
Market Size in Innovation: Theory and
Evidence from the Pharmaceutical Industry∗

Daron Acemoglu
MIT

Joshua Linn
MIT

June 2003.

Abstract

Is innovation primarily determined by scientific constraints and motivated by past
scientific discoveries? Or does innovation respond to profit incentives? In this paper, we
develop a simple model linking innovation to potential market size, and show that under
a variety of circumstances, a greater market size for a particular product, which implies
greater profitability from sales, spurs faster innovation for this product. We provide
evidence for this hypothesis from the pharmaceutical industry by looking at changes in
the potential market size for various drug categories driven by U.S. demographic changes.
We find that a 1 percent increase in the potential market size for a drug category leads
to a 4 to 7.5 percent increase in the number of new drugs in that category. This result is
generally robust to using different estimation strategies, adopting different classifications
of drugs into various categories, and controlling for pre-existing trends.
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1 Introduction

This paper develops the theoretical and empirical case that market size is a key determinant of

innovation. We construct a simple model linking innovation rates to current and future market

size under a variety of circumstances, and provide evidence from the pharmaceutical industry

to support this hypothesis. Our empirical work, which exploits changes in the market size for

various drug categories driven by U.S. demographic trends, finds economically significant and

relatively robust effects of market size on entry of new drugs.

Althoughmany historical accounts of technological change focus on the autonomous progress

of science and on major breakthroughs that take place as scientists build on each other’s work,1

economists typically emphasize incentives and the demand for innovation. John Stuart Mill

provides an early statement of this view in his Principles of Political Economy, when he writes:

“The labor of Watt in contriving the steam-engine was as essential a part of

production as that of the mechanics who build or the engineers who work the in-

strument; and was undergone, no less than theirs, in the prospect of a renumeration

from the produces” (1890, p. 68, also quoted in Schmookler, 1966, p. 210).2

The view that profit opportunities are the primary determinant of innovation and invention

is most forcefully articulated by Griliches and Schmookler (1963), and especially by Schmookler

in his seminal study, Invention and Economic Growth. Schmokler writes: “...invention is largely

an economic activity which, like other economic activities, is pursued for gain” (1966, p. 206),

and argues against the importance of major breakthroughs in science for economic innovation.

He concludes from his analysis of innovations in petroleum refining, papermaking, railroading,

and farming that there is no evidence that past breakthroughs have been the major factor in

new innovations. He continues: “Instead, in hundreds of cases the stimulus was the recognition

of a costly problem to be solved or a potentially profitable opportunity to be seized...” (1966,

p. 199).

A main determinant of profitability of new innovations is the market size for the resulting

product or technology. A greater market size increases profits and makes innovation and in-

1See, for example, Ceruzzi (2000), Rosenberg (1974) and Scherer (1984). Ceruzzi emphasizes the importance
of a number of notable scientific discoveries and the role played by certain talented individuals in the development
of modern computing. He points out how important developments took place despite the belief of many
important figures in the development of the computer, such as Howard Aiken, that there would not be a market
greater than a handful of personal computers in the United States (2000, p. 13).

2In fact, profits were very much in the minds of James Watt and his business partner Matthew Boulton in
designing and marketing the steam-engine. Boulton wrote to Watt: “It is not worth my while to manufacture
your engine for three countries only, but I find it very well worth my while to make it for all the world.” (quoted
in Scherer, 1984, p. 13). Similarly motivated by his profit motives, James Watt praised the patent system,
arguing that: “...an engineer’s life without patent was not worthwhile” (quoted in Mokyr, 1990, p. 248).
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vention more desirable. To emphasize this point, Schmookler called two of his chapters “The

amount of invention is governed by the extent of the market.” Schmokler’s argument is most

clearly illustrated by the example of the horseshoe. He documented that there was a very high

rate of innovation throughout the late nineteenth and early twentieth centuries in the very

ancient technology of horseshoe making, and no tendency for inventors to run out of additional

improvements. On the contrary, inventions and patents increased because demand for horse-

shoes was high. Innovations came to an end only when “the steam traction engine and, later,

internal combustion engine began to displace the horse...” (1966, p. 93).

The importance of profit incentives and market size in innovation is also essential for the

recent endogenous technological change models, which make profit incentives the central driving

force of the pace of aggregate technological progress (e.g., Aghion and Howitt, 1992, Grossman

and Helpman, 1991, Romer, 1990), as well as to the induced innovation and directed technical

change literatures, which investigates the influence of profit incentives on the types and biases

of new technologies (see, for example, Kennedy, 1964, Drandkis and Phelps, 1965, Samuelson,

1965, Hayami and Ruttan, 1970, and Acemoglu, 1998, 2002, and 2003). A recent series of

papers by Kremer, for example (2002), also build on the notion that pharmaceutical research

is driven by market size to argue that there is generally insufficient research to develop cures

for third-world diseases such as malaria.

There is relatively little convincing quantitative evidence, however, on the effect of profit

opportunities on innovation, especially on the specific types of innovation, which is the central

focus of the induced innovation and directed technical change literatures. The difficulty lies in

part in finding a source of variation in profit opportunities associated with different types of

technologies.

We believe that the pharmaceutical industry is a particularly appropriate place to look

for the effects of profit motives and market size on innovation for several reasons. The phar-

maceutical industry is one of the most innovative sectors of the economy, providing us with

both an interesting and potentially representative sample of innovations. In addition, there are

major changes in the market sizes for different types of drugs because of changes in the age

composition of the U.S. population.3

Our empirical strategy is to exploit these variations in market size driven by demographic

changes (or past demographic trends), which should be exogenous to other, for example scien-

tific, determinants of innovation in drugs. We create the potential market size for various drug

3For a number of these drugs, non-U.S. markets may also be relevant. Nevertheless, the U.S. market is
disproportionately important, constituting over 40 percent of the world market (IMS, 1999). Moreover, changes
in the demographics of other major OECD economies are correlated with those in the United States, so our
U.S.-based measure of potential market size will also capture these changes.

2



categories according to the age distribution of their users at a given point in time, and then

trace changes in this potential market size driven by changes in demographics (holding the age

profile of consumption of various drug categories constant over time). We measure innovation

by the Food and Drug Administration’s (FDA) approval of new drugs, which we match to our

drug categories. These data are previously used by Lichtenberg and Virahbak (2002).

Our results show that there is an economically and statistically significant response of the

introduction of new drugs to market size. For example, we find that a 1 percent increase in

the size of the potential market for a drug leads to a 4 to 7.5 percent increase in the number

of new drugs that are supplied to the market. New drugs that enter the market comprise

both generics and non-generics. We find that both of these types of drugs respond to market

size, but our results are somewhat weaker for non-generics. We further check the robustness

of our results by controlling for trends in health insurance and the drug coverage of various

insurance policies, lagged FDA approvals, pre-existing trends in innovation, differences in the

non-economic incentives to innovate, and advances in biotechnology.

We also investigate whether it is the current market size or past or future market sizes that

have the largest effect on entry of new drugs. On the one hand, because changes in demographics

are known in advance, drug entry may respond to anticipated future market sizes. On the other

hand, because the development process of new drugs can be long, entry may respond to past

market sizes. In practice, we find that typically current market size and 5-10 years leads of

market size have the strongest effect on entry rates of new drugs. We interpret this as evidence

for limited anticipation effects, which are consistent with our theory.

There are a number of other studies related to our work. First, Schmookler (1966) docu-

mented a statistical association between investments and sales, on the one hand, and patents

and innovation, on the other, and argued that the causality ran largely from the former to the

latter. The classic study by Griliches (1957) on the spread of hybrid seed corn in U.S. agricul-

ture also provides evidence consistent with the view that technological change and technology

adoption are closely linked to profitability and market size. In more recent research, Pakes

and Schankerman (1984) investigate this issue using a more structured approach linking R&D

intensity at the industry level to factor demands and to growth of output. Their inter-industry

results are highly supportive of Schmookler’s conclusions. Scott Morton (1999) studies the

decision of firms to introduce a new generic drug, and finds a positive correlation between entry

into a new market and experience in a similar market as well as size of revenues in the target

market. None of these studies exploit a potentially exogenous source of variation in market

size, however, and do not establish a causal link from market size to innovation.
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Second, some recent research has investigated the response of innovation to changes in energy

prices. Most notably, Newell, Jaffee and Stavins (1999) show that between 1960 and 1980, before

there was a reaction to the increase in energy prices, the typical air-conditioner sold at Sears

became significantly cheaper, but not much more energy-efficient. On the other hand, between

1980 and 1990, there was little change in costs, but air-conditioners became much more energy-

efficient. They argue that the technological developments in air-conditioning between 1980 and

1990 were a response to profit incentives created by the higher energy prices. In a related study,

Popp (2002) also finds a strong correlation between energy prices, as well as existing scientific

knowledge base, and aggregate patents. These findings are consistent with the hypothesis that

the type of innovation responds to profit incentives, though they do not establish causality.

Moreover, this evidence is relevant for the “price effect”–i.e., how innovation responds to

factor price changes (see Acemoglu, 1998, and 2002)–not for the “market size effect”, which

is the focus here.

Third, there is substantial research focusing on innovations in the pharmaceutical industry,

which are clearly related to the current paper. Henderson and Cockburn (1996), Cockburn and

Henderson (2001), and Danzon, Nichelson and Sousa Pereira (2003) study the determinants

of success in clinical trials, focusing mainly on firm and project size. Galambos and Sturchio

(1998), Cockburn, Henderson and Stern (1999), Gambardella (2000), and Malerba and Orsenigo

(2000) discuss various aspects of the recent technological developments in the pharmaceutical

industry, including how firms have responded to new technological opportunities. Ling, Berndt

and Frank (2003) investigate the complementarity between new technologies and the skills of

physicians in the development and spread of new drugs. Lichtenberg (2003) presents evidence

suggesting that the types of drugs that were developed changed towards drugs most useful for

the elderly after Medicare was established. Finally, Lichtenberg andWaldfogel (2003) show that

following the Orphan Drug Act there were larger declines in mortality among individuals with

rare diseases (compared to other diseases), and interpret this as resulting from the incentives

created by the Act to develop drugs for these rare diseases.

Most closely related to this study is Finkelstein (2002). She exploits three different policy

changes affecting the reimbursement of costs of vaccination against 6 infectious diseases: the

1991 policy change that all infants be vaccinated against hepatitis B, the 1993 decision of

Medicare to cover the costs of influenza vaccination, and the 1986 introduction of funds to insure

vaccine manufactures against product liability lawsuits for vaccines against polio, diphteria,

tetanus, measles, mumps, rubella, or pertussis. She finds that increases in vaccine profitability

resulting from these policy changes are associated with a significant increase in the number of
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clinical trials to develop new vaccines against the relevant diseases.

The rest of the paper is organized as follows. We outline a simple model linking innovation

to market size in the next section. The analysis here also shows that the effect of market size on

innovation generalizes to a variety of technological environments. Section 3 briefly explains our

empirical strategy, and Section 4 describes the basic data sources and construction of the key

variables. Sections 5 provides the central empirical results and a variety of robustness checks.

Section 6 contain some concluding remarks, while the Appendix gives further data details.

2 Theory

In this section, we outline a simple framework for the analysis of the influence of market

size on innovation. Subsection 2.1 builds a simple model where research can be directed to

one of many potential drug types, and highlights the relationship between market size and

innovation. In subsection 2.2, we discuss the implications of potential delays in the development

and approval processes of new drugs. Subsection 2.3 generalizes the basic model to show the

response of innovation effort and R&D to anticipated changes in future market size. Subsection

2.4 considers a generalization where research is only imperfectly directed, in the sense that

research for a particular drug line may result in the discovery of better varieties of other drugs.

Subsection 2.5 considers exogenous differences in technological drift across various drug lines,

and finally subsection 2.6 extends the model to introduce an explicit distinction between entry

of generic drugs and entry of non-generic drugs, which may more closely correspond to the

common notion of “innovation”.

2.1 Basic Model

Consider an economy consisting of a set I individuals, each denoted by i. Time is continuous

t ∈ [0,∞), and all individuals are infinitely lived. There are two types of goods in this economy.
First, a basic good, y, which can be consumed or used for the production of other goods, or for

research expenditure. Individual i has an endowment yi (t) at time t. In this paper, we take

these endowment processes as exogenous. Second, there is a large number J of drugs, x1, ....,

xJ . Each drug has a potentially time-varying “quality”, q1 (t), ...., qJ (t). These qualities are

improved by research and development as will be described below. Each individual demands

only one type of drug. Hence, we partition the set I of individuals into J disjoint groups,

G1,...,GJ with G1 ∪ G2 ∪ ... ∪ GJ = I, such that if i ∈ Gj, then individual i demands drug j.
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More specifically, if i ∈ Gj, then his preferences are given byZ ∞

0

exp (−rt) £ci (t)1−γ (qj (t)xji (t))γ¤ dt,
where r is the discount rate of the consumers (also the interest rate in the economy), γ ∈ (0, 1),
ci (t) is the consumption of individual i of the basic good at time t, and xji (t) is the consumption

of individual i of drug j. This Cobb-Douglas functional form, which implies an elasticity

of substitution equal to 1 between the basic good and drugs, and the assumption that each

individual only consumes one type of drug are for simplicity and do not affect the results of

interest here.4

Normalizing the price of the basic goods to 1 in all periods, and denoting the price of drug

j at time t by pj (t), individual demands for drugs are given by

xij (t) =

½
γyi(t)
pj(t)

for i ∈ Gj

0 for i /∈ Gj,
(1)

for all i ∈ I and for all j = 1, ..., J .

At any point in time, there is one firm with the best-practice technology for producing each

type of drug. The best-practice firm in drug line j can produce one unit of drug with quality

qj (t) using one unit of the basic good. Technological progress in this economy takes the form

of increases in qj (t)’s. If there is an innovation for drug line j currently with quality qj (t), this

leads to the discovery of a new drug of quality λqj (t) where λ > 1. For the purposes of the

model, we think that any new innovation is approved (for example by the FDA) and can be

sold to consumers immediately.

We start with a very simple formulation of the R&D technology whereby one unit of the

final good devoted to R&D for drug line j leads to a flow rate of δj > 0 of discovering a new drug

of this type–or equivalently, if total R&D effort at time t is zj (t), the flow rate of innovation

(the rate of entry of new drugs) for this line of drugs is nj (t) = δjzj (t). That the flow rates of

innovation differ across drugs captures the possibility that technological progress is scientifically

more difficult in some lines than others, which is the effect emphasized by science-driven theories

of innovation discussed in the Introduction.

Notice the most important feature of this R&D technology for our focus here: technological

progress is directed in the sense that firms can devote their research effort and expenditure to

4One implication of the Cobb-Douglas functional form is that the share of income that an individual spends
on medicine is constant. This implication can be easily relaxed by considering a utility function with an elasticity
of substitution different from 1, as in the factor market models with directed technical change (see, for example,
Acemoglu, 1998, 2002, 2003b).
It is also straightforward to extend the model so that each individual demands potentially more than one

type of drug, though this would require additional notation.
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developing particular types of drugs. This contrasts with a different model where firms invest

in R&D in an undirected way, and discover new versions of any one of a set of drugs. The

pharmaceutical industry, especially in recent past, is the prime example of an industry where

companies with fairly sophisticated R&D divisions or specialized R&D firms can undertake

research for specific drug lines (e.g., Gambardella, 2000, Malerba and Orsenigo, 2000).5

The demand curves in (1) have an elasticity equal to 1, so the unconstrained monopolist

would like to charge an arbitrarily high price. However, the firm with the best drug in line j is

effectively competing with the next best drug in that line. Consider such a firm with quality

qj (t) charging price pj (t). If this price is arbitrarily high, the next best quality could supply

to the market and make positive profits, driving the best technology to zero profits. Therefore,

the firm with the best drug has to set a limit price so as to exclude the next best firm, or,

formally, make sure that consumers are happy to buy from it rather than buy from the next

best firm even if the next best firm charges the lowest possible price, i.e., equal to its marginal

cost, 1. Imagine the problem of a consumer in this case. If she buys from the best firm with

quality qj (t) and price pj (t) and chooses her optimal consumption as given by (1), she will

have instantaneous utility at time t equal to

(qj (t))
γ (1− γ)1−γ γγ (pj (t))

−γ yi (t) ,

and if she purchases from the next best firm, which, by definition, has quality qj (t) /λ and

charges price equal to marginal cost, 1, she will have utility

λ−γ (qj (t))
γ (1− γ)1−γ γγyi (t) .

The limit price sets these two expressions equal to each other, hence, equilibrium prices for all

j and t satisfy:

pj (t) = λ. (2)

This implies that the instantaneous profits of the firm with best product (technology) with

quality qj (t) in line j at time t is:

πj (qj (t)) = (λ− 1) γ
X
i∈Gj

yi (t) (3)

= (λ− 1) γYj (t)
5Naturally, there exist examples of research directed at a specific drug type leading to the discovery of a

different product, such as the well-known example of Viagra, which resulted from research on hypertension
and angina, and was partly accidentally discovered from the detection of side effects in a clinical study (see,
e.g., Kling, 1998). Nevertheless, such examples appear to be the exception rather than the rule. We return to
this issue below when we consider a hybrid model with both directed and undirected research, and also in the
empirical part.
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where the second line defines Yj (t) ≡
P

i∈Gj
yi (t) as the total income of the group of consumers

demanding drug j, and corresponds to the market size for drug j. Throughout we assume that

all Yj (t)’s are known in advance, which is plausible in the context of demographically-driven

changes in demand. This market size can change because the number of consumers demanding

this product changes, or because their incomes change, or also possibly because new varieties

of drugs steal consumers from this particular drug. Notice that profits of drug companies are

independent from quality, qj (t), which is a feature of the Cobb-Douglas utility function.

All firms in this economy are owned by the consumers, are forward-looking, and discount

future profits at the discount rate r. The discounted value of profits for firms can be written

by a standard dynamic programming recursion. Denote the value of a firm that owns the most

advanced drug of quality qj in line j at time t by Vj (t | qj). This is given by:6

rVj (t | qj) − V̇j (t | qj) = πj (qj)− δjzj (t | qj)Vj (t | qj) (4)

for each j = 1, 2, ..., J , where πj (qj) is the flow profits in drug line j given by (3), and zj (t | qj)
is equilibrium R&D effort at time t on this line by other firms when current technology is qj
(because of the standard replacement effect first emphasized by Arrow, 1963, the firm with

the best technology does not undertake any R&D itself, see, for example, Aghion and Howitt,

1992). To simplify notation, we will typically use zj (t) instead of zj (t | qj). Intuitively, the
flow value of owning the best technology in line j, rVj (t | qj), is equal to the flow profits, πj (qj)
plus the potential appreciation of the value, V̇j (t | qj), but also takes into account that at the
flow rate nj (t) = δjzj (t) there will be a new innovation, thus the current firm will lose its

best-practice status, and make zero profits thereafter.

For the purposes of the mapping this model into reality, note that entry of new drugs that

are not technologically better, but steal customers from the incumbent, such as the entry of

generics, can also be included in zj (t), especially since equation (3) shows that the profits that

a new entrant makes is independent of the quality of its product, as long as it is sufficient to

take over (part of) the market. Thus for now, we think of zj (t) and nj (t) as corresponding to

the entry of both generic and non-generic drugs, and in subsection 2.6, we will present a model

with separate entry rates of generics and non-generics.

There is free-entry into research and development to develop better quality drugs. Therefore,

if there is positive research for some drug line j = 1, 2, ..., J at time t, then the free-entry

condition ensuring zero profits must hold. In other words,

if zj (t) > 0, then δjVj (t | qj) = 1. (5)

6Throughout, we assume that the relevant transversality conditions hold and discounted values are finite.
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Alternatively, we might have zj (t) = 0, and δjVj (t | qj) ≤ 1, in which case research is not

profitable, and in equilibrium, there will be no innovation.

An equilibrium in this economy is sequences of prices pj (t)|j=1,..J that satisfy (2), consumer
demands for drugs xi (t)|i∈I that satisfy (1) and a sequence of R&D levels zj (t)|j=1,..J that
satisfy (5) with Vj (·) given by (4).
An equilibrium is straightforward to characterize. Differentiating equation (5) with respect

to time implies that we must always have V̇j (t | qj) = 0 for each j = 1, 2, ..., J as long as

zj (t) > 0. Substituting this equation and (5) into (4) yields:

zj (t) = max

½
δj (λ− 1) γYj (t)− r

δj
; 0

¾
, (6)

for each j = 1, 2, ..., J , and for all t. From now on, unless otherwise stated, we assume that

Yj (t)’s are such that all equilibrium research levels are strictly positive, i.e., zj (t) > 0 for all j

and t, so that zj (t) =
δj(λ−1)γYj(t)−r

δj
, and we will often drop the max operator.

We now summarize the equilibrium allocation for future reference:

Proposition 1: In the economy described above, there exists a unique equilibrium in which

R&D level in each drug line j = 1, 2, ..., J , zj (t), is given by (6) for all t.

The most important feature of (6) is that it highlights the market size effect in innovation,

which is the main focus of this paper. The greater is the market size for a particular drug, the

more profitable it is to be the supplier of that drug, and thus there will be greater research effort

to acquire this position. Our empirical work below will investigate the strength of this effect in

the pharmaceutical industry over recent decades. In addition, naturally, a higher productivity

of R&D as captured by δj also increases R&D, and a higher interest rate reduces R&D since

current R&D expenditures are rewarded by future revenues.

Another important implication of this equation is that there are no transitional dynamics.

At any point in time, the amount of effort devoted to developing a particular drug line is

determined by the current market size. Past market sizes and anticipated future market sizes

do not affect current research effort. This is an implication of the linear R&D technology, which

ensures that whenever there are profit opportunities, there will immediately be enough R&D

to arbitrage them, thus ensuring V̇j (t | qj) = 0. The intuition for the lack of a response to

anticipated changes in future market size here highlights an important effect in quality ladder

models of technological progress: with a greater market size in the future, firms would like to

own the best-practice product at the time when the market size has actually become larger.

Investing in R&D in advance could be useful to the extent that it achieves this objective.
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However, it is not beneficial to invest in R&D too much in advance, since some other firm

would improve over this innovation by the time the new and larger market size materializes.

With the linear model here, zj can change discontinuously, so investing even a little bit in

advance of the actual increase in the size of the market is not profitable.7 In subsection 2.3, we

will look at a more general technology, which will introduce responses to anticipated changes

in market size, but the same reasoning will limit the extent of these responses.

Also note that equation (6) provides us with a relationship we can easily take to the data.

In fact, in this model research, zj (t), will have a success rate of nj (t) = δjzj (t), thus we can

write:

nj (t) = δj (λ− 1) γYj (t)− r. (7)

This equation relates research output (innovation or entry), which we will approximate with

FDA approval of new drugs, to market size, in this case the total expenditure of consumers

in this line of drug. Since such expenditures are potentially endogenous, for example, de-

pending on drug prices, we will try to exploit sources of exogenous variations originating from

demographic changes. In addition, this equation also encapsulates the alternative view of the

determinants of innovation, which maintains that cross-drug distribution of R&D is determined

largely by technological research opportunities or perhaps by other non-profit related motives.

If there are large and potentially time-varying differences in δj’s, then these may be the primary

factor determining variations in R&D across drug lines, and the market sizes may not have an

important effect. Whether this is so or not is an empirical question.

2.2 Delays in Development and Approval

The baseline model ignores the potential delays in the process of development and approval of

new drugs (for example, DiMasi et al., 1991, report that the eventual marketing of a drug may

take as much as 15 years from the beginning of initial research). To incorporate such delays

in the simplest possible way, suppose that it takes an interval of length T after the research

decision for the drug to be developed, gain approval, and enter the market.

Given this structure, the key value function becomes:

rVj (t | qj) − V̇j (t | qj) = πj (qj)− δjzj (t− T )Vj (t | qj) (8)

instead of (4) above, where zj (t− T ) is the rate of innovation at time t− T . Equation (8) is a

delayed differential equation rather than an ordinary differential equation, so a general analysis

7In practice, companies may also have an incentive not to market their discoveries before the market size
increases in order to prevent competitors from leapfrogging their new product.
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is more difficult. Nevertheless, the unique equilibrium in this case is still easy to characterize

because of the simple structure here. To do this, note that the free entry condition now changes

to

if zj (t− T ) > 0, then exp (−rT ) δjVj (t | qj) = 1, (9)

which recognizes that innovation effort at time t− T will lead to revenues at time t, hence the

discounting for the interval of length T . Equations (8) and (9) together imply that:

zj (t− T ) = max

½
exp (−rT ) δj (λ− 1) γYj (t)− r

δj
; 0

¾
, (10)

which is very similar to (6), except for the term exp (−rT ). This term takes into account

that because of the development and approval delays, costs of R&D are incurred before the

benefits accrue. This equation also makes it clear that longer development and approval delays

discourage innovation.

Equation (10) may give the impression that there should now be a stronger response of

innovation to future market sizes. This is not the case, however, since what we measure in the

data is not the actual R&D expenditure, but entry of new drugs. In this model, entry of new

drugs in category j at time t will be given by nj (t) = δjzj (t− T ), thus the key prediction of

the model changes to (ignoring the max operator):

nj (t) = exp (−rT ) δj (λ− 1) γYj (t)− r,

which only differs from (7) because of the term exp (−rT ). This analysis therefore shows that
delays in development and approval processes do not change the basic predictions of the theory.

2.3 Anticipation Effects

The baseline model considered the equilibrium with a simple linear R&D technology, which

implied no transitional dynamics, and more importantly, no response to anticipated changes in

future market sizes. We now generalize this basic setup in a simple way to obtain a reaction to

(anticipated) future market sizes. To do this, we change the baseline model in one dimension:

we assume that one unit of final good spent for R&D in line j leads to the discovery of a

better drug at the flow rate δjzjφ (zj), where zj is the aggregate research effort devoted to the

discovery of a new drug in this line. We also assume that φ0 (z) ≤ 0 for all z, which implies that
greater research effort runs into decreasing returns within a given period (there are constant

returns to scale when φ (z) = 1 for all z), but throughout zφ (z) is strictly increasing in z, so

that greater aggregate research effort always leads to faster innovation in the aggregate.
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Finally, free-entry into R&D for all lines implies that any new firm can enter taking zj (t)

as given, thus without taking into account the reduction that its entry causes in the innovation

rates of other firms.8

Given this specification, the value function changes from (4) to:

rVj (t | qj) − V̇j (t | qj) = πj (qj)− δjzj (t)φ (zj (t))Vj (t | qj) , (11)

for each j = 1, 2, ..., J , which only differs from (4) because the flow rate of innovation is now

δjzj (t)φ (zj (t)) rather than δjzj (t).

Since each potential entrant takes the aggregate research effort in each line of drug as given,

it anticipates that one unit of the basic good spent for R&D in drug line j will lead to an

innovation at the flow rate δjφ (zj (t)). Thus, the free-entry condition is

δjφ (zj (t))Vj (t | qj) = 1, (12)

for each j = 1, 2, ..., J (again as long as zj (t) > 0).

An equilibrium is defined similar to before, except that now the sequence of R&D levels

zj (t)|j=1,..J have to satisfy (12) instead of (5) with Vj (·) given by (11).
To make further progress in this case, let us assume that Yj (t) = Yj for all t, in other words,

that market sizes for different drugs are not changing over time. Then differentiate (12) with

respect to time, which yields

V̇j (t | qj) = εφ (zj (t))

δjφ (zj (t))

żj (t)

zj (t)
,

where εφ (zj (t)) = −φ0 (zj (t)) zj (t) /φ (zj (t)) is the elasticity of the φ function. Substituting
this and (12) into (11) and dividing by δjφ (zj (t)) for each j, we obtain J differential equations

in zj (t)’s:

żj (t)

zj (t)
=

1

εφ (zj (t))
[r + δjzj (t)φ (zj (t))− δjφ (zj (t)) (λ− 1) γYj] . (13)

Since consumer incomes are now assumed to be constant, the steady-state equilibrium must

have żj (t) = 0, which gives

zSj =
δjφ

¡
zSj
¢
(λ− 1) γYj − r

δjφ
¡
zSj
¢ (14)

8This is the natural assumption given free entry. The alternative would be to assume that there is a
consortium of firms in each line, jointly maximizing profits. In this case, the free entry condition below would
change to: δj

£
φ (zj (qj (t))) + zj (qj (t))φ

0 (zj (qj (t)))
¤
Vj(qj (t)) = 1. This does not affect any of the results of

the analysis.
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as the steady-state R&D level in drug line j = 1, 2, ..., J . In the special case where φ (.) = 1,

this equation boils down to (6) from the previous subsection. Moreover, the steady-state R&D

levels have the same features as the equilibrium there: a greater market size increases R&D,

a greater δj, which corresponds to better research opportunities for this drug line, increases

R&D, and higher interest rates reduce R&D.

An important feature of this equation, which follows from the simplifying assumptions we

employed, is that the equilibrium behavior of zj (t) is independent of research and profitability

in other drug lines. This feature simplifies the dynamics substantially. In addition, the right

hand side of (13) is strictly increasing in zj (t) whenever zj (t) = zSj , which implies that there

can be at most one intersection of the right hand side with the 0 axis, and at this point of

intersection, żj (t) /zj (t) is increasing in zj (t), as drawn in Figure 1. Therefore, (13) defines

an unstable differential equation. This implies that starting away from the steady-state, the

equilibrium zj (t) has to immediately jump to its steady-state value as given by (14). Hence,

there are no transitional dynamics in this extended model either.

However, there is now an equilibrium response to anticipated future changes in market size.

Consider the following situation: it is suddenly announced at date t0 that Yj will increase to

Ŷj in some future date t̂ > t0. How will this fully-anticipated change in market size affect

equilibrium R&D? Suppose there is no change in zj (t) until t̂. This implies that zj (t) has to

jump up discontinuously at t = t̂. But this implies that anticipating this jump, Vj (t | qj) will
be changing before t̂, in particular, V̇j (t | qj) < 0. Since zj (t) is constant, this would violate

the free-entry condition, (12). This reasoning implies that there should be no anticipated

jumps in zj (t), in particular no jump at t = t̂. This is only possible if zj (t) jumps by a

small amount initially at t = t0, and then smoothly increases towards the new steady-state

equilibrium. Therefore, in this model there are no transitional dynamics starting away from

the steady-state, but R&D responds to anticipated future market size changes. Nevertheless,

the same considerations as in the previous subsection, that increasing R&D investment too

far in advance would not be profitable because somebody else would innovate over the new

products before the actual increase in market size materializes, limit this response. In other

words, even if a large change in market size is anticipated far in advance, we would not expect

a large response long time in advance, but the response to build up gradually. In terms of our

empirical work, even if demographic changes are anticipated at least 20 or 30 years in advance,

we may expect significant innovation responses much later, perhaps 5 or 10 years in advance

or even contemporaneously.

The next proposition summarizes the results and compares directly with Proposition 1.
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Proposition 2: Consider the economy described in this subsection with Yj (t) = Yj. Then

there exists a unique steady-state equilibrium in which R&D level in industry j, zSj , is

given by (14).

If zj (t) 6= zSj , then the equilibrium R&D level zj (t) immediately jumps to zSj .

If there is a change at time t = t0 such that it becomes common knowledge that Yj (t) = Yj

for t < t̂ and Yj (t) = Ŷj > Yj for all t ≥ t̂ where t̂ > t0, then zj (t
0) immediately jumps

above zSj , and smoothly converges to ẑ
S
j , reaching it exactly at t = t̂, where ẑSj is the new

steady-state value of R&D level in drug line j for Yj (t) = Ŷj for all t.

2.4 Robustness: Imperfectly Directed Research

The analysis so far assumed that research was perfectly directed in the sense that a firm could

explicitly undertake research for drug line j, which would lead to innovations only in this

particular drug line. Given the randomness involved in scientific research, a more reasonable

alternative might be to presume that research is only imperfectly directed. To investigate the

theoretical implications of this, we return to the baseline model of subsection 2.1, and assume

that one unit of the basic good spent for R&D in the drug line j leads to a flow rate of pδj
of discovering a new drug of this type, and to a flow rate of 1−p

J
δj0 any j0 = 1, ..., J , where

1 ≥ p > 0. This technology implies that the parameter p captures the degree to which research

is directed. When p = 1, we have the model of subsection 2.1, while with p → 0, research

becomes undirected.

With this change in research technology, the dynamic programming recursion for the value

function changes to

rVj (t | qj) − V̇j (t | qj) = πj (qj)−
"
pzj (t) + (1− p)

JX
j0=1

zj0

#
δjVj (t | qj) , (15)

for each j = 1, ..., J . This value function takes into account that a fraction 1−p of the research
directed at other drug lines will result in innovation for this particular drug, thus the rate of

innovation for drug line j is

nj (t) =

"
pzj (t) + (1− p)

JX
j0=1

zj0

#
δj.

The free-entry condition also changes for the same reason, and becomes:

pδjVj (t | qj) + (1− p)
JX

j0=1

δj0Vj0 (t | qj0) = 1 (16)
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for each j.

An equilibrium is defined similarly to before, except that now the sequence of R&D levels

zj (t)|j=1,..J have to satisfy (16) with Vj (·) given by (15).
Summing (16) over j, we obtain that

PJ
j=1 δjVj (t | qj) = 1, and using this, (16) implies

δjVj (t | qj) = 1

for each j = 1, ..., J , which also immediately implies V̇j (t | qj) = 0. Now substituting these

equilibrium conditions back into (15), and solving the resulting J equations simultaneously, we

obtain

zj (t) =
1

p

"
(λ− 1) γYj (t)− r

δj
− (1− p)

Ã
(λ− 1) γ

JX
j0=1

Yj0 (t)−
JX

j0=1

r

δj0

!#
. (17)

The interesting implication of this equation is that even when p is very small (i.e., p→ 0),

there is a very strong market size effect linking research directed to drug line j to the market

size and to profits from sales of that drug. In fact, equation (17) shows the opposite of an ad

hoc intuition: the response of zj (t) to the market size for drug line j becomes stronger, not

weaker, when p is lower. To understand this potentially paradoxical result, notice that directing

research to a drug line that has a larger market size becomes less profitable because some of

this research will lead to discoveries in other fields, which do not have correspondingly larger

market sizes. But on the other hand, the fact that much of the research directed to this drug

line in the future will be dissipated also means that rents from producing the best drug for

a particular line will persist for longer. This second effect dominates, thus zj (t) is now more

sensitive to the market size of drug j.9

Nevertheless this result is somewhat misleading since in this model with imperfectly directed

research, what matters more, and what we will observe in practice, is innovation rates in a

particular drug line, the nj (t)’s, and using (17), we have:

nj (t) = δj (λ− 1) γYj (t)− r, (18)

which is identical to (7), and shows that this framework leads to similar results even when

research is imperfectly directed.

Proposition 3: In the economy described above for any p ∈ (0, 1], there exists a unique

equilibrium in which R&D level in each drug line j = 1, 2, ..., J , the equilibrium R&D

9The reason why the first effect is dominated by the second is that given the linear R&D technology, in
equilibrium we have δjVj (t | qj) = 1 at all points in time for all j, so the fact that some of the research directed
at drug line j leads to discoveries of other drugs does not discourage research towards j.
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level, zj (t), is given by (17) for all t, and the equilibrium innovation rate, nj (t), is given

by (18) and is invariant to the level of p.

This proposition establishes that the basic result derived in this section is robust to general-

izing our setup to an environment where research is only partially directed. This result reflects

the very strong tendencies towards no profits (no arbitrage) in each product (or technology),

present in the endogenous technological change models based on quality ladders. In the next

subsection, we will see that the same tendencies ensure that the results are also robust to

introducing random discoveries at different rates in each drug line.

2.5 Robustness: Technological Drift

So far we have assumed that all innovation results from profit incentives, even if not all research

may be directed perfectly as in the previous subsection. Historical accounts of many discoveries

point out that there could also be a large amount of “technological drift”, meaning random

innovations arising from non-profit and non-economic motives. Even though we have reasons to

suspect that such technological drift is limited in the pharmaceutical industry, where research is

highly organized and very resource-intensive because of the necessary clinical trials and the FDA

approval process, it is useful to briefly investigate the implications of this type of technological

drift. The basic result of this subsection is that the presence of technological drift does not

affect the form of the equilibrium derived above.

To incorporate technological drift into our framework, assume that innovations in drug line

j at time t are now given by

nj (t) = δjzj (t) + ξj (t) (19)

where ξj (t) ≥ 0 is the drift term, while zj (t) is R&D level as before. Let us assume that the time
sequence of ξj (t) is perfectly known by all agents (which is, naturally, a strong assumption).

Then, the dynamic programming recursion for the value of owning the best product in drug

line j = 1, 2, ..., J , changes to

rVj (t | qj) − V̇j (t | qj) = πj (t | qj) −
¡
δjzj (t) + ξj (t)

¢
Vj (t | qj) .

Similar analysis to before implies that as long as there is research in a particular drug line

j = 1, 2, ..., J at time t, we must have the same free-entry condition as before, i.e.,

if zj (t) > 0, then δjVj (t | qj) = 1,

but also

if zj (t) = 0, then δjVj (t | qj) ≤ 1
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is also consistent with equilibrium, and results when ξj (t) is so high that research in this drug

line at this time would be a loss-making endeavor.

Combining these equations, we find that the unique equilibrium has

zj (t) = max

½
δj (λ− 1) γYj (t)− r − ξj (t)

δj
; 0

¾
, (20)

for each j = 1, 2, ..., J , and for all t, and therefore, the overall amount of innovation is given by

nj (t) = max
©
δj (λ− 1) γYj (t)− r; ξj (t)

ª
. (21)

The implications of this extended model are therefore identical to our baseline model, unless

technology drift is so important that the amount of non-economic innovation exceeds the equi-

librium innovation that would have resulted in the absence of such technological drift. In that

case, innovation rates would be determined only technological drift, or by purely non-economic

factors as conjectured by the extreme science-driven views of innovation. Once again, whether

this is the case or not is an empirical question, which we turn to next.

2.6 Generics and Non-Generics

The analysis so far did not distinguish between generics and non-generics. In the empirical

work, we will first look at all new entries, but then distinguish between generics and non-

generic drugs–which likely better correspond to “innovation”. We now briefly discuss how

the predictions of the model change when we incorporate a distinction between generics and

non-generics. We do this in the simplest possible way, and assume that pharmaceutical firms

can engage in R&D to discover new drugs as described above, in particular in subsection 2.1,

or they can engage in costly development to introduce a generic version of an already-existing

drug (without quality improvement). Although bringing a generic drug to the market does not

involve original research, it still requires substantial resources spent upfront (for the approval

process or for marketing).10

Let us suppose that one unit of the final good devoted to prepare a generic for the market in

drug line j leads to the successful entry of the generic at time t at the flow rate θj, and denote

total generic development expenditure for drug line j at time t by xj (t). In practice, patent

life also influences θj, since a longer patent can be approximated by a lower θj. Throughout we

assume that θj > δj, since introducing a generic to the market must be easier than inventing a

new drug.
10An alternative approach would be to link the entry of non-generics directly to the delayed entry of generics,

since generics become possible only after the patents on previous non-generics expire. Nevertheless, there are
significant profit incentives here, since to introduce a generic into the market is not a costless endeavor. A
hybrid model incorporating both such delays and profit incentives is significantly more complicated to analyze.
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If there is entry of a generic into drug line j at time t, we assume that both the incumbent

and the generic entrant receive profits of µ (λ− 1) γYj (t) where Yj (t) is defined in (3) above
as the market size for drug j at time t, and µ ∈ [0, 1/2). Recall that if the generic entrant and
the incumbent engage in Bertrand competition, then they will both charge marginal cost, and

we would have µ = 0. The formulation here allows some degree of non-Bertrand competition

(e.g., Cournot) or collusion, so µ > 0 is possible. If µ = 0, there would be no entry of generics,

and the results in subsection 2.1 would apply.

In addition, we assume that in a market that already includes the incumbent and a generic

producer, there is no further room for a third producer, so we can ignore the potential entry from

further generic producers. Allowing further entry of this sort introduces additional notation,

but does not affect the qualitative results.

Given this structure, the value of innovation (for a non-generic) is now given by

rVj (t | qj) − V̇j (t | qj) = πj (qj)− δjzj (qj)Vj (t | qj)− θjxj (t) [Vj (t | qj)−Wj (t | qj)] , (22)

where πj (qj) = µ (λ− 1) γYj (t) as before and Wj (t | qj) is the value of being one of two
producers supplying drug j at time t. The main difference between this expression and (4)

above is the last term, which takes into account that at the flow rate θjxj (t) there will be entry

of a generic, in which case the innovator loses its monopoly position, and the associated value

Vj (t | qj), and becomes one of two producers, receiving value Wj (t | qj).
With a similar reasoning to before, the dynamic programming recursion for the value of

being one of two producers in the market is given by:

rWj (t | qj) − Ẇj (t | qj) = µπj (qj)− δjzj (t)Wj (t | qj) . (23)

Intuitively, the only reason why the flow of profits captured by Wj (t | qj) will come to an end
is because there is a better drug introduced to the market, which happens at the rate δjzj (t).

Free entry requires that

zj (t) ≥ 0, and δjVj (t | qj) ≤ 1 with complementary slackness
xj (t) ≥ 0, and θjWj (t | qj) ≤ 1 with complementary slackness,

which is similar to (5) above, but we have written it explicitly in the form of a complementary

slackness condition to emphasize that there may not be R&D for new drugs or any generic

entry under certain conditions.

Let us the next assume that

µθj < δj (24)
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for all j. If this assumption does not hold, the entry of new generics is so profitable and

sufficiently rapid that it ceases to become profitable for pharmaceutical companies to undertake

R&D for introducing new drugs, and consequently, quality improvements come to an end. As

long as Assumption (24) holds, similar arguments to before imply that the unique equilibrium

is given by:

zj (t) =
µθj (λ− 1) γYj (t)− r

δj
, (25)

xj (t) =
(δj − µθj) (λ− 1) γYj (t)

θj − δj
.

In contrast, it can be verified that if µ = 0, the equilibrium of Proposition 1 applies, and if

Assumption (24) does not hold, there will be no R&D, i.e., zj (t) = 0, and thus limt→∞ xj (t) = 0,

as they will eventually be two producers in the market for drug j.

Moreover, let nj (t) = δjzj (t) be the the entry rate of new drugs, and gj (t) = θjxj (t) be

the entry rate of generics. Then, we also have:

nj (t) = µθj (λ− 1) γYj (t)− r, (26)

gj (t) =
θj (δj − µθj) (λ− 1) γYj (t)

θj − δj
.

There are a number of important points to note about this equilibrium. First, both nj (t)

and gj (t), i.e., the entry rates of both non-generics and generics, respond positively to market

size. Therefore, this model generalizes the key prediction of our baseline model in subsection

2.1. Second, other comparative static results are now quite different than in the baseline model.

The entry rates of non-generics no longer respond to δj (and zj (t) is decreasing in δj). Instead,

they respond positively to µ and θj (two parameters that should intuitively make entry of

generics more profitable). This is because the rate of entry of non-generics is determined to

ensure 0 profits for generics; once generic drugs enter the market, their producers will continue

to make profits until there is a new and better drug. Finally, differentiating the equations in (26)

with respect to Yj (t) shows that either generics or non-generics may respond more to changes

in market size (it depends on whether µ or (δj − µθj) / (θj − δj) is larger). Plausibly, we expect

µ to be small and θj − δj to be large, and therefore, generic entry to be more responsive to

changes in market size than non-generic entry.11

11In practice, the presence of variable development and approval for non-generics may also imply a smaller
response to the current market size for these drugs.
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3 Empirical Strategy

3.1 Estimation Issues

We are interested in testing whether an increase in the market size, and hence the profitability,

of a particular category of drugs is associated with an increase in innovation in that category,

as suggested by the theoretical relationship in equation (7). As r → 0, we can take logs on

both sides of this equation to obtain:

log nj (t) = constant+ log δj + logmj (t) , (27)

where mj (t) ≡ γYj (t) is the market size for drug line j at time t. We will proxy innovation or

entry of new drugs, nj (t), by new drug approvals by the FDA (Food and Drug Administration)

in broad drug categories as described below. This measure, denoted by Nct for drug category c

at time t, could include the entry of generic drugs.12 Although generic drugs do not correspond

to “innovation” according to the standard usage of this term, they are still driven by the same

profit incentives as innovation, and are similar to innovation in the context of our model–as

noted above, they steal customers from the incumbent. After presenting results using all drug

approvals, we separate generics from non-generics, and investigate whether the relationship

between market size and entry differs for the two types of drugs. Instead of actual market size,

mj (t), we will use potential market size driven by demographic changes, which we denote by

Mct, and discuss its construction below. The log δj terms correspond to fixed effects in this

equation.

Therefore, adding other potential determinants and an error term capturing other unob-

served influences, and allowing the coefficient of logMct to differ from 1 as it will do with more

general preferences than Cobb-Douglas, we arrive at an estimating equation of the form:

logNct = α · logMct +X 0
ct · β + εct, (28)

where Nct is the number of new drugs in category c in time period t, Mct is potential market

size, X 0
ct is a vector of controls, including a constant, with β as the corresponding vector

of coefficients, and εct is a random disturbance term, capturing all omitted influences. The

dependent variable is the logarithm of new drugs, so that other factors lead to proportional

changes in the entry of new drugs. In addition, we will also experiment with models that have

leads and lags of logMct in order to investigate delays and anticipation effects in the R&D

process.
12Two other potential proxies for innovation rates would be patent rates and data on clinical trials. Patent

data, which exist at the detailed industry level (see, e.g., Jaffe, Trachtenberg and Henderson, 1996), does not
have enough information to match to detailed drug categories. We were also unable to obtain data on clinical
trials for a sufficient number of drug types.
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One problem is that Nct is a count variable (number of new drugs), so it can equal 0. In our

data, this is not common, but in most specifications there are typically a few drug category-time

cells where Nct is equal to 0. This makes the estimation of (28) impossible. We take a number

of approaches to this problem.

First, we change (28) to

log Ñct = α · logMct +X 0
ct · β + γ · dct + εct, (29)

where Ñct = Nct if Nct ≥ 1 and Ñct = 1 if Nct = 0, and the variable dct is a dummy that equals

1 when there are no approvals, i.e., dct = 1 if Nct = 0 and dct = 0 otherwise. This procedure

was used by Pakes and Griliches (1980) and has the advantage of simplicity and flexibility (the

data determine how Nct = 0 should be treated). The drawkback of this procedure is that the

variable dct is mechanically a function of Nct, so it can introduce various forms of biases.

Perhaps more satisfactory is to consider the following Poisson model (see, for example,

Wooldridge, 1999, 2002, or Hausman, Hall, and Griliches, 1984):

Nct = exp(α · logMct +X 0
ct · β) + εct, (30)

which can be seen as a slight variant on equation (27) above. Our results below will show that

the two models give similar results when there are only a few empty approval cells. When there

are more empty cells, as when we look separately at generics and non-generics, there can be

somewhat larger discrepancies between the two models, however. In those cases we favor the

Poisson model.

There are likely to be significant differences in the technology of R&D and entry of new

drugs across drug categories, and potentially over time. For this reason, throughout we will

include a full set of drug category and time dummies.13 Thus our baseline linear regression

model is:

logNct = α · logMct +X 0
ct · β + γ · dct + ζc + µt + εct, (31)

where ζc denotes a full set of drug category dummies, and µt a full set of time dummies. The

corresponding Poisson model would be:

Nct = exp(α · logMct +X 0
ct · β + ζc + µt) + εct. (32)

However, the estimation of (32) would lead to biased estimates, since the fixed effects ζc cannot

be estimated consistently. To deal with this problem, we follow Hausman, Hall, and Griliches

13This is the reason why we do not want to estimate (7) directly and use either (28) or (29); time dummies
should have proportional effects on entry of new drugs, whereas a level regression, as in (7), would force them
to have level effects, biasing inference.
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(1984), and transform (32) to obtain:

Sct =
exp(α · logMct +X 0

ct · β + µt)PT
τ=1 exp(α · logMcτ +X 0

cτ · β + µt)
+ εct, (33)

where Sct is the number of drugs approved in category c at time t, divided by the total number

of drugs approved in category c, and T is the total number of time periods in the sample. The

advantage of this equation is that this transformation removes the drug category dummies, and

therefore the coefficient of interest, α, can be estimated consistently, while at the same time

taking out the fixed effects.

This still leaves the issue of how to estimate (33). We pursue two strategies. First, we esti-

mate this equation using nonlinear least squares (NLLS). Second, we estimate it by maximum

likelihood (ML) or quasi-maximum likelihood (QML). Woodridge (1999) shows that both NLLS

and QML estimation strategies have good consistency properties, even when the true model

is not Poisson. Finally, we will also report some estimates from the negative binomial model

which relaxes the distributional of assumptions of the Poisson model in a maximum likelihood

context (see, for example, Wooldridge, 2002, or Hausman, Hall, and Griliches, 1984).

3.2 Potential Market Size and Identification

There are at least two conceptual issues we need to discuss before estimating an equation similar

to (28) or (30). First, there may be reverse causality in that new successful drugs may create

markets for themselves, or at the very least, there may be other omitted characteristics influ-

encing entry of new drugs, correlated with our measure of Mct. As already noted, throughout

we include drug category dummies and time dummies in (28), which control for fixed differences

in innovation possibilities across drug categories, and time variation that might simultaneously

affect the entry rates and the market size in the aggregate. More importantly, our market size

measure Mct is not the realized (ex post) market size of a drug, but the potentially-exogenous

component of market size driven by demographic trends.

Second, as DiMasi et al (1991) report, from the time of initial research, it can take as long

as 15 years for a drug to enter the market. In addition, changes in age demographics can be

anticipated a long time in advance, so drug approvals may respond to anticipated future market

sizes, as highlighted by our analysis in subsection 2.3. First, to reduce the impact of such delays

on our estimates, we will consider ten-year intervals, as well as the shorter five-year intervals,

for our units of observation. In addition, we will also experiment with leads and lags of logMct

to determine whether there are significant delays and anticipation effects.

To implement our empirical strategy, we think of the categories as corresponding to drug
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classes predominantly used by a specific age group. For example, Antibiotics such as Penicillin

are used most by people aged 0-20. On the other hand, Antidepressants, like Prozac or Paxil,

are used mainly by people aged 30-50 and older. We obtain the age composition of the users

of various drugs from micro drug consumption data, and we combine this with the changes in

U.S. demographics calculated from the CPS (Current Population Survey) data. Using these

data sources, we construct our measure of potential market size as

Mct =
X
a

uca · pat, (34)

where pat is the U.S. population at time t that is in age category a, and uca is the consumption

(rate of use) of drug category c per individual in age group a. We computeMct in two alternative

ways: first, using the U.S. population for pat and the number of drugs used per person in age

group a for uca; or using the total income of age group a for pat and the expenditure per

person in age group a for uca. The income-based measure corresponds more closely to market

size in the theoretical model, which is a combination of the number of consumers and their

incomes, and will be our main measure. For both measures, the over-time source of variation

is not from patterns of use by various groups, but purely from demographic changes captured

by pat–uca’s are not time-varying. So for example, changes in prices, which potentially result

from innovations and shift demand towards a particular type of drug, will not cause over-time

variation in Mct.

The most major threat to the validity of our empirical strategy is that there may be certain

omitted non-market-size variables that affect the entry rate of new drugs in a potentially time-

varying way (any variable that is not time-varying is taken out by the drug category fixed

effects). If there are omitted variables related to market size or profit opportunities, this will lead

to biased estimates, but it will not cause spurious positive estimates on our market size variable

(in other words, the presence of such variables is essentially equivalent to mismeasurement of

the appropriate market size, creating attenuation bias). We will also control for changes in

drug coverage in health insurance policies as a potential source of omitted changes in demand.

More threatening to our identification strategy would be omitted supply-side variables. If

our instrument is valid, it should be orthogonal to variation in supply-side determinants of

innovation. We will attempt to substantiate our identifying assumption further by adding a

number of controls, and including lagged dependent variables, controls for pre-existing trends,

and proxies for other incentives to undertake research in a particular field.14

14Another source of endogeneity may be that innovation in certain drug categories extend the lives of the
elderly, and thus increasing their Mct. Lichtenberg (2003) provides evidence that new drugs do indeed extend
lives. This source of endogeneity is not likely to be quantitatively important, however, since the variation result-
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4 Data and Descriptive Statistics

4.1 Basic Data Sources

We have gathered four types of data: demographic data, prescription drug classification schemes,

prescription drug use, and FDA prescription drug approvals. The demographic data come from

the March CPS, 1964-2000. We construct five age groups, 0-20, 20-30, 30-50, 50-60, and 60+.

These divisions are motivated by the drug use patterns of these age groups. To construct in-

come shares, we divide household income equally among the members of the household. Figure

2 shows population shares for the five age groups, and Figure 3 shows the corresponding income

shares (to facilitate comparison with Figure 4, this figure starts in 1970). These figures show

a large amount of variation across age groups over time. In particular, it is possible to trace

the baby boomers, as the fraction of those in the age bracket 20-30 in the 1970s, and those in

the age bracket 30-50 in the 1980s and the 1990s. These variations will be our main source of

identification.

The FDA classifies all prescription drugs into 20 major drug categories, which are then fur-

ther subdivided into 159 categories. These categories are based on a combination of therapeutic

intent and chemical structure.15 We drop 4 of the 20 major categories from this classification:

Anesthetics, Antidotes, Radiopharmaceuticals and Miscellaneous.16 With this procedure we

obtain a total of 34 categories by breaking 10 of the 16 categories into finer groups when there

were significant heterogeneity in terms of users’ ages for the FDA categories. We separate the

major categories of Antimicrobials, Psychopharmacologics, Nutrients, Hormones, Dermatolog-

ics, Neorologics, Ophthalmics, Otologics, Pain Relief and Respiratory because within these

categories there were subcategories with significantly different age profiles of users. For exam-

ple, within Antimicrobials, 0-20 year-olds use Antibiotics (except Tetracyclines) the most, while

Antivirals are used most by people 30 and older. Appendix Table A1 lists the 34 categories.

Our main data source for drug use is the Medical Expenditure Panel Survey (MEPS), which

is a sample of U.S. households over the years 1996-1998. The survey has age and income data

for each household member, and covers about 25,000 individuals in each year. There is also

ing from extended lives in response to new drugs is a small fraction of the total variation in Mct. Nevertheless,
we will also report estimates that instrument Mct by using past demographics, thus purging it from changing
longevity.
15Other authors (e.g., Lichtenberg, 2003) have used a different classification system based on diseases. Since

the FDA provides the therapeutic class for most drugs currently on the market, and some of our prescription
drug use data is coded according to the FDA categories, we use this scheme.
16We drop Anesthetics, Radiopharmaceuticals and the Miscellaneous categories because most of the items

in these categories were not developed for a distinct market. Radiopharmaceuticals are used for diagnostic
purposes, and the Miscellaneous category is comprised mainly of surgical and dental tools. The Antidote
category is dropped because there were few drugs approved and there was little use of the drugs in the surveys.
See the Data Appendix for further details on the contruction of our categories.
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a list of prescription drugs used by each person (if any), and the amount spent on drugs. In

all, there are about 500,000 medications prescribed. We construct drug use and expenditure

per person for each category by age. Appendix Table A1 contains the drug use per person for

each age group for the 34 categories. This table shows a large amount of variation across drug

categories. Many of the categories are used more by older people than by younger, but there are

numerous exceptions. For example, Contraceptives are used most by 20-30 and 30-50 year-olds.

On the other hand, Cardiovascular and Ophthalmic drugs are used primarily by individuals in

the oldest category.

Combining the MEPS and the CPS, we construct our measures of potential market size

according to equation (34). Our population-based measure calculates uca as the number of

drugs per person used in category c by age group a from the MEPS and use total population

in age group a at time t from the CPS for pat. Our income-weighted measure uses expenditure

per person on drug c for age group a from the MEPS, and total income of age group a at time

t from the CPS for pat.

We supplement theMEPS data with the National AmbulatoryMedical Care Survey (NAMCS),

which is an annual survey of doctors working in private practices. The survey includes drug

use for the years 1980, 1981, 1985, and 1989-2000. Observations are at the doctor-patient-visit

level; there are about 40,000 visits per year. Doctors are selected randomly, surveyed for a

week, with patient-visits selected randomly from the corresponding week. The main use of

NAMCS for us is that it covers a longer time period, enabling us to check whether the age

composition of users across categories has changed over time. Using the NAMCS data, we

construct a second drug categorization, with 30 categories. Appendix Table A2 compares this

classification system with the 34 category system developed with the MEPS, listing which of

the 159 FDA categories are in each of our categories. It should be noted that some of the

159 categories have been dropped from one classification system, but not the other, because

there were not sufficient observations to construct reliable estimates of drug use from one of

the surveys. As Appendix Table A2 shows, the two systems are closely related. In some cases,

we have separated the FDA categories in one system but did not do this for the other (e.g.,

Pain Relief drugs). In general the 34 category system is a slightly less aggregated version of

the other.17

Table 1 gives correlations between various measures of drug use. Panel A shows quite a

high degree of correlation between the NAMCS surveys at various dates, indicating that the

17However, there are a number of cases where a given FDA category is combined with a second FDA category in
one system, but with a third FDA category in the other system (e.g., Misc. Antibacterials are with Sulfonamides
in the MEPS system, but with Antiseptics in the NAMCS system).
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age profile of users has not changed significantly over the 1980s and the 1990s. The overall

correlation row looks at the unconditional correlation. We also report weighted correlations,

where observations are weighted by cell size in the drug use microdata (the MEPS or NAMCS).

This is motivated by the fact that our estimates of the age distribution of users are more

noisy when there are fewer individuals using drugs in a particular category. That the weighted

correlation is uniformly greater than the overall correlation confirms this. The third row reports

mean correlation by drug, which calculates the within category correlation between the two

measures and then averages it across all categories. This measure is more informative for the

question of whether the age distribution of the users for a particular drug has changed over

time.

Panel B performs the same calculation for the three waves of the MEPS, and similarly shows

a large amount of persistence in age distribution of users, though now the calculations refer to

a shorter time frame.

Finally, panel C shows a high degree of correlation between expenditure per person and

use per person in the MEPS data. But perhaps surprisingly, there is low correlation between

the NAMCS and the MEPS. This is because the two surveys yield very different estimates

for total use of each category (but very similar estimates of relative use by age groups within

each category, as shown by the high level of mean correlation by drug). We conjecture that this

reflects the fact that NAMCS, which samples doctors in private practice rather than individuals,

is not as representative as the MEPS.

The last major data source is a list of FDA new drug approvals. This dataset contains the

date at which the FDA approved the drug, as well as other information on the drug, such as

which company submitted the drug for approval. We drop over-the-counter drugs and drugs

that have the same identifying characteristics (i.e., same name, company, and category, or the

same FDA approval number). This is because many FDA approvals (about 2,500 since 1970)

are for a pre-existing drug with a new dosage level.18 We focus on the time period 1970-2000.

Since we can only match approvals for drugs that are still listed by the FDA, as we go back

in time, the quality of the approvals data deteriorates.19 In addition, because we are using age

composition from the 1990s (or the 1980s and the 1990s for the NAMCS), as we go back in time,

the quality of our measures of potential market size also deteriorates. Our approvals dataset

for 1970-2000 includes 7,000 prescription drugs, which includes both generics and non-generics

18In addition, we also drop the so-called Orphan Drugs, which treat rare conditions, affecting fewer than
200,000 people. An example is botox, first developed to treat adult dystonia, which causes involuntary muscle
contractions. We drop these drugs because we have difficulty matching them consistently, and also because they
receive special inducements under the Orphan Drug Act.
19We use the earlier data when we estimate lagged depend variable models and control for pre-existing trends.

26



(see the Appendix for details). Since 1970, there have been about half as many approved

non-generics as generics.

Figure 4 shows the log of drug approvals over time, to compare with changes in income

shares depicted in Figure 3 (or population shares shown in Figure 2). To construct Figure 4,

we compute drug approvals over five year intervals for the 34 categories. We then combine the

34 categories into five groups, based on the age group that most uses that category (thus this

cut of the data uses only part of information that we will exploit in the regression analysis).

Finally, we remove common year dummies from these series to make comparison easier, and

plot the log approvals for each of the five groups.20 Comparing this figure with Figure 3,

a positive association between contemporaneous changes in population share and changes in

drug approvals for the corresponding age group can be detected visually. For example, the

population share of the 30-50 group increases steadily throughout the sample, and so does the

entry of drugs most used by this group. Both the share of population and the entry of drugs

for the age group 0-20, on the other hand, show a downward trend, while those for the 60+ age

group show a mild increase followed by a mild decline. Table 2 also gives similar information

about changes in (log) population by age group from the CPS and census data, and information

about drug approvals for categories arranged according to the age group most using the drug

in question. The information in Table 2 confirms the patterns in Figures 2-4. These patterns

are explored in greater detail in the regression analysis below.

5 Results

5.1 Basic Specifications

Table 3A provides the basic results from the estimation of (32) and (31) with non-linear least-

squares (NLLS) and ordinary least-squares (OLS), and Table 3B reports maximum likelihood

estimates of the Poisson and negative binomial models. We start with the potential market

size measure constructed using MEPS data. These basic specifications do not contain any

covariates other than drug category effects and time effects. The results indicate large and

significant effect of (potential) market size logMct.

In column 1 of Table 3A, we start with our basic “income-weighted” measure of logMct.

constructed using expenditure data from the MEPS data set and income from the CPS, with

20There appear to be a number of institutional reasons behind the large fluctuations of approvals around a
general upward trend. For example, in 1989, it was discovered that some FDA officials were taking bribes to
speed up the approval process for generic drugs. As a result, in the early 1990’s the approval process for generics
was greatly slowed. See, for example, The Washington Post, August 16, 1989. When we separate our approval
data into generics and non-generics, we see a large drop in generics approvals in the early 1990’s, but only a
small decline for non-generics. We thank Ernie Berndt for suggestions on this issue.
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the time periods corresponding to five-year intervals. Observations are weighted by MEPS cell

sizes, which is motivated by the fact that our estimates of age composition in smaller categories

are substantially less precise, and unless otherwise stated, all standard errors are corrected for

heteroscedasticity using the Huber-White formula. This basic specification leads to an estimate

of α equal to 7.33 with standard error 1.81 using NLLS, which is significant at the 1 percent

level. The OLS estimate is somewhat smaller, and less precisely estimated, 5.64, with standard

error 2.52, thus significant only at the 5 percent level.21 The quantitative magnitude of the

effect in column 1 is plausible but large, implying that a 1 per cent increase in our market size

measure leads to about a 6 to 7 percent increase in drug approvals.22 In addition, the partial R2

of the OLS specification is 0.18, suggesting that our measure of potential market size explains

a sizable fraction of the total variation in the entry of new drugs.

Figure 5 shows a plot of the residuals of logNct against the residuals of logMct in the OLS

regression, in both cases after drug category and period dummies are taken out. Observations

are labeled by their drug category codes (see Appendix Table A1), and each code appears more

than once, since there are multiple periods. The line in the figure corresponds to the estimated

relationship reported in column 1. The figure shows that this relationship is not driven by

outliers or some specific drug categories. Nevertheless, it can be seen that categories 42, 43

and 61 (Anorexiants, Central Nervous System drugs and Vitamins/Minerals) typically fit the

pattern less well and are outliers in either direction. Motivated by this observation, we also

estimated the basic regression using NLLS, and excluding these three categories. This leads to

a very similar estimate of 7.50 with a standard error 2.72.

In column 2, we use ten-year intervals instead of the five-year intervals used in the previous

columns. This is useful for two distinct reasons: first, there might be substantial noise in the

entry of new drugs during the five-year interval; and second, given the lags and leads involved in

the research process, ten-year intervals might better correspond to the relevant match between

market size and entry (or innovation). The estimate of α using NLLS is now 5.58 with standard

error 2.24, significant at the 1 percent level. While this is smaller than the estimate in column

1, the ten-year OLS estimate is slightly larger than the five-year estimate. In both cases the

standard errors increase slightly in column 2. If five-year intervals were the appropriate time

length, going to ten years should create attenuation bias, reducing the coefficient. The NLLS

and OLS results are inconclusive on this point, and in the remainder, we look at both five-year
21If we cluster the standard errors at the level of drug categories, thus making an adjustment for potential

serial correlation, the standard error increases from 2.52 to 2.71. Throughout, whether we do this type of
clustering or not has little effect on standard errors. We also report lagged dependent variable specifications
below as a direct way of dealing with potential serial correlation.
22We also ran this basic specification in levels (rather than logs), and this gives a similar, but less precise

estimate, implying that to 1 percent increase in market size leads to a 3.4 percent increase in entry of new drugs.

28



and ten-year intervals.

Although the “income-weighted” measure of market size seems more satisfactory, in columns

3 and 4 we also look at the effects of changes in market size driven purely by population changes.

Using this measure leads to estimates that are typically a little over 1 percentage point smaller,

and are only slightly less precisely estimated.

Columns 1-4 weight the results by expenditure or number of users (cell size) of drugs in

that category from the MEPS, since the age distribution of users in drug categories with few

users is fairly noisy. To see the effect of weighting on the estimates, columns 5 and 6 report

unweighted regressions. The results become less precise, and there is considerable attenuation.

The NLLS estimates are now smaller than in columns 1 and 2, but still significant at the

1 percent, while OLS estimates are only significant at the 10 percent level. This indicates

that there is a weaker relationship between market size and entry of new drugs within smaller

drug categories. We believe that this reflects the substantially less precise estimation of age

composition in those categories, which was also reflected by the correlations in Table 1. This

conjecture receives further support from the fact that when we use age categories constructed

from the NAMCS, which has a more even distribution of observations across drug categories,

the unweighted results are also significant (see Table 7 below).

The results in Table 3B are broadly similar, and show that the main results are robust

to different estimation methods. In panel A of that table, we use maximum likelihood. The

number below the estimate is the maximum-likelihood standard error, while the number in curly

brackets is the robust standard error that does not impose the Poisson structure to calculate

the standard errors, and instead uses the Huber-White formula. The estimates are unweighted.

In the first two columns, we compute market size using income and expenditure. The estimates

are slightly larger than the corresponding estimates in columns 5 and 6 of Table 3A. In panel

B we use a weighted maximum likelihood procedure, and obtain estimates that are similar to

the estimates in columns 1-4 of Table 3A. Finally, we also report estimates from a negative

binomial model in panel C, which allows for overdispersion of the Poisson parameter. In this

case, our estimates are somewhat smaller than those in columns 1-4 of Table 3A, though still

significant at the 5 percent level.

5.2 Delays and Anticipation Effects

The theoretical analysis suggested that delays in the development and approval processes are

unlikely to create delays in the entry of new drugs in response to changes in market size, but

there is room for new drugs to enter before the actual increase in market size because of antici-
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pation effects, especially since demographic-driven changes in market size should be anticipated

in advance. We investigate the role of delays and anticipation effects in this subsection by in-

cluding lags (logMc,t−1) and leads (logMc,t+1) of potential market size on the right hand side

of our estimating equation.

Column 1 of Table 4 replicates the basic specification from Table 3A for comparison.

Columns 2 and 3 include the market size from the previous period, using five- and ten-year

intervals. In column 2, the coefficient on current market size is larger than our baseline, 9.14

(standard error 3.03) with NLLS, and 11.10 (standard error 4.40) with OLS, and the coeffi-

cient on previous market size is negative (and statistically significant with NLLS, but not with

OLS).23 This pattern likely reflects the correlation between current and previous market size.

Regardless, it is clear that new drug entry responds mainly to current market size. In column

3, the coefficients on current market size are smaller than the baseline and insignificant, but are

much larger than the coefficients on past market size. Columns 4 and 5 report regressions that

only have lagged market size. With five-year intervals, the coefficient is small and insignificant,

and with ten-year intervals, it is negative and significant at the 1 percent level for NLLS. We

conclude from these results that there is no evidence of significant delays in the response of

entry of new drugs to changes in market size.

In column 6, we include the current and one period ahead market size in our estimation of

the model. The estimate of current market size in panel A, 3.02, is considerably smaller than

the baseline, and is insignificant. The coefficient on future market size is 8.14 and significant

at the 1 percent level. Using ten-year intervals in column 7, both the current and future marke

size are significant and approximately of the same magnitude. These results suggest that there

is some anticipation effect, which is confirmed in columns 8 and 9, where we find a large and

significant coefficient when we include only future market size. These results indicate that

pharmaceutical companies respond to anticipated changes in demographics with five- or ten-

years lags. This pattern is consistent with the fact that demographic trends are anticipated

long in advance and with our theoretical results, which illustrated the possibility of limited

anticipation effects.24

23We construct the lagged market size measures for 1960s using demographic information from the CPS, so
the number of observations and does not decline.
24Here “limited” does not refer to the strength of the effect, but to the fact that the response to market size

is 5-10 years before the change in market size, not further in advance. If we include further leads of market
size, these are much smaller and insignificant. For example, the 15 years lead when included by itself is highly
insignificant; the NLLS estimate is 3.63 with standard error equal to 4, and the OLS estimate is 4.29 with
standard error of 5.34.
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5.3 Changes in Health Insurance Coverage

Our market size measure only exploits changes in potential market size due to demographic

trends. Another possible source of variation in market size comes from changes in coverage

of drug expenditure in private or public health insurance programs. Finkelstein (2003), for

example, exploits changes in the coverage of various vaccines to estimate the effect of these

policies on the development of new vaccines.

During our sample period, there were significant changes in the coverage of drug expenditure

in health insurance plans. For example, the percentage of 0-20 year-olds with some form of

private health insurance coverage fell from about 73% to 69% between 1974 and 1996 (authors’

calculations from the National Health Interview Survey). In the meantime, the corresponding

percentage of 60+ year-olds rose from 62% to 75%. Furthermore, there have been changes

in Medicaid eligibility rules, designed to insure more poor children. Since the age profile of

drug use varies across categories, these changes in health insurance coverage induce additional

changes in market sizes. We now investigate both whether controlling for this source of variation

in potential market size affects the estimates of the impact of our measure Mct, and whether

insurance-induced changes in market size also have an effect on the entry of new drugs.

We use the National Health Interview Survey (NHIS, 1972-1996) to construct the fraction

of each age group covered by a private health insurance plan. Because there is no consistent

information on prescription drug coverage, we assign prescription coverage to any individual

with both doctor and surgical coverage. Prescription drug coverage is highly correlated with

this measure in the years where we can observe it. The NHIS also includes information on

Medicaid, which covers prescription drugs, and on Medicare, which does not cover prescription

drugs. The latter enables us to perform a “falsification test” to check the validity of our results.

Using the NHIS, with direct parallel to ourMct measure, we construct the following variable:

Hct =
X
a

uca · pat · fat, (35)

where fat is the fraction of age group a in period t with private health insurance, and uca and

pat are expenditure and income, as described above (in this section, we always use income based

market size and weights). We add this variable to our estimating equations (31) and (32) as

part of the covariate vector Xct.25 The estimation results are reported in Table 5.

The addition of logHct in column 1 has a small effect on the estimate of α relative to

25We can loosely think of logHct as the interaction between logMct and age-specific changes in insurance
coverage rules over time, the fat’s. Since the fat’s do not very by drug category, we can think of their main
effects being absorbed by the fixed effects. The analogy is only imperfect, however, since the interaction takes
place when Hct is constructed at the microlevel.
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column 1 of Table 3A; the coefficient drops to 6.44 and the standard error increases to 3.11.

The estimate of the coefficient of logHct is small and insignificant in both regression models.

In column 2, we use ten-year intervals. The estimate of α decreases slightly (to 4.72 from the

comparable estimate of 5.58 in Table 3A) and is no longer singificant at the 5 percent level.

In column 3, we use the fraction of people covered by Medicaid for fat, with five-year

intervals. Medicaid eligibility rules have changed to make children more likely to be covered.

In the 1970s, about 9% of 0-20 year olds were covered by Medicaid; this fraction rose to 16%

by the late 1990s. Exploiting these changes leads to an estimate of α nearly identical to the

estimate in column 1. In column 7, we use the fraction covered by Medicare. Since Medicare

does not cover prescription drugs, this should have no effect on the estimate of α, and the

estimates there confirms this.

Columns 4, 5 and 6 repeat the same specifications in columns 1, 2 and 3 using the leads of

the market size measure, logMct and confirm the findings in Table 4 of significant anticipation

effects five to ten years before the actual changes in market size. In these specifications, we

still include the current values of logHct (since there is less of an argument that there should

be anticipation of future changes in this variable). The results are very similar if we instead

include leads of this variable.

The results in columns 1-7 indicate no effect from changes in market size due to health insur-

ance coverage, the logHct variables over and above logMct, though their coefficients are always

positive. This result might reflect the fact that logHct and logMct are positively correlated by

construction, so estimating the effect of logHct separately is difficult. Whether logHct affects

entry of new drugs is interesting in itself, and also informative for the question of whether

the variable logMct is capturing the effect of market size or some other factor. Columns 8, 9

and 10 investigate this question by dropping logMct. In column 8, we find that the effect of

changes in market size, using private health insurance coverage, is significant at the 1 percent

level using NLLS, and at the 10 percent level with OLS. The coefficient is somewhat smaller

than the corresponding coefficient for logMct, but broadly comparable. There are a number

of reasons to expect the coefficients on the insurance-driven and demographic-driven market

sizes to differ, most notably because the two affect different types of drug categories, and the

demographic-driven changes are anticipated further in advance, potentially enabling a greater

response. In column 9, we see that there is also a statistically significant effect of Medicaid

insurance on the rate of entry of new drugs, but now the coefficient is much smaller.26

26Potential explanations include: (1) the fact that there is a negative correlation between Medicaid insurance
and private insurance; (2) the fact that changes in Medicaid insurance affect only a few drug categories, specifi-
cally those for 0-20 year-olds, where the results may be less precise or the response of pharmaceutical firms less
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In column 10, we repeat the same regression using Medicare. Since Medicare does not

provide drug coverage, this should be interpreted as a “falsification exercise”. It should be

noted, however, that this is a fairly demanding falsification exercise, since logMct and logHct

are correlated by construction. In any event, the results of this falsification exercise in column

10 is consistent with our presumption. Although the estimates are positive, they are not

statistically significant, providing some support for our presumption that the positive effects of

logMct and logHct we are estimating are not spurious.

5.4 Potential Supply-Side Determinants of Innovation

The main threat to our identification strategy is potential correlation between our market size

measure and supply-side determinants of innovation, such as changes in scientific incentives, or

in scientific opportunities as captured by the δj’s in our model. Since such factors are difficult

to observe, most of them will remain “omitted”. In this subsection, we take a number of

approaches to investigate the potential non-profit determinants of innovation.

First, it may be plausible to presume that changes in scientific constraints and opportunities

may create changes in innovation rates. In terms of our model, the concern is that the δj’s

change over time (permanent differences in δj’s are already taken out by our drug category

fixed effects). If they do so, they may be serially correlated. In that case, we can partially

control for the impact of changes in scientific opportunities by adding lags of logNct to our

basic specifications.

Columns 1 and 2 of Table 6 report the results of estimating a lagged-dependent variable

specification, by adding a one-period lag of the dependent variable, logNct−1, to our basic

specifications. In the OLS version, the basic regression therefore changes to:

logNct = α · logMct + ψ · logNct−1 + γ · dct + δc + φt + εct. (36)

Since logNct−1 is correlated with the error term mechanically, OLS estimates to this equation

would be biased, and we deal with this problem by instrumenting logNct−1 with logNct−2.

This is a valid instrument as long as there is no serial correlation in the error term, εct (see, for

example, Blundell and Bond, 1998). This specification is also useful more generally if there are

other sources of serial correlation, or some other reason for mean reversion.

pronounced; (3) the fact that the changes in market size resulting from Medicaid eligibility rules may be too
small for drug companies to devote significant resources. To check the potential validity of the second hypothe-
sis, we constructed a pseudo-market size measure equal to Mct for the 0-20 age group, and 0 for older groups.
Using this measure in our baseline specification of Table 3A, we obtain a coefficient of 0.34 with standard error
0.04, which is very similar to the estimate for Medicaid. This suggests that there is considerably less response
to changes in demand coming from the youngest age group, and gives some support to the second hypothesis
here.
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The estimates of α from equation (36), reported in columns 1 and 2, are quite similar to

the baseline. The lagged dependent variable, logNct−1, is significant and negative for five-year

intervals but not for ten-year intervals, suggesting that the degree of serial correlation due to

scientific constraints or opportunities, or other sources, is relatively small.

Our second strategy looks at variation in the health benefits of new drugs across categories.

New drugs in our data set include both drugs that are demanded by the consumers but do

not “save lives”, such as Prozac, Paxil, Vioxx, or Viagra, or those that actually save lives such

as heart medicines or cancer treatments. A plausible conjecture is that non-profit incentives

to develop drugs would be particularly responsive to opportunities to save lives or cure major

illnesses. This conjecture receives support from the results of Lichtenberg (2003), which show

the effect of pharmaceutical innovations on declines in mortality. To investigate this issue, we

measure the number of life years lost corresponding to each drug category using the Mortality

Detail Files from the National Center for Health Statistics from 1970-1994. Following Licht-

enberg (2003), for each death, we subtract the person’s age from 65, then calculate the sum

of that number by drug and year. If someone dies at age 32, this counts as 33 life years lost;

people dying older than 65 receive no weight in this calculation.27

We add this measure of life years lost to the right hand side of our baseline regression models

as a proxy for this source of non-profit incentive to undertake research.28 Since we are using

mortality data prior to 1995, we drop the last time period from the regression. The baseline

regression for the years 1970-1994 is reported in column 3 of Table 6, and is approximately the

same size as the baseline using all years. Column 4 reports the result of using the life years

lost variable, and finds no change in our estimate of α. The coefficient on the life years lost

variable (unreported) is small and insignificant.29 In the rest of this table, in addition to the

NLLS estimates in panel A and the OLS estimates in panel B, which use current market size,

we also report the NLLS estimate with leads of market size in panel C. In column 4, these lead

results are similar to our baseline estimates in Table 4.

Third, we turn to another potential non-demand determinant of innovation, scientific fund-

ing. To investigate the implications of differences in scientific funding for various drug cate-

gories, we used the Computer Retrieval of Information on Scientific Projects (CRISP) dataset

(details in the Data Appendix), and created a variable measuring total amount of federal fund-

27Note that the Mortality Detail Files are coded by disease class, so we must convert the classification to our
system. Since many of our categories contain diseases or conditions that do not lead to death, we obtain many
empty cells; typically there about 23 empty cells per five-year interval.
28We obtain very similar results if we take the log of this variable, and set log of 0 to 0.
29We also ran separate regressions using five- and ten-year lags of life years lost (both unreported), and again

find no change in our estimates of α.
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ing for research projects in all drug categories. We then include this variable as a control on

the right hand side. To the extent that government funding also responds to potential market

size (for example, because drug companies have a greater tendency to apply for funding in

areas where they want to do research), this variable would be correlated with our market size

measure. In practice, the correlation is low, and columns 5 and 6 show that the inclusion of

this variable or both its current and lag values has little effect on our estimate of α

Fourth, to control for potential trends in scientific opportunities across drug categories, we

add proxies for pre-existing trends. If pre-existing trends were important, we would expect

the estimation of equation (36) to have shown an important role for lagged FDA approval.

Nevertheless, we also look directly at the importance of pre-existing trends. To do this, we

construct an estimate for pre-existing trends as: ∆c = (logNc,60 − logNc,40) /2, where logNc,40

is the log approvals for category c in 1940 and logNc,60 is the log approvals in 1960. We then

estimate the equation:

logNct = α · logMct +
X

i=80,90

∆c · σi + δc + φt + εct, (37)

where σi’s are period dummies for the 1980s and 1990s. This specification allows drug categories

that have grown at different rates between 1940 and 1960 to also grow at different rates in the

1980s and the 1990s. Column 7 reports the results of this exercise. The coefficient on (log)

market size is similar to our baseline estimate, 6.49, with standard error 2.32. Column 8 repeats

the same exercise with∆c = (logNc,70 − logNc,40) /3 as the measure of pre-existing trends. This

estimate is also similar to our baseline. These results are perhaps not very surprising, since

pre-1970 approvals are likely to be considerably noisier, thus only an imperfect control for

pre-existing trends (in fact, the 1940-70 and 1970-2000 changes in approvals are essentially

uncorrelated across drug categories).

An alternative strategy is to include linear time trends. This strategy is considerably more

demanding, since using basically three ten-year observations, we now have to distinguish be-

tween linear trends and the effect of changes in market size, which are typically quite smooth.

The estimating equation now becomes:

logNct = α · logMct + δc + φt + ηC · t+ εct,

where c refers to the 34 detailed drug categories, and C refers to the relevant 16 major drug

category, i.e., the one which detailed category c belongs to. We expect technological differences

to be captured by which of the 16 categories they belong to, since these categories were created

based on therapeutic intent, while the subcategories are based on use by age group. The

35



estimates, reported in column 9, are smaller than our baseline, but still significant. For example,

with NLLS, the estimate of α is 5.38 (s.e.=2.48). The OLS estimate is similar, but the larger

standard error means it is insignificant. Using lead market size instead of current market size

results in a similar pattern: the NLLS estimate, 10.65 (s.e.=3.92), is significant at the 1 percent

level, while the (unreported) OLS estimate, 9.72 (s.e.=5.52) is only significant at 10 percent.

As a final check, we look at the potential effects of advances in biotechnology, such as

the use of recombinant DNA, or other technological changes, during the late 1980s and the

1990s. In terms of our model, these developments would correspond to changes in the δj’s. In

column 10, we drop the categories of Cancer and Cardiovascular, which, according to the FDA

approval list, have experienced the greatest number of Orphan Drugs. Although, as noted in

footnote 18, our dependent variable does not include these drugs, it is useful to check that the

results are robust to dropping the categories where entry of these drugs may have played an

important role. The estimates in column 10 are nearly identical to the first column of Table

3A, showing that our results are not sensitive to dropping these two categories. In addition,

there is anecdotal evidence that biotechnology firms were first active in producing insulin (the

Glucose and Thyroid category) and in the Hematologic category.30 In column 11, we drop these

two categories, and again find that our results are essentially unchanged.

Finally, there is a group of drugs known as biologics, which include some vaccines, blood and

plasma related products, and other products such as interferon and erythroproteins (used for

red blood cell production). These drugs and products go through a separate FDA regulatory

process, and are not included in our variable Nct. Since biotechnology firms are particularly

active in producing these types of drugs (especially, interferon and erythroproteins), we can

assess the role of biotechnology firms by adding biologics approvals to our measure of drug

approvals. The results of this regression, reported in column 12, show little change in the

estimates of α.31

The results in this subsection therefore show that a number of controls for other (non-

market-size related) determinants of the entry of new drugs have little effect on our main

finding. These results are far from conclusive on the effect of scientific or other non-profit

considerations in pharmaceutical research, since there may be other omitted characteristics.

30Biotechnology firms were also active in producing human growth factor, but we have not included this
category in the analysis since there are only a small number of individuals using these drugs in the MEPS and
NAMCS.
31We also dropped the categories where biologics are most common, Antivirals (12), Hematologics (20) and

Immunologics (80), with little effect on our estimate of α.
Another possibility of raised by advances in biotechnology is that research may have become more “directed”in

the late 1980s and the 1990s, for example, suggested by Galambos and Sturchio (1998), Gambardella (2000),
and Malerba and Orsenigo (2000). We investigated this possibility by adding an interaction between logMct
and a post-1990 dummy, and found no evidence for such a change.
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Nevertheless, they are quite supportive of our identification strategy.

5.5 Reverse Causality

Lichtenberg (2003) shows that new drugs have increased the average age at death (and hence, to

a lesser extent, life expectancy) by as much as 1 percent per year. This introduces the potential

for reverse causality whereby the market size for successful drugs may be endogenously larger,

because their users live longer. We think this is not a first-order concern, since the drug-induced

changes in population are likely to be small relative to the large demographic changes that we

are exploiting. Nevertheless, we address this issue by instrumenting for current population

using the corresponding population from 10 years before. For example, we use the population

fraction of 50+ year-olds in 1970 as an instrument for the population fraction of 60+ year-olds

in 1980. The fraction of 50+ year-olds is highly correlated with the fraction of 60+ year-olds

10 years later, but is unaffected by new drugs that that are developed in the intervening 10

years, thus solving the reverse causality problem.

In column 2 of Table 7, we instrument for market size with past market size. With NLLS,

the estimate is 6.90 (s.e. =2.95). This is slightly lower than the non-instrumented estimate for

the same time period reported in column 1. Columns 3 and 4 show the corresponding results

using ten-year intervals. The instrumented estimates in column 4 gives larger coefficients than

the corresponding non-instrumented results. The NLLS estimate is significant at the 1 percent,

while the linear model yields an estimates that is significant at the 10 percent. These results

therefore show no evidence of reverse causality.

5.6 Results from the NAMCS

The rest of Table 7 repeats some of our main specifications using data from the NAMCS. This

is a useful exercise for a number of reasons (despite the potential problems with the NAMCS

noted above): first, the drug categories that we constructed are somewhat different between

the MEPS and NAMCS; second, the NAMCS has a more even distribution of users across drug

categories; and finally, because the NAMCS starts in 1980, we can check whether our use of

drug consumption and expenditure data from the late 1990s introduces any biases.

Column 5 shows our baseline regression, with the same specification as column 3 of Table

3A (we cannot repeat the specifications of columns 1 and 2, since the NAMCS does not provide

drug expenditure information). The estimate of α using NLLS is 3.60 with standard error

1.43, significant at the 5 percent level, which is considerably smaller than the corresponding

MEPS estimate. Column 6 shows that this disparity is due to differences in samples, and not
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due to differences in classification systems. In this column we use the MEPS data with the

NAMCS classification system, and obtain estimates similar to column 3 of Table 3A. Therefore,

the results differ most likely because we have different use per person estimates from the two

surveys, which are likely due to the way the NAMCS samples are constructed.32 Since the

MEPS draws its sample from all U.S. households rather than from doctors in private practice,

we believe that the MEPS gives better estimates for market size.

In column 7, we use ten-year time intervals. Both the NLLS and OLS are smaller than the

five-year estimates in column 5, though broadly comparable. Columns 8 and 9 report the results

without weighting by drug category size. In both columns, the estimates are somewhat larger

than their counterparts in columns 5 and 7. This contrasts with the less precise unweighted

estimates from the MEPS, and confirms our conjecture that the MEPS pattern was largely

reflecting the less precise age distribution estimates for the smaller categories in that data set.

The more even distribution of individuals across drug categories in NAMCS enables a more

precise estimation of age distribution of users in the smaller cells.

Finally, we use the NAMCS to investigate whether our reliance on drug use data from the

late 1990s induces any systematic bias. To see the potential reason for concern, suppose that a

Gastrointestinal drug that is a major improvement over existing drugs enters the market before

the first year of the MEPS, 1996, and is consequently used by a large number of 30-50 year-olds

for the 1970-2000 period. The drug use and expenditure per person we estimate from the MEPS

for Gastrointestinals would include the use and expenditure of that drug. As a result of the

entry of this successful drug, we may overestimate the market size of Gastrointestinals for 30-50

year-olds. To correct for this possibility, we construct an alternative estimate of market size,

M1980
ct from NAMCS, utilizing the use per person numbers, u1980ca , only from the 1980 survey

of NAMCS. We then estimate equation (33) post 1980, using NLLS and instrument logMct

using logM1980
ct . For comparison, using our baseline measure only for 1980 onwards, we obtain

an estimate of 6.04, with standard error 4.07 (column 10). The estimate using logM1980
ct in

column 11, on the other hand, leads to an estimate of α equal to 6.86 with standard error 4.15,

significant at the 10 percent level, very similar to the estimate in column 10. This comparison

suggests that using numbers from the MEPS does not lead to any significant bias.

32If we calculate market size using the fraction of total use for each age group rather than use per person for
each age group, we obtain very similar estimates from the two surveys (which are closer to the MEPS estimates
reported in the text). We consider this alternative measure of drug use to be less natural than expenditure per
person, but it has the advantage of not being sensitive to the total expenditure by category.
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5.7 Generics vs Non-Generics

Our analysis so far has combined generic and non-generic prescription drugs. As discussed

in the theory section, although generic drugs may also correspond to a form of “innovation”

in the sense that they divert business from incumbents and offer lower prices, the innovation

process for developing a generic is different from that for a non-generic. It is therefore useful to

separately look at the response of the entry of generics and non-generics to changes in market

size.

Table 8 shows the results of some of our specifications using only generic drugs for Nct with

NLLS and OLS. Table 9 is similar and is for non-generics. Because we now look at generics

and non-generics separately, there are more empty cells; for example, using all drugs and 5

year intervals, there are 7 empty cells, but there are 20 and 22 for generics and non-generics,

respectively. Therefore, in Tables 8 and 9, we trust the NLLS results more than the OLS

estimates, but we also report the latter for completeness.

The first two columns of both Tables 8 and 9 report the basic specifications for five- and ten-

year intervals, similar to columns 1 and 2 in Table 3A. For generics, the NLLS estimate using the

income-based measure of market size and five-year intervals (column 1) is 11.07 with standard

error 2.29, significant at the 1 percent level. For comparison, the corresponding estimate in

Table 9 for non-generic is 4.86, with standard error 2.07, smaller, though still significant at

the 1 percent level. The larger estimate for generics suggests that the entry of generic drugs is

more responsive to market size, but the results also show a significant response of non-generics

to changes in market size.

In column 2 of both tables we use ten-year intervals, and find broadly similar results; there

is a significant response of both generics and non-generics to market size, again with a stronger

response from generics than non-generics.

In columns 3 and 4, we add lagged market size, and find no evidence of delayed responses

for either generics or non-generics. In columns 5-8, we turn to anticipation effects. For gener-

ics, when both current and lead market sizes are entered together, the current market size is

significant, and lead market size is insignificant. When lead market size is entered by itself,

it is typically significant, but the standard errors are larger than the corresponding estimate

losing current market size. This pattern suggests that the entry of generics is typically more

responsive to current market size than to anticipated future market size. The pattern is some-

what different for non-generics. Here, when current and lead market sizes are present together,

neither of them is significant, but lead market size typically has the right sign (i.e., positive)

while current market size is zero or negative. When entered by itself, lead market size is not
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significant at the 5 percent level, however; e.g., with NLLS, the coefficient on the five-years

lead is 2.39 (s.e. = 2.78) and the ten-year lead is 2.32 (s.e. = 4.16). Therefore, there is some

evidence that entry of non-generics is somewhat more responsive to anticipated future market

size than current market size, but this evidence is weak.33

We can go one step further in our analysis of non-generic drugs. The FDA has labeled

some generics as being “priority” drugs, meaning that they represent a significant therapeutic

gain over existing drugs. The FDA has a second classification, whether or not a drug contains

a new molecule. While many priority drugs are new molecules, a large fraction (about 30%)

are not (and vice versa). Both types of drugs represent a significant amount of innovation,

and potentially a different type of innovation compared to the the average non-generic. We

combine them both in a new measure of Nct. We use this smaller category in columns 9 and

10 of Table 9. In the basic specification, which is reported in column 9, we find an estimate of

3.59 with standard error 2.12, significant at the 10 percent level. This means that a 1 percent

increase in market size leads to an approximately 4 percent increase in priority non-generics

and new molecules. The relatively small estimate suggests that it may be more difficult to

develop new molecular entities and priority drugs than other non-generics or generics, though

this result may also reflect the larger standard errors resulting from the fact that there are

many fewer new molecular entities than generics or non-generics in our data (a total of 400

drugs for 1970-2000).

6 Concluding Remarks

This paper argued that both theoretically and empirically, a key determinant of innovation is

the potential market size of users. We provide evidence for this view from the pharmaceutical

industry by exploiting changes in the potential market size for various drug categories driven

by U.S. demographic changes. Our results indicate that a 1 percent increase in the potential

market size for a drug category leads to approximately 4-7.5 percent growth in the entry of new

drugs approved by the FDA. This is a substantial effect, and most of our various strategies find

33One reason to expect that non-generic entry may occur about a decade before the increase in market size
would be the (limited) advantage of entering early highlighted in subsection 2.3. Generic entry, on the other
hand, may be lagging behind non-generics due to the length of the patents. Since, in the U.S., patents are
valid for about 17 to 20 years from the time they are granted, one might expect a longer lag than 5 or 10 years
between non-generics and generics. Nevertheless, because drugs must go through a lengthy testing and approval
process of about 10 years, pharmaceutical companies have considerably less the 17 to 20 years to market their
drugs under patent protection. Consequently, a gap of about a decade between generic and non-generic entry
may be plausible, though recall that the results here are not very conclusive.
Note also that in 1984, the Congress passed the Drug Price Competition and Patent Term Restoration Act.

This Act allows patents to be extended for up to 5 years if the company could show that it lost marketing time
while performing clinical trials or waiting for FDA approval. Under this Act, companies had a maximum of 14
years of patent protection under which to market their drugs.

40



it to be robust.

This finding, if further proven to be robust, has important implications both for research

on the pharmaceutical industry, and for the endogenous growth and directed technical change

literatures. It provides evidence that, as conjectured by these models, R&D and technological

change are directed towards the most profitable areas. Furthermore, the magnitude of the

effect is important for evaluating various theoretical predictions of these models. For example,

directed technical change models suggest that the relative demand curves for factors can be

upward, rather than downward, sloping if development of new technologies responds to a 1

percent increase in market size by more than 1 percent (see, for example, equations (21) and

(22) in Acemoglu, 2002). Second, these findings imply that pharmaceutical research towards

drugs with relatively small markets may be limited, which is a key premise of recent work by

Kremer (2002). Building on this premise, Kremer suggests that there needs to be selective

government incentives for developing drugs against malaria and other third-world diseases.

We view this research as part of a broader investigation of the effects of profit-incentives

on innovation. Evidence from a single industry, in this case the pharmaceutical industry, may

be nonrepresentative, especially because the pharmaceutical industry may be more research

oriented than other industries. Future research both investigating the response of innovation

and entry of new products in a specific industry, and also at the economy-wide level by com-

paring variation in the market size across different industries is necessary to substantiate the

importance of market size and profit incentives on innovation.
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8 Data Appendix

8.1 Prescription Drug Use and Expenditure, and Drug Categories from the MEPS

This section describes how we construct our measures of drug use and expenditure, as well as
our classification system. The MEPS is an annual survey of randomly sampled households; we
use the 1996, 1997 and 1998 surveys.
We obtain each person’s age, the name of the prescription drug(s) used, and total expen-

diture (there are multiple records for people who use more than one prescription drug). Over
the 3 years, we have about 500,000 drugs used and about 75,000 people. Expenditure includes
out-of-pocket expenses, as well as amounts paid by insurers, which has been collected from
surveys sent to insurance companies.
We begin with the 159 therapeutic categories, obtained from the FDA’s National Drug

Code (NDC) Directory. The names of these categories can be found in the second column of
Appendix A1. The NDC Directory contains a file with the therapeutic category for most FDA
approved drugs currently on the market. We assign each drug in the MEPS to one of the 159
categories by matching it by name with a drug in the NDC file. We cannot match about 10
percent of the drugs mentioned in the MEPS; these are usually not commonly used drugs, and
make up less than 5 percent of the total drugs used.
We calculate drug use and expenditure by ten-year age group, using the survey weights.

We divide these by the corresponding population and income for that year and age group, as
estimated from the CPS, to obtain drug use and expenditure per person for each age group
and category.
The FDA has assigned each of the 159 categories to one of 20 major therapeutic categories.

Within each major category, we separate minor categories when there is sufficient heterogeneity
in the age structure of drug expenditure (using drug use yields the identical classification
system). From Table A1, it is apparent that we separate categories when there is considerable
variation. For example, within Antimicrobials (categories 10-12) category 10 is used more
by 0-20 year olds, category 11 has a steadily upward sloping profile, and category 12 is used
approximately equally by individuals over age 30.
As noted in the text, we drop four major categories: Anesthetics, Antidotes, Radiophar-

maceuticals, and Miscellaneous. We also drop several minor categories when there are not
sufficient observations to estimate a reliable age structure. We use about 1,500 observations
as our cutoff rule. We obtain this number from observing that only categories with more than
1,500 observations have fairly smooth age profiles.
Finally, wee aggregated the initial ten-year age groups into 5 age groups, 0-20, 20-30, 30-50,

50-60, 60+, by noting that most of our 34 categories show sharp peaks in one of the 5 groups.
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8.2 Prescription Drug Use and Drug Categories from the NAMCS

The NAMCS differs from the MEPS in several important ways. First, it covers the years 1980,
1981, 1985, and 1989-2000. In constructing our classification system and estimating drug use,
uca, we aggregate all years of NAMCS data.
Second, the survey is based on doctor-patient visits. It does not cover doctors at institutions

or hospitals, unless they are considered to have a private practice. For each visit in the sample,
there is a list of drugs prescribed, with a maximum of 5 to 8, depending on the year. Since we
do not have information on expenditure, we weight multiple drugs for a single patient equally
(as we do in constructing drug use per person with the MEPS). The survey also contains
information on the doctor’s primary diagnosis (which would be useful in weighting drug use),
but it is not possible to create a consistent map between drugs prescribed and the diagnosis.
From 1993-2000, the NAMCS provides the FDA category for each prescribed medication.34

We use this information to construct a mapping of medications to FDA class, which we can
use to assign drugs from earlier survey years. Our worst success rate was in 1980, where we
matched about 85% of prescribed drugs; in most years it was well above 90%. Because of these
high rates, we believe that the bias from only using prescribed drugs in earlier years that were
still being prescribed in the early 1990’s is not large.
We initially construct drug use per person by ten-year age group as we do with the MEPS.

We obtain 30 drug categories, as shown in Appendix Table A2. We find that the same 5 age
groups are suitable for the NAMCS data.
We use the same cutoff rule for the NAMCS as for the MEPS for dropping FDA categories.

It should be noted from Table A2 that we drop different FDA categories from the two surveys.
For example, we drop Antifungals from the NAMCS system, and Anterior Pituitary from the
MEPS.

8.3 Drug Approvals from the FDA

We have obtained a list of FDA drug approvals from Frank Lichtenberg. As noted in the text,
this does not include biologics, which go through a separate licensing process. Also, we are only
able to match a few orphan drugs, so we do not include them in the analysis. We keep only
prescription drugs, because the NAMCS does not have information on over-the-counter drugs.
We match drugs in the approval list to FDA categories by drug name. We match 13,656

of 16,220 prescription drugs (84%) approved since 1970. Our success rate before 1970 is about
45%, which is why we restrict our main drug approvals data set to 1970-2000. We drop 4,451
of the matched drugs that have the same approval number and FDA class as a previously
approved drug. We drop 1,103 drugs for which we have dropped the corresponding FDA
category, because of insufficient observations in the MEPS (the corresponding number is 1,558

34Several drugs change FDA classes over the 8 years. In most cases, when we construct the 30 categories
these drugs stay within the same category; we drop those that do not.
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for the NAMCS). Finally, we drop drugs with the same name, MEPS category and different
dosage from a previously approved drug, leaving us with our sample of 6,927 drugs (6,472 for
the NAMCS). Of these, 2,089 are non-generics, and 429 are priority drugs and new molecules.

8.4 CRISP

The Computer Retrieval of Information on Scientific Projects (CRISP) dataset contains fed-
erally funded research projects at universities, hospitals and other institutions. Many of the
grants are for very basic research, so they cover the very early stages of drug development. The
projects are funded by the National Institutes of Health and the Substance Abuse and Mental
Health Services Administration, as well as a variety of other agencies such as the FDA and the
Center for Disease Control and Prevention. We have obtained a dataset with all pojects in the
CRISP database for 1972-1995 from Frank Lichtenberg. In 1995 there were 57,553 grants, for
a total of about 11 billion dollars.
Each record lists the project’s investigator and affiliation, and the amount awarded. Most

projects list one or several diseases which the researchers intend to study. For each disease
listed, we know whether it is of primary, secondary or tertiary importance in the project. In
our analysis, we use only primary diseases, and divide the award amount evenly between them.
Our results are not sensitive to alternative weighting schemes.
The disease classification system is quite detailed; there are about 2,900 diseases, though

these are arranged in a heirarchical structure into 35 major disease classes. We have mapped
the detailed disease classes into our classification scheme. We are unable to map diseases
into 5 of the smallest MEPS-based categories: Contraceptives, Skeletal Muscle Hyperactivity,
Vertigo/Motion Sickness, Non-narcotic Analgesics, and Central Pain Syndromes. Our results
are not sensitive to dropping these categories from the regressions.
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1980/1990 1990/2000 1980/2000

Overall Correlation 0.955 0.878 0.852

Weighted Correlation 0.967 0.862 0.862

Mean Correlation by Drug 0.832 0.794 0.741

1996/1997 1997/1998 1996/1998

Overall Correlation 0.994 0.992 0.982

Weighted Correlation 0.998 0.997 0.993

Mean Correlation by Drug 0.851 0.888 0.854

MEPS/NAMCS MEPS use/MEPS income weighted

Overall Correlation 0.180 0.969

Weighted Correlation 0.360 0.992

Mean Correlation by Drug 0.893 0.952

Notes: Overall correlation is the correlation of use per person (or expenditure per person for expenditure cells) 
across all categories.  In weighted correlations, observations are weighted by cell size from the MEPS or 
NAMCS. Mean correlation by drug computes correlations separately by drug, then takes the average.

Table 1:

Correlations Between Different Drug Use Measures

Panel A: NAMCS over time

Panel C: Correlation Between NAMCS and MEPS, and Between MEPS With and Without Income Weights

Panel B: MEPS over time



Age Group 1970-1980 1980-1990 1990-2000

0-20 18.13 18.07 18.15

20-30 17.34 17.52 17.44

30-50 17.69 17.94 18.20

50-60 16.91 16.92 17.02

60+ 17.21 17.43 17.54

Age Group 1970-1980 1980-1990 1990-2000

0-20 6.43 5.77 4.30

20-30 4.08 4.14 3.14

30-50 6.13 6.82 6.13

50-60 5.57 5.76 5.36

60+ 6.33 7.00 6.33

Age Group 1970-1980 1980-1990 1990-2000

0-20 5.54 5.89 5.39

20-30 3.74 4.13 3.69

30-50 5.08 5.48 6.04

50-60 4.74 4.98 5.48

60+ 5.53 6.58 6.28

Notes: In Panel A, log population by age group is the log of mean population over the ten year interval, 
using the March CPS.  In panels B and C, each of the 34 drug categories is assigned one age category, 
based on the age group that uses that category most.  Log of drug approvals is the log of the sum of all 
approvals in the indicated 10 year interval, for all drug categories in the given age category.  

Panel B: Log Drug Approvals of Generics by Age Group, From FDA

Table 2: 

Population by Age Group and Drug Approvals Over Time

Panel A: Log Population by Age Group, From CPS

Panel C: Log Drug Approvals of Non-generics by Age Group, From FDA



(1) (2) (3) (4) (5) (6)

7.33 5.58 6.12 4.31 5.41 4.51
(1.81) (2.24) (1.71) (1.92) (1.71) (1.89)

R Squared 0.88 0.92 0.88 0.93 0.78 0.86

5.64 5.97 5.05 5.09 3.28 4.39
(2.52) (2.85) (2.19) (1.94) (1.80) (2.53)

R Squared 0.87 0.92 0.87 0.92 0.82 0.88

Number of Observations 204 102 204 102 204 102

Length of Time Interval 
(Years) 5 10 5 10 5 10

Drug Category Weights Yes Yes Yes Yes No No

Market Size and Weights 
Include Income Yes Yes No No Yes Yes

Notes: Counts of drug approvals are computed from the FDA dataset of New Drug Approvals, by counting drug 
approvals for each category over five- and ten-year intervals (see Appendix for details).  Market Size is obtained 
by multiplying the time-invariant expenditure per person of users in a particular age group, calculated from the 
MEPS, by total income of that age group at that date, from the CPS, and summing over all age groups.  When 
market size does not include income, use per person is multiplied by population.  See text for details.  Huber-
White robust standard errors are reported in parentheses.  All regressions include drug and period dummies, and 
the 34 drug categories constructed from the MEPS, as described in the Appendix.  In panel A, the Poisson model 
is estimated by NLLS (with the Hausman, Hall and Griliches, 1984, transformation).  In panel B, if a cell is empty, 
log approval is set equal to zero, and a dummy variable, equal to 1 when the cell is empty, is added to the 
regression.  Regression weights are cell size for the category from the MEPS, either total expenditure or total 
use.  

Log Market Size

Table 3A:

Effect of Changes in Market Size on New Drug Approvals

Panel B: OLS, dependent variable is log drug approvals

Panel A: NLLS for Poisson model, dependent variable is count of drug approvals

Log Market Size



(1) (2) (3) (4)

6.41 6.09 5.78 5.16
(0.68) (0.73) (0.65) (0.70)
{2.92} {2.02} {1.75} {1.59}

7.36 6.79 7.35 5.95
{2.56} {2.01} {1.45} {1.15}

4.74 4.80 4.42 4.55
(1.77) (1.89) (1.89) (1.96)
{2.27} {2.11} {2.51} {2.23}

Number of Observations 204 102 204 102

Length of Time Interval 
(Years) 5 10 5 10

Market Size and Weights 
Include Income Yes Yes No No

Notes: Drug approvals and market size variables, and regression weights are constructed as in Table 3A.  All 
regressions include drug and period dummies, and use the 34 MEPS-based drug categories.  In panels A and 
B a Poisson model is estimated using maximum likelihood.  In panel C a negative binomial model is estimated 
using maximum likelihood.  Maximum Likelihood standard errors in parentheses, and Huber-White standard 
errors in curly brackets.

Panel A: Poisson ML, dependent variable is count of drug approvals

Log Market Size

Table 3B:

Effect of Changes in Market Size on New Drug Approvals

Panel C: Negative Binomial ML, dependent variable is count of drug approvals

Log Market Size

Panel B: Weighted Poisson ML, dependent variable is count of drug approvals

Log Market Size



(1) (2) (3) (4) (5) (6) (7) (8) (9)

7.33 9.14 4.03 3.02 6.94
(1.81) (3.03) (2.56) (3.35) (2.29)

-3.98 -2.30 0.71 -4.12
(1.61) (2.21) (0.43) (2.00)

8.14 8.57 11.37 11.77
(3.75) (3.36) (2.36) (3.42)

R Squared 0.88 0.87 0.92 0.87 0.92 0.63 0.78 0.60 0.75

5.64 11.10 5.21 3.69 7.24
(2.52) (4.40) (3.45) (3.26) (3.57)

-4.95 -1.78 2.30 -3.90
(3.50) (2.85) (1.78) (2.20)

3.09 9.59 5.74 12.46
(4.07) (6.67) (3.10) (7.30)

R Squared 0.87 0.88 0.92 0.87 0.92 0.78 0.96 0.90 0.96

Number of Observations 204 204 102 204 102 170 68 170 68

Length of Time Interval 
(Years) 5 5 10 5 10 5 10 5 10

Panel A: NLLS, dependent variable is count of drug approvals

Log Market Size

Table 4:

Delays and Anticipation Effects

Notes: Drug approvals and market size variables are constructed as in Table 3A.  Lag Market Size refers to one-period lag of Log Market Size, and Lead 
Market Size refers to one-period lead of Log Market Size.  All regressions use income-based market size and income-based weights.  Regressions 
include drug and period dummies and all 34 drug categories.  In panel A, the Poisson model is estimated using NLLS (with the Hausman, Hall and 
Griliches, 1984, transformation), and in panel B empty approval cells are set equal to zero and a dummy variable for empty cells is added to the OLS 
regression, as in Table 3A.  Huber-White standard errors in parentheses.

Lag Market Size

Lead Market Size

Lag Market Size

Lead Market Size

Panel B: OLS, dependent variable is log drug approvals

Log Market Size



(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

6.44 4.72 7.12 7.66
(3.11) (3.65) (1.84) (1.82)

9.57 10.46 10.49
(2.84) (6.51) (2.45)

1.07 0.84 0.11 1.72 0.48 0.12 0.74 4.68 0.21 1.59
(2.13) (2.64) (0.12) (1.55) (1.82) (0.12) (2.05) (1.29) (0.12) (2.36)

R Squared 0.88 0.92 0.88 0.60 0.56 0.60 0.88 0.88 0.87 0.86

5.85 6.59 5.09 5.77
(3.96) (5.15) (2.57) (2.53)

8.60 12.46 7.44
(3.36) (7.51) (3.14)

-0.05 -0.55 0.17 0.19 2.48 0.20 0.89 2.72 0.21 0.94
(2.31) (2.89) (0.06) (1.38) (1.82) (0.06) (1.84) (1.43) (0.06) (2.06)

R Squared 0.87 0.92 0.88 0.90 0.96 0.90 0.87 0.87 0.87 0.87
Number of Observations 204 204 102 170 68 170 204 204 204 204
Length of Time Interval 
(Years) 5 5 10 5 10 5 5 5 5 5

Type of Insurance Any 
Private

Any 
Private Medicaid Any 

Private
Any 

Private Medicaid Medicare Any 
Private Medicaid Medicare

Notes: Drug approvals and market size variables are constructed as in Table 3A.  Market size of insured is obtained by multiplying the time-invariant 
expenditure per person of users in a particular age group, by total income of that age group, by the fraction of people in that age group with the 
corresponding type of health insurance, as calculated from the NHIS, and summing over all age groups.  See text for details.  All regressions use income-
based market size and income-based weights.  Regressions include drug and period dummies and all 34 drug categories.  In panel A, the Possion model 
is estimated using NLLS (with the Hausman, Hall and Griliches, 1984, transformation), and in panel B empty approval cells are set equal to zero and a 
dummy variable for empty cells is added to the OLS regression, as in Table 3A.  Huber-White standard errors in parentheses.

Log Market Size of 
Insured

Panel B: OLS, dependent variable is log drug approvals

Log Market Size

Lead Market Size

Lead Market Size

Table 5:

Controlling for Changes in Health Insurance

Panel A: NLLS for Poisson model, dependent variable is count of drug approvals

Log Market Size

Log Market Size of 
Insured



(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

8.28 7.80 8.21 7.93 7.17 7.19 6.49 7.10 5.38 7.03 7.17 7.65
(1.88) (2.04) (1.95) (2.01) (1.87) (1.89) (2.32) (2.20) (2.48) (1.83) (1.86) (1.92)

-1.75 0.52
(0.62) (0.46)

R Squared 0.88 0.94 0.89 0.89 0.87 0.87 0.92 0.93 0.92 0.87 0.87 0.87

6.01 7.33 7.16 6.79 5.69 5.48 6.18 6.00 5.07 5.74 5.69 5.85
(2.59) (3.30) (2.70) (2.74) (2.41) (2.73) (2.76) (3.13) (3.63) (2.63) (2.51) (2.59)

-1.48 0.53
(0.83) (0.94)

R Squared 0.88 0.93 0.90 0.89 0.88 0.89 0.92 0.93 0.95 0.78 0.88 0.87

11.37 11.39 11.74 11.48 12.11 13.56 10.65 10.32 14.03 9.39
(2.36) (2.39) (2.37) (2.34) (3.50) (3.39) (3.92) (4.01) (4.43) (4.09)

R Squared 0.60 0.60 0.60 0.62 0.75 0.78 0.97 0.59 0.51 0.60

Length of Time Interval 
(Years) 5 10 5 5 5 5 10 10 10 5 5 5

Life Years Lost No No No Yes No No No No No No No No
CRISP Funding No No No No Yes Yes No No No No No No
Pre-existing Trends 
Interacted with Period 
Dummies

No No No No No No Yes Yes No No No No

Major Drug Category No No No No No No No No Yes No No No

Categories Excluded None None None None None None None None None Cancer, 
Cardio

Insluin, 
Thyroid

Biologics 
Included

Table 6:

Panel A: NLLS for Poisson model, dependent variable is count of drug approvals

Potential Supply-Side Determinants of Innovation 

Lead Market Size

Log Market Size

Panel B: Linear Regressions, dependent variable is log drug approvals

Panel C: NLLS for Poisson model, dependent variable is count of drug approvals

Lagged Dependent 
Variable

Log Market Size

Lagged Dependent 
Variable



is the log difference of drug approvals for category c between 1960 and 1940.  In column 7, the 1940/1960 trend is interacted with period dummies for the 
1980's and 1990's decades.  Column 8 reports the corresponding regressions for the 1940/1970 trends.  See text for details. The interactions were 
generally insignificant, and are not reported.  Major drug category trends are linear time trends interacted with dummies to which of the 16 major drug 
categories that each category belongs.  See text for details. In column 12 FDA approvals of biologics for each category and time interval are added to the 
dependent variable. 

Notes to Table 6:  Drug approvals and market size variables are constructed as described in Table 3A.  In all regressions, market size is computed using 
income and expenditure shares.  Huber-White standard errors in parentheses.  All regressions include 34 categories, drug and period dummies, and are 
weighted by cell size.  In panels A and B, the number of observation is 204 in columns 1, 5, and 12; 102 in 2, 7, 8, and 9, 170 in 3, 4 and 6; and 192 in 10 
and 11. In panel C, the number of observation is 170 in columns 3, 4, 5, 11, and 12; 68 in 7, 8, and 9; and 160 in 10 and 11. In columns 1 and 2 the lagged 
dependent variable is instrumented with the twice lagged dependent variable.  Life years lost is defined as the number of years prior to age 65 for each 
death in the US, as calculated from the Mortality Detail Files.  See text for details.  Column 4 includes a count of total life years lost due to diseases in the 
corresponding category and time interval. Columns 5 and 6 include the amount of funding from NIH grants for research in each category in the particular 
interval, as calculated from the CRISP database (see Appendix for details).  Column 6 also includes the lag of this variable. 1940/1960 trend for category c 



(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

7.33 6.90 5.58 7.79 3.60 5.28 3.07 4.86 4.25 6.04 6.86
(1.81) (2.05) (2.24) (2.89) (1.43) (2.12) (1.80) (1.91) (2.29) (4.07) (4.15)

R Squared 0.88 0.88 0.92 0.92 0.79 0.86 0.78 0.71 0.72 0.87 0.86

5.64 5.35 5.97 7.46 4.11 6.37 4.69 5.11 6.86 7.66 8.80
(2.52) (2.80) (2.85) (4.02) (1.54) (2.64) (2.00) (2.03) (3.27) (3.77) (4.38)

R Squared 0.87 0.87 0.92 0.92 0.87 0.86 0.93 0.83 0.89 0.90 0.90

Number of Observations 204 204 102 102 180 180 90 180 90 120 120

Number of Categories 34 34 34 34 30 30 30 30 30 30 30
Length of Time Interval 
(Years) 5 5 10 10 5 5 10 5 10 5 5

Instrument for Market Size 
with Previous Market Size No Yes No Yes No No No No No No No

Weights Yes Yes Yes Yes Yes Yes Yes No No Yes Yes
Instrument Market Size 
with 1980 Based Market 
Size

No No No No No No No No No No Yes

Table 7:

Instrumenting for Market Size and Results Using NAMCS

Notes: In columns 1-4 and 6, market size is computed as in Table 3A, and is income-based for columns 1-4.  In columns 5 and 7-11, market size is 
computed as in Table 3A, except using the NAMCS instead of the MEPS.  Huber-White standard errors in parentheses.  In columns 5-11, regressions 
include 30 drug categories, constructed from the NAMCS and in the same manner as the MEPS, as explained in the Appendix.  All regressions include 
drug and period dummies.  Regression weights in columns 1-4 are total expenditure of the category, as computed from the MEPS.  Regression weights in 
columns 5 and 7-11 are total use for the category, computed from the NAMCS.  Regression weights in column 6 are total use, computed from the MEPS. 
In columns 1 and 2, current market size is instrumented with the market size 10 years earlier of the age group that is 10 years younger.  For example, the 
market size of 20-30 year-olds in 1970 is instrumented by the market size of 10-20 year-olds in 1960.1980-based market size is constructed in the same 
way as market size, except that only the 1980 NAMCS data is used.  In column 9 current market size is instrumented with this variable.

Panel A: NLLS, dependent variable is count of drug approvals

Panel B: Linear Regressions, dependent variable is log of drug approvals

Log Market Size

Log Market Size



(1) (2) (3) (4) (5) (6) (7) (8)

11.07 9.04 10.76 9.00 8.96 6.99
(2.29) (2.59) (3.49) (3.24) (4.30) (3.55)

2.17 0.65
(2.73) (2.55)

2.15 4.04 11.20 7.20
(4.70) 4.92 (2.85) (4.79)

R Squared 0.83 0.90 0.90 0.90 0.57 0.87 0.56 0.86

10.49 10.96 12.02 10.95 9.34 9.41
(3.79) (4.19) (4.90) (4.78) (5.13) (4.06)

2.43 1.88
(3.86) (3.69)

1.35 6.05 10.09 10.13
(6.40) (10.44) (4.21) (11.03)

R Squared 0.83 0.92 0.92 0.86 0.96 0.95

Number of Observations 204 102 204 102 170 68 170 68

Length of Time Interval 
(Years) 5 10 5 10 5 10 5 10

Lead Market Size

Panel A: NLLS, dependent variable is count of drug approvals

Log Market Size

Notes:  Dependent variables include only approvals of generic drugs.  Market size is the income-based measure, constructed as in Table 3A.  All 
regressions include period and category dummies, and are weighted by category size as described in Table 3A.  Hubler-White standardard errors in 
parentheses.  

Table 8:

Generics: Effect of Changes in Market Size on New Drug Approvals

Lead Market Size

Panel B: OLS, dependent variable is log drug approvals

Log Market Size

Lag Market Size

Lag Market Size



(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

4.86 5.18 8.75 5.18 -2.63 2.06 3.59 3.40
(2.07) (2.45) (3.00) (2.59) (4.03) (5.34) (2.12) (2.67)

-6.54 0.02
(3.04) (2.60)

4.62 -4.17 2.39 2.32
(4.59) (7.12) (2.78) (4.16)

R Squared 0.82 0.89 0.82 0.89 0.23 0.35 0.24 0.33 0.82 0.90

3.19 4.81 7.68 5.19 -0.27 5.97 1.63 0.28
(2.53) (2.98) (5.74) (3.53) (4.45) (4.14) (2.50) (3.80)

-5.27 0.90
(3.74) (3.65)

2.35 -7.47 1.82 -5.03
(6.26) (7.76) (3.54) (6.77)

R Squared 0.80 0.87 0.82 0.87 0.85 0.94 0.88 0.94 0.83 0.84

Number of Observations 204 102 204 102 170 68 170 68 204 102

Length of Time Interval 
(Years) 5 10 5 10 5 10 5 10 5 10

Lead Market Size

Lead Market Size

Table 9:

Non - Generics: Effect of Changes in Market Size on New Drug Approvals

Notes: Dependent variables in columns 1-8 include only approvals of non-generic drugs.  Dependent variables in columns 9 and 10 include only priority 
non-generics and new mocecules, as described in the Appendix.  Market size is the income-based measure, constructed as in Table 3A.  All regressions 
include period and category dummies, and are weighted by category size as described in Table 3A.  Huber-White standard errors in parentheses.  

Panel A: NLLS, dependent variable is count of drug approvals

Log Market Size

Panel B: OLS, dependent variable is log drug approvals

Log Market Size

Lag Market Size

Lag Market Size



Class Description 0-20 20-30 30-50 50-60 60+

10
Penicillins, Cephalosporins, 

Lincosamides, Sulfonamides, 
Misc. Antibacterials

0.61 0.30 0.38 0.44 0.45

11 Tetracyclines, Urinary Tract 
Antiseptics, Quinolones 0.02 0.06 0.06 0.09 0.12

12 Antifungals, Antivirals 0.03 0.03 0.08 0.09 0.07

20 Hematologics 0.00 0.00 0.03 0.11 0.43

30 Cardiovascular - Renal 0.05 0.10 0.69 2.68 6.05

40 Sedatives/Hypnotics, 
Antianxiety 0.01 0.04 0.16 0.27 0.41

41 Antipsychotics/Antimania, 
Antidepressants 0.08 0.19 0.57 0.70 0.57

42 Anorexiants 0.04 0.01 0.03 0.02 0.01

43 Misc. Central Nervous System 0.11 0.01 0.01 0.01 0.02

50 Gastrointestinals 0.03 0.08 0.24 0.52 0.83

60
Hyperlipidemia, Electrolyte 
Replenishment/Regulation, 

Calcium Metabolism
0.01 0.01 0.13 0.67 1.37

61 Vitamins/Minerals 0.06 0.09 0.07 0.09 0.13

70 Adrenal Corticosteroids 0.05 0.04 0.09 0.14 0.24

71 Androgens/Anabolic Steroids, 
Estrogens/Progestins 0.02 0.38 0.34 1.30 0.67

72 Blood Glucose, Thyroid 0.02 0.10 0.35 1.02 1.70

73 Contraceptives 0.01 0.21 0.10 0.01 0.01

80 Immunologics 0.00 0.01 0.02 0.02 0.03

Appendix Table A1:

Share of Use

Summary of Classifications and Drug Use by Age Group, Computed From 
MEPS



Class Description 0-20 20-30 30-50 50-60 60+

90 Dermatologics, Topical Anti-
Infectives 0.09 0.09 0.09 0.12 0.17

91 Topical Steroids 0.01 0.01 0.01 0.02 0.04

100 Extrapyramidal Movement 0.00 0.01 0.03 0.03 0.08

101 Skeletal Muscle Hyperactivity, 
Anticonvulsants 0.05 0.11 0.26 0.29 0.27

110 Oncolytics 0.00 0.01 0.05 0.16 0.17

120 Misc. Ophthalmics, Glaucoma 0.00 0.00 0.01 0.06 0.41

121 Ocular Anti-Infective 0.06 0.05 0.05 0.08 0.16

130 Topical Otics 0.02 0.01 0.01 0.03 0.04

131 Vertigo/Motion Sickness 0.02 0.01 0.03 0.05 0.13

140
General Analgesics, Narcotic 

Analgesics, Antiarthritics, 
NSAID

0.09 0.29 0.59 0.89 1.13

141 Non-Narcotic Analgesics 0.00 0.01 0.02 0.04 0.07

142 Antigout 0.00 0.00 0.01 0.06 0.14

143 Central Pain Syndromes 0.01 0.01 0.02 0.02 0.01

150 Antiparasitics 0.00 0.01 0.03 0.03 0.05

160 Antiasthmatics, Nasal 
Decongestants 0.20 0.14 0.22 0.47 0.66

161 Antitussives, Antihistamines, 
Corticosteroids 0.15 0.20 0.29 0.45 0.41

162 Cold Remedies 0.07 0.05 0.07 0.08 0.08

Share of Use

Appedix Table A1 (cont.)



MEPS FDA Categories Included NAMCS FDA Categories Included

10
Penicillins, Cephalosporins, 

Lincosamides, Sulfonamides, 
Misc. Antibacterials

10
Penicillins, Cephalosporins, 

Lincosamides, Aminoglycosides, 
Sulfonamides

11 Tetracyclines, Urinary Tract 
Antiseptics, Quinolones 11 Tetracyclines

12 Antifungals, Antivirals 12 Urinary Tract Antispetics, Misc. 
Antibacterials, Quinolones

13 Antivirals

20 Hematologics 20 Deficiency Anemias

21 Anticoagulants

30 Cardiovascular - Renal 30 Cardiovascular - Renal

40 Sedatives/Hypnotics, Antianxiety 40 Sedatives/Hypnotics, Antianxiety

41 Antipsychotics/Antimania, 
Antidepressants 41 Antipsychotics/Antimania, 

Antidepressants

42 Anorexiants 42 Anorexiants

43 Misc. Central Nervous System
50 Gastrointestinals 50 Acid/Peptic Disorders, Laxatives

51 Antidiarrheals, 
Antispasmodics/Anticholinergics 

60
Hyperlipidemia, Electrolyte 
Replenishment/Regulation, 

Calcium Metabolism
60 Hyperlipidemia, Electrolyte 

Replenishment/Regulation

61 Vitamins/Minerals 61 Vitamins/Minerals

70 Adrenal Corticosteroids 70 Adrenal Corticosteroids, Anterior 
Pituitary

71 Androgens/Anabolic Steroids, 
Estrogens/Progestins 71 Androgens/Anabolic Steroids, 

Blood Glucose, Thyroid

72 Blood Glucose, Thyroid 72 Estrogens/Progestins

MEPS FDA Categories Included NAMCS FDA Categories Included

73 Contraceptives 73 Contraceptives, Infertility, Uterine  
Relaxants/Stimulants

80 Immunologics 80 Allergenic Extracts

81 Immune Serums, Vaccines

Appendix Table A2:

Comparison of MEPS and NAMCS Classification Systems



MEPS FDA Categories Included NAMCS FDA Categories Included

90 Dermatologics, Topical Anti-
Infectives 90 Skin/Mucous Membranes

91 Topical Steroids

100 Extrapyramidal Movement 100 Extrapyramidal Movement, 
Myasthenia Gravis

101 Skeletal Muscle Hyperactivity, 
Anticonvulsants 101 Skeletal Muscle Hyperactivity, 

Anticonvulsants

110 Oncolytics 110 Oncolytics

120 Misc. Ophthalmics, Glaucoma 120 Ophthalmics

121 Ocular Anti-Infective

130 Topical Otics 130 Otics

131 Vertigo/Motion Sickness

140 General Analgesics, Narcotic 
Analgesics, Antiarthritics, NSAID 140 Pain Relief

141 Non-Narcotic Analgesics

142 Antigout

143 Central Pain Syndromes

150 Antiparasitics 150 Antiparisitics

160 Antiasthmatics, Nasal 
Decongestants 160 Antiasthmatics/ Bronchodilators

161 Antitussives, Antihistamines, 
Corticosteroids 161

Nasal Decongestans, Antitussives, 
Antihistamines, Cold Remedies, 

Lozenges, Corticosteroids

162 Cold Remedies

Appendix Table A2 (cont.)



Figure 1: Response to an Anticipated Increase in Market Size
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Figure 2: Share of Population by Age and Gender Groups, 
1940-1990, from IPUMS
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Figure 4: Log Drug Approvals by Age Group, from FDA
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Notes: Drug approvals for each of the 34 categories are computed for five year invervals.  The categories are 
combined into 5 groups, based on the age group that uses the category the most.  Year dummies are removed 
from the approvals, and log approvals are plotted against time.

Figure 3: Share of Income by Age Group, 1970-2000, from 
CPS
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Figure 5: Approvals Residuals vs Market Size Residuals

Notes: Log approvals residuals and log market size residuals are residuals from OLS
regressions of log approvals and log income-based market size on time and category dummies
weighted by expenditure with five-year intervals. Fitted values are predicted log approvals
residuals obtained from OLS regression in Table 3A column 1 panel B.




