− 2θ)

θ2(1− θ)2
.

Since c(θ) ∈ (0, 1), it follows that 3θ2 − 4θ + 2 − c(θ)(1 − 2θ) > 2/3 > 0. Therefore,

c′(θ) ≥ 0 implies that g′(θ) > 0.

We have Ṫ (x) = θu′`/[(1 − θ)u′n + θu′`] (equation (19)); rearrange to find (1 −
θ)u′n/θu

′
` = (1/Ṫ )− 1 > 0 and use the equality to rewrite c(θ) as

c(θ) =
1

1 + r`

rn
( 1

Ṫ
− 1)

, (21)

where ri is the Arrow-Pratt risk aversion measure in state i = `, n. Hence

c′(θ) = −Ω

[
∂ r`

rn

∂θ

(
1

Ṫ
− 1

)
− r`

rn

T̈ ẋ

Ṫ 2

]
, (22)

where Ω = (1 + r`

rn
( 1

Ṫ
− 1))−2. Since the menu is increasing in θ, DARA implies that

∂ r`

rn
/∂θ ≤ 0. By (22), if T̈ (x(θ0)) ≥ 0 , then c′(θ0) ≥ 0 and so g′(θ0) > 0. Thus, g(·)

crosses the decreasing function f ′(·)/f(·) at most once from below, so there is an interval

(θ̂, θ] with T (·) convex on the interval {x(θ)|θ ∈ (θ̂, θ]} and concave otherwise. Setting

x̂ = x(θ̂) completes the proof that T (·) is backwards-S shaped.

(ii) This result follows from (20) and c(θ) ∈ (0, 1). ¥

Theorem 4 is the most surprising result of the paper: despite the complications

of common values and wealth effects, it holds under the weak and commonly-imposed

assumptions of the MLRP on the density and DARA on preferences. We are not aware

of such a curvature result in other monopoly pricing models.17

For some intuition consider Figure 1, which shows a contract for an interior type

θ. By (IC), optimal menus are monotone, so contracts given to lower types must lie

17Spence (1977) considers a nonlinear pricing problem of allocating a good in fixed supply, and finds
that the a tariff chosen to maximize a weighted sum of utilities can be backwards S-shaped. But his
curvature result is an artifact of the weights used: with equal weights on types, the tariff is affine. He
also examines the tariff chosen by a monopolist when U = θu(x) − t with u(·) strictly increasing and
concave; the tariff is globally concave under the MHRC.
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Figure 1: If an interior type gets ‘close enough’ to its first-best contract, then the
premium cannot be convex below, or concave above that type’s coverage

in the shaded region. If the contract given to type θ is ‘close enough’ to its first best

(the zero-surplus full-insurance contract for that type) then T (·) cannot be convex on

[0, x(θ)].18 By equation (19), Ṫ (x(θ)) equals the slope of the indifference curve of θ at

(x(θ), t(θ)). If T (·) were concave on [x(θ), `], then Ṫ (x) ≤ Ṫ (x(θ)) for all x ∈ [x(θ), `].

But if x(θ) is ‘close’ to `, then (see equation (19)) Ṫ (x(θ)) ≈ θ < θ = Ṫ (x(θ)), which is

inconsistent with profit maximization. In short, if some interior type’s contract is close

enough to its first-best contract, then T (·) at least cannot be S-shaped (first convex, then

concave). Why should an interior type have a contract ‘close’ to its first best? First,

interior types are relatively more likely under the MLRP (with f ′(·) changing signs);

second, if the the support is wide enough, first-best profit is maximized at some interior

type. Since some interior types are both more likely and more profitable than extreme

types, optimal menus push contracts for some interior types ‘close’ to their first-best.

Quantity discounts over some range distinguishes the monopoly case from the com-

petitive model of Rothschild and Stiglitz (1976). In that model, the equilibrium premium

for a type θ is t(θ) = θx(θ), where x(·) is the (increasing) equilibrium indemnity func-

tion. Hence, t(θ)/x(θ) = θ and there are always quantity premia.19 Theorem 4 implies

that this is not an implication of adverse selection as such, but from the joint imposition

of adverse selection and (some form of) perfect competition.

18Graphically, the indifference curve of this type passes ‘close’ to the origin, since this type gets little
surplus. Strict concavity of indifference curves then rules out convexity of T (·) on [0, x(θ)].

19See Wilson (1993), pp. 382-84, for another insurance example with quantity premia.
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Theorem 4 also has implications for empirical work on insurance. For instance,

Cawley and Philipson (1999) use the quantity premium implication from Rothschild

and Stiglitz (1976) to test for the presence of adverse selection in (term) life insurance.

They regress the premium on a quadratic function of the coverage amount and find

that the coefficient on the squared term is zero, and that the intercept is positive. They

conclude that the estimated affine function–which implies quantity discounts–is evidence

against adverse selection in life insurance. But by Theorem 4, their empirical finding

could be consistent with a monopolist facing adverse selection.

5 Comparison with the Standard Monopoly Model

In their seminal monopoly pricing paper, Maskin and Riley (1984) assume that type-

θ buyer’s preferences over quantity-payment pairs (x, t) are of the form U(x, t, θ) =

v(x, θ) − t, where v(x, θ) =
∫ x

0
p(q, θ)dq, and p(·, θ) is decreasing in q and p(q, ·) is

increasing in θ (p. 172). The cost of selling x units to any type is cx, where c is

a positive constant. Thus theirs is a private-values model with no wealth effects on

demand, in contrast to our insurance model.

Maskin and Riley (1984) restrict attention either to a finite number of types or a

continuum of types distributed according to an atomless density. A careful inspection

of the proofs of Lemma 1 and Theorem 1, however, reveals that they can be adapted to

their model. That is, each property has an analogue in the standard monopoly model,

and can be derived for a general type distribution. For example, in that setting Lemma 1

says that a change in the quantity in the direction of a type’s first-best quantity increases

the monopolist’s profit if the payment rises enough to make the type worse off. (One can

even introduce common values in the monopoly pricing model and adapt these results,

so long as the first best quantity is increasing in types.)

Arguably, the most important difference between the two models is curvature. For

example, in Maskin and Riley (1984) there are always quantity discounts for the highest

types; not so for a monopoly insurer. To see why, note that

d(t(θ)/x(θ))

dθ
=

ẋ(θ)

x(θ)

(
ṫ(θ)

ẋ(θ)
− t(θ)

x(θ)

)
≥ ẋ(θ)

x(θ)

(
θ − t(θ)

x(θ)

)
= − ẋ(θ)

x(θ)2
π(θ),
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with equality if and only if θ = θ. The inequality comes from ṫ(θ)/ẋ(θ) = θu′`/(θu
′
` +

(1 − θ)u′n) ≥ θ, with equality if and only if θ = θ (see equation (42) in Section A.7).

If ẋ(θ)π(θ) < 0, then revenue per unit, t(·)/x(·), must be rising at θ. And in a small

enough neighborhood including the highest type, t(·)/x(·) is decreasing if and only if

profit is positive for the highest type. In Maskin and Riley (1984), profit from every type

is nonnegative, and is always positive for the highest type. But even in the two-type

case, profit from the highest type can be negative in an optimal insurance menu.

Remark 1 (Profit monotonicity) Chiappori, Jullien, Salanié, and Salanié (2006)

also use a ‘profit monotonicity’ condition–profit does not increase from contracts with

higher coverage–to test for adverse selection and competition. They point out that this

assumption need not hold in Stiglitz (1977). To understand the issue more clearly, note

that π̇(θ) = ṫ(θ)− θẋ(θ)−x(θ). Since x(θ̄) = ` and ṫ(θ̄)− θ̄ẋ(θ̄) = 0 (by (40)-(41) in the

Appendix), we have π̇(θ̄) = −` < 0: profit monotonicity holds near the highest type. But

if a type gets small enough coverage, then profit monotonicity fails, since ṫ(θ)−θẋ(θ) > 0

for θ < θ̄ (again by (40)-(41)). In particular, it fails if any type is excluded. But if the

lowest type is offered high enough coverage, profit monotonicity could hold for a monopoly

as well. We leave as an open question the conditions under which it fails or holds.

6 The CARA Case

Wealth effects make it hard to find closed-form solutions. Under CARA, however, we

can calculate the optimal menu, and we use it to illustrate properties of the insurance

problem absent in the standard monopoly pricing problem.

Set u(z) = −e−rz. Letting v(x, θ) = log[(1−θ)+θer(`−x)]/r, the certainty equivalent of

(x, t) is w−t−v(x, θ), which represents the same preferences over contracts as U(x, t, θ).

Since the certainty equivalent is linear in t, it is simplest to proceed is as in the standard

monopoly model, solving directly for x(·) without transforming the variables.20

Solution to the Relaxed Problem. The optimal indemnity in the relaxed

problem satisfies the first order condition vx(x, θ)− θ − (vxθ(x, θ)/ρ(θ)) = 0 for each θ,

20More precisely, replace t(·) from the objective function, integrate by parts, and maximize pointwise
with respect to x(·) ignoring the monotonicity condition.
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which simplifies to (setting ξ = er(`−x) and recalling that ρ is the hazard rate)

θ(1− θ)[(1− θ) + θξ](ξ − 1)− ξ

ρ(θ)
= 0. (23)

This equation is quadratic in ξ; since ξ ≥ 0, we take the positive solution

ξ(θ) =

1
ρ(θ)

− θ(1− θ)(1− 2θ) +

√(
θ(1− θ)(1− 2θ)− 1

ρ(θ)

)2

+ 4θ3(1− θ)3

2θ2(1− θ)
. (24)

Since ξ(θ) = er(`−x(θ)), we have x(θ) = `− (log ξ(θ)/r), and t(θ) = v(x(θ), θ)− v(0, θ)−∫ θ

θ
vθ(x(s), s)ds, which completes the solution to the (relaxed) problem.

Losses with Certainty and Partial Insurance at the Top. The proof

in Theorem 1 that, wlog, the highest type gets full coverage uses the assumption that

θ < 1. The highest type need not get full coverage when θ = 1, i.e., when the highest

type suffers a loss with certainty. To illustrate, let the density be uniform on [θ, 1], so

that ρ(θ) = 1/(1− θ). Simplify (24) to find

ξ(θ) =
1− θ + 2θ2 +

√
1− 2θ + 5θ2

2θ2
,

and evaluate at θ = 1 to find ξ(1) = 2 and so x(1) = `− (log 2/r) < `. In this case, the

optimal menu is uniformly bounded away from full insurance.

MHRC Does Not Imply Complete Sorting. As noted, the MHRC implies

complete sorting in many screening models. Since none of the conditions in Theorem 3

follow from the MHRC, it leaves open whether the MHRC implies complete sorting in

our insurance model. Equation (24) suggests that it does not. Let θ > 2/3 and let f(·)
be any density such that ρ(·) is globally increasing in θ but constant at a type θ̂ > 2/3

(i.e., ρ′(θ̂) = 0). Then the left side of (23) is decreasing in θ at θ̂, and ξ(·) fails to be

decreasing at that point.21

For an numerical example, let f(·) be the truncated exponential at θ < 1 with

parameter η. Then ρ(θ) = (ηe−ηθ)/(e−ηθ − e−ηθ) and ρ′(θ) > 0 for all θ. Insert this

21Consider the density f(θ) = ke−kθ if θ ∈ [θ, θ̃] and f(θ) = ke−kθ̂ otherwise, where k = 1/(θ − θ̃).
Then x(·) is not increasing in a neighborhood of θ̂.
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expression into (24) and set η = 30 and θ = 0.9 to find that ξ(0.5) = 1.14 < 1.2 = ξ(0.8),

so that x(·) is not increasing everywhere: Complete sorting fails even under the MHRC.

The example provides a clear intuition for why the MHRC does not imply complete

sorting. Suppressing for a moment the common values feature of the model, suppose

that the insurer’s unit cost of coverage is constant and equal to θ. Then the first order

condition for the relaxed problem is vx(x, θ)−θ = vxθ(x, θ)/ρ(θ) for each θ. The marginal

gain from an increase in coverage (the left side) is increasing in θ, while the marginal

cost per unit of type θ of the additional information rent to all higher types (right side)

is decreasing in θ if the MHRC holds. So without common values or wealth effects, the

MHRC implies that the solution to the relaxed problem is increasing. With common

values, the left side is no longer increasing in θ (i.e., vxθ(x, θ) is not always greater than

1), and a strengthening of the MHRC is needed.22 With wealth effects this problem is

compounded, since the MHRC does not even imply that
∫ θ

θ
a(s)f(s)ds/f(θ) is decreasing

in θ (see (16)), explaining why we impose the stronger conditions of Theorem 3.

Common Values and Curvature. From Theorem 4, if f(·) satisfies the MLRP

and θ > 2/3, the premium is convex in coverage for θ ∈ (2/3, θ]. The CARA case

illustrates the role of common values in curvature of the premium. Suppress once again

common values, so we are back in a standard monopoly pricing model with quasilinear

utility and no common values. Following Maskin and Riley (1984), the necessary and

sufficient condition for the premium to be strictly concave in coverage is that, for all θ,

ρ′(θ)
ρ(θ)

+

[
vxxθ(x(θ), θ)

vxx(x(θ), θ)
− vxθθ(x(θ), θ)

vxθ(x(θ), θ)

]
> 0. (25)

After tedious algebra, (25) becomes ρ′(θ)/ρ(θ) > (2θ−1)/(θ(1−θ)) for all θ: any density

satisfying the MLRP and this inequality implies a concave premium globally (and so also

quantity discounts) in the CARA case. For a simple example, consider the uniform on

[0, θ̄]. Then ρ′(θ)/ρ(θ) = 1/(θ − θ) > (2θ − 1)/(θ(1− θ)) for all θ.

22Indeed, that the left side is not increasing is why there can be pooling even in the first-best case
(observable types): all types get full coverage, and two distinct types can pay the same premium. In
Maskin and Riley, the first-best menu completely sorts types.
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7 Conclusion

Stiglitz (1977) introduced the insurance model that we examine, and solved the two-

type case with an illuminating graphical analysis that is now a textbook standard. But

despite the importance of adverse selection in insurance and well-known problems with

its competitive provision, the monopoly case has received surprisingly little attention.

Insurance markets surely lie somewhere in between competition and monopoly. Ar-

guably, monopoly is the right place to start thinking about noncompetitive insurance

markets: for insurance with adverse selection, there is no agreement on what a good

model even of competition is, let alone oligopoly. Indeed, Cohen and Einav (2007) argue

that a monopoly model describes their data for an entrant into the Israeli auto insurance

market better than a competitive one.

We have stressed the differences between monopoly and competitive insurance with

adverse selection. One similarity is monotonicity: riskier types buy more coverage;

equivalently, those who buy more coverage experience higher losses on average. Many

tests of adverse selection focus on this prediction. Monotonicity follows from incentive

compatibility and the single crossing property, which in turn follows from the definition

of a type (the loss chance) and the expected utility hypothesis. Relaxing either one can

overturn this property–and likely monotonicity as well. For example, single crossing can

fail if the type includes the agent’s risk attitudes as well as riskiness; and it can fail if

the agent’s preferences violate expected utility.23 Both extensions are worth pursuing.

Two other extensions are worth mentioning: allowing more than one loss amount;

and more than one period. If the loss takes on more than one value, but the private

information is still purely about likelihood of a loss, not its magnitude, then the principal

will offer a menu of deductible insurance contracts. Since a deductible contract is still

two-dimensional, many of our proofs can be adapted to this case. The multi-period case

raises several interesting issues such as renegotiation and experience rating, and should

reveal further implications of adverse selection for insurance.

23Ormiston and Schlee (2001) show it fails for mean-variance preferences. Since some nonexpected
utility representations satisfy the single crossing property, we conjecture that adding that assumption
will preserve the conclusion of Theorem 1, but not that of Theorems 2-4.
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A Appendix

A.1 Proof of Theorem 1 (Properties of an Optimal Menu)

In the proof of Theorem 1 we use the following result:

Lemma 4 (Indirect Utility Function) Let (x(·), t(·)) be bounded and satisfy (IC),

with x(θ) ≤ ` for all θ ∈ Θ. Then U(x(θ), t(θ), θ) is decreasing and continuous in θ.

Proof. Let θ′ > θ. We have U(x(θ), t(θ), θ) ≥ U(x(θ′), t(θ′), θ) ≥ U(x(θ′), t(θ′), θ′),

where the first inequality follows from (IC) and the second from x(θ′) ≤ `. Hence

U(x(θ), t(θ), θ) is decreasing in θ.

Monotonicity implies that the left and right limits exist at any θ ∈ Θ. Let θ′ ∈ Θ. We

will show that the left and right limits of U(x(θ), t(θ), θ) are equal at θ = θ′. Consider

any sequence θn approaching θ′ from below and let tn = t(θn) and xn = x(θn). We have

0 ≥ U(x(θ′), t(θ′), θ′)− U(xn, tn, θn) ≥ U(xn, tn, θ′)− U(xn, tn, θn), (26)

where the first inequality follows from monotonicity of U(x(θ), t(θ), θ) in θ, and the

second from (IC). But U(xn, tn, θ′)−U(xn, tn, θn) = (θ′−θn)(u(w−`−tn+xn)−u(w−tn)).

Since (x(·), t(·)) is bounded and u(·) continuous, U(xn, tn, θ
′) − U(xn, tn, θn) tends to 0

as θn tends to θ′, so by (26), U(x(θ), t(θ), θ) is left-continuous at θ = θ′.

Now consider any sequence θn approaching θ′ from above. For every n,

0 ≥ U(xn, tn, θn)− U(x(θ′), t(θ′), θ′) ≥ U(t′, x′, θn)− U(x(θ′), t(θ′), θ′),

where the first inequality follows from monotonicity in θ and the second from (IC). But

again U(x′, t′, θn) − U(x(θ′), t(θ′), θ′) tends to zero as θn tends to θ′, so U(xn, tn, θn)

converges to U(x(θ′), t(θ′), θ′), proving that U(x(θ), t(θ), θ) is right-continuous at θ = θ′.

Since θ′ was arbitrary, it follows that U(x(θ), t(θ), θ) is continuous in θ. ¥

We now prove Theorem 1 in several steps, illustrating the formal arguments with

pictures. Most of the proofs are by contraposition: we show that if the property fails for

a menu, then there is another feasible menu with higher profit (relying on Lemma 1).
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(i) Premium, Indemnity, and Net Indemnity are Co-Monotone. Wlog, let θ′ >

θ. From (IC), U(x(θ), t(θ), θ) ≥ U(x(θ′), t(θ′), θ) and U(x(θ′), t(θ′), θ′) ≥ U(x(θ), t(θ), θ′),

so that either (a) x(θ′) − t(θ′) ≥ x(θ) − t(θ) and t(θ′) ≥ t(θ), or (b) x(θ′) − t(θ′) ≤
x(θ)− t(θ) and t(θ′) ≤ t(θ) (the other remaining cases are easily dismissed by (IC)). Un-

less the contracts are the same, case (b) is ruled out by the single crossing property (if the

low type prefers a higher contract, so does the high type). Thus, x(θ′)−t(θ′) ≥ x(θ)−t(θ)

and t(θ′) ≥ t(θ), which together imply that x(θ′) ≥ x(θ).

(ii) No Overinsurance. Let (x(·), t(·)) be a feasible menu with x(θ) > ` on a positive

measure set of types. Let θ̂ be the infimum of types with coverage greater than the loss

`. By monotonicity, every type θ > θ̂ must have x(θ) > `. There are two cases.

(a) θ̂ ∈ {θ ∈ Θ|x(θ) > `}. In this case x(θ̂) > ` and x(θ) ≤ ` for every type θ < θ̂

in Θ. For each θ ∈ [θ, θ̂] ∩ Θ, let (`, t̃(θ)) be the contract that leaves type θ indifferent

between his contract in the menu and this one; formally, t̃(θ)) solves

U(`, t̃(θ), θ) = U(x(θ), t(θ), θ).

Define t̂ = sup t̃(θ), where the supremum is taken over {θ ∈ Θ|θ ≤ θ̂}. Pool all types

θ ≥ θ̂ at (`, t̂), and leave the contract for every other type unchanged (see Figure 2(a)).

The new menu satisfies (IC) and (P) and increases profit by Lemma 1.

(b) θ̂ /∈ {θ ∈ Θ|x(θ) > `}. Then x(θ̂) ≤ `. For each type θ ≥ θ̂, let τ(θ) solve

U(`, τ(θ), θ) = U(x(θ), t(θ), θ).

Define τ ∗ = sup τ(θ), where the supremum is taken over {θ ∈ Θ|θ ≥ θ̂}. Pool all types

θ > θ̂ at (`, τ ∗), and leave the contract for every other type the same (see Figure 2(b)).

The new menu satisfies (IC) and (P) and profit increases by Lemma 1.

(iii) Premium, Indemnity, and Net Indemnity are Nonnegative. It is enough

to show that t(θ) ≥ 0 for almost all types: if that condition holds, then (P) implies that

x(θ) ≥ 0 and x(θ)− t(θ) ≥ 0 for almost all types. Let (x(·), t(·)) be a feasible menu with

t(θ) < 0 on a positive measure set of types. By monotonicity, that set contains all types

below θs = sup{θ ∈ Θ|t(θ) < 0}. There are two cases.
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Figure 2: (ii) No overinsurance

(a) θs ∈ {θ ∈ Θ|t(θ) < 0}. In this case t(θs) < 0. For each type θ ≥ θs, find the

contract (x̂(θ), 0) that leaves type θ indifferent between his contract in the menu and

this one; formally, x̂(θ) solves

U(x̂(θ), 0, θ) = U(x(θ), t(θ), θ).

Since the menu satisfies (P), x̂(θ) ≥ 0 for every θ. Let xm = inf x(θ), where the infimum

is taken over all types θ ≥ θs. (Note that xm ≥ x(θ) for all types θ ≤ θs.) Pool all types

θ ≤ θs at (xm, 0), and leave the contract the same for all other types (see Figure 3(a)).

The new menu satisfies (IC) and (P) and profit increases by Lemma 1.

(b) θs /∈ {θ ∈ Θ|t(θ) < 0}. In this case t(θs) ≥ 0. For each type θ ≤ θs, let x̂(θ) solve

U(x̂(θ), 0, θ) = U(x(θ), t(θ), θ),

and let xs = inf x̂(θ), where the infimum is taken over {θ ∈ Θ|θ ≤ θs}. Note that

xs ≥ x(θ) for all types θ ≤ θs. Pool all types with t(θ) < 0 at (xs, 0), and leave the

contract for every other type the same (see Figure 3(b)). The new menu satisfies (IC)
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Figure 3: (iii) Nonnegativity

and (P) and profit increases by Lemma 1 and (ii).

(iv) Participation Binds at the Bottom. Let (x(·), t(·)) be a feasible menu with

U(x(θ), t(θ), θ)−U(0, 0, θ) = K > 0. Since expected utility is continuous in θ, there is a

nonnegative number ε such that [θ, θ+ε] has positive measure and, for all θ ∈ [θ, θ+ε]∩Θ,

U(x(θ), t(θ), θ)− U(0, 0, θ) > 0.

(If θ itself has positive measure, then ε can be zero.) By (IC),

U(x(θ), t(θ), θ)− U(0, 0, θ) ≥ U(x(θ), t(θ), θ)− U(0, 0, θ)

for all θ ∈ [θ, θ + ε]∩Θ. But since the difference on the right side of this last inequality

tends to K as θ tends to θ, there is a nonnegative real number η such that [θ, θ + η] has

positive measure and, for all θ ∈ [θ, θ + η] ∩Θ ,

U(x(θ), t(θ), θ)− U(0, 0, θ) ≥ K/2 > 0.

29



By (iii), there is a θ′ ∈ [θ, θ + η]∩Θ with (x(θ′)− t(θ′), t(θ′)) ≥ 0, so U(x(θ′), t(θ′), θ)−
U(0, 0, θ) is increasing in θ. Combine this fact with (IC) to conclude that

U(x(θ), t(θ), θ)− U(0, 0, θ) ≥ U(x(θ′), t(θ′), θ)− U(0, 0, θ) ≥ K/2 > 0

for all θ ∈ (θ + η, θ̄] ∩ Θ, so U(x(θ), t(θ), θ) − U(0, 0, θ) ≥ K/2 > 0 for all θ ∈ Θ. Now

change the menu to reduce the utility of each type by K/2 in each state. Both (P) and

(IC) continue to hold, but profit increases.

(v) Full Insurance at the Top. We show that the essential supremum of x(·) is `.

Suppose that it is not ` for some feasible menu (x(θ), t(θ))θ∈Θ. By (ii), wlog, it must

be less than `. We show that profit rises if we pool all ‘sufficiently’ high types at full

insurance.

For each ε ∈ (0, θ̄ − θ), let θε be the smallest number in (the positive measure set)

[θ̄ − ε, θ̄] ∩ Θ. Let τε be the premium for full insurance that leaves type-θε indifferent

between (`, τε) and (x(θε), t(θε)):

U(`, τε, θε) = U(x(θε), t(θε), θε).

By Lemma 4 we have limε→0 τε = τ0, and τ0 solves U(`, τ0, θ) = U(x(θ), t(θ), θ).

We now show that there is an ε ∈ (0, θ̄− θ) with τε− θ` > t(θ)− θx(θ) for every type

θ ≥ θ̄−ε. Suppose to the contrary that, for all ε ∈ (0, θ̄−θ), there is a type θ(ε) ≥ θ̄−ε

such that

t(θ(ε))− θ(ε)x(θ(ε)) ≥ τε − θ(ε)`. (27)

By Lemma 1, monotonicity, and x < `, we have that

τ0 − θ(ε)` > t(θ̄)− θ(ε)x(θ̄) ≥ t(θ(ε))− θ(ε)x(θ(ε)), (28)

since profit rises if θ(ε) gets the contract offered to type θ̄, and rises even more if θ(ε)

gets (τ0, `). Letting ε go to zero in (27) and (28) yields τ0 − θ̄` > τ0 − θ̄`.24 So for some

ε ∈ (0, θ̄ − θ), τε − θ` > t(θ)− θx(θ) for every type θ ≥ θ̄.

24Note that θ < 1 implies that the first inequality in (28) remains strict in the limit as ε goes to zero.
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Fix such an ε and consider the following menu (x̂(θ), t̂(θ))θ∈Θ: for θ ∈ [θ̄ − ε, θ̄] ∩Θ,

set x̂(θ) = ` and t̂(θ) = τε; otherwise set (x̂(θ), t̂(θ)) = (x(θ), t(θ)). This menu satisfies

(IC) and (P) and has higher profit than (x(θ), t(θ))θ∈Θ.

(vi) No Pooling at the Top. Suppose that the set of types below θ̄ receiving full

coverage is of positive measure for some feasible menu (x(θ), t(θ))θ∈Θ. Let θ̂ be the

infimum of this set. We shall show that there is an alternative menu with higher profit.

By (IC), any type with full insurance is charged the same premium, call it τ . Since

the menu is monotone and x ≤ `, we have x(θ) < ` if θ < θ̂ and x(θ) = ` if θ > θ̂. By

Lemma 4, limθ→θ̂ U(x(θ), t(θ), θ) = U(`, τ, θ̂). Wlog, we can set x(θ̂) = ` and t(θ̂) = τ ,

since expected profit does not fall and (IC) and (P) still hold.

Fix ε ∈ (0, θ̄− θ̂). Let τ(ε) be the largest premium satisfying (P) for loss chance θ̂+ε

at full insurance: U(`, τ(ε), θ̂ + ε) = U(0, 0, θ̂ + ε).25 For each δ ∈ (0, τ(ε)) let (xδ, tδ)

be the contract that leaves type θ̂ indifferent between (`, τ) and (xδ, tδ), and type θ̂ + ε

indifferent between (`, τ + δ) and (xδ, tδ). Formally, (xδ, tδ) solves (see Figure 4)

U(`, τ, θ̂) = U(xδ, tδ, θ̂)

U(`, τ + δ, θ̂ + ε) = U(xδ, tδ, θ̂ + ε)

Define a menu of contracts (x̂(θ), t̂(θ))θ∈Θ as follows: (x̂(θ), t̂(θ)) = (`, τ + δ) if θ ∈
(θ̂ + ε, θ]∩Θ; (x̂(θ), t̂(θ)) = (xδ, tδ) if θ ∈ [θ̂, θ̂ + ε]∩Θ; and (x̂(θ), t̂(θ)) = (x̃δ(θ), t̃δ(θ)) if

θ ∈ [θ, θ̂)∩Θ, where (x̃δ(θ), t̃δ(θ)) is equal to the best of the two contracts (x(θ), t(θ)) or

(xδ, tδ) for type θ. The menu (x̂(θ), t̂(θ))θ∈Θ satisfies (IC) and (P) for every δ ∈ (0, τ(ε)),

and its expected profit is

∫

(θ̂+ε,θ]

[τ + δ − θ`]dF (θ) +

∫

[θ̂,θ̂+ε]

[tδ − θxδ]dF (θ) +

∫

[θ,θ̂)

[t̃δ(θ)− θx̃δ(θ)]dF (θ). (29)

We now show that each of the three expressions is differentiable in δ at δ = 0 and that,

for small enough ε > 0, the derivative of the sum is positive.

The derivative of the first term at δ = 0 is
∫

(θ̂+ε,θ]
dF (θ) > 0 for every ε ∈ [0, θ̄ − θ̂).

25It is possible, but irrelevant, that θ̂ + ε is not in Θ.
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Since u is C1, xδ and tδ are differentiable in δ for every δ ∈ [0, τ), t′δ−θx′δ is bounded

on [0, τ)×Θ, and tedious algebra reveals that t′0− θx′0 = (θ̂− θ)/ε ≤ 0 for θ ∈ [θ̂, θ̂ + ε].

So the derivative of the second integral in (29) with respect to δ exists at δ = 0 and

equals
∫

[θ̂,θ̂+ε]
θ̂−θ

ε
dF (θ) ≤ 0. By the mean-value theorem, for every ε ∈ (0, θ̄ − θ̂), there

is a number ψ(ε) ∈ [θ̂, θ̂ + ε] such that

0 ≥
∫

[θ̂,θ̂+ε]

θ̂ − θ

ε
dF (θ) =

θ̂ − ψ(ε)

ε

(
F (θ̂ + ε)− F (θ̂)

)
≥ F (θ̂)− F (θ̂ + ε).

Since F (·) is right-continuous, the last expression tends to zero as ε tends to zero.

Finally, consider the third integral in (29). The integrand is differentiable in δ at

δ = 0 and it is easy to show that the value of the derivative is zero for every θ ∈
Θ ∩ [θ, θ̂). Moreover, since xδ and tδ are decreasing in δ, it follows that, for each

(δ, θ) ∈ (0, τ(ε)) ×
(
Θ ∩ [θ, θ̂)

)
, | x̃δ(θ)−x(θ)

δ
| ≤ |xδ−x0

δ
| and | t̃δ(θ)−t(θ)

δ
| ≤ | tδ−t0

δ
|, which

shows that the derivatives of xδ and tδ are bounded on [0, w − τ ]. Hence, the third

integral is differentiable at δ = 0 and the derivative equals zero for every ε ∈ [0, θ̄ − θ̂)

. Since the derivative of (29) with respect to δ is positive for some ε > 0, the original

menu is not optimal.
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(vii) The Principal Makes Positive Profit. Let ε > 0, and consider a menu in

which each type chooses either (0, 0) or (`, θ`+ ε) to maximize expected utility. Clearly,

expected profit is positive from any type who chooses (`, θ` + ε). Since θ̄ < 1, for ε > 0

small enough, we have that θ` + ε < `, so a positive measure of types in [θ, θ̄] choose

(`, θ` + ε) and expected profit from this menu is positive. ¥

A.2 Proof of Continuous Differentiability of U(θ)

If f(·) is continuous on Θ = [θ, θ] and positive on (θ, θ), then U(·) is C1 on (θ, θ). We

prove this fact in three steps.

No Indifference at an Optimal Menu. We first show that if (x(θ), t(θ))θ∈Θ

is optimal, then each type strictly prefers its contract to any other one in the menu.

Consider a feasible menu (x(θ), t(θ))θ∈Θ violating this property: for two types θ′, θ′′ in

Θ we have (x(θ′′), t(θ′′)) 6= (x(θ′), t(θ′)) and U(θ′′) = U(x(θ′), t(θ′), θ′′). We will show

that there is a feasible menu with higher expected profit.

There are two cases to consider: (i) θ′′ > θ′; and (ii) θ′ > θ′′.

Consider case (i). The single-crossing property and (IC) imply that types in (θ′, θ′′)

are pooled at (x(θ′), t(θ′)) (each type prefers (x(θ′), t(θ′)) to (x(θ′′), t(θ′′)), and any other

distinct contract that a type θ ∈ (θ′, θ′′) likes as least as much as (x(θ′), t(θ′)) will be

envied by either θ′ or θ′′). For any ε ∈ (0, θ′′− θ′), give all types in [θ′+ ε, θ′′) a contract

(x(θ′) + δ, τδ) satisfying δ ∈ (0, x(θ′′)− x(θ′)) and U(x(θ′) + δ, τδ, θ
′′) = U(θ′′); and give

types in [θ′, θ′ + ε) a contract (x(θ′) + dδ, pδ) satisfying the following equations:

U(x(θ′) + dδ, pδ, θ
′ + ε) = U(x(θ′) + δ, τδ, θ

′ + ε)

U(x(θ′) + dδ, pδ, θ
′) = U(θ′).

Leave the contract for every other type unchanged. The new menu satisfies (IC) and

(P) for each ε ∈ (0, θ′′ − θ′) and each δ satisfying the given equalities. The change in

expected profit is

∫

[θ′+ε,θ′′)
[τδ − t(θ′)− θδ]dF (θ) +

∫

(θ′,θ′+ε)

[pδ − t(θ′)− θdδ]dF (θ).
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Each of the functions τδ, pδ, and dδ are continuously differentiable in δ with derivatives

uniformly bounded on (0, x(θ′′) − x(θ′)) × [θ′, θ′′]. Hence the change in expected profit

is differentiable (for each ε ∈ (0, θ′′ − θ′)) and equals

∫

[θ′+ε,θ′′)
[τ ′0 − θ]dF (θ) +

∫

(θ′,θ′+ε)

[p′0 − θd′0]dF (θ).

As ε → 0, the second term vanishes, while the first tends to
∫
[θ′,θ′′)[τ

′
0 − θ]dF (θ), which

is positive by Lemma 1, so the original menu (x(θ), t(θ))θ∈Θ cannot be optimal.

Now consider case (ii). As in case (i) any types in (θ′′, θ′) are pooled at (x(θ′), t(θ′)).

Let ε ∈ (0, θ′ − θ′′). For each type in [θ′′ + ε, θ], consider a new contract that lowers

the utility in each state by δ > 0 satisfying U(θ′′ + ε)− δ > U(x(θ′), t(θ′), θ′′ + ε). Give

types in (θ′, θ′ + ε) the contract at the intersection of the indifference set of type θ′

(through (x(θ′), t(θ′))) and type θ′′ + ε (through the new contract for it). The contract

remains the same for all other types. By the single crossing property and feasibility of

(x(θ), t(θ))θ∈Θ, the new menu satisfies (P) and (IC). Moreover, on the set (θ′′ + ε, θ],

expected profit rises and has a positive derivative with respect to δ at δ = 0 for every

ε ∈ [0, θ′ − θ′′). As in case (i), the derivative of expected profit conditional on the

complement of types wrt δ at δ = 0 tends to zero as ε tends to zero. Since (θ′′, θ] =

∪ε>0[θ
′′+ε, θ], (θ′′, θ′) ⊂ (θ′′, θ], and by hypothesis (θ′′, θ′) is of positive measure, we have

that for some ε ∈ (0, θ′ − θ′′), expected profit from the new (feasible) menu is greater

than expected profit from (x(θ), t(θ))θ∈Θ.

U(·) is Differentiable. Let (x(θ), t(θ))θ∈Θ be an optimal menu. Since for any

(χ, τ), U(χ, τ, ·) is differentiable on Θ, and since, for each θ ∈ Θ = [θ, θ], the contract

in {x(θ′), t(θ′)|θ′ ∈ Θ} which maximizes U(·, ·, θ) is unique, it follows from the Envelope

Theorem (Milgrom and Segal (2002), Theorem 3) that U ′(θ) exists and equals −∆(θ) .

U(·) is Continuously Differentiable. Since U(χ, τ, ·) is affine in θ, the indirect

utility U(·) is convex. Since U(·) is also differentiable it follows from Rockafellar (1970)

(Corollary 25.5.1) that it is C1 on (θ, θ). ¥
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A.3 Proof of Lemma 2 (Complete Sorting)

Using (13)-(14) to eliminate λ̇(θ), rewrite the numerator of (17) as λ(θ)B(θ), where

B(θ) = f(θ)

[
f ′(θ)
f(θ)

θ(1− θ) + (1− 3θ) +
1

1− h′(U(θ)−(1−θ)∆(θ))
h′(U(θ)+θ∆(θ))

]
.

Since
1

1− h′(U(θ)−(1−θ)∆(θ))
h′(U(θ)+θ∆(θ))

= 1 +
1

h′(U(θ)+θ∆(θ))
h′(U(θ)−(1−θ)∆(θ))

− 1

and λ(θ) ≤ 0, it follows that ∆̇(θ) ≤ 0 if and only if

f ′(θ)
f(θ)

θ(1− θ) + (2− 3θ) +
h′(U(θ)− (1− θ)∆(θ))

h′(U(θ) + θ∆(θ))− h′(U(θ)− (1− θ)∆(θ))
≥ 0,

or, equivalently,
f ′(θ)
f(θ)

≥ 3θ − 2− b(θ)

θ(1− θ)
,

where b(θ) = h′(U(θ)− (1− θ)∆(θ))/[h′(U(θ) + θ∆(θ))− h′(U(θ)− (1− θ)∆(θ))]. ¥

A.4 Proof of Theorem 3 (Complete Sorting: Sufficiency)

(i) We show that the following condition is sufficient for complete sorting:

f ′(θ)
f(θ)

>
3θ − 1

θ(1− θ)
− f(θ)

1− F (θ)
. (30)

Fix θ̂ ∈ [θ, θ̄). We first claim that if ∆̇(τ) < 0 for all τ ∈ (θ̂, θ̄), and condition (30) holds,

then ∆̇(θ̂) < 0. To establish this claim, we show that

b(θ̂) > −1 +
f(θ̂)

1− F (θ̂)
θ̂(1− θ̂), (31)

implying that the sufficient (and necessary) condition (18) holds at θ̂.

Let h′n(θ) = h′(U(θ)− θ∆(θ)). Since ∆̇(τ) < 0 and f(τ) > 0 for all τ ∈ (θ̂, θ̄),

f(τ)h′n(θ̂) > f(τ)h′n(τ) > f(τ)a(τ), (32)
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for all τ ∈ (θ̂, θ̄), with equalities at θ̄, where a(·) is defined in equation (16).

Integrate both sides of (32) from θ̂ to θ̄ and divide by 1− F (θ̂) to obtain

h′n(θ̂) >
1

1− F (θ̂)

∫ θ̄

θ̂

a(τ)f(τ)dτ = (∆h)′(θ̂)
θ̂(1− θ̂)f(θ̂),

1− F (θ̂)
(33)

where (∆h)′(θ) = h′(U(θ) + θ∆(θ)) − h′(U(θ) − (1 − θ)∆(θ)) and we have used (16).

Add −θ̂(∆h)′(θ̂) to both sides of (33) and rearrange to get (31), so that the sufficient

condition (18) holds at θ̂.

It now follows that, under condition (30), ∆̇(θ) < 0 for all θ ∈ Θ : if ∆̇ ≥ 0

somewhere, then there would be a largest θ ∈ [θ, θ̄) with ∆̇(θ) ≥ 0 (since ∆̇(·) is

continuous and lim supθ→θ̄ ∆̇(θ) < 0). By the claim, condition (30) would fail.

(ii) Let f ′(·)/f(·) be decreasing and suppose that sorting is not complete: ∆̇(θ) ≥ 0

for some θ. We will show that θ ≥ 1/2 and that f ′ is sometimes negative.

Since lim supθ→θ̄ ∆̇(θ) < 0 and ∆̇ is continuous on (θ, θ), there is a largest type θ̂ ∈ Θ

with ∆̇(θ̂) = 0. In addition ∆̇(θ) < 0 for all θ ∈ (θ̂, θ̄).

From Lemma 3 the sign of −∆̇(·) is the same as

g(θ) = f ′(θ)/f(θ)− (3θ − 2− b(θ))/θ(1− θ). (34)

Moreover,

b′(θ) = −∆̇(θ)

[
h′nh′′` (1− θ) + h′′nh′`θ

(h′n − h′`)
2

]
, (35)

so that b′(θ̂) = 0. Since ∆̇(θ) < 0 for all θ > θ̂, and g(θ̂) = 0, we must have g′(θ̂) ≥ 0.

Since f ′/f is decreasing, the second fraction cannot be increasing at θ̂. But

∂

∂θ

3θ − 2− b(θ)

θ(1− θ)
=

θ(1− θ)[3− b′(θ)] + (1− 2θ)(3θ − 2− b(θ))

θ2(1− θ)2
.

Since b′(θ̂) = 0 and b(θ) > 0, g′(θ̂) ≥ 0 implies that θ̂ > 1/2, so θ̄ > 1/2.

To show that f ′(·) must sometimes be negative, rewrite (34) as g̃(θ) = (1− θ)g(θ) =

(1−θ)(f ′(θ)/f(θ))−(3θ−2−b(θ))/θ. Since ∆̇(θ) < 0 for all θ > θ̂, and g̃(θ̂) = 0 , we must

have g̃′(θ̂) ≥ 0. But since b′(θ̂) = 0, the fraction (3θ − 2 − b(θ))/θ is strictly increasing

in a neighborhood of θ̂, so (1− θ)f ′(θ)/f(θ) must be increasing in a neighborhood of θ̂,
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so f ′(·) is negative on a neighborhood of θ̂. ¥

A.5 Proof of Proposition 2 (No Exclusion)

Type θ is not excluded from the optimal menu of contracts if ∆(θ̃) > ∆0. From equation

(16) and the concavity of the optimal control problem, this is tantamount to showing

that the marginal benefit of providing insurance to θ̃ starting from no insurance is bigger

than the marginal cost of doing so. Formally,

f(θ)θ(1− θ)[h′(u(w))− h′(u(w − `))] >

∫ θ

θ

a(s)f(s)ds. (36)

Assume first that −u′′′(·)/u′′(·) < −3u′′(·)/u′(·). It is easy to show that in this case

a′(·) < 0. Hence,
∫ θ

θ
a(s)f(s)ds < a(θ), and (36) holds if f(θ)θ(1−θ)[h′(u(w))−h′(u(w−

`))] > a(θ). Since a(θ) < (1− θ)h′(u(w)) + θh′(u(w − `)), it follows that

f(θ)θ(1− θ)[h′(u(w))− h′(u(w − `))] > (1− θ)h′(u(w)) + θh′(u(w − `)),

which is equivalent to

f(θ) >
(1− θ)h′(u(w)) + θh′(u(w − `))

θ(1− θ)[h′(u(w))− h′(u(w − `))]
. (37)

Thus, type θ is not excluded from the optimal menu if f(θ) is larger than the right side

of (37). But Theorem 3 (i) or (ii) imply that θ(1− θ)f(θ)/(1−F (θ)) is increasing in θ,

showing that no θ ≥ θ will be excluded from the optimal menu of contracts.

Without imposing−u′′′(·)/u′′(·) < −3u′′(·)/u′(·), a stronger sufficient condition holds,

with the numerator on the right side of (37) replaced by h′(u(w)). ¥

A.6 Proof of Proposition 3 (Exclusion)

Type θ̃ is excluded from the optimal menu of contracts if ∆(θ̃) = ∆0. From equation

(16), we must show that the marginal benefit of providing insurance to θ̃ starting from
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no insurance is less than the marginal cost of doing so. Formally,

f(θ̃)θ̃(1− θ̃)[h′(u(w))− h′(u(w − `))] <

∫ θ

θ̃

a(s)f(s)ds. (38)

Assume first that −u′′′(·)/u′′(·) < −3u′′(·)/u′(·). In this case,
∫ θ

θ̃
a(s)f(s)ds > a(θ)(1−

F (θ̃)), and (38) holds if f(θ̃)θ̃(1 − θ̃)[h′(u(w)) − h′(u(w − `))] < a(θ)(1 − F (θ̃)). Since

a(θ) = h′(U(θ)) ≥ h′((1−θ)u(w)+θu(w−`)), type θ̃ is excluded from the optimal menu

if
f(θ̃)

(1− F (θ̃))
<

h′((1− θ)u(w) + θu(w − `))

θ̃(1− θ̃)[h′(u(w))− h′(u(w − `))]
. (39)

But Theorem 3 (i) or (ii) implies that θ(1− θ)f(θ)/(1− F (θ)) is increasing in θ, which

shows that any θ ≤ θ̃ will be excluded from the optimal menu of contracts as well.

Without imposing −u′′′(·)/u′′(·) < −3u′′(·)/u′(·), a similar, but stronger, sufficient

condition for exclusion holds, with the numerator of (39) replaced by h′(u(w − `)). ¥

A.7 Proof of Lemma 3 (Curvature)

Let (U(θ), ∆(θ)) solve the optimal control problem with ∆̇(·) < 0 everywhere. Since

u(θ) = U(θ)+θ∆(θ) for all θ, we can use (5)-(6) to recover the optimal menu (x(θ), t(θ))θ∈Θ.

Recall that U̇(θ) = −∆(θ), so u̇(θ) = θ∆̇(θ). Differentiate (5)-(6) to get

ṫ(θ) = − θ∆̇(θ)

u′(w − t(θ))
(40)

ẋ(θ) = −∆̇(θ)[(1− θ)u′(w − t(θ)) + θu′(w − ` + x(θ)− t(θ))]

u′(w − ` + x(θ)− t(θ))u′(w − t(θ))
, (41)

where we have used u(θ) = u(w − t(θ)) and h′(·) = 1/u′(h(·)).
Since (by assumption) sorting is complete, we have ẋ(·) > 0, so the inverse of x(·),

call it z(·), is well defined (i.e., θ = z(x)). We can now represent the optimal mechanism

as a nonlinear premium schedule T (x) = t(z(x)). Then, (40)-(41) and θ = z(x) give

Ṫ (x) = ṫ(z(x))ż(x) =
ṫ(z(x))

ẋ(z(x))
=

θu′(w − ` + x(θ)− t(θ))

(1− θ)u′(w − t(θ)) + θu′(w − ` + x(θ)− t(θ))
. (42)
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Differentiate Ṫ (·) and use θ = z(x) to find, after some algebra,

T̈ (x) =
1

θu′` + (1− θ)u′n

{
u′nu′`
ẋ(θ)

+ θ(1− θ)

[
u′′nu′`

ṫ(θ)

ẋ(θ)
+ u′′`u

′
n

(
1− ṫ(θ)

ẋ(θ)

)]}
.(43)

Insert (40)-(41) into (43) and manipulate the resulting expression to reveal that T̈ (x) < 0

if and only if ∆̇(θ) <
(
θ(1− θ)

[
θ u′′n

u′2n
+ (1− θ)

u′′`
u′2`

])−1

. Use h′ = 1/u′, h′′ = u′′/u′3, and

(13)-(14) to rewrite (17) as

∆̇(θ) =
( 1

u′n
− 1

u′`
)Ω + E[ 1

u′ ]

θ(1− θ)
[
θ u′′n

u′3n
+ (1− θ)

u′′`
u′3`

] , (44)

where Ω = θ(1 − θ)f ′
f

+ 1 − 2θ and E[ 1
u′ ] = θ(1/u′`) + (1 − θ)(1/u′n). Now find that

T̈ (x) < 0 if and only if

θ(1− θ)
f ′

f
+ 1− 2θ >

[
θ u′′n

u′3n
+ (1− θ)

u′′`
u′3`

]
− E[ 1

u′ ]
[
θ u′′n

u′2n
+ (1− θ)

u′′`
u′2`

]
[
θ u′′n

u′2n
+ (1− θ)

u′′`
u′2`

]
( 1

u′n
− 1

u′`
)

. (45)

The numerator on the right side of (45) simplifies to
(

1
u′n
− 1

u′`

) [
θ2 u′′n

u′2n
− (1− θ)2 u′′`

u′2`

]
,

and the entire right side simplifies to θ − 1 + c(θ). Rearrange to get the result. ¥
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